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ABSTRACT

The Laser Interferometer Space Antenna (LISA) is expected to detect a wide variety of gravitational wave sources in the
mHz band. Some of these signals will elude individual detection, instead contributing as confusion noise to one of several
stochastic gravitational-wave backgrounds (SGWBs) — notably including the ‘Galactic foreground’, a loud signal resulting from
the superposition of millions of unresolved double white dwarf binaries (DWDs) in the Milky Way. It is possible that similar,
weaker SGWBs will be detectable from other DWD populations in the local Universe, including the Large Magellanic Cloud
(LMC). We use the Bayesian LISA Inference Package (BLIP) to investigate the possibility of an anisotropic SGWB generated
by unresolved DWDs in the LMC. To do so, we compute the LMC SGWB from a realistic DWD population generated via
binary population synthesis, simulate 4 years of time-domain data with BLIP comprised of stochastic contributions from the
LMC SGWB and the LISA detector noise, and analyse this data with BLIP’s spherical harmonic anisotropic SGWB search. We
also consider the case of spectral separation from the Galactic foreground. We present the results of these analyses and show,

for the first time, that the unresolved DWDs in the LMC will comprise a significant SGWB for LISA.

Key words: gravitational waves — white dwarfs — Magellanic Clouds.

1 INTRODUCTION

The launch of the Laser Interferometer Space Antenna (LISA;
Amaro-Seoane et al. 2017) in 2035 will revolutionize gravitational
wave (GW) astronomy. A space-based gravitational observatory,
LISA will detect GWs in the millihertz frequency band, a range inac-
cessible to both pulsar timing arrays such as the International Pulsar
Timing Array (IPTA; Manchester 2013) and current ground-based
detector networks such as the Laser Interferometer Gravitational-
wave Observatory, the Virgo detector, and the Kamioka Gravitational
Wave Detector (KAGRA; Aasi et al. 2015; Acernese et al. 2015;
Adhikari et al. 2020).

LISA is expected to detect a wide variety of astrophysical GW
sources, including millions of double white dwarfs (DWDs) in
the Milky Way (MW) and the nearby Universe (for a review,
see Amaro-Seoane et al. 2023). Some of these sources will be
individually resolvable, whereas others will contribute to several
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potential stochastic gravitational wave backgrounds (SGWBs; e.g.
Bonetti & Sesana 2020; Babak et al. 2023; Pozzoli et al. 2023).
SGWBs arise from confusion noise formed by the overlap of many
unresolved astrophysical or cosmological sources; evidence for such
a signal in the nanohertz band has recently been detected (Agazie
et al. 2023). While many Galactic DWDs will be individually
resolvable by LISA — some serving as verification binaries for the
instrument (e.g. Stroeer & Vecchio 2006; Savalle et al. 2022; Finch
et al. 2023) — a far greater number of Galactic DWDs will contribute
to a stochastic GW signal distributed mostly along the Galactic
plane, comprised of the superposition of millions of individually
unresolvable DWDs (Edlund et al. 2005). Characterization of this
anisotropic MW foreground (so-called due to its prominence above
the LISA detector noise) will be necessary in order to subtract it from
the LISA data and identify other signals. Additionally, the foreground
is of scientific interest in its own right as a means of studying MW
structure and star formation history (SFH; e.g. Benacquista & Holley-
Bockelmann 2006; Breivik, Mingarelli & Larson 2020; Georgousi
et al. 2023).

The MW is not the only host of DWDs detectable with LISA.
Recent simulations show that nearby dwarf galaxies including the
Large Magellanic Cloud (LMC), Small Magellanic Cloud, and
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Sagittarius Dwarf contain DWDs that will appear as individually
resolvable LISA sources (Roebber et al. 2020a). The number of
resolvable DWDs depends on a dwarf galaxy’s mass, distance, and
SFH (Korol et al. 2020). However, as in the MW, the majority of
DWDs in dwarf galaxies will not generate resolvable signals; for
instance in the LMC population of O(10%) DWDs only O(10%)
will be individually detectable (Korol et al. 2020). It is possible
that, as in the MW, these unresolved DWDs will contribute to an
anisotropic SGWB detectable with LISA. To our knowledge, the
detectability of SGWBs from nearby dwarf galaxies with LISA
anisotropic SGWB searches has not been investigated prior to
this work.

Due to its high mass and relative proximity, the LMC is an ideal
first candidate to evaluate the possibility of a SGWB from DWDs
outside of the MW. Recent work has considered the detectability of
individual DWDs in the LMC by constructing model populations
based on hydrodynamic simulations and electromagnetic observa-
tions of its SFH and stellar density (Keim, Korol & Rossi 2023).
Keim et al. found that while the LMC likely has only tens or hundreds
of detectable DWDs with LISA signal-to-noise ratio (SNR) >7, it
contains approximately two million DWDs in the LISA frequency
band.! This quantity is significantly less than the DWDs in the
MW; the LMC stellar mass (e.g. Marel et al. 2002) is roughly an
order of magnitude less than the mass of the MW (2.7 x 10° Mg
versus several 10'° My). At ~ 50 kpc from Earth, the LMC signal is
also reduced by distance, as GW amplitudes scale as the inverse of
the distance. Given these considerations, we may expect the LMC
SGWB to have approximately 1-2 per cent the strength of the MW
signal. On the other hand, while the MW DWDs are distributed across
a large fraction of the sky, the LMC DWDs are focused in 77 square
degrees, making the LMC a good target for an anisotropic SGWB
search.

In this work, we simulate and recover the SGWB signal in LISA
from a model LMC population using the Bayesian LISA Inference
Package (BLIP; Banagiri et al. 2021). In Section 2, we describe the
model population used to simulate the LMC signal and our code for
simulation and recovery. Results are presented in Section 3 and the
conclusions of this study alongside possible future extensions are
discussed in Section 4.

2 METHODS

To investigate the stochastic signal from the LMC we use BLIP,
described at length in Banagiri et al. (2021). BLIP is a PYTHON package
designed for the end-to-end simulation and Bayesian analysis of
stochastic GW signals with LISA. In this study, we use the BLIP
spherical harmonic anisotropic stochastic search first presented in
Banagiri et al. (2021), which is explained in brief in Section 2.1. BLIP
can simulate a wide variety of anisotropic stochastic GW signals; we
make use of its capability to simulate a SGWB from a realistic
simulated population of the unresolved DWDs in the LMC. This
population is further described in Section 2.2, while the simulated
and recovered models in BLIP are described in Sections 2.3 and 2.4,
respectively.

The LMC is expected to contain approximately 61 million DWDs in total,
but a vast majority are non-interacting with large orbital separations and
are negligible sources of GWs. A frequency cut-off of 10~* Hz reduces this
number to two million in the LISA frequency band (Keim et al. (2023), by
correspondence with the author).
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2.1 Anisotropic SGWBs in BLIP

Simulation and recovery of anisotropic SGWBSs in BLIP is performed
in the spherical harmonic basis. Several studies — considering ground-
based, space-based, and pulsar timing-based analyses — have used
versions of the spherical harmonic basis for expanding the sky
distribution of GW power in e.g. (Ungarelli & Vecchio 2001; Cornish
2001a; Kudoh & Taruya 2005; Taruya & Kudoh 2005; Taruya 2006;
Thrane et al. 2009; Mingarelli et al. 2013; Taylor & Gair 2013;
Renzini & Contaldi 2018). However, constraining the spherical
harmonic distribution to be real and non-negative everywhere is a
non-trivial problem that can hamper the accurate characterization
of highly anisotropic sources such as the Galactic foreground — or,
indeed, the LMC. This is especially true for Bayesian analyses.

Banagiri et al. (2021) developed an explicitly Bayesian version
of the spherical harmonic SGWB analysis for LISA wherein this
problem was solved by fitting the square root of the GW power.
Specifically, the spatial distribution of the SGWB on the sky (for
purposes of both simulation and inference) is represented by the
spherical harmonic coefficients by,,. The by,,s describe the spherical
harmonic expansion of the square root of the GW power on the sky
S(n). The by,,s are related to the usual spherical harmonic coefficients
and functions of the GW power on the sky, a,,, and Y,,,, respectively,
via

a 1/2
lmax e
Sy = /Py = > > amYin(n)
=0 m=—¢
s ¢
= Z b@mYZm(n)s (1)
=0 m=—¢

where Zﬁm = €4 /2 (Banagiri et al. 2021). The ay,, and by,, terms
are directly related to each other via simple linear transformations
involving Clebsch-Gordan coefficients (Banagiri et al. 2021). Char-
acterizing the GW anisotropy in this way mathematically ensures
that the GW power in every proposed sample is real and non-negative
across the entire sky (see Banagiri et al. 2021 for details).

In practice, the BLIP anisotropic search infers and produces

posterior distributions for each by, coefficient (alongside spectral

parameters; see Section 2.4) up to some ¢4, = ¢4 /2.2 Using a
higher £ . for the anisotropic search increases the angular resolution

of the search, but also increases the number of parameters that one
must infer as Npar,spn X Loy (Lo + 1)/2. Additionally, as the BLIP
anisotropic search considers the LISA detector response to each
spherical harmonic, the computational resources required to analyse
data at large £, can become limiting.

This latter point is also a limitation for simulation of anisotropic
SGWBs with BLIP, as the SGWB spatial distribution is simulated in
the spherical harmonic basis. Accordingly, simulations of anisotropic
signals in BLIP similarly employ a truncation £, . This, of course,
results in highly-localized signals (like the LMC) spreading out over
an area much larger than their true spatial extent on the sky. However,
astudy of BLIP’s angular resolution (Bloom et al., in-prep) has shown
that the value of £ . used in the SGWB simulation does not impact
the final spatial recovery so long as £y, gmutation = Cimax recovery-
(Simply put, our analysis is insensitive to variations on smaller scales
than it parametrizes, as one would expect intuitively.) Development

work is ongoing to improve BLIP’s performance for both simulation

2 As the usual spherical harmonic £, referred to in the literature is €2, we

max?
will quote this truncation £,y in terms of £5 . throughout this work.
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and analysis at high €4 (= 8), but these computational limitations

remain relevant at present.

2.2 Simulated LMC DWD population

To date, no DWD has been observed in the LMC. Even within the
MW most of the known LISA-detectable DWDs are found within a
few kpc (e.g. Kupfer et al. 2024); this is mainly due to the faint nature
of white dwarf stars. Nonetheless, this highlights an opportunity for
LISA to reveal the DWD population inaccessible to electromagnetic
observatories as far as the LMC. To model the LMC DWDs we
employ a mock catalogue compiled by Keim et al. (2023). It is based
on a fiducial DWD population synthesis model computed with the
SEBA code (Portegies Zwart & Verbunt 1996; Toonen, Nelemans &
Portegies Zwart 2012), which has been calibrated on the observed
DWDs (albeit in the Solar neighbourhood) and, therefore, is in good
agreement with the observed DWD space density and mass-ratio
distribution (Toonen et al. 2012, 2017).

Synthetic DWDs are distributed across the sky and assigned for-
mation times and ages based on the Magellanic Clouds Photometric
Survey and the observed, spatially resolved 2D SFH from Harris &
Zaritsky (2009, for a visual representation see their fig. 4). We refer
to Keim et al. (2023, see their ‘Model 1°) for further details.

For the assumed LMC total stellar mass of 2.7 x 10° Mg (van
der Marel et al. 2002), the adopted model yields ~2 x 10® DWDs
in the LISA frequency band. For this model, only about ~500
DWD are individually resolved with SNR >7, assuming the mission
lifetime of 4 yr with 100 per cent duty cycle. The detectable binaries
have frequencies >1.7mHz (or equivalently binary orbital periods
of <20 min) due to LISA’s selection effects. The total number of
LISA sources in the LMC represents about 8 percent of the MW
DWD population. As detailed in Keim et al. (2023), the difference
between the two populations is twofold. Firstly, the number of LISA
sources (and stars in general) scales linearly with the total mass of the
host galaxy. The lower mass of the LMC thus decreases individual
DWD detections. Secondly, unlike the MW, the LMC is an active
site of star formation, and so a significant fraction of DWD in the
adopted model have formed only ~ O(10?) Myr ago. This active star
formation increases detections of individual DWDs in the LMC.

2.3 Simulated LISA Data

The simulation of stochastic GW signals from DWD population-
synthesis catalogues is a novel BLIP feature demonstrated for the
first time in this work. For each catalogue binary, we compute the
(assumed monochromatic) strain amplitude from its binary masses
and orbital frequency, following the conventions in Wagg, Breivik &
de Mink (2022). We use the catalogue sky position and distance (as
seen in the Solar system Barycentre frame) to bin the population in
both frequency and sky direction. Binning on the sky is performed on
a HEALPIX (Gorski et al. 2005) map, with user-specified skymap pixel
resolution, quantified by the HEALPIX nside. In this work, we use an
nside of 8 to generate our simulated signal. At our chosen skymap
resolution, the area of each pixel equals approximately 53 square
degrees. The angular size of the LMC is approximately 77 square
degrees (Roebber et al. 2020b). Thus, in our initial simulated skymap
the entire LMC is contained within only a few pixels. Simulating
the LMC with a higher nside would incur significantly higher
computational cost for little-to-no ultimate effect due to limitations
on the sky resolution of our analysis (see Section 2.1).

To compute the associated SGWB spectrum of the DWD popu-
lation, we assume all DWD systems with individual SNR >7 are

MNRAS 531, 2642-2652 (2024)

individually resolvable and can be subtracted from the data (Keim
et al. 2023). We use LEGWORK (Wagg et al. 2022) to calculate the
SNR of every DWD considering the instrumental noise and MW
foreground given in Robson, Cornish & Liu (2019), and remove
from the population those DWDs with SNR >7. Disentangling the
resolved and unresolved DWDs — let alone the entire cacophony
of LISA sources — is beyond the scope of this work, requiring
a global, simultaneous solution (e.g. Littenberg & Cornish 2023).
We assume all other GW sources are perfectly characterized and
subtracted from the data, and we first simulate a signal that includes
only the unresolved LMC DWDs. In a second analysis, we also
include a simple model of the MW foreground (see Section 2.3).
Our simulation of the LMC DWDs is identical in each analysis.
The monochromatic strains of the remaining unresolved binaries are
then binned in frequency at a frequency resolution determined by
the LISA nominal mission duration of 4 years, i.e. Af = 1/Tops =
8 x 10~ Hz. We consider a frequency range of f€ [107*, 1072] Hz,
as this will be the most-sensitive band of the LISA detector.

After the population skymap and spectrum are computed, BLIP
simulates a time series of the corresponding stochastic signal. It
does so by computing the spherical harmonic representation of
the population skymap up to some £%  (we consider a simulation

max
¢a  of 4 due to computational limitations; see Section 2.1). BLIP

max

convolves both this spherical harmonic expansion and the population
spectrum with the time-varying LISA response across frequency and
all considered spherical harmonic modes (see Banagiri et al. 2021
for details). Note that this process explicitly models the orbits of
the LISA constellation and as such naturally accounts for the time-
varying amplitude of highly anisotropic SGWBs like that of the LMC
and the MW. The simulated population skymap as represented in the
spherical harmonic basis can be found in Fig. 1(a).

The resulting GW time series is added to Gaussian detector
noise with the spectral form given in the LISA proposal (Amaro-
Seoane et al. 2017), reproduced below in equations (2) and (3), with
N, =9 x 107 and N, = 3.6 x 107* Hz~* for the position and
acceleration noise contributions, respectively:

2mHz 4 1
S,(f)=N, 1+< 7 ) Hz ™', 2)
3 0.4mHz\* £\
S.(f) = 1+<7f ) } [1+<8mHZ)]
w —Na gy 3)
Qrfy

Throughout this study we simulate and model LISA data using the
X—Y—Z time-delay interferometry (TDI) channels (see Tinto &
Dhurandhar (2014) for a review of TDI in LISA). For further details
on the BLIP data simulation procedure, see Banagiri et al. (2021).
The simulated spectrum, as it appears in the detector, along with the
simulated detector noise, is included in Fig. 3.

2.3.1 Simple MW foreground

We also include a simple analytic (i.e. non-population) simulation
of the MW foreground. Its spatial distribution follows the simple
bulge + disc model described in Breivik et al. (2020). We use
the ‘thin’ model (see Breivik et al. (2020) for details), with radial
scale height r, = 2.9 kpc and vertical scale height z;, = 0.3 kpc.
This simulated Galaxy is then used to create a skymap in the Solar
System Barycentre frame as described in section 6 of Banagiri et al.
(2021). As throughout the rest of this work, we represent this spatial
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Galactic

3.7359e-20 Q(f=1mHz) 1.88763e-11

(a)

SGWB in LISA from DWDs in the LMC 2645

Marginalized posterior skymap of Q(f=1mHz)

Galactic

1.78812e-13 Q(f=1mHz) 2.0936%e-11

(®)

Figure 1. (a) The simulated sky distribution of Qgw(1mHz) for the LMC SGWB generated by our model DWD population. (b) The marginalized posterior

a

sky distribution of QGw(1mHz) inferred by our analysis of the LMC in isolation. Both skymaps are in the spherical harmonic basis at £5,,. = 4 and display
distribution of the dimensionless GW energy density Qgw evaluated at 1 mHz. These skymaps do not include LISA instrumental noise. The black star marks
the position of the LMC. The recovered sky distribution is consistent with both the simulated sky distribution and the position of the LMC.

distribution in the spherical harmonic basis. For the MW foreground
spectrum, we use a tanh-truncated power law similar to that of (e.g.)
Robson et al. (2019), such that

~ £\ Ju= 1
Q(f) = Qref (fref) <1 + tanh ( fscale )) ’ (4)

where for this simulation Q. = 2 x 1073, fior = 25 Hz, fo = 2
mHz, and ficae = 0.4 mHz. Although this more simplistic analytic
function does not account for iterative subtraction of resolved MW
DWDs, it remains a sufficient approximation for our purposes given
the large uncertainties in the overall amplitude and shape of the
MW foreground signal. This skymap and spectrum are then used to
compute the GW time-series contribution of the MW foreground in
the same manner as described above for the LMC.

2.4 Model recovery in BLIP

After generating the simulated data, BLIP performs Bayesian param-
eter estimation via nested sampling with DYNESTY (Speagle 2020).
This process is described in brief below; reference Banagiri et al.
(2021) for a more detailed treatment. The BLIP anisotropic search
simultaneously models the LISA detector noise, the SGWB spectral
distribution, and the SGWB spatial distribution, inferring posterior
distributions for each of the parameters described below.

LISA’s instrumental noise is modelled in terms of the position
and acceleration noise amplitudes N, and N,, with the spectral form
given by equations (2) and (3). We characterize the LMC SGWB
spectrum using a power-law spectral model of the form

Qf) = Qe <L) , (%)
f ref

where Qut = Qfier = 25Hz) is the power-law amplitude at the
reference frequency f;.r and « is the power-law spectral index (slope).
The value of fi.r is an arbitrary choice. BLIP recovers both Q,.¢ and o«
as free parameters. The majority of the LMC SGWB spectrum can
be approximated as a power law, although this model will be unable
to capture the high-frequency turnover in the spectrum; as this work
focuses on establishing the LMC SGWB as a significant signal in
LISA, more complex spectral models are left to future work (see
Section 4).

As discussed in Section 2.1, the spatial distribution of the LMC
SGWB on the sky is inferred in the spherical harmonic basis. Our
final spatial posteriors are given in terms of the by,s, from which
it is straightforward to compute the corresponding ay,,,s and SGWB
power skymap. We choose an analysis €5 of 4, in keeping with our
choice for the simulated LMC spatial distribution.

The Fourier-domain likelihood used in BLIP’s nested sampling is
a complex multivariate Gaussian (Adams & Cornish 2010) whose
covariance is a function of the parameters in the previous four
equations: C(JlN,,, Ny, Qets o, {bgn}). The likelihood is given by
equation 32 from Banagiri et al. (2021):

L(INy, Nuy et &, {bem}) =
1 ( ZJ?V,Cu(fv f)ltif.:> (6)
Xexp | —

X 27TTsEg CIJ(fv t)l Tseg

where T, is the length of each time segment, Cy,(f, #) is the channel
covariance matrix, and d r.¢ 1s the array of data in the Fourier domain
for the three LISA channels measured in the time segment labelled
by t and at frequency f. For explicit definitions of these terms
see discussion in Banagiri et al. (2021) and original derivations in
Cornish & Larson (2001) and Cornish (2001b).

2.4.1 Joint model with the MW foreground

We also consider a joint model that simultaneously infers the
LMC SGWB alongside the MW foreground. This is a simplified,
prototype demonstration of the full, flexible spectral separation
infrastructure developed for BLIP (Criswell et al. in preparation).
Accordingly, we restrict ourselves to a simple MW model: we
assume the MW spatial distribution is well-measured a priori from
the resolved Galactic DWDs, and fix its skymap to the analytic
distribution described in Section 2.3. We then use the spectral model
of equation (4), fixing ficae = 0.4 mHz, and inferring the set of free
parameters Oyw = {Qret. mw, &mw, feur)- The joint likelihood is then
L(J|0n;0LMC;0MW)v where 0, = {N,, N,} describe the noise and
Ouvic = {Qer, @, {bem}} describe the LMC as discussed above. We
leave a full discussion of BLIP’s approach to spectral separation to
Criswell et al. (in preparation). We stress that this simple model is a
first pass at resolving the LMC SGWB in the presence of the MW
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Simulated LMC SGWB Spectrum

— — Simulated LISA Noise
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Figure 2. The simulated, population-derived LMC SGWB power spectral
density (PSD). The LISA instrumental noise spectrum and the Babak et al.
(2023) interquartile prediction for the LISA SOBBH SGWB are shown for
reference. Both SGWB PSDs are shown convolved with the LISA response.
Note that the LMC SGWB amplitude exceeds that of the SOBBH signal in
the relevant frequency band.

foreground. A detailed treatment of spectral separation between the
LMC and MW signals is sufficiently involved so as to warrant its
own dedicated study.® As such, more complicated models are outside
the scope of this initial work, which primarily seeks to establish the
LMC SGWB as a significant stochastic contribution in LISA.

3 RESULTS

‘We include results from two simulations. In the first, we simulate the
LMC SGWB generated from the population described in Section 2.2
with LISA instrumental noise. In Section 3.2, we present the results
of the recovery process described in Section 2.4. In Section 3.3, we
present a recovery of the LMC in the presence of a simple realization
of the MW foreground, as described in Section 2.4.1.

3.1 LMC SGWB spectrum

The population-derived power spectrum of the LMC SGWB is shown
in Fig. 2. Notably, the amplitude of the LMC signal is comparable to
— and even exceeds — that of the expected SGWB from extragalactic
stellar-origin binary black holes (SOBBHSs), shown here using the
observationally driven estimate of Babak et al. (2023). The LMC
signal will therefore comprise a significant SGWB for LISA, and will
be important to consider in efforts to characterize the SOBBH SGWB
and other underlying SGWBs. This result is the first demonstration
of the LMC SGWB as a relevant signal for LISA.

3.2 Recovery of the LMC SGWB in isolation

We present here an analysis of the LMC SGWB in isolation (i.e.
assuming the MW foreground has been subtracted) using an integra-
tion time of 1.26 x 10® s, approximately the planned LISA mission
duration of 4 years, and considering a frequency band of f € [107%,
1072] Hz. We simulate and recover the LMC SGWB in the spherical
harmonic basis, use a power law to model the SGWB spectrum, and
model the LISA detector noise according to the spectral form given

3See Section 4 for further discussion as to what such a study could entail.
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Recovered and Simulated Spectra (in Detector)

— — Simulated LISA Noise
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Figure 3. The simulated and inferred PSD of the LMC SGWB and the
LISA detector noise. For the inferred spectra, the solid lines and shaded
regions are the median and 95 percent credible intervals, respectively, of
the marginalized posterior spectral fit. As can be seen in Fig. Al, the noise
spectrum is recovered extremely precisely; as a result the 95 per cent credible
intervals are difficult to see by eye. Note that the power-law spectral fit has
highest fidelity to the simulated LMC spectrum over the sensitive band of
1-4 mHz.

in equations (2) and (3). The corresponding marginalized posterior
skymap computed from the inferred by,,s is shown in Fig. 1(b), and
the marginalized posterior detector-convolved power spectral density
(PSD) is shown in Fig. 3 (alongside the PSDs of the simulated
detector noise and of the SGWB due to the LMC DWD population).
Posterior samples for all parameters are shown in Fig. Al.

As seen in Fig. 1(b), the inferred distribution of power on the sky is
consistent with both the true position of the LMC and the simulated
LMC SGWB skymap (Fig. 1a). While more precise localization of
the LMC SGWB could in principle be achieved with higher €5
or a targeted directional search that takes advantage of the known
position of the LMC, we leave these avenues of exploration to future
work.

The inferred power-law spectrum of the LMC SGWB is shown
in Fig. 3, alongside the simulated and inferred noise spectra and
the simulated population-derived spectrum of the LMC SGWB. The
inferred amplitude and slope of the power-law model used in this
study are most impacted by the shape of the LMC spectrum at
frequencies where its SNR is largest — namely 1-4 mHz, where
the simulated LMC spectrum is closest to the LISA noise curve.
At frequencies outside this range, the power-law model does not
adequately describe the complexity of the simulated LMC SGWB
spectrum, and hence it overestimates the contribution from the LMC
signal at these frequencies. We leave treatment of more complex or
non-parametric spectral models to future work, although we note
that the overall low SNR of the LMC may make constraining highly-
complex models difficult (unless the dimensionality of the inference
problem is otherwise reduced by, for example, a targeted directional
search). The noise spectra is recovered extremely well, due to the fact
that we recover it using the exact functional form that we initially
simulate. Ultimately the noise spectral shape will not be precisely
known, which will introduce additional error.

Finally, we perform model comparison via Bayes factor and con-
sider two cases: our power-law spherical harmonic model including
LISA noise and the LMC SGWB, and a noise-only model. Using
the same four-year data set including the LMC SGWB described in
Section 2.3, we repeat our analysis using a model that only accounts
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for the LISA detector noise in terms of N, and N, as given in equations
(2) and (3) (neglecting the presence of any kind of underlying
SGWB). Computing the Bayesian evidences of each model (Z; for
the noise + SGWB model; Z, for the noise-only model) is trivial
due to our use of nested sampling via DYNESTY, which produces
the Bayesian evidence as its primary product (Speagle 2020). We
compute the log Bayes factor to be

log K =log Z, —log Z2, =310 £ 3,

constituting decisive evidence* in favour of our SGWB plus noise
model over the noise-only model. We conclude that — in the absence
of the MW foreground signal and for the case of stationary, Gaussian
noise with a fixed, equilateral LISA constellation — we are able to
detect and characterize the LMC SGWB signal. Relaxing any of
these assumptions will reduce LISA’s sensitivity to SGWBs (see e.g.
Hartwig et al. 2023; Muratore, Gair & Speri 2024) and, accordingly,
impact the ability of the LISA to detect and characterize the LMC
SGWB. While fully accounting for these factors is beyond the scope
of this work, we present a simplified treatment of a search for the
LMC SGWB in the presence of the MW foreground in the following
section.

3.3 Recovery of the LMC SGWB with the MW foreground

We now turn to the case of the LMC SGWB in the presence of the
MW foreground. We additionally include in our simulated data a
simple MW foreground as described in Section 2.3; the simulation
procedure for the LISA instrumental noise and LMC SGWB is
otherwise unchanged. This new data set is then analysed with the
joint inference model described in Section 2.4.1; all other quantities
of interest (integration time, frequency range, etc.) are identical to the
procedure described in Section 3.2 for the LMC in isolation. We find
that, despite the presence of the MW foreground, we are again able
to detect and characterize the simulated LMC SGWB. The recovered
spectral distribution of the LMC SGWB in the presence of the MW
foreground is shown in Fig. 4, alongside those of the noise and the
MW foreground. As before, we display the simulated and inferred
spectra for each of our model components. Our recovered model
successfully describes the LISA instrumental noise, MW foreground,
and LMC SGWB simultaneously. Posterior samples for all spectral
parameters are shown in Fig. A2. The presence of the MW does affect
the recovered LMC SGWB, reducing the recovery quality below ~3
mHz causing the power law to even more dramatically overestimate
the LMC SGWB. Above ~3 mHz, the recovered power law follows
closely above the simulated LMC SGWB spectrum. It is again clear
that the majority of information is being gleaned from the region
around ~3 mHz where the LMC SNR would be highest; more refined
spectral models may be able to leverage this fact in future.

The LMC SGWB spatial recovery in the presence of the MW
foreground can be seen in Fig. 5. It is important to note that this
figure only displays the inferred distribution of power on the sky
(i.e. the spherical harmonic spatial model for the LMC SGWB), and
does not include the contribution from the MW (which is assumed
known and therefore not inferred; see Section 2.4.1). The associated
posterior samples are shown in Fig. A3. As would be expected, the
quality of the spatial recovery is degraded somewhat in the presence
of the MW (and with a more statistically complex signal model).

“4For reference, a log Bayes factor of 1 is substantial to strong evidence, and
any log Bayes factor >2 is typically considered decisive evidence in favour
of one model over another (Kass & Raftery 1995).
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Figure 4. The simulated and inferred PSDs of the LMC SGWB, the MW
foreground, and the LISA detector noise. For the inferred spectra, the solid
lines and shaded regions are the median and 95 per cent credible intervals,
respectively, of the marginalized posterior spectral fit. The precise recovery
of both the LISA noise and MW foreground renders their respective medians
and 95 per cent credible intervals nearly indistinguishable. The simple power-
law model for the LMC signal again results in an overestimation of power at
low frequencies. The signal is most accurately recovered above 3 mHz where
the contribution from the MW foreground is minimal.

Marginalized posterior skymap of Q(f=1mHz)

Galactic

1.051e-12 Q(f = 1mHz) 6.78819e-11

Figure 5. The marginalized posterior sky distribution of Qgw(1mHz)
inferred by our analysis for the LMC SGWB in the presence of the MW
foreground. The simulated LMC in this simulation is identical to Fig. 1(a).
We represent the signal in the spherical harmonic basis at £ = 4. This
skymap does not include LISA instrumental noise or the MW foreground,
though both are present in the simulation. The black star marks the true
position of the LMC. The recovered sky distribution is consistent with both

the simulated signal and the true position of the LMC.

While the extent of the inferred LMC spatial distribution is similar to
the simulated skymap and the true position of the LMC is included
in our recovered spatial distribution, it does experience some bias,
shifting slightly off of the true position of the LMC.

Finally, we again perform a second analysis of the same simulated
LISA data (including LISA instrumental noise, the MW foreground,
and the LMC SGWB) with a model which accounts for LISA
instrumental noise and the MW foreground, but neglects the presence
of the LMC. We compute the log Bayes factor (logK) for this case
using the Bayesian evidences of each model (Z, for the LMC-
included model; Z, for the LMC-absent model):

logK =logZ; —log 2, =92+ 4,
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While this Bayes factor is reduced compared to that for the LMC
in isolation — as expected, the MW foreground makes the LMC
SGWB more difficult to recover — it still constitutes extremely
decisive evidence in favour of the model that includes the LMC
SGWB.

4 DISCUSSION AND CONCLUSIONS

In this work, we evaluate for the first time the existence and prospects
for LISA of an anisotropic SGWB arising from the unresolved
DWDs in the LMC. We use a population catalogue generated
using realistic stellar synthesis codes to create a model of the
LMC, which we then use to simulate its DWD-generated SGWB
with BLIP. We use BLIP’s spherical harmonic, Bayesian search for
anisotropic SGWBs to demonstrate a proof-of-concept recovery of
the LMC SGWB both in isolation and in the presence of the MW
foreground.

We find that the simulated SGWB from the unresolved DWDs
in the LMC can be recovered in the presence of LISA instrumental
noise using BLIP with 4 years of integration time and a power-law
spherical harmonic signal model. Model comparison between the
noise + SGWB power-law spherical harmonic model and a noise-
only model yields decisive evidence in favour of the presence of the
LMC SGWSB signal. The recovered position of the LMC on the sky is
consistent with its true location, and the LMC SGWB spectrum can
be well modelled as a simple power law over the sensitive frequency
band (roughly 1-4 mHz).

Additionally, we find that we are able to simultaneously recover
the LMC SGWB and a rudimentary model of the MW foreground.
While the presence of the MW has a noticeable, adverse effect on
the recovery of the LMC SGWB, the recovered spatial distribution
remains consistent with the true position of the LMC, and our power-
law spectral model only slightly overestimates the LMC spectrum
above 3 mHz. As in the LMC-only case, model comparison via
Bayes factor yields decisive evidence in favour of the presence of the
LMC SGWB signal. While a detailed treatment of spectral separation
between realistic, population-derived realizations of the MW and
LMC signals is required to make a strong statement of detectability
— and remains a subject of future work — this result is none the
less extremely promising for the prospects of LISA to detect and
characterize the LMC SGWB.

While the power-law spectral model employed here is accurate
to the simulated LMC spectrum where the LISA noise curve is
lowest and the MW foreground has dropped off, outside these areas,
it does not capture the full spectral shape of the LMC SGWB.
Further characterization of the LMC SGWB with more complex
spectral and/or spatial models is one promising avenue of future
work. One could, for example, leverage the known location of the
LMC to infer only its spectral distribution while holding its spatial
distribution fixed, thereby reducing model complexity along one
axis and allowing for (e.g.) a truncated or broken power-law spectral
model to better capture the cut-off in the LMC SGWB spectrum.
Such a model could also be informed by our theoretical knowledge
of the LMC SGWRB, either by setting astrophysically motivated
priors on its parameters, or fixing those parameters that see little
variation across different population-synthesis realizations of the
LMC. Conversely, ongoing efforts to incorporate non-parametric
spectral models into BLIP could enable more accurate characterization
of the LMC spectrum, at the cost of increased difficulty of spectral
separation from the MW foreground. With more precise spectral
models, it may be possible to characterize the LMC SGWB well
enough to gain information about the distribution of DWDs in the

MNRAS 531, 2642-2652 (2024)

LMC and learn about its structure, mass, and/or SFH. Methods have
been proposed to study the MW in this way using the unresolved
Galactic DWDs (e.g. Breivik et al. 2020), so it is possible that similar
techniques could be used to study the LMC. In particular, it may be
possible to achieve a measurement of the LMC mass via a similar
approach to the one described in Korol et al. (2021), which used the
resolvable binaries in the LMC. Additionally, the analysis presented
in this work is generalizable to simulation and recovery of the (albeit
weaker) SGWBs from the Small Magellanic Cloud and other dwarf
galaxy satellites of the MW.

Finally, the development of refined approaches to concurrent
characterization of the LMC SGWB and the MW foreground will
be vital moving forward. The spectral overlap between these signals
is significant; neglecting to properly account for the LMC SGWB
could lead to spectral biases for analyses of the MW foreground.
Despite their close proximity in terms of LISA’s angular resolution,
the spatial distributions of the MW and LMC are distinct on the sky
and — as demonstrated in this work — can be used to aid in spectral
separation between these signals. In particular, the spatial distribu-
tion of the LMC on the sky is well known from electromagnetic
observations; our anisotropic search at high £5 = and/or a targeted
directional search could leverage this fact. One could also incorporate
concurrent GW localization measurements of the resolved DWDs in
the LMC, improving prospects for resolving the LMC SGWB by
jointly modelling the 3D spatial distribution of the LMC population
(as has been proposed for the MW population; Adams, Cornish &
Littenberg 2012). Finally, a pixel-basis method to describe the spatial
distribution of a signal provides a promising alternative to a spherical-
harmonic basis approach, which by necessity describes the entire
sky rather than the region containing the LMC specifically. This
method would be well suited to enabling realistic spectral separation
of the stochastic contributions from unresolved MW and LMC
DWDs.

Proper, joint treatment of both the LMC SGWB and MW fore-
ground will likely be crucial for detecting and characterizing other,
lower amplitude SGWBs. The SOBBH background (e.g. Babak et al.
2023) is likely of comparable or lower amplitude in comparison to
the LMC SGWB (see Fig. 2). Characterization of the LMC SGWB is
thus extremely relevant when considering the search for the SOBBH
SGWB, as well as other, underlying backgrounds — including those
of cosmological origin.

ACKNOWLEDGEMENTS

This work is supported by the National Aeronautics and Space
Administration grant 90NSSC19K0318, and utilized computing
resources provided by the Minnesota Supercomputing Institute at the
University of Minnesota. Packages used for this work include NUMPY
(Harris et al. 2020), SCIpY (Virtanen et al. 2020), CHAINCONSUMER
(Hinton 2016), and MATPLOTLIB (Hunter 2007). The authors would
like to thank Sharan Banagiri, Joe Romano, and Jessica Lawrence
for their work on BLIP and many helpful conversations, as well as
the anonymous reviewer for their thorough and insightful comments
and suggestions.

DATA AVAILABILITY

All data and code used in this study is publicly available. The
simulated LMC population data along with all generated SGWB
data and resulting posterior distributions are available at https:
//zenodo.org/records/10783952. The BLIP package is open source
and is available at https://github.com/sharanbngr/blip.

Gz0z Iudy 61 uo 3senb Aq 6819/9//2¥92/2/) €G/2101E/SEIUW/WOD dNO"dIWSPEedE//:SA)Y WO PSPEOJUMO(


https://zenodo.org/records/10783952
https://github.com/sharanbngr/blip

REFERENCES

Aasi a. J. et al., 2015, Class. Quantum Gravity, 32, 074001

Acernese F. et al., 2015, Class. Quantum Gravity, 32, 024001

Adams M. R., Cornish N. J., 2010, Phys. Rev. D, 82, 022002

Adams M. R., Cornish N. J., Littenberg T. B., 2012, Phys. Rev. D, 86, 124032

Adhikari R. X. et al., 2020, Class. Quantum Gravity, 37, 165003

Agazie G. et al., 2023, ApJ, 951, L8

Amaro-Seoane P. et al., 2017, Laser Interferometer Space Antenna, https:
//arxiv.org/abs/1702.00786

Amaro-Seoane P. et al., 2023, Living Reviews in Relativity, 26, 2

Babak S. et al., 2023, Journal of Cosmology and Astroparticle Physics, 034

Banagiri S., Criswell A., Kuan T., Mandic V., Romano J. D., Taylor S. R.,
2021, MNRAS, 507, 5451

Benacquista M., Holley-Bockelmann K., 2006, ApJ, 645, 589

Bonetti M., Sesana A., 2020, Phys. Rev. D, 102, 103023

Breivik K., Mingarelli C. M. E,, Larson S. L., 2020, ApJ, 901, 4

Cornish N. J., 2001a, Class. Quant. Grav., 18, 4277

Cornish N. J., 2001b, Phys. Rev. D, 65, 022004

Cornish N. J., Larson S. L., 2001, Class. Quantum Gravity, 18, 3473

Edlund J. A., Tinto M., Krolak A., Nelemans G., 2005, Phys. Rev. D, 71,
122003

Finch E. et al., 2023, mnras, 522, 5358

Georgousi M., Karnesis N., Korol V., Pieroni M., Stergioulas N., 2023,
MNRAS, 519, 2552

Gorski K. M., Hivon E., Banday A. J., Wandelt B. D., Hansen F. K., Reinecke
M., Bartelman M., 2005, ApJ, 622, 759

Harris J., Zaritsky D., 2009, AJ, 138, 1243

Harris C. R. et al., 2020, Nature, 585, 357

Hartwig O., Lilley M., Muratore M., Pieroni M., 2023, Phys. Rev. D, 107,
123531

Hinton S. R., 2016, J. Open Source Softw., 1, 00045

Hunter J. D., 2007, Comput. Sci. Eng., 9, 90

Kass R. E., Raftery A. E., 1995, J. Am. Stat. Assoc., 90, 773

Keim M. A., Korol V., Rossi E. M., 2023, MNRAS, 521, 1088

Korol V. et al., 2020, A&A, 638, A153

Korol V., Belokurov V., Moore C. J., Toonen S., 2021, MNRAS, 502,
L55

Kudoh H., Taruya A., 2005, Phys. Rev. D, 71, 024025

SGWB in LISA from DWDs in the LMC 2649

Kupfer T. et al., 2024, ApJ, 963, 100

Littenberg T. B., Cornish N. J., 2023, Phys. Rev. D, 107, 063004

Manchester R. N., 2013, Class. Quantum Gravity, 30, 224010

Marel R. P. v. d., Alves D. R., Hardy E., Suntzeff N. B., 2002, AJ, 124, 2639

Mingarelli C. M. F, Sidery T., Mandel I., Vecchio A., 2013, Phys. Rev. D,
88, 062005

Muratore M., Gair J., Speri L., 2024, Phys. Rev. D, 109, 042001

Portegies Zwart S. F., Verbunt F., 1996, A&A, 309, 179

Pozzoli F., Babak S., Sesana A., Bonetti M., Karnesis N., 2023, Phys. Rev.
D, 108, 103039

Renzini A., Contaldi C., 2018, MNRAS, 481, 4650

Robson T., Cornish N. J., Liu C., 2019, Class. Quantum Gravity, 36, 105011

Roebber E. et al., 2020a, ApJ, 894, L15

Roebber E. et al., 2020b, ApJ, 894, L15

Savalle E., Gair J., Speri L., Babak S., 2022, Phys. Rev. D, 106, 022003

Speagle J. S., 2020, MNRAS, 493, 3132

Stroeer A., Vecchio A., 2006, Class. Quant. Grav., 23, S809

Taruya A., 2006, Phys. Rev. D, 74, 104022

Taruya A., Kudoh H., 2005, Phys. Rev. D, 72, 104015

Taylor S. R., Gair J. R., 2013, Phys. Rev. D, 88, 084001

Thrane E., Ballmer S., Romano J. D., Mitra S., Talukder D., Bose S., Mandic
V., 2009, Phys. Rev. D, 80, 122002

Tinto M., Dhurandhar S. V., 2014, Living Rev. Rel., 17, 6

Toonen S., Nelemans G., Portegies Zwart S., 2012, A&A, 546, A70

Toonen S., Hollands M., Ginsicke B. T., Boekholt T., 2017, A&A, 602, A16

Ungarelli C., Vecchio A., 2001, Phys. Rev. D, 64, 121501

Virtanen P. et al., 2020, Nature Methods, 17, 261

Wagg T., Breivik K., de Mink S. E., 2022, ApJS, 260, 52

van der Marel R. P., Alves D. R., Hardy E., Suntzeff N. B., 2002, AJ, 124,
2639

APPENDIX: ADDITIONAL FIGURES

Corner plots of the sampled posterior distributions for each of the
analyses discussed are found on this and the following pages: Fig. A1
for the LMC in isolation with LISA instrumental noise, and Fig. A2
(Fig. A3) for the spectral (spatial) parameters of the analysis with
the LMC + MW + LISA instrumental noise.
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Figure Al. Corner plot for the analysis in Section 3.2 of the LMC SGWB in isolation, showing the one- and two-dimensional marginalized posterior samples
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simulated signal is generated from a DWD population. Contours shown are lo and 2o0. A careful eye will note a slight bias in the recovery of the position
noise contribution, Np,. This is a result of our power-law spectral model being an imperfect fit for the population-derived, non-power-law spectrum of the LMC
SGWB; repeating this study without the inclusion of the LMC signal results in unbiased noise recoveries. Potential future approaches to fitting the LMC signal

with higher fidelity are discussed in Section 4.
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parameters are (moving left to right): the LISA position and acceleration noise amplitudes (log1o(V,) and log0(N,), respectively); the LMC SGWB power-law
model slope (ar.mc) and log amplitude (logjo(S2rer,Lmc)); and the MW foreground truncated power-law model slope (emw ), log amplitude (logjo(S2rer,Mw)), and
log cutoft frequency (logio(fcu,Mmw)). True values are marked with green dashed lines. As before, the LMC model parameters do not have defined true values.
Contours shown are 1o and 20.
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Figure A3. Spatial parameters corner plot for the analysis in Section 3.3 of the LMC SGWB alongside a simple simulation of the MW foreground, showing the
one- and two-dimensional marginalized posterior samples for the LMC spatial model parameters (the MW spatial model is fixed; see Section 3.3). Parameters
shown are the magnitude and phase of the by,, spherical harmonic coefficients up to €2, =2 (¢4, = 4). Contours shown are 1o and 20
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