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A B S T R A C T 

The Laser Interferometer Space Antenna (LISA) is expected to detect a wide variety of gra vitational wa ve sources in the 
mHz band. Some of these signals will elude individual detection, instead contributing as confusion noise to one of several 
stochastic gra vitational-wa v e backgrounds (SGWBs) – notably including the ‘Galactic fore ground’, a loud signal resulting from 

the superposition of millions of unresolved double white dwarf binaries (DWDs) in the Milky Way. It is possible that similar, 
weaker SGWBs will be detectable from other DWD populations in the local Universe, including the Large Magellanic Cloud 

(LMC). We use the Bayesian LISA Inference Package ( BLIP ) to investigate the possibility of an anisotropic SGWB generated 

by unresolved DWDs in the LMC. To do so, we compute the LMC SGWB from a realistic DWD population generated via 
binary population synthesis, simulate 4 years of time-domain data with BLIP comprised of stochastic contributions from the 
LMC SGWB and the LISA detector noise, and analyse this data with BLIP ’s spherical harmonic anisotropic SGWB search. We 
also consider the case of spectral separation from the Galactic foreground. We present the results of these analyses and show, 
for the first time, that the unresolved DWDs in the LMC will comprise a significant SGWB for LISA. 

Key w ords: gravitational w aves – white dwarfs – Magellanic Clouds. 
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 INTRODUCTION  

he launch of the Laser Interferometer Space Antenna (LISA;
maro-Seoane et al. 2017 ) in 2035 will revolutionize gravitational
ave (GW) astronomy. A space-based gravitational observatory,
ISA will detect GWs in the millihertz frequency band, a range inac-
essible to both pulsar timing arrays such as the International Pulsar
iming Array (IPTA; Manchester 2013 ) and current ground-based
etector networks such as the Laser Interferometer Gravitational-
ave Observatory, the Virgo detector, and the Kamioka Gravitational
ave Detector (KAGRA; Aasi et al. 2015 ; Acernese et al. 2015 ;
dhikari et al. 2020 ). 
LISA is expected to detect a wide variety of astrophysical GW

ources, including millions of double white dwarfs (DWDs) in
he Milky Way (MW) and the nearby Universe (for a re vie w,
ee Amaro-Seoane et al. 2023 ). Some of these sources will be
ndi vidually resolv able, whereas others will contribute to several
 E-mail: riecksn@mail.uc.edu (SR); alexander.criswell@ligo.org (AWC) 
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otential stochastic gravitational wave backgrounds (SGWBs; e.g.
onetti & Sesana 2020 ; Babak et al. 2023 ; Pozzoli et al. 2023 ).
GWBs arise from confusion noise formed by the o v erlap of man y
nresolved astrophysical or cosmological sources; evidence for such
 signal in the nanohertz band has recently been detected (Agazie
t al. 2023 ). While many Galactic DWDs will be individually
esolvable by LISA – some serving as verification binaries for the
nstrument (e.g. Stroeer & Vecchio 2006 ; Savalle et al. 2022 ; Finch
t al. 2023 ) – a far greater number of Galactic DWDs will contribute
o a stochastic GW signal distributed mostly along the Galactic
lane, comprised of the superposition of millions of individually
nresolvable DWDs (Edlund et al. 2005 ). Characterization of this
nisotropic MW foreground (so-called due to its prominence above
he LISA detector noise) will be necessary in order to subtract it from
he LISA data and identify other signals. Additionally, the foreground
s of scientific interest in its own right as a means of studying MW
tructure and star formation history (SFH; e.g. Benacquista & Holley-
ockelmann 2006 ; Breivik, Mingarelli & Larson 2020 ; Georgousi
t al. 2023 ). 

The MW is not the only host of DWDs detectable with LISA.
ecent simulations show that nearby dwarf galaxies including the
arge Magellanic Cloud (LMC), Small Magellanic Cloud, and
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agittarius Dwarf contain DWDs that will appear as individually 
esolvable LISA sources (Roebber et al. 2020a ). The number of
esolvable DWDs depends on a dwarf galaxy’s mass, distance, and 
FH (Korol et al. 2020 ). Ho we ver, as in the MW, the majority of
WDs in dwarf galaxies will not generate resolvable signals; for 

nstance in the LMC population of O (10 6 ) DWDs only O (10 2 )
ill be individually detectable (Korol et al. 2020 ). It is possible

hat, as in the MW, these unresolved DWDs will contribute to an
nisotropic SGWB detectable with LISA. To our knowledge, the 
etectability of SGWBs from nearby dwarf galaxies with LISA 

nisotropic SGWB searches has not been investigated prior to 
his work. 

Due to its high mass and relative proximity, the LMC is an ideal
rst candidate to e v aluate the possibility of a SGWB from DWDs
utside of the MW. Recent work has considered the detectability of
ndividual DWDs in the LMC by constructing model populations 
ased on hydrodynamic simulations and electromagnetic observa- 
ions of its SFH and stellar density (Keim, Korol & Rossi 2023 ).
eim et al. found that while the LMC likely has only tens or hundreds
f detectable DWDs with LISA signal-to-noise ratio (SNR) > 7, it
ontains approximately two million DWDs in the LISA frequency 
and. 1 This quantity is significantly less than the DWDs in the 
W; the LMC stellar mass (e.g. Marel et al. 2002 ) is roughly an

rder of magnitude less than the mass of the MW (2.7 × 10 9 M �
 ersus sev eral 10 10 M �). At ∼ 50 kpc from Earth, the LMC signal is
lso reduced by distance, as GW amplitudes scale as the inverse of
he distance. Given these considerations, we may expect the LMC 

GWB to have approximately 1–2 per cent the strength of the MW
ignal. On the other hand, while the MW DWDs are distributed across 
 large fraction of the sky, the LMC DWDs are focused in 77 square
egrees, making the LMC a good target for an anisotropic SGWB 

earch. 
In this work, we simulate and reco v er the SGWB signal in LISA

rom a model LMC population using the Bayesian LISA Inference 
ackage ( BLIP ; Banagiri et al. 2021 ). In Section 2 , we describe the
odel population used to simulate the LMC signal and our code for

imulation and reco v ery. Results are presented in Section 3 and the
onclusions of this study alongside possible future extensions are 
iscussed in Section 4 . 

 METHODS  

o investigate the stochastic signal from the LMC we use BLIP ,
escribed at length in Banagiri et al. ( 2021 ). BLIP is a PYTHON package
esigned for the end-to-end simulation and Bayesian analysis of 
tochastic GW signals with LISA. In this study, we use the BLIP

pherical harmonic anisotropic stochastic search first presented in 
anagiri et al. ( 2021 ), which is explained in brief in Section 2.1 . BLIP

an simulate a wide variety of anisotropic stochastic GW signals; we 
ake use of its capability to simulate a SGWB from a realistic

imulated population of the unresolved DWDs in the LMC. This 
opulation is further described in Section 2.2 , while the simulated 
nd reco v ered models in BLIP are described in Sections 2.3 and 2.4 ,
espectively. 
 The LMC is expected to contain approximately 61 million DWDs in total, 
ut a vast majority are non-interacting with large orbital separations and 
re negligible sources of GWs. A frequency cut-off of 10 −4 Hz reduces this 
umber to two million in the LISA frequency band (Keim et al. ( 2023 ), by 
orrespondence with the author). 

t  

(  

t
w  

2

w

.1 Anisotropic SGWBs in BLIP 

imulation and reco v ery of anisotropic SGWBs in BLIP is performed
n the spherical harmonic basis. Several studies – considering ground- 
ased, space-based, and pulsar timing-based analyses – have used 
ersions of the spherical harmonic basis for expanding the sky 
istribution of GW power in e.g. (Ungarelli & Vecchio 2001 ; Cornish
001a ; Kudoh & Taruya 2005 ; Taruya & Kudoh 2005 ; Taruya 2006 ;
hrane et al. 2009 ; Mingarelli et al. 2013 ; Taylor & Gair 2013 ;
enzini & Contaldi 2018 ). Ho we ver, constraining the spherical
armonic distribution to be real and non-ne gativ e ev erywhere is a
on-trivial problem that can hamper the accurate characterization 
f highly anisotropic sources such as the Galactic foreground – or, 
ndeed, the LMC. This is especially true for Bayesian analyses. 

Banagiri et al. ( 2021 ) developed an explicitly Bayesian version
f the spherical harmonic SGWB analysis for LISA wherein this 
roblem was solved by fitting the square root of the GW power.
pecifically, the spatial distribution of the SGWB on the sky (for
urposes of both simulation and inference) is represented by the 
pherical harmonic coefficients b � m . The b � m s describe the spherical
armonic expansion of the square root of the GW power on the sky
 ( n ). The b � m s are related to the usual spherical harmonic coefficients
nd functions of the GW power on the sky, a � m and Y � m , respectively,
ia 

 ( n ) = 

√ 

P ( n ) = 

⎡ 

⎣ 

� a max ∑ 

� = 0 

� ∑ 

m =−� 

a �m Y �m ( n ) 

⎤ 

⎦ 

1 / 2 

= 

� b max ∑ 

� = 0 

� ∑ 

m =−� 

b �m Y �m ( n ) , (1) 

here � b max = � a max / 2 (Banagiri et al. 2021 ). The a � m and b � m terms
re directly related to each other via simple linear transformations 
nvolving Clebsch-Gordan coefficients (Banagiri et al. 2021 ). Char- 
cterizing the GW anisotropy in this way mathematically ensures 
hat the GW power in every proposed sample is real and non-negative
cross the entire sky (see Banagiri et al. 2021 for details). 

In practice, the BLIP anisotropic search infers and produces 
osterior distributions for each b � m coefficient (alongside spectral 
arameters; see Section 2.4 ) up to some � b max = � a max / 2. 2 Using a
igher � a max for the anisotropic search increases the angular resolution 
f the search, but also increases the number of parameters that one
ust infer as N par, sph ∝ � a max ( � 

a 
max + 1) / 2. Additionally, as the BLIP

nisotropic search considers the LISA detector response to each 
pherical harmonic, the computational resources required to analyse 
ata at large � a max can become limiting. 
This latter point is also a limitation for simulation of anisotropic

GWBs with BLIP , as the SGWB spatial distribution is simulated in
he spherical harmonic basis. Accordingly, simulations of anisotropic 
ignals in BLIP similarly employ a truncation � a max . This, of course,
esults in highly-localized signals (like the LMC) spreading out o v er
n area much larger than their true spatial extent on the sky. Ho we ver,
 study of BLIP’s angular resolution (Bloom et al., in-prep) has shown
hat the value of � a max used in the SGWB simulation does not impact
he final spatial reco v ery so long as � a max , simulation ≥ � a max , reco v ery .
Simply put, our analysis is insensitive to variations on smaller scales
han it parametrizes, as one would expect intuiti vely.) De velopment 
ork is ongoing to impro v e BLIP ’s performance for both simulation
MNRAS 531, 2642–2652 (2024) 

 As the usual spherical harmonic � max referred to in the literature is � a max , we 
ill quote this truncation � max in terms of � a max throughout this work. 
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nd analysis at high � a max ( � 8), but these computational limitations
emain rele v ant at present. 

.2 Simulated LMC DWD population 

o date, no DWD has been observed in the LMC. Even within the
W most of the known LISA-detectable DWDs are found within a

ew kpc (e.g. Kupfer et al. 2024 ); this is mainly due to the faint nature
f white dwarf stars. Nonetheless, this highlights an opportunity for
ISA to reveal the DWD population inaccessible to electromagnetic
bservatories as far as the LMC. To model the LMC DWDs we
mploy a mock catalogue compiled by Keim et al. ( 2023 ). It is based
n a fiducial DWD population synthesis model computed with the
EBA code (Portegies Zwart & Verbunt 1996 ; Toonen, Nelemans &
ortegies Zwart 2012 ), which has been calibrated on the observed
WDs (albeit in the Solar neighbourhood) and, therefore, is in good
greement with the observed DWD space density and mass-ratio
istribution (Toonen et al. 2012 , 2017 ). 
Synthetic DWDs are distributed across the sky and assigned for-
ation times and ages based on the Magellanic Clouds Photometric
urv e y and the observed, spatially resolved 2D SFH from Harris &
aritsky ( 2009 , for a visual representation see their fig. 4). We refer

o Keim et al. ( 2023 , see their ‘Model 1’) for further details. 
For the assumed LMC total stellar mass of 2.7 × 10 9 M � (van

er Marel et al. 2002 ), the adopted model yields ∼2 × 10 6 DWDs
n the LISA frequency band. For this model, only about ∼500
WD are individually resolved with SNR > 7, assuming the mission

ifetime of 4 yr with 100 per cent duty cycle. The detectable binaries
ave frequencies > 1.7 mHz (or equi v alently binary orbital periods
f < 20 min) due to LISA’s selection effects. The total number of
ISA sources in the LMC represents about 8 per cent of the MW
WD population. As detailed in Keim et al. ( 2023 ), the difference
etween the two populations is twofold. Firstly, the number of LISA
ources (and stars in general) scales linearly with the total mass of the
ost galaxy. The lower mass of the LMC thus decreases individual
WD detections. Secondly, unlike the MW, the LMC is an active

ite of star formation, and so a significant fraction of DWD in the
dopted model have formed only ∼ O (10 2 ) Myr ago. This active star
ormation increases detections of individual DWDs in the LMC. 

.3 Simulated LISA Data 

he simulation of stochastic GW signals from DWD population-
ynthesis catalogues is a no v el BLIP feature demonstrated for the
rst time in this work. For each catalogue binary, we compute the
assumed monochromatic) strain amplitude from its binary masses
nd orbital frequency, following the conventions in Wagg, Breivik &
e Mink ( 2022 ). We use the catalogue sky position and distance (as
een in the Solar system Barycentre frame) to bin the population in
oth frequency and sky direction. Binning on the sky is performed on
 HEALPIX (Gorski et al. 2005 ) map, with user-specified skymap pixel
esolution, quantified by the HEALPIX nside . In this work, we use an
side of 8 to generate our simulated signal. At our chosen skymap

esolution, the area of each pixel equals approximately 53 square
egrees. The angular size of the LMC is approximately 77 square
egrees (Roebber et al. 2020b ). Thus, in our initial simulated skymap
he entire LMC is contained within only a few pixels. Simulating
he LMC with a higher nside would incur significantly higher
omputational cost for little-to-no ultimate effect due to limitations
n the sky resolution of our analysis (see Section 2.1 ). 
To compute the associated SGWB spectrum of the DWD popu-

ation, we assume all DWD systems with individual SNR > 7 are
NRAS 531, 2642–2652 (2024) 
ndi vidually resolv able and can be subtracted from the data (K eim
t al. 2023 ). W e use LEGWORK (W agg et al. 2022 ) to calculate the
NR of every DWD considering the instrumental noise and MW
ore ground giv en in Robson, Cornish & Liu ( 2019 ), and remo v e
rom the population those DWDs with SNR > 7. Disentangling the
esolv ed and unresolv ed DWDs – let alone the entire cacophony
f LISA sources – is beyond the scope of this work, requiring
 global, simultaneous solution (e.g. Littenberg & Cornish 2023 ).
e assume all other GW sources are perfectly characterized and

ubtracted from the data, and we first simulate a signal that includes
nly the unresolved LMC DWDs. In a second analysis, we also
nclude a simple model of the MW foreground (see Section 2.3 ).
ur simulation of the LMC DWDs is identical in each analysis.
he monochromatic strains of the remaining unresolved binaries are

hen binned in frequency at a frequency resolution determined by
he LISA nominal mission duration of 4 years, i.e. � f = 1/ T obs �
 × 10 −9 Hz. We consider a frequency range of f ∈ [10 −4 , 10 −2 ] Hz,
s this will be the most-sensitive band of the LISA detector. 

After the population skymap and spectrum are computed, BLIP

imulates a time series of the corresponding stochastic signal. It
oes so by computing the spherical harmonic representation of
he population skymap up to some � a max (we consider a simulation
 
a 
max of 4 due to computational limitations; see Section 2.1 ). BLIP

onvolves both this spherical harmonic expansion and the population
pectrum with the time-varying LISA response across frequency and
ll considered spherical harmonic modes (see Banagiri et al. 2021
or details). Note that this process explicitly models the orbits of
he LISA constellation and as such naturally accounts for the time-
arying amplitude of highly anisotropic SGWBs like that of the LMC
nd the MW. The simulated population skymap as represented in the
pherical harmonic basis can be found in Fig. 1 (a). 

The resulting GW time series is added to Gaussian detector
oise with the spectral form given in the LISA proposal (Amaro-
eoane et al. 2017 ), reproduced below in equations ( 2 ) and ( 3 ), with
 p = 9 × 10 −42 and N a = 3.6 × 10 −49 Hz −4 for the position and
cceleration noise contributions, respectively: 

 p ( f ) = N p 

[ 

1 + 

(
2 mH z 

f 

)4 
] 

H z −1 , (2) 

 a ( f ) = 

[ 

1 + 

(
0 . 4 mH z 

f 

)2 
] [ 

1 + 

(
f 

8 mH z 

)4 
] 

× N a 

( 2 πf ) 4 
H z −1 . (3) 

Throughout this study we simulate and model LISA data using the
—Y—Z time-delay interferometry (TDI) channels (see Tinto &
hurandhar ( 2014 ) for a re vie w of TDI in LISA). For further details
n the BLIP data simulation procedure, see Banagiri et al. ( 2021 ).
he simulated spectrum, as it appears in the detector, along with the
imulated detector noise, is included in Fig. 3 . 

.3.1 Simple MW foreground 

e also include a simple analytic (i.e. non-population) simulation
f the MW foreground. Its spatial distribution follows the simple
ulge + disc model described in Breivik et al. ( 2020 ). We use
he ‘thin’ model (see Breivik et al. ( 2020 ) for details), with radial
cale height r h = 2.9 kpc and vertical scale height z h = 0.3 kpc.
his simulated Galaxy is then used to create a skymap in the Solar
ystem Barycentre frame as described in section 6 of Banagiri et al.
 2021 ). As throughout the rest of this work, we represent this spatial
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Figure 1. (a) The simulated sky distribution of �GW (1mHz) for the LMC SGWB generated by our model DWD population. (b) The marginalized posterior 
sky distribution of �GW (1mHz) inferred by our analysis of the LMC in isolation. Both skymaps are in the spherical harmonic basis at � a max = 4 and display 
distribution of the dimensionless GW energy density �GW e v aluated at 1 mHz. These skymaps do not include LISA instrumental noise. The black star marks 
the position of the LMC. The reco v ered sk y distribution is consistent with both the simulated sk y distribution and the position of the LMC. 
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istribution in the spherical harmonic basis. For the MW foreground 
pectrum, we use a tanh-truncated power law similar to that of (e.g.)
obson et al. ( 2019 ), such that 

( f ) = �ref 

(
f 

f ref 

)α (
1 + tanh 

(
f cut − f 

f scale 

))
, (4) 

here for this simulation �ref = 2 × 10 −5 , f ref = 25 Hz, f cut = 2
Hz, and f scale = 0.4 mHz. Although this more simplistic analytic 

unction does not account for iterative subtraction of resolved MW 

WDs, it remains a sufficient approximation for our purposes given 
he large uncertainties in the o v erall amplitude and shape of the

W foreground signal. This skymap and spectrum are then used to 
ompute the GW time-series contribution of the MW foreground in 
he same manner as described abo v e for the LMC. 

.4 Model reco v ery in BLIP 

fter generating the simulated data, BLIP performs Bayesian param- 
ter estimation via nested sampling with DYNESTY (Speagle 2020 ). 
his process is described in brief below; reference Banagiri et al. 
 2021 ) for a more detailed treatment. The BLIP anisotropic search
imultaneously models the LISA detector noise, the SGWB spectral 
istribution, and the SGWB spatial distribution, inferring posterior 
istributions for each of the parameters described below. 
LISA’s instrumental noise is modelled in terms of the position 

nd acceleration noise amplitudes N p and N a , with the spectral form
iven by equations ( 2 ) and ( 3 ). We characterize the LMC SGWB
pectrum using a power-law spectral model of the form 

( f ) = �ref 

(
f 

f ref 

)α

, (5) 

here �ref = �( f ref = 25 Hz) is the power-law amplitude at the
eference frequency f ref and α is the power-law spectral index (slope). 
he value of f ref is an arbitrary choice. BLIP reco v ers both �ref and α
s free parameters. The majority of the LMC SGWB spectrum can 
e approximated as a power law, although this model will be unable
o capture the high-frequenc y turno v er in the spectrum; as this work
ocuses on establishing the LMC SGWB as a significant signal in 
ISA, more complex spectral models are left to future work (see 
ection 4 ). 
As discussed in Section 2.1 , the spatial distribution of the LMC
GWB on the sky is inferred in the spherical harmonic basis. Our
nal spatial posteriors are given in terms of the b � m s, from which

t is straightforward to compute the corresponding a � m s and SGWB
ower skymap. We choose an analysis � a max of 4, in keeping with our
hoice for the simulated LMC spatial distribution. 

The Fourier-domain likelihood used in BLIP ’s nested sampling is 
 complex multi v ariate Gaussian (Adams & Cornish 2010 ) whose
ovariance is a function of the parameters in the previous four
quations: L ( ̃  d | N p , N a , �ref , α, { b �,m } ). The likelihood is given by
quation 32 from Banagiri et al. ( 2021 ): 

L ( ̃  d | N p , N a , �ref , α, { b �,m } ) = 

∏ 

f ,t 

1 

2 πT seg | C IJ ( f , t) | × exp 

( 

−2 ̃  d ∗f ,t C IJ ( f , t) −1 ̃  d f ,t 

T seg 

) 

(6) 

here T seg is the length of each time segment, C IJ ( f , t ) is the channel
ovariance matrix, and ˜ d f ,t is the array of data in the Fourier domain
or the three LISA channels measured in the time segment labelled
y t and at frequency f . For explicit definitions of these terms
ee discussion in Banagiri et al. ( 2021 ) and original deri v ations in
ornish & Larson ( 2001 ) and Cornish ( 2001b ). 

.4.1 Joint model with the MW foreground 

e also consider a joint model that simultaneously infers the 
MC SGWB alongside the MW foreground. This is a simplified, 
rototype demonstration of the full, flexible spectral separation 
nfrastructure developed for BLIP (Criswell et al. in preparation). 
ccordingly, we restrict ourselves to a simple MW model: we 

ssume the MW spatial distribution is well-measured a priori from 

he resolved Galactic DWDs, and fix its skymap to the analytic
istribution described in Section 2.3 . We then use the spectral model
f equation ( 4 ), fixing f scale = 0.4 mHz, and inferring the set of free
arameters θMW = { �ref, MW , αMW , f cut } . The joint likelihood is then
 ( ̃  d | θn ; θLMC ; θMW ), where θn = { N p , N a } describe the noise and
LMC = { �ref , α, { b �,m }} describe the LMC as discussed abo v e. We
eave a full discussion of BLIP ’s approach to spectral separation to
riswell et al. (in preparation). We stress that this simple model is a
rst pass at resolving the LMC SGWB in the presence of the MW
MNRAS 531, 2642–2652 (2024) 
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M

Figure 2. The simulated, population-derived LMC SGWB power spectral 
density (PSD). The LISA instrumental noise spectrum and the Babak et al. 
( 2023 ) interquartile prediction for the LISA SOBBH SGWB are shown for 
reference. Both SGWB PSDs are shown convolved with the LISA response. 
Note that the LMC SGWB amplitude exceeds that of the SOBBH signal in 
the rele v ant frequency band. 
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interv als are dif ficult to see by eye. Note that the power-law spectral fit has 
highest fidelity to the simulated LMC spectrum o v er the sensitive band of 
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oreground. A detailed treatment of spectral separation between the
MC and MW signals is sufficiently involved so as to warrant its
wn dedicated study. 3 As such, more complicated models are outside
he scope of this initial work, which primarily seeks to establish the
MC SGWB as a significant stochastic contribution in LISA. 

 RESULTS  

e include results from two simulations. In the first, we simulate the
MC SGWB generated from the population described in Section 2.2
ith LISA instrumental noise. In Section 3.2 , we present the results
f the reco v ery process described in Section 2.4 . In Section 3.3 , we
resent a reco v ery of the LMC in the presence of a simple realization
f the MW foreground, as described in Section 2.4.1 . 

.1 LMC SGWB spectrum 

he population-deri ved po wer spectrum of the LMC SGWB is shown
n Fig. 2 . Notably, the amplitude of the LMC signal is comparable to
and even exceeds – that of the expected SGWB from extragalactic

tellar-origin binary black holes (SOBBHs), shown here using the
bserv ationally dri ven estimate of Babak et al. ( 2023 ). The LMC
ignal will therefore comprise a significant SGWB for LISA, and will
e important to consider in efforts to characterize the SOBBH SGWB
nd other underlying SGWBs. This result is the first demonstration
f the LMC SGWB as a rele v ant signal for LISA. 

.2 Reco v ery of the LMC SGWB in isolation 

e present here an analysis of the LMC SGWB in isolation (i.e.
ssuming the MW foreground has been subtracted) using an integra-
ion time of 1.26 × 10 8 s, approximately the planned LISA mission
uration of 4 years, and considering a frequency band of f ∈ [10 −4 ,
0 −2 ] Hz. We simulate and reco v er the LMC SGWB in the spherical
armonic basis, use a power law to model the SGWB spectrum, and
odel the LISA detector noise according to the spectral form given
NRAS 531, 2642–2652 (2024) 

 See Section 4 for further discussion as to what such a study could entail. 

L  

t  

S  
n equations ( 2 ) and ( 3 ). The corresponding marginalized posterior
kymap computed from the inferred b � m s is shown in Fig. 1 (b), and
he marginalized posterior detector -conv olved power spectral density
PSD) is shown in Fig. 3 (alongside the PSDs of the simulated
etector noise and of the SGWB due to the LMC DWD population).
osterior samples for all parameters are shown in Fig. A1 . 
As seen in Fig. 1 (b), the inferred distribution of power on the sky is

onsistent with both the true position of the LMC and the simulated
MC SGWB skymap (Fig. 1 a). While more precise localization of

he LMC SGWB could in principle be achieved with higher � a max 

r a targeted directional search that takes advantage of the known
osition of the LMC, we leave these avenues of exploration to future
ork. 
The inferred power-law spectrum of the LMC SGWB is shown

n Fig. 3 , alongside the simulated and inferred noise spectra and
he simulated population-derived spectrum of the LMC SGWB. The
nferred amplitude and slope of the power-law model used in this
tudy are most impacted by the shape of the LMC spectrum at
requencies where its SNR is largest – namely 1–4 mHz, where
he simulated LMC spectrum is closest to the LISA noise curve.
t frequencies outside this range, the power-law model does not

dequately describe the complexity of the simulated LMC SGWB
pectrum, and hence it o v erestimates the contribution from the LMC
ignal at these frequencies. We leave treatment of more complex or
on-parametric spectral models to future work, although we note
hat the o v erall low SNR of the LMC may make constraining highly-
omplex models difficult (unless the dimensionality of the inference
roblem is otherwise reduced by, for example, a targeted directional
earch). The noise spectra is reco v ered e xtremely well, due to the fact
hat we reco v er it using the exact functional form that we initially
imulate. Ultimately the noise spectral shape will not be precisely
nown, which will introduce additional error. 
Finally, we perform model comparison via Bayes factor and con-

ider two cases: our power-law spherical harmonic model including
ISA noise and the LMC SGWB, and a noise-only model. Using

he same four-year data set including the LMC SGWB described in
ection 2.3 , we repeat our analysis using a model that only accounts
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Figure 4. The simulated and inferred PSDs of the LMC SGWB, the MW 

foreground, and the LISA detector noise. For the inferred spectra, the solid 
lines and shaded regions are the median and 95 per cent credible intervals, 
respectively, of the marginalized posterior spectral fit. The precise recovery 
of both the LISA noise and MW foreground renders their respective medians 
and 95 per cent credible intervals nearly indistinguishable. The simple power- 
law model for the LMC signal again results in an o v erestimation of power at 
low frequencies. The signal is most accurately reco v ered abo v e 3 mHz where 
the contribution from the MW foreground is minimal. 

Figure 5. The marginalized posterior sky distribution of �GW (1mHz) 
inferred by our analysis for the LMC SGWB in the presence of the MW 

foreground. The simulated LMC in this simulation is identical to Fig. 1 (a). 
We represent the signal in the spherical harmonic basis at � a max = 4. This 
skymap does not include LISA instrumental noise or the MW foreground, 
though both are present in the simulation. The black star marks the true 
position of the LMC. The reco v ered sk y distribution is consistent with both 
the simulated signal and the true position of the LMC. 
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or the LISA detector noise in terms of N p and N a as given in equations
 2 ) and ( 3 ) (neglecting the presence of any kind of underlying
GWB). Computing the Bayesian evidences of each model ( Z 1 for 

he noise + SGWB model; Z 2 for the noise-only model) is trivial 
ue to our use of nested sampling via DYNESTY , which produces
he Bayesian evidence as its primary product (Speagle 2020 ). We 
ompute the log Bayes factor to be 

log K = log Z 1 − log Z 2 = 310 ± 3 , 

constituting decisive evidence 4 in fa v our of our SGWB plus noise
odel o v er the noise-only model. We conclude that – in the absence

f the MW foreground signal and for the case of stationary, Gaussian
oise with a fixed, equilateral LISA constellation – we are able to 
etect and characterize the LMC SGWB signal. Relaxing any of 
hese assumptions will reduce LISA’s sensitivity to SGWBs (see e.g. 
artwig et al. 2023 ; Muratore, Gair & Speri 2024 ) and, accordingly,

mpact the ability of the LISA to detect and characterize the LMC
GWB. While fully accounting for these factors is beyond the scope 
f this work, we present a simplified treatment of a search for the
MC SGWB in the presence of the MW foreground in the following
ection. 

.3 Reco v ery of the LMC SGWB with the MW for egr ound 

e now turn to the case of the LMC SGWB in the presence of the
W foreground. We additionally include in our simulated data a 

imple MW foreground as described in Section 2.3 ; the simulation 
rocedure for the LISA instrumental noise and LMC SGWB is 
therwise unchanged. This new data set is then analysed with the 
oint inference model described in Section 2.4.1 ; all other quantities 
f interest (integration time, frequency range, etc.) are identical to the 
rocedure described in Section 3.2 for the LMC in isolation. We find
hat, despite the presence of the MW foreground, we are again able
o detect and characterize the simulated LMC SGWB. The reco v ered
pectral distribution of the LMC SGWB in the presence of the MW
oreground is shown in Fig. 4 , alongside those of the noise and the

W foreground. As before, we display the simulated and inferred 
pectra for each of our model components. Our reco v ered model
uccessfully describes the LISA instrumental noise, MW foreground, 
nd LMC SGWB simultaneously. Posterior samples for all spectral 
arameters are shown in Fig. A2 . The presence of the MW does affect
he reco v ered LMC SGWB, reducing the reco v ery quality below ∼3
Hz causing the power law to even more dramatically o v erestimate

he LMC SGWB. Abo v e ∼3 mHz, the reco v ered power law follows
losely abo v e the simulated LMC SGWB spectrum. It is again clear
hat the majority of information is being gleaned from the region 
round ∼3 mHz where the LMC SNR would be highest; more refined
pectral models may be able to leverage this fact in future. 

The LMC SGWB spatial reco v ery in the presence of the MW
oreground can be seen in Fig. 5 . It is important to note that this
gure only displays the inferred distribution of power on the sky
i.e. the spherical harmonic spatial model for the LMC SGWB), and 
oes not include the contribution from the MW (which is assumed 
nown and therefore not inferred; see Section 2.4.1 ). The associated 
osterior samples are shown in Fig. A3 . As would be expected, the
uality of the spatial reco v ery is degraded somewhat in the presence
f the MW (and with a more statistically complex signal model). 
 For reference, a log Bayes factor of 1 is substantial to strong evidence, and 
ny log Bayes factor > 2 is typically considered decisive evidence in fa v our 
f one model o v er another (Kass & Raftery 1995 ). 

o  

u  

i

hile the extent of the inferred LMC spatial distribution is similar to
he simulated skymap and the true position of the LMC is included
n our reco v ered spatial distribution, it does e xperience some bias,
hifting slightly off of the true position of the LMC. 

Finally, we again perform a second analysis of the same simulated
ISA data (including LISA instrumental noise, the MW foreground, 
nd the LMC SGWB) with a model which accounts for LISA
nstrumental noise and the MW foreground, but neglects the presence 
f the LMC. We compute the log Bayes factor (log K ) for this case
sing the Bayesian evidences of each model ( Z 1 for the LMC-
ncluded model; Z 2 for the LMC-absent model): 

log K = log Z 1 − log Z 2 = 92 ± 4 , 
MNRAS 531, 2642–2652 (2024) 
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hile this Bayes factor is reduced compared to that for the LMC
n isolation – as e xpected, the MW fore ground makes the LMC
GWB more difficult to reco v er – it still constitutes extremely
ecisi ve e vidence in fa v our of the model that includes the LMC
GWB. 

 DISCUSSION  AND  CONCLUSIONS  

n this work, we e v aluate for the first time the existence and prospects
or LISA of an anisotropic SGWB arising from the unresolved
WDs in the LMC. We use a population catalogue generated
sing realistic stellar synthesis codes to create a model of the
MC, which we then use to simulate its DWD-generated SGWB
ith BLIP . We use BLIP ’s spherical harmonic, Bayesian search for

nisotropic SGWBs to demonstrate a proof-of-concept reco v ery of
he LMC SGWB both in isolation and in the presence of the MW
oreground. 

We find that the simulated SGWB from the unresolved DWDs
n the LMC can be reco v ered in the presence of LISA instrumental
oise using BLIP with 4 years of integration time and a power-law
pherical harmonic signal model. Model comparison between the
oise + SGWB power-law spherical harmonic model and a noise-
nly model yields decisive evidence in fa v our of the presence of the
MC SGWB signal. The reco v ered position of the LMC on the sky is
onsistent with its true location, and the LMC SGWB spectrum can
e well modelled as a simple power law over the sensitive frequency
and (roughly 1–4 mHz). 
Additionally, we find that we are able to simultaneously reco v er

he LMC SGWB and a rudimentary model of the MW foreground.
hile the presence of the MW has a noticeable, adverse effect on

he reco v ery of the LMC SGWB, the reco v ered spatial distribution
emains consistent with the true position of the LMC, and our power-
aw spectral model only slightly overestimates the LMC spectrum
bo v e 3 mHz. As in the LMC-only case, model comparison via
ayes factor yields decisive evidence in fa v our of the presence of the
MC SGWB signal. While a detailed treatment of spectral separation
etween realistic, population-derived realizations of the MW and
MC signals is required to make a strong statement of detectability
and remains a subject of future work – this result is none the

ess extremely promising for the prospects of LISA to detect and
haracterize the LMC SGWB. 

While the power-law spectral model employed here is accurate
o the simulated LMC spectrum where the LISA noise curve is
owest and the MW foreground has dropped off, outside these areas,
t does not capture the full spectral shape of the LMC SGWB.
urther characterization of the LMC SGWB with more complex
pectral and/or spatial models is one promising avenue of future
ork. One could, for e xample, lev erage the known location of the
MC to infer only its spectral distribution while holding its spatial
istribution fixed, thereby reducing model complexity along one
xis and allowing for (e.g.) a truncated or broken power-law spectral
odel to better capture the cut-off in the LMC SGWB spectrum.
uch a model could also be informed by our theoretical knowledge
f the LMC SGWB, either by setting astrophysically moti v ated
riors on its parameters, or fixing those parameters that see little
ariation across different population-synthesis realizations of the
MC. Conversely, ongoing efforts to incorporate non-parametric
pectral models into BLIP could enable more accurate characterization
f the LMC spectrum, at the cost of increased difficulty of spectral
eparation from the MW foreground. With more precise spectral
odels, it may be possible to characterize the LMC SGWB well

nough to gain information about the distribution of DWDs in the
NRAS 531, 2642–2652 (2024) 
MC and learn about its structure, mass, and/or SFH. Methods have
een proposed to study the MW in this way using the unresolved
alactic DWDs (e.g. Breivik et al. 2020 ), so it is possible that similar

echniques could be used to study the LMC. In particular, it may be
ossible to achieve a measurement of the LMC mass via a similar
pproach to the one described in Korol et al. ( 2021 ), which used the
esolvable binaries in the LMC. Additionally, the analysis presented
n this work is generalizable to simulation and reco v ery of the (albeit
eaker) SGWBs from the Small Magellanic Cloud and other dwarf
alaxy satellites of the MW. 

Finally, the development of refined approaches to concurrent
haracterization of the LMC SGWB and the MW foreground will
e vital moving forward. The spectral o v erlap between these signals
s significant; neglecting to properly account for the LMC SGWB
ould lead to spectral biases for analyses of the MW foreground.
espite their close proximity in terms of LISA’s angular resolution,

he spatial distributions of the MW and LMC are distinct on the sky
nd – as demonstrated in this work – can be used to aid in spectral
eparation between these signals. In particular, the spatial distribu-
ion of the LMC on the sky is well known from electromagnetic
bservations; our anisotropic search at high � a max and/or a targeted
irectional search could leverage this fact. One could also incorporate
oncurrent GW localization measurements of the resolved DWDs in
he LMC, improving prospects for resolving the LMC SGWB by
ointly modelling the 3D spatial distribution of the LMC population
as has been proposed for the MW population; Adams, Cornish &
ittenberg 2012 ). Finally, a pixel-basis method to describe the spatial
istribution of a signal provides a promising alternative to a spherical-
armonic basis approach, which by necessity describes the entire
ky rather than the region containing the LMC specifically. This
ethod would be well suited to enabling realistic spectral separation

f the stochastic contributions from unresolved MW and LMC
WDs. 
Proper, joint treatment of both the LMC SGWB and MW fore-

round will likely be crucial for detecting and characterizing other,
ower amplitude SGWBs. The SOBBH background (e.g. Babak et al.
023 ) is likely of comparable or lower amplitude in comparison to
he LMC SGWB (see Fig. 2 ). Characterization of the LMC SGWB is
hus extremely rele v ant when considering the search for the SOBBH
GWB, as well as other, underlying backgrounds – including those
f cosmological origin. 
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PPENDIX:  ADDITIONAL  FIGURES  

orner plots of the sampled posterior distributions for each of the
nalyses discussed are found on this and the following pages: Fig. A1
or the LMC in isolation with LISA instrumental noise, and Fig. A2
Fig. A3 ) for the spectral (spatial) parameters of the analysis with
he LMC + MW + LISA instrumental noise. 
MNRAS 531, 2642–2652 (2024) 

http://dx.doi.org/10.1088/0264-9381/32/7/074001
http://dx.doi.org/10.1088/0264-9381/32/2/024001
http://dx.doi.org/10.1103/PhysRevD.82.022002
http://dx.doi.org/10.1103/PhysRevD.86.124032
http://dx.doi.org/10.1088/1361-6382/ab9143
http://dx.doi.org/10.3847/2041-8213/acdac6
http://dx.doi.org/10.48550/arXiv.1702.00786
https:\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ \begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ arxiv.org\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ abs\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 1702.00786
http://dx.doi.org/10.48550/arXiv.2203.06016
http://dx.doi.org/10.48550/arXiv.2304.06368
http://dx.doi.org/10.1093/mnras/stab2479
http://dx.doi.org/10.1086/504024
http://dx.doi.org/10.1103/PhysRevD.102.103023
http://dx.doi.org/10.48550/arXiv.1912.02200
http://dx.doi.org/10.1088/0264-9381/18/20/307
http://dx.doi.org/10.1103/PhysRevD.65.022004
http://dx.doi.org/10.1088/0264-9381/18/17/308
http://dx.doi.org/10.1103/PhysRevD.71.122003
http://dx.doi.org/10.1093/mnras/stad1288
http://dx.doi.org/10.48550/arXiv.2204.07349
http://dx.doi.org/10.1086/427976
http://dx.doi.org/10.1088/0004-6256/138/5/1243
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1103/PhysRevD.107.123531
http://dx.doi.org/10.21105/joss.00045
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.48550/arXiv.2207.14277
http://dx.doi.org/10.1051/0004-6361/202037764
http://dx.doi.org/10.1093/mnrasl/slab003
http://dx.doi.org/10.1103/PhysRevD.71.024025
http://dx.doi.org/10.48550/arXiv.2302.12719
http://dx.doi.org/10.48550/arXiv.2301.03673
http://dx.doi.org/10.1088/0264-9381/30/22/224010
http://dx.doi.org/10.1086/343775
http://dx.doi.org/10.1103/PhysRevD.88.062005
http://dx.doi.org/10.48550/arXiv.2308.01056
http://dx.doi.org/10.48550/arXiv.2302.07043
http://dx.doi.org/10.1093/mnras/sty2546
http://dx.doi.org/10.1088/1361-6382/ab1101
http://dx.doi.org/10.3847/2041-8213/ab8ac9
http://dx.doi.org/10.3847/2041-8213/ab8ac9
http://dx.doi.org/10.1103/PhysRevD.106.022003
http://dx.doi.org/10.1093/mnras/staa278
http://dx.doi.org/10.1088/0264-9381/23/19/S19
http://dx.doi.org/10.1103/PhysRevD.74.104022
http://dx.doi.org/10.1103/PhysRevD.72.104015
http://dx.doi.org/10.1103/PhysRevD.88.084001
http://dx.doi.org/10.1103/PhysRevD.80.122002
http://dx.doi.org/10.12942/lrr-2014-6
http://dx.doi.org/10.1051/0004-6361/201218966
http://dx.doi.org/10.1051/0004-6361/201629978
http://dx.doi.org/10.1103/PhysRevD.64.121501
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.3847/1538-4365/ac5c52
http://dx.doi.org/10.1086/343775


2650 S. Rieck et al. 

M

Figure A1. Corner plot for the analysis in Section 3.2 of the LMC SGWB in isolation, showing the one- and two-dimensional marginalized posterior samples 
for each of our model parameters. These are (moving left to right): the LISA position and acceleration noise amplitudes (log 10 ( N p ) and log 10 ( N p ), respectively); 
the SGWB power-law model slope ( α) and log amplitude (log 10 ( �ref )); and the magnitude and phase of the b � m spherical harmonic coefficients up to � b max = 2 
( � a max = 4). The true values of the noise parameters are marked with green dashed lines. The remaining parameters do not have defined true values, as our 
simulated signal is generated from a DWD population. Contours shown are 1 σ and 2 σ . A careful eye will note a slight bias in the reco v ery of the position 
noise contribution, N p . This is a result of our power-law spectral model being an imperfect fit for the population-deri ved, non-po wer-law spectrum of the LMC 

SGWB; repeating this study without the inclusion of the LMC signal results in unbiased noise reco v eries. Potential future approaches to fitting the LMC signal 
with higher fidelity are discussed in Section 4 . 
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Figure A2. Spectral parameters corner plot for the analysis in Section 3.3 of the LMC SGWB alongside a simple simulation of the MW foreground, showing 
the one- and two-dimensional marginalized posterior samples for all spectral model parameters. Spatial parameter samples are shown in Fig. A3 . Included 
parameters are (moving left to right): the LISA position and acceleration noise amplitudes (log 10 ( N p ) and log 10 ( N a ), respecti vely); the LMC SGWB po wer-law 

model slope ( αLMC ) and log amplitude (log 10 ( �ref,LMC )); and the MW foreground truncated power-law model slope ( αMW ), log amplitude (log 10 ( �ref,MW )), and 
log cutoff frequency (log 10 ( f cut,MW )). True values are marked with green dashed lines. As before, the LMC model parameters do not have defined true values. 
Contours shown are 1 σ and 2 σ . 
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Figure A3. Spatial parameters corner plot for the analysis in Section 3.3 of the LMC SGWB alongside a simple simulation of the MW foreground, showing the 
one- and two-dimensional marginalized posterior samples for the LMC spatial model parameters (the MW spatial model is fixed; see Section 3.3 ). Parameters 
shown are the magnitude and phase of the b � m spherical harmonic coefficients up to � b max = 2 ( � a max = 4). Contours shown are 1 σ and 2 σ . 
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