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Abstract

We develop a computational algorithm based on a diffuse interface approach to study the

design of bioartificial organ scaffold architectures. These scaffolds, composed of poroelastic

hydrogels housing transplanted cells, are linked to the patient’s blood circulation via an

anastomosis graft. Before entering the scaffold, the blood flow passes through a filter, and

the resulting filtered blood plasma transports oxygen and nutrients to sustain the viability of

transplanted cells over the long term. A key issue in maintaining cell viability is the design of

ultrafiltrate channels within the hydrogel scaffold to facilitate advection-enhanced oxygen

supply ensuring oxygen levels remain above a critical threshold to prevent hypoxia. In this

manuscript, we develop a computational algorithm to analyze the plasma flow and oxygen

concentration within hydrogels featuring various channel geometries. Our objective is to

identify the optimal hydrogel channel architecture that sustains oxygen concentration

throughout the scaffold above the critical hypoxic threshold.

The computational algorithm we introduce here employs a diffuse interface approach to

solve a multi-physics problem. The corresponding model couples the time-dependent

Stokes equations, governing blood plasma flow through the channel network, with the time-

dependent Biot equations, characterizing Darcy velocity, pressure, and displacement within

the poroelastic hydrogel containing the transplanted cells. Subsequently, the calculated

plasma velocity is utilized to determine oxygen concentration within the scaffold using a dif-

fuse interface advection-reaction-diffusion model. Our investigation yields a scaffold archi-

tecture featuring a hexagonal network geometry that meets the desired oxygen

concentration criteria. Unlike classical sharp interface approaches, the diffuse interface

approach we employ is particularly adept at addressing problems with intricate interface

geometries, such as those encountered in bioartificial organ scaffold design. This study is

significant because recent developments in hydrogel fabrication make it now possible to

control hydrogel rheology and utilize computational results to generate optimized scaffold

architectures.
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Author summary

Bioartificial organ is an engineered device made of living cells and a biocompatible scaf-

fold that can be implanted or integrated into a human body to replace a natural organ, or

to augment a specific organ function. The biocompatible scaffold serves as the structural

foundation, embedding cells and growth factors to form substitute tissue. A key challenge

in bioartificial organ design is ensuring the long-term survival of transplanted cells. Spe-

cifically, a critical challenge is creating a hydrogel architecture with ultrafiltrate channels

that act as pathways to deliver oxygen and nutrients to the cells, supporting their sustained

viability. In this work, we developed a mathematical and computational framework to

investigate optimal hydrogel architecture and oxygen supply to transplanted cells. Our

findings show that a hexagonal channel architecture significantly outperforms both the

commonly used vertical channels and branching channel designs, providing a substantial

increase in oxygen delivery to the cells. In the hexagonal architecture, oxygen concentra-

tion remains above the critical threshold for hypoxia throughout the scaffold, which is not

achieved with other designs. This is particularly important given recent advances in

hydrogel fabrication, allowing for precise control of hydrogel elasticity and rheology, mak-

ing these results valuable for developing improved scaffold designs.

1 Introduction

Bioartificial organ is an engineered device made of living cells and a biocompatible scaffold

that can be implanted or integrated into a human body–interfacing with living tissue–to

replace a natural organ, or to duplicate or augment a specific organ function [1]. Biocompati-

ble scaffold is a biocompatible base material in which cells and growth factors are embedded to

construct a substitute tissue, which can be used in e.g. bioartificial organ design [2]. For exam-

ple, a biocompatible scaffold used in the bioartificial pancreas design is a biocompatible hydro-

gel (e.g. agarose gel) which houses transplanted pancreatic islets (conglomerations of

pancreatic cells) that contain the insulin-producing β-cells. Hydrogels are hydrophilic poly-

mers that are poroelastic, and that have the ability to absorb a large volume of fluid, which

makes them particularly suitable materials for biomedical applications. In bioartificial pan-

creas design presented in [3], the biocompatible hydrogel containing the insulin-producing

cells is encapsulated in a nano-pore, semi-permeable membrane (filter), see Fig 1, and the

resulting bioartificial organ is connected to the host’s cardiovascular system via an anastomosis

Fig 1. Schematic illustration of immunoprotective encapsulation device containing human embryonic stem cell-

derived β clusters (hES-βC).

https://doi.org/10.1371/journal.pcbi.1012079.g001
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graft (a tube) for the advection-enhanced nutrients delivery to the cells, and insulin distribu-

tion away from the cells.

A major challenge in the encapsulation-based bioartificial organ design is maintaining the

survival of transplanted cells within the bioartifical organ scaffold for an extended period of

time. In particular, long-term viability of pancreatic cells is directly affected by the sufficient

access to nutrients for survival, of which oxygen is the limiting factor [4].

One of the goals of this manuscript is to develop the mathematical and computational

approaches to investigate oxygen supply to the transplanted cells by studying hydrogel archi-

tecture and optimal design of ultrafiltrate channels within the encapsulated poroelastic hydro-

gels for advection-enhanced reaction-diffusion processes of oxygen transport to the cells. This

is significant because recent developments in hydrogel fabrication make it now possible to

control hydrogel elasticity and hydrogel rheology using, e.g., the approaches employed and

reviewed in [2, 5].

In this manuscript we study oxygen-carrying blood plasma flow and oxygen concentration

in three different scaffold architectures, whose geometries are inspired by different biological

flow-nutrients scenarios. The first geometry consists of vertical ultrafiltrate channels drilled

through a hydrogel, which is the simplest, and a standard procedure used in the design of

bioartificial pancreas [5–7]. The second geometry consists of the branching channels, inspired

by the architecture of the branching vessels in the human body. The third geometry consists of

the channels surrounding hexagonal pockets, which we refer to as the hexagonal geometry.

This was inspired by the biological (epithelial) tissues in which interstitial fluid flows through a

network of irregularly arranged interstices between hexagonally shaped cells, which supports

their structural and functional integrity [8]. To work with comparable fluid flow scenarios, the

three geometries are generated so that the total fluid channels’ volume (i.e., the area of the 2D
channels) is the same in all three geometries.

We are interested in a scaffold architecture with the geometry that provides concentration

of oxygen that is as uniform throughout the scaffold as possible and above a minimum concen-

tration below which hypoxia occurs. For this purpose we introduce two sets of models, one for

the fluid flow and one for oxygen concentration in the scaffold. The scaffold is modeled as a

2D domain containing a network of channels separating the regions of poroelastic medium

describing a hydrogel. See Fig 2 below. In the last part of the manuscript we introduce a 3D
computational model to show that for the “optimal” geometry, the 2D simulations capture the

Fig 2. An example of a domain O = OF [ OP demonstrating the two inlets Gin
F at the top and the two outlets Gout

F at the bottom in 2D (left) and 3D (right).

https://doi.org/10.1371/journal.pcbi.1012079.g002
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main features of flow and oxygen concetration. The flow of blood plasma through the network

of channels is modeled by the time dependent Stokes equations for an incompressible, viscous

fluid. The channel flow is coupled to the filtrating flow in the poroelastic hydrogel, which is

modeled by the Biot equations [9]. Two sets of coupling conditions at the interface between

the channel flow and hydrogel poroelastic medium are employed: the kinematic and dynamic

coupling conditions. The kinematic coupling conditions describe continuity of normal (verti-

cal to the interface) velocity and a slip in the tangential component of the velocity, known as

the Beaver-Joseph-Saffman condition. The dynamic coupling conditions state the balance of

forces at the interface. Linear coupling is considered, i.e., the coupling conditions are evaluated

at a reference interface. Subsequently, the resulting fluid velocity is used as an input data in an

advection-reaction-diffusion model for oxygen concentration within the scaffold.

To solve the coupled problems computationally, we implemented a diffuse interface

approach [10–12]. The diffuse interface approach has several advantages over the classical

sharp interface approach. In the diffuse interface approach, the mesh nodes do not have to be

aligned with the interface, whose location is now captured using a phase-field function.

Instead, the problem unknowns are defined on the entire domain, and the mesh remains

fixed. This is particularly useful in cases where the interface between the two regions is difficult

to determine exactly (e.g. “fuzzy” boundaries between regions obtained from medical images),

or when the geometry of the interface is complex, leading to inaccurate approximations of the

boundary integrals. Furthermore, advantages of this approach are apparent in problems with

moving geometries and in the development of geometric optimization algorithms for optimal

channel architecture design, which we plan to do next. In these cases a diffuse interface

approach avoids the creation of complicated meshes following optimizing scaffold geometries,

which would be the case in the classical sharp interface approaches. In this work we develop a

diffuse interface approach to solve both the fluid and oxygen problems. In both cases, a finite

element method is used for spatial discretization, and a backward Euler method for time step-

ping. We perform a verification of our numerical diffuse interface approach by comparing the

solutions of the diffuse interface problem with the already validated solutions of a sharp inter-

face approach, showing excellent agreement. Additionally, to justify the computationally less

expensive 2D simulations, for the optimal geometry we perform the full 3D simulations and

show that the 2D simulations we used to find the optimal geometry, capture all the important

features of plasma flow and oxygen concentration in the corresponding 3D scaffold.

The diffuse interface approach is then used to investigate flow, pressure, and oxygen con-

centration in the three main geometries, discussed above. As mentioned earlier, the diffuse

interface approach developed here is particularly suitable from the computational standpoint

to study a number of different interface geometries. We find that the ultrafiltrate channel net-

work with the hexagonal geometry provides the best solution in terms of oxygen concentration

distribution and magnitude. Oxygen concentration in the hexagonal case is most uniformly

distributed throughout the entire scaffold, and the values of concentration are all well above

the critical value of oxygen below which hypoxia occurs. This is not the case for the other two

geometries considered here (vertical channels and branching channels). We then further

investigate the reasons why the hexagonal geometry performs best, and conclude that the rela-

tive angle of the channels with respect to the flow direction is one of the main contributing fac-

tors to higher Darcy velocity within the poroelastic hydrogel, and consequently the higher

concentration values in between the ultrafiltrate channels. The results obtained in this manu-

script can be used in optimal scaffold design by implementing hydrogel manufacturing tech-

niques recently developed in [2, 5].

This manuscript is organized as follows. In Section 2 we introduce the model equations in

strong/differential and weak/integral formulations. In Section 3 the diffuse interface method is
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discussed, and the fluid and oxygen problems are presented in the weak (integral) diffuse inter-

face formulations. Numerical discretization based on a finite element approach is also dis-

cussed in this section. The computational setting, which includes the computational

geometries described by the phase-field function, and parameter identification, is presented in

Section 4. In this section we also show the verification of the numerical solver by comparing

the diffuse interface solution with a monolithic solver utilizing a sharp-interface approach.

Numerical results are presented in Section 5. In Section 6, we present 3D simulations of the

optimal geometry demonstrating strong agreement with the 2D simulations. Conclusions are

presented in Section 7.

2 Methods I: The mathematical model

To model the entire scaffold, we introduce a bounded domain O � Rd
, with d = 2, 3, consist-

ing of a fluid region, OF, corresponding to the blood or blood plasma flow region bringing oxy-

gen and nutrients to the transplanted cells, and a poroelastic solid region, OP, corresponding

to the poroelastic medium such as a biocompatible hydrogel, which hosts the transplanted

cells. The entire bioartificial organ scaffold is then comprised of the two regions so that �O ¼

�OF [ �OP and OF \ OP = ; (see Fig 2). The fluid flowing through the channels comprising the

region OF enters the poroelastic medium OP across the interface Γ, which is the interface

between OF and OP, defined by G ¼ �OF \ �OP.

Fig 2 shows a sketch of a 2D and a 3D domain in which the fluid domain OF consists of two

horizontal channels corresponding to the “inlet” and “outlet” channels, namely, they contain

the inlet boundary Gin
F and the outlet Gout

F , respectively. The two horizontal channels are con-

nected via three vertical channels describing the simplest scaffold architecture which has been

used in several research studies on bioartificial organ design [5–7]. The 3D geometry is

obtained by extruding the 2D geometry. The vertical ultrafiltrate channels are drilled to

enhance advection-dominated oxygen and nutrients supply to the cells residing in OP. This is

just one, and the simplest example of the scaffold architecture that we will consider in this

manuscript.

To model the interaction between the flow of blood plasma in OF and the filtration of blood

plasma through OP, we will use a fluid-poroelastic structure interaction model, which we pres-

ent next. We assume that the fluid-poroelastic structure interaction problem is linear, and that

the displacement is small enough so that the domain remains fixed.

2.1 Fluid-poroelastic structure interaction

We assume that OF contains a viscous, incompressible, Newtonian fluid, such as blood plasma,

whose dynamics can be described by the Stokes equations:

rF@tv ¼ r � σF in OF � ð0;TÞ; ð1aÞ

r � v ¼ 0 in OF � ð0;TÞ; ð1bÞ

where v stands for the fluid velocity, ρF is density, and σF is the Cauchy stress tensor defined

by:

σFðv; pFÞ ¼ �pFI þ 2mFDðvÞ; ð2Þ

where pF represents the fluid pressure, μF is the fluid viscosity, and D(v) = (rv + rvτ)/2 is the

strain rate tensor. Namely, Eq (2) is a constitutive law describing a Newtonian fluid such as
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blood plasma. Velocity v will be used in the advection-diffusion-reaction problem to convect

the oxygen concentration in OF.

The poroelastic medium, such as agarose gel used in the design of a bioartificial pancreas,

see [4], can be described by the well-known Biot model, which has been used to describe

hydrogels in [13]. The Biot model consists of the following equations:

rS@ttη þ gEη ¼ r � σP in OP � ð0;TÞ; ð3aÞ

�krpP ¼ q in OP � ð0;TÞ; ð3bÞ

@tðc0pP þ ar � ηÞ þ r � q ¼ 0 in OP � ð0;TÞ: ð3cÞ

Eq (3a) describes the elastodynamics of the elastic skeleton, i.e., the solid phase in the Biot

model, and is given in terms of the displacement of the elastic skeleton, denoted by η, from its

reference configuration OP. Constant ρS denotes density of the poroelastic matrix, and γE is a

spring coefficient. For the simulations performed in 2D, adding the term γEη accounts for the

three-dimensional elastic energy effects, and helps to keep the regions that are not connected

from drifting away. More precisely, this term helps to prevent spurious numerical solutions

where sections of OP might be excessively pulled in the direction of vertical fluid flow. Such

unrealistic large vertical displacements do not occur in 3D models due to the presence of an

elastic restoring force in the third spatial dimension. In 3D simulations this term is not needed,

so in that case we set γE = 0.

The total Cauchy stress tensor σP for the poroelastic region is defined by

σPðη; pPÞ ¼ σEðηÞ � apPI;

where α is the Biot-Willis parameter accounting for the coupling strength between the fluid

and solid phases and σE denotes the elastic stress tensor, described by the Saint Venant-Kirch-

hoff constitutive model as:

σEðηÞ ¼ 2mEDðηÞ þ lEtrðDðηÞÞI;

where λE and μE are Lamé parameters. Eq (3b) is the Darcy law, where pP is the fluid pore pres-

sure, q is the Darcy velocity, and κ is the permeability. Eq (3c) is the storage equation for the

fluid mass conservation in the pores of the matrix. It describes the coupled behavior of fluid

flow and solid deformation in a porous medium. In this context, the quantity c0pP + αr � η
represents the total fluid content, where c0 is a constant related to the fluid’s compressibility.

The mass conservation equation incorporates the effects of both fluid and solid compressibility

to ensure that the total mass is conserved, considering how the fluid pressure changes impact

the solid matrix and vice versa. The Darcy velocity q will be used in the advection-diffusion-

reaction problem to convect the oxygen concentration in OP.

Coupling conditions. To couple the fluid flow model with the Biot poroelastic medium

model we use a set of four coupling conditions: two kinematic coupling conditions and two

dynamic coupling conditions, which are evaluated at the location Γ of the interface between

the two models. To state the coupling conditions introduce nF to denote the outward unit
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normal vector to @OF. At the interface Γ the following coupling conditions hold:

ðv � @tηÞ � nF ¼ q � nF on G � ð0;TÞ; ð4aÞ

gðv � @tηÞτ ¼ �ðσFnFÞτ on G � ð0;TÞ; ð4bÞ

σFnF � nF ¼ �pP on G � ð0;TÞ; ð4cÞ

σFnF ¼ σPnF on G � ð0;TÞ; ð4dÞ

where for a vector v, we define a projection onto the local tangent plane on Γ as:

ðvÞτ ≔ v � ðv � nf Þnf :

The first two conditions provide information about kinematic quantities such as velocities

(kinematic coupling conditions), and the second two conditions provide information about

coupling of stresses/forces (dynamic coupling conditions). More precisely, Eq (4a) describes

the fluid mass conservation across the interface, i.e., the normal components of the free fluid

velocity v relative to the velocity of motion of the poroelastic matrix @tη is equal to the Darcy

velocity q across the interface. Eq (4b) describes the Beavers-Joseph-Saffman condition (4b)

with slip rate γ > 0, namely, the tangential component of the free fluid velocity slips at the

interface with the slip rate proportional to the fluid shear stress (σFnF)τ. Eqs (4c) and (4d)

describe the continuity of pressures and total stresses at the interface.

Boundary and initial conditions. Problem (1a)–(4d) is supplemented with boundary and

initial conditions. In our notation, we represent the exterior boundary as Γext = @O. The exte-

rior boundary is divided into three distinct parts: the fluid inflow boundary, the fluid outflow

boundary, and the impenetrable part of the boundary, Gext ¼ Gin
F [ Gout

F [ Gext
F . For the fluid

problem, we impose the following boundary conditions:

v ¼ vin on Gin
F � ð0;TÞ;

v ¼ 0 on Gext
F � ð0;TÞ;

σFnF ¼ 0 on Gout
F � ð0;TÞ;

where vin is a prescribed velocity, specified in Section 4.

For the poroelastic structure, we impose no flow and zero displacement at the external

boundaries:

q � nP ¼ 0 on Gext
P � ð0;TÞ; ð5Þ

η ¼ 0 on Gext
P � ð0;TÞ: ð6Þ

Initially, we assume that the fluid is at rest and that the deformable poroelastic structure is

in its reference configuration. Thus, we have:

v ¼ 0; η ¼ 0; @tη ¼ 0; pP ¼ 0 at t ¼ 0: ð7Þ

Weak formulation. To define the weak formulation of problem (1a)–(7) we introduce the

following function spaces. Given an open set S, we consider the usual Sobolev spaces Hk(S),
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with k � 0, and introduce the following function spaces:

VFðOFÞ ¼ fv 2 ðH1OFÞÞ
d

: v ¼ 0 on Gin
F [ Gext

F g;

VF;DðOFÞ ¼ fv 2 ðH1OFÞÞ
d

: v ¼ 0 on Gext
F ; v ¼ vin on Gin

F g;

VEðOPÞ ¼ fη 2 H1ðOPÞ : η ¼ 0 on Gextg:

Here VFðOFÞ corresponds to the test space for the fluid velocity, VF;DðOFÞ is associated with the

solution space for the fluid velocity, and VEðOPÞ is associated with the function space for the

poroelastic matrix displacement. The spaces H1(OP) and L2(OF) are associated with the solu-

tions spaces for the fluid pressures in Op and OF respectively.

We say that ðv; pP; η; pFÞ 2 L2ð0;T;VF;DðOFÞÞ � H1ðOPÞ � L1ð0;T;VEðOPÞÞ �

H�1ð0;T; L2ðOFÞÞ is a weak solution if for every

ðw; cP; ζ; cFÞ 2 VFðOFÞ � H1ðOPÞ � VEðOPÞ � L2ðOFÞ, the following equality is satisfied in

D0
ð0;TÞ:

d
dt

Z

OF

rFv � w dV þ

Z

OP

rS@tη � ζ dV þ c0

Z

OP

pPcP dV
� �

þ2mF

Z

OF

DðvÞ : DðwÞ dV �

Z

OF

ðr � wÞpF dV þ

Z

OF

ðr � vÞcF dV

þ

Z

OP

krpP � rcP dV þ

Z

OP

gEη � ζ dV þ 2mE

Z

OP

DðηÞ : DðζÞ dV

þlE

Z

OP

ðr � ηÞðr � ζÞ dV � a

Z

OP

ðr � ζÞpP dV þ a

Z

OP

ðr � ξÞcP dV

þg

Z

G

ðv � @tηÞτðw � ζÞτ dA �

Z

G

cPðv � @tηÞ � nF dA

þ

Z

G

pPðw � ζÞ � nF dA ¼ 0:

ð8Þ

Here, D0
ð0;TÞ denotes the space of distributions on (0, T), which is the dual space of the space

of test functions Dð0;TÞ ¼ C1
c ð0;TÞ. We note that the weak formulation is obtained using the

primal formulation for the Biot problem, i.e., Eqs (3b) and (3c) have been combined so that Eq

(3c) is written only in terms of pP and η. The Darcy velocity can be computed by postproces-

sing using (3b).

Once the fluid velocity v and Darcy velocity q are computed from the fluid-poroelastic

structure interaction problem specified above, we can use this velocity information to formu-

late an advection-reaction-diffusion problem describing oxygen transport in the bioartificial

organ consisting of ultrafiltrate channels OF and the poroelastic medium OP containing the

cells.

2.2 Advection-reaction-diffusion

To model the transport of oxygen, we use an advection-reaction-diffusion model describing

oxygen transport in the fluid domain OF and in the poroelastic medium OP. Oxygen transport

in the human vascular system and tissues has been studied by many authors [14–18], and we

adopt the approach from [15] to study oxygen transport in the scaffold:

@tc þ u � rc � r � ðDrcÞ ¼ Rmax
c

c þ cMM
Hðc; cCRÞ in O � ð0;TtÞ; ð9Þ

where c is concentration of oxygen, and D is a diffusion coefficient equal to DF in OF and to DP

PLOS COMPUTATIONAL BIOLOGY A bioartificial organ scaffold architecture design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012079 November 11, 2024 8 / 29

https://doi.org/10.1371/journal.pcbi.1012079


in OP. The velocity u is equal to v in OF, and to q in OP. The final time is Tt, which we note is

different from the final time T used in the fluid-poroelastic structure interaction problem. The

reaction term on the right-hand side is active in OP only and it accounts for the consumption

of oxygen in the scaffold. In particular, this reaction term depends on the maximum oxygen

consumption rate, Rmax < 0, the Michaelis-Menten constant, cMM, corresponding to the oxy-

gen concentration when the consumption rate drops to 50% of its maximum [15], and the

function Hðc; cCRÞ, defined by

Hðc; cCRÞ ¼

0; x 2 OF

0; x 2 OP and c � cCR
1; x 2 OP and c > cCR;

8
><

>:

accounts for the regions of the tissue/poroelastic matrix where the oxygen concentration falls

below a critical concentration cCR below which necrosis is assumed to occur [15, 19]. The val-

ues of the parameters are all specified in [15, 19].

Boundary and initial conditions. Eq (9) is supplemented with the following boundary

conditions:

c ¼ cin on Gin
F � ð0;TtÞ; ð10aÞ

c ¼ 0 on Gext
F � ð0;TtÞ; ð10bÞ

�Drc � n ¼ 0 on Gout
F � ð0;TtÞ; ð10cÞ

where cin is a given quantity, specified in Section 4. Thus, these boundary conditions say that

we have a prescribed oxygen concentration at the inlet, zero oxygen concentration at the top

boundary of the scaffold between the inlet regions, and zero diffusive oxygen flux at the outlet.

Initially, the concentration is set to zero:

c ¼ 0 at t ¼ 0: ð11Þ

Weak formulation. To write the weak formulation of problem (9)–(11) we introduce the

following function spaces:

M ¼ fc 2 H1ðOÞ \ L1ðOÞ : c ¼ 0 on Gin
F [ Gext

F g;

MD ¼ fc 2 H1ðOÞ \ L1ðOÞ : c ¼ 0 on Gext
F ; c ¼ cin on Gin

F g:

Here M is associated with the test space for oxygen concentration and MD is associated with

the solution space for c.
We say that c 2 L2ð0;T;MDÞ is a weak solution if c � 0 and if for every s 2 M, the follow-

ing equality is satisfied in D0ð0;TtÞ:

d
dt

Z

O

cs dV þ

Z

O

ðu � rcÞs dV þ

Z

O

Drc � rs dV ¼

Z

O

Rmax
c

c þ cMM
HðcÞs dV: ð12Þ

We have now specified two problems: a fluid-poroelastic structure interaction problem and

an advection-reaction-diffusion problem, that we would like to solve for the fluid velocity and

poroelastic structure displacement, and for oxygen concentration. The plan for this manu-

script is to investigate three different scaffold architectures, motivated by biological structures,

and numerically test which one provides the scaffold architecture with oxygen concentration

that is closest to the uniform distribution of oxygen and is above the known minimal value copt
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for which uninhibited insulin production by the β-cells is guaranteed [20]. See Section 5. For

this purpose we developed two numerical methods, one for the fluid-poroelastic structure

interaction problem, and one for the advection-reaction-diffusion problem, which we describe

next.

3 Methods II: Numerical method

To solve the fluid-poroelastic structure interaction and transport problems numerically, we

use the diffuse interface method [10, 11]. Let χ denote the Heaviside function which equals

one in OF and zero in OP. Let a phase-field function F: O ! [0, 1] be a regularization of the

Heaviside function such that F � 1 in OF, F � 0 in OP, and F smoothly transitions between

these two values on a “diffuse” layer of width � (see Fig 3). We suppose that dA � |rF|dV and

n � �
rF

jrFj
. Using this notation, for functions F and f defined on O, we can write:

Z

OF

F dV ¼

Z

O

Fw dV �

Z

O

FF dV;

Z

OP

F dV ¼

Z

O

Fð1 � wÞ dV �

Z

O

Fð1 � FÞ dV;

Z

G

f dA ¼

Z

O

f dG dV �

Z

O

f jrFj dV;

where δΓ is a Dirac distribution at the interface Γ.

Fig 3. Graphical representation of the diffuse interface approach in one dimension. Top: The phase-field function

F. Bottom: The gradient of F used to approximate the location of the interface.

https://doi.org/10.1371/journal.pcbi.1012079.g003
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Using the approximations above, and n � �
rF

jrFj
, we can write the diffuse interface for-

mulation of problem (8) as follows: Find ðv; pP; η; pFÞ 2 L2ð0;T;VF;DðOÞ � H1ðOÞÞ �

L1ð0;T;VEðOÞÞ � H�1ð0;T; L2ðOÞÞ such that for every

ðw; cP; ζ; cFÞ 2 VFðOÞ � H1ðOÞ � VEðOÞ � L2ðOÞ, the following equality holds:

d
dt

Z

O

rFv � wF dV þ

Z

O

rS@tη � ζð1 � FÞ dV þ c0

Z

O

pPcPð1 � FÞ dV
� �

þ2mF

Z

O

DðvÞ : DðwÞF dV �

Z

O

ðr � wÞpFF dV þ

Z

O

ðr � vÞcFF dV

þ

Z

O

κrpP � rcPð1 � FÞ dV þ

Z

O

gEη � ζð1 � FÞ dV

þ2mE

Z

O

DðηÞ : DðζÞð1 � FÞ dV þ lE

Z

O

ðr � ηÞðr � ζÞð1 � FÞ dV

�a

Z

O

ðr � ζÞpPð1 � FÞ dV þ a

Z

O

ðr � ξÞcPð1 � FÞ dV

þg

Z

O

ðv � @tηÞ~τ ðw � ζÞ~τ jrFj dV þ

Z

O

cPðv � @tηÞ � rF dV

�

Z

O

pPðw � ζÞ � rF dV ¼ 0;

ð13Þ

where we used the ~τ subscript to denote the “approximate” tangential component of a vector

function at the diffused interface, defined, for a vector v, as follows:

ðvÞ~τ ≔ v � v � rFð Þ
rF

jrFj
2

:

Tangent vectors that form a basis with rF can also be obtained directly from the phase-field

function using the algorithm described in [12, 21].

We note that in order to write (13), the variables on each subdomain have to be extended

onto the entire domain O. This procedure introduces singularities. For example, when the

fluid velocity, which is defined on OF, is extended into the whole domain O, the corresponding

integrand will be multiplied by F. Since F is zero in a large part of OP, the resulting linear sys-

tem will have zero rows whenever this occurs, which will lead to a singular matrix. Therefore,

we use the following regularization of F:

F � ð1 � 2bÞF þ b; ð14Þ

where β is a small positive number. Therefore, F � β and 1 − F � β. This regularization of F

was used in the definition of problem (13). A phase-field method for the related Stokes-Darcy

problems have been analyzed by the authors in [22] where existence of a weak solution was

proved, and its convergence to the sharp interface solution was obtained.

Because the concentration Eq (12) is already defined in O, we do not require regularization.

In that case, β = 0. However, we use F to define the global velocity and diffusion:

u ¼ vF þ qð1 � FÞ; and D ¼ DFF þ DPð1 � FÞ:
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Numerical discretization

Problems (13) and (12) are discretized in time using the Backward Euler method, and in space

using a finite element method. Since the transport problem requires the fluid velocity, but the

fluid-poroelastic structure interaction problem does not require any information from the

transport problem, we first solve the fluid-poroelastic structure interaction problem until the

final time T is reached. Then, we solve the transport problem. Let N 2 N be the number of

time steps for the fluid problem, T the final time, and Δt = T/N the time step. We define the

discrete times tn = nΔt, for n = 0, . . ., N. We also denote by h a discretization parameter associ-

ated with the triangulation T hðOÞ of O. For each h, we choose finite dimensional subspaces

Vh
F � VFðOÞ;Vh

F;D � VF;DðOÞ;Vh
E � VEðOÞ;X h

F � L2ðOÞ;X h
P � H1ðOÞ;Mh

� M and Mh
D �

MD over the triangulation T hðOÞ. We use MINI elements [23] to approximate the fluid veloc-

ity and pressure, P1 elements to approximate the Darcy pressure and the displacement, and P2

elements to approximate the concentration.

The fully discrete fluid-poroelastic structure interaction problem is given as follows: given

ðv0
h; p

0
P;h; η0

h; p
0
F;hÞ; for n = 0, . . ., N − 1, find ðvnþ1

h ; pnþ1
P;h ; ηnþ1

h ; pnþ1
F;h Þ 2 Vh

F;D � Xh
P � Vh

E � X h
F such

that for every ðwh; cP;h; ζh; cF;hÞ 2 Vh
F � X h

P � Vh
E � X h

F , the following equality holds:

Z

O

rF
vnþ1
h � vnh

Dt
� whF dV þ

Z

O

rS
ηnþ1
h � 2ηn

h þ ηn�1
h

Dt2
� ζhð1 � FÞ dV

þc0

Z

O

pnþ1
P;h � pnP;h

Dt
cP;hð1 � FÞ dV þ 2mF

Z

O

DðvhÞ
nþ1

: DðwhÞF dV

�

Z

O

ðr � whÞpnþ1
F;h F dV þ

Z

O

ðr � vnþ1
h ÞcF;hF dV þ

Z

O

κrpnþ1
P;h � rcP;hð1 � FÞ dV

þgE

Z

O

ηnþ1
h � ζhð1 � FÞ dV þ 2mE

Z

O

Dðηnþ1
h Þ : DðζhÞð1 � FÞ dV

þlE

Z

O

ðr � ηnþ1
h Þðr � ζhÞð1 � FÞ dV � a

Z

O

ðr � ζhÞpnþ1
P ð1 � FÞ dV

þa

Z

O

ðr � ξnþ1
ÞcPð1 � FÞ dV þ g

Z

O

 

vnþ1
h �

ηnþ1
h � ηn

h

Dt

!

~τ

ðwh � ζhÞ~τ jrFj dV

þ

Z

O

cP;h

 

vnþ1
h �

ηnþ1
h � ηn

h

Dt

!

� rF dV �

Z

O

pnþ1

P;h ðwh � ζhÞ � rF dV ¼ 0:

ð15Þ

To solve the transport problem, we let Nt 2 N be the number of time steps, and Δtt = Tt/Nt

the time step. The fully discrete transport problem reads as follows: for n = 0, . . ., Nt − 1, find

cnþ1
h 2 Mh

D such that for every sh 2 Mh
, the following equality holds:

Z

O

cnþ1
h � cnh

Dtt
sh dV þ

Z

O

unþ1
h � rcnþ1

h sh dV þ

Z

O

Drcnþ1
h � rsh dV

¼

Z

O

Rmax
cnh

cnh þ cMM
HðcnhÞsh dV:

ð16Þ

We note that according to (11), initially we have c0
h ¼ 0.

4 Computational setting, parameters identification and verification

In this work we investigate the fluid velocity, pressure and oxygen concentration in the three

geometries/scaffold architectures shown in Fig 4. The first geometry consists of vertical

PLOS COMPUTATIONAL BIOLOGY A bioartificial organ scaffold architecture design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012079 November 11, 2024 12 / 29

https://doi.org/10.1371/journal.pcbi.1012079


ultrafiltrate channels drilled through a hydrogel, which is the simplest, and a standard proce-

dure used in the design of bioartificial pancreas [3]. The second geometry consists of the

branching channels, see the middle panel in Fig 4. This was inspired by the architecture of the

branching vessels in the human body. The third geometry consists of the channels surround-

ing hexagonal pockets, shown at the bottom panel in Fig 4. This geometry was inspired by the

biological (epithelial) tissues in which interstitial fluid flows through a network of irregularly

arranged interstices between hexagonally shaped cells, which supports their structural and

functional integrity [24]. To work with comparable fluid flow scenarios, the three geometries

shown in Fig 4 were generated so that the total fluid channels’ area is the same in all three

geometries. For both 2D and 3D simulations, mesh independence tests have been performed.

The solutions obtained on the meshes we used in this work do not significantly change if even

finer meshes are used.

4.1 Computational settings

The size of the computational domain is 0.9 × 0.42 cm, corresponding to the entire scaffold O.

Two outlet channels are added on the bottom (see Fig 2) to simulate the actual outlet channels

shown in Fig 1. Each outlet channel has a height of 0.1 cm and length of 0.06 cm. In each of the

three different geometries/architectures of the scaffold O, there is a top and a bottom

Fig 4. The phase-field function for three different network configurations considered in this work. The zoom-in

inserts show the computational mesh. The mesh is refined in the areas with large |rF|, which approximate the

interface.

https://doi.org/10.1371/journal.pcbi.1012079.g004
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horizontal channel of width 0.06 cm. The same width of 0.6 cm is used for the vertical channels

in the first, top configuration. The size of the channels in other configurations is chosen so that

the total channel area equals the channel area of the first configuration. In other words, the

channels occupy the same area in all three configurations. To computationally capture differ-

ent geometries/architectures of thin channels distributed within O we use a phase-field func-

tion. The phase-field function for each of the three geometries is shown in Fig 4. Here, red

color corresponds to the value of the phase-field function F equal to one, and blue corresponds

to F = 0. The computational mesh is refined around the interface between the red and blue

regions where the gradient of the phase-field function |rF| is large. This is done as follows.

We first set F = 1 in the region defined by the channels and zero elsewhere. Then, we adapt

the mesh and redefine F on the finer mesh. To adapt the mesh, we use the adaptmesh function

in FreeFem++, where we use |rF| as a function which indicates the areas where the mesh

should be refined. After that, we solve the following Allen-Cahn problem to allow a smooth

transition between 1 and 0:

@ tF � DFDF þ @FFðFÞ ¼ 0 in O � ð0;TFÞ;

rF � n ¼ 0 on @O � ð0;TFÞ;

where DF = 0.01, TF = 2 � 10−2, and FðFÞ ¼ 2F2ðF � 1Þ
2

� 1

8
is the standard form of a double-

well potential [25]. Finally, the procedure of adapting the mesh, redefining F and solving the

Allen-Cahn problem is repeated one more time. The resulting computational mesh and F at

time TF are shown in the zoom-in inserts in Fig 4 (right). We note that this is done only ini-

tially since we assume that the fluid-poroelastic structure problem is linear and that the

domain is fixed.

4.2 Parameter identification

The fluid in OF represents the filtered blood plasma, which enters the bioartificial organ O

from an artery via an anastomosis graft, not shown in Fig 4. In encapsulated organs, the blood

from the anastomosis graft is filtered through semipermeable nano-pore membranes, and the

filtered blood plasma enters a gasket from which the flow of plasma filtrates through the bio-

compatible hydrogel OP toward the cells. The horizontal channels represent the gasket con-

taining the blood plasma, and Gin
F corresponds to the location of the semipermeable

membranes through which blood plasma enters the top gasket. At Gin
F we prescribe the inlet

velocity, which is taken to be vin = 3.5 cm/s in 2D and vin = 5.25 cm/s in 3D, so that the flowrate

at the inlet is the same in the 2D and the 3D case. This value was obtained from the three-

dimensional numerical simulations of flow through an entire bioartificial pancreas, studied in

[9]. The numerical simulations in [9] used the experimentally derived “Darcy-like” relation-

ship between the flow Q and pressure gradient Δp through nanoporous membranes reported

in [26]: Q ¼ w3nl
12mh Dp, where Q is the volumetric flow rate, w is the pore width, l is the pore

length, h is the membrane thickness, n is the number of pores per (unit) membrane, μ is the

viscosity, and Δp is the transmembrane pressure. Here, the micro-scale parameters w, l, h, and

n determine porosity. Therefore, porosity of the membrane influences the calculation of the

inlet fluid velocity. The value of 3.5 cm/s agreed well with experiments performed in Dr. Roy’s

lab [26]. The parameters used in the blood plasma simulations are standard: the dynamic vis-

cosity is set to μF = 0.04 dyn s/cm2 and density is ρF = 1 g/cm3.

The parameters for the poroelastic structure describing the hydrogen scaffold can be

obtained from [5, 9]. We took the poroelastic matrix density to be ρS = 1.2 g/cm3, and the

Young’s modulus of 2.5 � 105 dyne/cm2. The Poisson’s ratio is set to 0.49 and the spring
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constant is γE = 106 dyne/cm4 in 2D and 0 in 3D. The spring constant is chosen so that the

magnitude of the displacement is of the same order as the one obtained in 3D. The pressure

storage coefficient is taken as 10−7 cm2/dyne, and the permeability is κ = 10−5 cm3 s/g. The slip

constant is γ = 103 g/(cm2 s). We set the Biot-Willis parameter α to 1. See [9] for the Biot

parameters.

Oxygen transport in the human vascular system and tissues has been studied by many

authors [14–18, 20]. We adopt the approach from [14] to study oxygen transport in the gasket

with oxygen diffusion coefficient given by DF = 3 � 10−5 cm2/s [14]. In the agarose gel, the oxy-

gen diffusion coefficient used in our simulations is DP = 1.3 � 10−5 cm2/s, which is the value

that was estimated in rat pancreatic islets and reported in [20, 27]. The maximum oxygen con-

sumption rate is Rmax = −3.4 � 10−8 mol/(cm3 s), the Michaelis-Menten constant is cMM = 10−9

mol/cm3 and the critical oxygen concentration is cCR = 10−10 mol/cm3, all obtained from [15].

The concentration of oxygen at the fluid inlet is cin = 2 � 10−7 mol/cm3 [28].

We first perform simulations of the fluid-poroelastic structure interaction problem using

Δt = 10−3 and T = 1 s, which is when a steady state is reached. Using the velocities at the final

time of the simulation, we then solve the advection-reaction-diffusion problem with Δtt = 5 �

10−2 and Tt = 200 s. All computations are performed within the platform of the finite element

software FreeFem++ [29].

To trust the simulations obtained using our diffuse interface method, we validate our

computational solver by comparing the results of the diffuse interface method with the results

obtained using the “classical” sharp interface approach, on a simpler geometry, as we discuss

next. Recall that the main reason for not using the sharp interface approach is the difficulty in

generating new scaffold geometries for each new test case. This will be particularly important

in our next research phase in which a geometric optimization mathematical model and

computational solver will be developed to study optimal design of channels’ distribution in

bioartificial organ scaffolds for advection-enhanced oxygen and nutrients supply to the trans-

planted cells.

4.3 Numerical method verification

To validate our diffuse interface solver, we focus on a specific problem characterized by a

domain geometry comprising a main channel branching into two, each of which further bifur-

cates into additional two channels. See Fig 5. We solve the fluid-poroelastic structure interac-

tion problem and the advection-reaction-diffusion problem using a sharp interface approach.

The sharp interface solver is based on a classical, monolithic, fluid-poroelastic structure inter-

action approach. The solver was developed and validated in [30, 31]. In particular, the Back-

ward Euler method is used to discretize the problem in time, and a finite element method is

used for spatial discretization. The same finite element spaces are used for the diffuse and

sharp interface methods. The results of the sharp interface solver are then compared to the

results obtained using our diffuse interface solver discussed in this manuscript. All the parame-

ter settings are the same as the ones described in Section 4. Since the permeability is small, a

finer mesh close to the interface is required for both sharp and diffuse interface solvers. We

use the same mesh in both cases, consisting of 40,239 points and 80,326 elements. A compari-

son of the Stokes and Darcy pressure (left), velocity magnitude (middle), and concentration

(right) is shown in Fig 5. To better visualize the differences between the solutions, in the left

three panels in Fig 6, we show the 1D plot of each of these variables over the line indicated in

the leftmost panel in Fig 5. Finally, the right three panels of Fig 6 show the error plots for the

pressure, velocity and concentration, respectively. All the results shown here are obtained at

the final time. We observe some larger differences in the pressure, and a good agreement for
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the velocity and concentration. We find the approximations of the pressure to be particularly

sensitive in channel flow, especially where the channels are narrow, since in the diffuse inter-

face approach the width of channels slightly differs from the one used in the sharp interface

approach due to the diffuse approximation of the interface. However, the main goal of this

work is related to the concentration approximation, where we obtain a good match between

the two methods.

Encouraged by these results, we use the diffuse interface method described above to study

the flow and concentration of oxygen in the geometries shown in Fig 4. This is presented next.

Fig 6. The left three panels show the pressure, velocity and concentration, respectively, obtained using the sharp and the diffuse interface method, plotted over

the line indicated in the leftmost panel in Fig 5. The right three panels show errors for the pressure, velocity and concentration, respectively, obtained at steady state.

https://doi.org/10.1371/journal.pcbi.1012079.g006

Fig 5. A steady-state solution for the Stokes and Darcy pressure (left) and velocity magnitude (middle) obtained using the sharp interface model and the diffuse

interface model. The right two panels shows concentration obtained at Tt = 200. A plot of each of these variables over the line indicated in the leftmost panel is shown in

Fig 6.

https://doi.org/10.1371/journal.pcbi.1012079.g005
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5 Results I: Numerical results

As mentioned earlier, our goal is to study blood plasma flow and oxygen concentration in

three different scaffold architectures, as described in Section 4. We are interested in a scaffold

architecture that provides concentration of oxygen that is as uniform throughout the scaffold

as possible and above the minimum concentration for uninhibited maximal insulin produc-

tion copt = 5 � 10−8 mol/cm3, given in [20]. To do this, we use the diffuse interface method to

simulate fluid-poroelastic structure interaction providing advection velocity of blood plasma

carrying oxygen, and we use the advection-reaction-diffusion solver to calculate oxygen con-

centration in the entire scaffold, utilizing the advection velocity from the fluid-poroelastic

structure interaction simuations. Both models are described in Section 2. The results of the

simulations are shown in Figs 7 and 8 below. More precisely, in Fig 7 we plot the total fluid

velocity, defined as

u ¼ vF þ qð1 � FÞ;

and oxygen concentration for the three different scenarios.

Fig 7. Total velocity magnitude (left) and concentration (right) in a network consisting of straight channels (top),

bifurcating channels (middle) and a hexagonal geometry (bottom).

https://doi.org/10.1371/journal.pcbi.1012079.g007
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We observe in Fig 7 that in the case of vertically drilled channels, most of the flow is

through the vertical channels. The pressure and the Darcy velocity are shown in Fig 8. There

are large regions in between the channels where oxygen concentration is below the critical

value copt = 5 � 10−8 mol/cm3 [20], indicating regions of impaired insulin production.

In the case of bifurcating channel network, shown in the middle panels on Figs 7 and 8, we

see higher velocity values in the top two generations of branching channels (parent and daugh-

ter channels), and larger regions of higher Darcy velocity, shown in light green and yellow, in

between the branching vessels. Consequently, we observe larger regions of higher oxygen con-

centration in between the channels than in the case of vertical channels, see Fig 7 right, middle

panel. However, there are still large regions in between the branching trees that have low levels

of oxygen concentration, shown in blue, where insulin production is inhibited.

Finally, in the case of the hexagonal geometry, shown in the bottom panels of Figs 7 and 8,

the channels have the smallest radius and the fluid velocity is the largest. Darcy velocity in this

case is nontrivial in the entire region corresponding to the poroelastic hydrogel. As a result,

the oxygen concentration throughout the hydrogel region is high and remains close to the

Fig 8. Pressure (left) and the Darcy velocity (right) in a network consisting of straight channels (top), bifurcating

channels (middle) and a hexagonal geometry (bottom).

https://doi.org/10.1371/journal.pcbi.1012079.g008
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uniform concentration above the critical value copt. This ensures an adequate oxygen supply to

the cells in the entire hydrogel, maintaining levels of oxygen concentration above the critical

threshold necessary for normal insulin production.

As a result, oxygen concentration is high in the entire hydrogel region, and it is very close

to the uniform concentration above the critical value copt, as desired, providing oxygen supply

to the cells in the entire hydrogel that is above the critical value above which normal insulin

production takes place.

Two additional geometries. We consider two additional geometries to gain a better under-

standing of why the hexagonal geometry is associated with improved oxygen concentration

levels. Since hexagonal geometry architecture described above has narrower channels that are

at an angle with respect to the pressure drop-driven dominant vertical flow, we separate the

influence of the two geometric factors and consider the following two geometries: one consist-

ing of narrow vertical channels with a small radius (the width of each channel is equal to one

third of the width of vertical channels used above, shown in Fig 4), and the other consisting of

the zig-zag (angular) channels with the radius determined by the constraint that the total chan-

nel area is the same as in the vertical channel case. See Fig 9.

The flow velocity and concentration obtained in the new geometries are shown in Fig 10. In

both geometries, the peak velocity in the channels is equal to 13 cm/s. However, significant dif-

ferences can be seen in concentration. We note that having narrow channels improves the

transport through the poroelastic medium compared to having fewer wider channels (see top-

right panel in Fig 7). However, having a network with channels at an angle with respect to

dominant flow leads to increased oxygen levels overall, especially at places where the flow

changes direction. An explanation for this observation is the fact that flow through porous

interfaces is largest when the angle between flow direction and the interface is large.

This is evident in the right panel of Fig 11 where Darcy velocity is shown. The peak Darcy

velocity is twice as large when zigzag channels are used compared with the straight channels.

To improve the visualization of the peak velocity area, we show the flow in two geometries on

different scales. When straight channels are used, the flow is largest closest to the top and bot-

tom of the channels. In zigzag channels, the flow is largest in the middle of the domain. This is

an interesting observation that significantly improves oxygen supply to the cells located in the

middle of the proelastic hydrogel. We also show the total pressure in the two geometries in Fig

11. Our results show a significantly larger internal scaffold pressure in case of the zigzag net-

work, which is associated with increased Darcy flow through the hydrogel.

Fig 9. Geometries consisting of narrow straight channels (left) and narrow zigzag channels (right).

https://doi.org/10.1371/journal.pcbi.1012079.g009
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Uninhibited maximal insulin production regions. Finally, we further quantify the behav-

ior of the three scaffold architectures shown in Fig 4 by considering the performance of the

three geometries in terms of the uninhibited maximal insulin production by the transplanted

β-cells [20]. Namely, motivated by the results in [20] we use a threshold for uninhibited maxi-

mal insulin production by the transplanted islets of copt = 5 � 10−8 mol/cm3 to identify the

regions within tissue in which the islet function is compromised. More precisely, we investi-

gate the regions within each scaffold in which the oxygen concentration is higher than the

threshold for uninhibited maximal insulin production, copt, and compare the areas of those

regions that support islet function. This area is computed only in the poroelastic domain using

Fig 10. Total velocity magnitude (left) and concentration (right) in a network consisting of narrow straight

channels (top) and narrow zigzag channels (bottom).

https://doi.org/10.1371/journal.pcbi.1012079.g010
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the following expression:

Z

O

woptð1 � FÞ dV; where wopt ¼

(
1 if c � copt
0 otherwise:

The regions are visualized in Fig 12. Blue color shows the regions of uninhibited insulin

production, while the insulin production is compromised in the regions shown in red. The

results are quantified in Table 1.

As expected, the hydrogel geometry with the smallest area of oxygen levels above copt is

obtained for the network consisting of straight channels (13% of total area), followed by the

bifurcating channels, which have the uninhibited maximal insulin production area equal to

51.74% of the total area. Finally, the most efficient insulin production is observed in the hexag-

onal geometry, where more than 97% of the poroelastic region is above the uninhibited maxi-

mal insulin production threshold copt. We note that in the hexagonal geometry, the largest red

Fig 11. Pressure (left) and the Darcy velocity (right) in a network consisting of narrow straight channels (top) and

narrow zigzag channels (bottom).

https://doi.org/10.1371/journal.pcbi.1012079.g011
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regions are close to the lateral sides of the domain. This is because we impose a no flux condi-

tion on Gext
P and no flow on Gext

F , which explains the boundary layers.

6 Results II: Three-dimensional simulations

We conclude this manuscript by demonstrating that the 2D results presented above accurately

represent real-life 3D scenarios. In particular, we focus on a 3D scaffold corresponding to the

hexagonal geometry considered in 2D, as shown in Fig 13 below. Each vertical slice of this

geometry is identical to the 2D geometry shown at the bottom of Fig 4. In other words, the 3D
geometry is obtained by extruding the 2D hexagonal geometry. The dimensions of the 3D spa-

tial domain are 0.9 × 0.42 × 0.3 cm. Here 0.3 cm is the added thickness of the 3D domain. We

maintained the same inlet and outlet setup as in the 2D case, and also kept all other parameters

unchanged.

For the boundary conditions on the front and back wall of the computational domain we

imposed the no-slip boundary condition for the free fluid velocity modeled by the time-depen-

dent Stokes equations, and zero normal flux for Darcy velocity for the Biot equations. Dis-

placement of the poroelastic matrix was also set to be equal to zero on the front and back walls

of the chamber. On the rest of the boundary, we implemented the same boundary conditions

as in the 2D case. Similarly, at the inlet, shown in Fig 13, Dirichlet boundary condition was

imposed for the fluid velocity, and at the outlet, zero normal stress was imposed, as in the 2D
case. The Dirichlet velocity imposed at the inlet is given by the uniform velocity profile with

the magnitude of 5.25 cm/s, pointing downwards in the direction of the cell chamber. While

this quantity is different from the one used in the 2D case, it is chosen so that the inflow flow-

rate is the same in the 2D case and the 3D case.

Fig 12. Function χopt superimposed with the phase-field function indicating the channel geometry. Regions in red show areas

where the insulin production is inhabited, while regions in blue show areas of uninhibited insulin production.

https://doi.org/10.1371/journal.pcbi.1012079.g012

Table 1. The area where the concentration is larger than the oxygen threshold of uninhibited maximal insulin pro-

duction for all the geometries considered in this manuscript.

Geometry Total area (cm2) Relative area

straight network 0.026 13.23%

bifurcating network 0.102 51.74%

hexagonal geometry 0.192 97.13%

narrow straight network 0.172 86.94%

narrow zigzag network 0.187 94.24%

https://doi.org/10.1371/journal.pcbi.1012079.t001
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A monolithic solver reported in [13, 30, 31] was used to solve the 3D linearly coupled

Stokes-Biot problem. Fig 13 depicts the computational domain, which was discretized using

conformal tetrahedron elements. Taylor-Hood elements (P2-P1) were used for the free fluid

velocity and pressure, P2 for the poroelastic structure displacement, P2 for Darcy velocity and

P1 for Darcy pressure. We set the time step to be Δt = 0.005 s, and allow the simulation to run

until it reached a steady state at T = 1 s. As in the 2D case, the flow is driven by the pressure

drop in the vertical direction generated by the inlet velocity and outlet normal stress data.

We examined the following quantities and compared them with the 2D simulation results:

the free fluid velocity and pressure (at the inlet and outlet channels, and in the hexagonal

geometry throughout the poroelastic medium), the Darcy velocity and Darcy pressure within

the poroelastic structure, and the deformation of the poroelastic structure.

Velocity. Fig 14 shows a comparison of the velocity obtained using 2D simulations (left)

and 3D simulations (middle and right). The middle panel shows only the free fluid (channel)

velocity, while the right panel shows only Darcy velocity (poroelastic medium). Notice two

Fig 13. Computational Domain: The computational domain was discretized using conformal tetrahedral

elements, resulting in a total of 926K elements.

https://doi.org/10.1371/journal.pcbi.1012079.g013

Fig 14. Velocity comparison. Left: 2D simulation showing free fluid and Darcy velocity ranging from 0 to 13 cm/s. Middle: 3D simulation showing velocity in the

inlet, outlet and hexagonal geometry ranging from 0 to 13 cm/s. Right: 3D simulation showing only Darcy velocity ranging from 0 to 4.8 cm/s.

https://doi.org/10.1371/journal.pcbi.1012079.g014
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different scales for the middle and right panel. We see that in both 2D and 3D scenarios the

fluid velocity ranges from 0 to 13 cm/s, and that the highest velocity is achieved in the vertical

channels, as expected due to the dominant pressure drop in the vertical direction.

Pressure. Next we compared the fluid pressure. Fig 15 shows a comparison of the pressure

obtained using 2D simulations (left) and 3D simulations (middle and right). In all three panels

the pressure ranges from 0 to around 6,000 dyn/cm2. The panel on the left shows the combined

2D free fluid and Darcy pressure, while the figures on the right show separate 3D Darcy pres-

sure (middle) and 3D free fluid pressure (right). Looking at both Stokes and Darcy regions, the

pressure distributing obtained using 2D simulations is indeed, very close to the pressure distri-

bution obtained using 3D simulations.

Streamlines. To further compare 2D versus 3D spatial effects on the solution, we investi-

gated the fluid velocity streamlines inside the entire 3D scaffold. This is shown in Fig 16. We

can see that 2D effects are dominant over 3D effects, since the streamlines appear to be largely

parallel to each other in the direction perpendicular to the plane containing the hexagonal

geometry, indicating that 2D simulations approximate well the leading features of the fluid

flow in the scaffold. The streamlines obtained using 2D simulations are shown in the right

panel of Fig 16.

Displacement. Using 3D simulations we also investigated the total displacement of the por-

oelastic matrix as time increases toward the time at which the steady state solution is achieved.

Fig 15. Pressure comparison. Left: 2D simulation showing free fluid and Darcy pressure. Middle: 3D simulation showing Darcy pressure. Right: 3D simulation

showing pressure in the inlet, outlet and hexagonal geometry. The pressure scale is the same in all three panels—from 0 to around 6,000 dyn/cm2.

https://doi.org/10.1371/journal.pcbi.1012079.g015

Fig 16. Streamlines generated by the fluid and Darcy velocity. The color of the streamlines corresponds to the velocity magnitude. Left: 3D simulations, side

view. Middle: 3D simulations, front view. Right: 2D simulations.

https://doi.org/10.1371/journal.pcbi.1012079.g016
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The magnitude of displacement at the steady state is shown in Fig 17 (top left) and the vectors

showing the displacement vector field are shown in Fig 17 (top right). We observe that all cell

compartments have expanded from their original shape, with the compartments closest to the

inlet experiencing larger expansion than those closest to the outlet. We argue that this expan-

sion is a result of flow saturation inside the cell compartments. This also results in a constric-

tion of the original hexagonal flow channels, potentially increasing the proportion of flow

passing through the cell compartments.

On the bottom of Fig 17 we also show the displacement obtained in 2D. The panel on the

bottom left shows the displacement obtained using the structure model introduced in (3a),

which has term γEη added. While this term damps the displacement magnitude, and help to

keep the hexagonal and triangular structures from floating away, it does not resemble the dis-

placement obtained in 3D. However, the magnitude of the displacement in both cases is com-

parable. On the bottom right panel we show the displacement obtained using an alternative

approach, where we take γE = 0, but then fix the center of each interior poroelastic structure

(displacement in the middle of each structure is equal to zero). This corresponds more closely

to the 3D case, where the poroelastic structure is connected and fixed at the sides. In this case,

we obtain a better resemblance to the 3D simulations. We note that neither of the 2D models

are the same as the model used in 3D, which causes the results to differ. However, when the

concentration obtained using either of these approaches is compared, no significant differ-

ences are found.

Fig 17. Displacement at the steady state. Top left: Magnitude of displacement obtained in 3D. Top right: Displacement vector field obtained in 3D. Bottom:

The displacement obtained in 2D using a model with the spring term γEη (left) and by taking γE = 0 and fixing the center of each poroelastic region (right).

https://doi.org/10.1371/journal.pcbi.1012079.g017
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Oxygen concentration. Using 3D simulations we also investigated oxygen transport within

the scaffold by solving the advection-reaction-diffusion problem described in Section 2.2. The

advection-reaction-diffusion problem was solved with the time step of Δt = 1e − 5s. In Fig 18

we illustrate the evolution of oxygen concentration from t = 0 to t = 0.15 seconds and then give

the steady state solution of the oxygen concentration which is achieved at t = 1s. Fig 18 shows

that indeed, the final oxygen concentration at t = 1 is nearly uniformly distributed throughout

the chamber, except for the thin vertical region roughly half way between the two inlets. This is

similar to the result obtained using 2D simulations, depicted in Fig 7 bottom right, which

shows nearly uniform distribution of oxygen concentration except for a thin line located

roughly in the middle between the two inlets. However, while the uninhibited maximal insulin

production occurred in 97% of the total area in the 2D case, it only occurred in the 77% of

total volume in the 3D case. This could be explained by the fact that due to the no flow condi-

tions, the velocity and the concentration at the sides and the bottom of the domain are almost

zero, and these regions account for a larger volume in 3D than in the 2D case. We conclude

that, again, 2D simulations provide a good insight into oxygen concentration distribution

within the cell chamber. Additionally, this result indicates that placing the two inlets closer to

each other might improve uniform distribution of oxygen concentration within the chamber

to include the central region between the two inlets.

Fig 18. A series of screenshots depicting the transport of oxygen concentration from t = 0 s to t = 1 s, when the steady state solution is reached.

https://doi.org/10.1371/journal.pcbi.1012079.g018
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7 Discussion: Conclusions

We devised a computational approach within the diffuse interface framework to explore the

influence of scaffold architecture geometry on oxygen transport within biological scaffolds

commonly employed in bioartificial organ engineering, with a specific focus on the bioartifi-

cial pancreas. To achieve this objective, we introduced a multi-physics model comprising a

fluid flow component and an advection-reaction-diffusion model to analyze oxygen concen-

tration within the scaffold. The fluid flow model incorporates the time-dependent Stokes equa-

tions coupled with the Biot equations, characterizing the behavior of a poroelastic medium

representing the poroelastic hydrogel used in the scaffold design.

We explored three biologically inspired scaffold architecture geometries: vertically drilled

channels, branching channels, and a hexagonal geometry. From a computational standpoint,

one of the primary challenges in addressing problems with multiple varying geometries lies in

generating new computational geometries and designing appropriate matrices for spatial dis-

cretization. These matrices describe the unknown variables, such as fluid velocity, pressure,

and oxygen concentration, across different computational domains. To streamline mesh gen-

eration in complex geometries, we introduced a diffuse interface approach in this study. In the

diffuse interface approach, the unknown variables are defined across the entire scaffold

domain, with the specific geometry of the channel network captured by redefining only the

phase-field function. This simplification proves crucial not only for our current work but also

for future endeavors, where we aim to develop a geometric optimization solver. This solver

will simplify the generation of numerous channel geometries to optimize scaffold architecture.

It is important to notice that a drawback of the diffuse interface method is the large size of the

discretization matrices since the number of unknowns at the discrete level is doubled. Further-

more, to obtain higher accuracy, the mesh is commonly refined around the interface, which

leads to a higher number of degrees of freedom. However, in simulations where the permeabil-

ity is small, a fine mesh around the interface is also needed when a sharp interface method is

used to accurately resolve the pressure gradient between the Stokes and Biot regions. Such

mesh must align with the interface if a sharp interface method is used, while this is not

required for the diffuse interface method.

We demonstrated that the hexagonal geometry significantly outperforms both the branch-

ing channels’ network and the classical vertical channel geometries. Our analysis indicates that

the superior performance of the hexagonal geometry stems from the relatively large angle

between the dominant channel flow direction and the channel-hydrogel interface. This config-

uration results in a larger Darcy velocity, thereby facilitating enhanced advection-mediated

oxygen supply to the transplanted cells. This study is significant because recent developments

in hydrogel fabrication make it now possible to control hydrogel rheology [2, 5], utilizing the

computational results to generate optimized scaffold architectures.

Our future work includes the design of a geometric optimization algorithm for optimal

scaffold architecture design. In case of geometric optimization, or just a moving domain prob-

lem, we expect it to be necessary to adapt the mesh when the phase function changes signifi-

cantly. This can be done at each step, or every few steps, depending on how fast the phase field

function evolves, by using the gradient of F.
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