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Abstract

We develop a computational algorithm based on a diffuse interface approach to study the
design of bioartificial organ scaffold architectures. These scaffolds, composed of poroelastic
hydrogels housing transplanted cells, are linked to the patient’s blood circulation via an
anastomosis graft. Before entering the scaffold, the blood flow passes through a filter, and
the resulting filtered blood plasma transports oxygen and nutrients to sustain the viability of
transplanted cells over the long term. A key issue in maintaining cell viability is the design of
ultrafiltrate channels within the hydrogel scaffold to facilitate advection-enhanced oxygen
supply ensuring oxygen levels remain above a critical threshold to prevent hypoxia. In this
manuscript, we develop a computational algorithm to analyze the plasma flow and oxygen
concentration within hydrogels featuring various channel geometries. Our objective is to
identify the optimal hydrogel channel architecture that sustains oxygen concentration
throughout the scaffold above the critical hypoxic threshold.

The computational algorithm we introduce here employs a diffuse interface approach to
solve a multi-physics problem. The corresponding model couples the time-dependent
Stokes equations, governing blood plasma flow through the channel network, with the time-
dependent Biot equations, characterizing Darcy velocity, pressure, and displacement within
the poroelastic hydrogel containing the transplanted cells. Subsequently, the calculated
plasma velocity is utilized to determine oxygen concentration within the scaffold using a dif-
fuse interface advection-reaction-diffusion model. Our investigation yields a scaffold archi-
tecture featuring a hexagonal network geometry that meets the desired oxygen
concentration criteria. Unlike classical sharp interface approaches, the diffuse interface
approach we employ is particularly adept at addressing problems with intricate interface
geometries, such as those encountered in bioartificial organ scaffold design. This study is
significant because recent developments in hydrogel fabrication make it now possible to
control hydrogel rheology and utilize computational results to generate optimized scaffold
architectures.
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Author summary

Bioartificial organ is an engineered device made of living cells and a biocompatible scaf-
fold that can be implanted or integrated into a human body to replace a natural organ, or
to augment a specific organ function. The biocompatible scaffold serves as the structural
foundation, embedding cells and growth factors to form substitute tissue. A key challenge
in bioartificial organ design is ensuring the long-term survival of transplanted cells. Spe-
cifically, a critical challenge is creating a hydrogel architecture with ultrafiltrate channels
that act as pathways to deliver oxygen and nutrients to the cells, supporting their sustained
viability. In this work, we developed a mathematical and computational framework to
investigate optimal hydrogel architecture and oxygen supply to transplanted cells. Our
findings show that a hexagonal channel architecture significantly outperforms both the
commonly used vertical channels and branching channel designs, providing a substantial
increase in oxygen delivery to the cells. In the hexagonal architecture, oxygen concentra-
tion remains above the critical threshold for hypoxia throughout the scaffold, which is not
achieved with other designs. This is particularly important given recent advances in
hydrogel fabrication, allowing for precise control of hydrogel elasticity and rheology, mak-
ing these results valuable for developing improved scaffold designs.

1 Introduction

Bioartificial organ is an engineered device made of living cells and a biocompatible scaffold
that can be implanted or integrated into a human body-interfacing with living tissue-to
replace a natural organ, or to duplicate or augment a specific organ function [1]. Biocompati-
ble scaffold is a biocompatible base material in which cells and growth factors are embedded to
construct a substitute tissue, which can be used in e.g. bioartificial organ design [2]. For exam-
ple, a biocompatible scaffold used in the bioartificial pancreas design is a biocompatible hydro-
gel (e.g. agarose gel) which houses transplanted pancreatic islets (conglomerations of
pancreatic cells) that contain the insulin-producing 3-cells. Hydrogels are hydrophilic poly-
mers that are poroelastic, and that have the ability to absorb a large volume of fluid, which
makes them particularly suitable materials for biomedical applications. In bioartificial pan-
creas design presented in [3], the biocompatible hydrogel containing the insulin-producing
cells is encapsulated in a nano-pore, semi-permeable membrane (filter), see Fig 1, and the
resulting bioartificial organ is connected to the host’s cardiovascular system via an anastomosis
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Fig 1. Schematic illustration of immunoprotective encapsulation device containing human embryonic stem cell-
derived B clusters (hES-BC).

https://doi.org/10.1371/journal.pcbi.1012079.g001
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graft (a tube) for the advection-enhanced nutrients delivery to the cells, and insulin distribu-
tion away from the cells.

A major challenge in the encapsulation-based bioartificial organ design is maintaining the
survival of transplanted cells within the bioartifical organ scaffold for an extended period of
time. In particular, long-term viability of pancreatic cells is directly affected by the sufficient
access to nutrients for survival, of which oxygen is the limiting factor [4].

One of the goals of this manuscript is to develop the mathematical and computational
approaches to investigate oxygen supply to the transplanted cells by studying hydrogel archi-
tecture and optimal design of ultrafiltrate channels within the encapsulated poroelastic hydro-
gels for advection-enhanced reaction-diffusion processes of oxygen transport to the cells. This
is significant because recent developments in hydrogel fabrication make it now possible to
control hydrogel elasticity and hydrogel rheology using, e.g., the approaches employed and
reviewed in [2, 5].

In this manuscript we study oxygen-carrying blood plasma flow and oxygen concentration
in three different scaffold architectures, whose geometries are inspired by different biological
flow-nutrients scenarios. The first geometry consists of vertical ultrafiltrate channels drilled
through a hydrogel, which is the simplest, and a standard procedure used in the design of
bioartificial pancreas [5-7]. The second geometry consists of the branching channels, inspired
by the architecture of the branching vessels in the human body. The third geometry consists of
the channels surrounding hexagonal pockets, which we refer to as the hexagonal geometry.
This was inspired by the biological (epithelial) tissues in which interstitial fluid flows through a
network of irregularly arranged interstices between hexagonally shaped cells, which supports
their structural and functional integrity [8]. To work with comparable fluid flow scenarios, the
three geometries are generated so that the total fluid channels’ volume (i.e., the area of the 2D
channels) is the same in all three geometries.

We are interested in a scaffold architecture with the geometry that provides concentration
of oxygen that is as uniform throughout the scaffold as possible and above a minimum concen-
tration below which hypoxia occurs. For this purpose we introduce two sets of models, one for
the fluid flow and one for oxygen concentration in the scaffold. The scaffold is modeled as a
2D domain containing a network of channels separating the regions of poroelastic medium
describing a hydrogel. See Fig 2 below. In the last part of the manuscript we introduce a 3D
computational model to show that for the “optimal” geometry, the 2D simulations capture the
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Fig 2. An example of a domain Q = Qr U Qp demonstrating the two inlets I" ;’ at the top and the two outlets I'}" at the bottom in 2D (left) and 3D (right).

https://doi.org/10.1371/journal.pcbi.1012079.9002
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main features of flow and oxygen concetration. The flow of blood plasma through the network
of channels is modeled by the time dependent Stokes equations for an incompressible, viscous
fluid. The channel flow is coupled to the filtrating flow in the poroelastic hydrogel, which is
modeled by the Biot equations [9]. Two sets of coupling conditions at the interface between
the channel flow and hydrogel poroelastic medium are employed: the kinematic and dynamic
coupling conditions. The kinematic coupling conditions describe continuity of normal (verti-
cal to the interface) velocity and a slip in the tangential component of the velocity, known as
the Beaver-Joseph-Saffman condition. The dynamic coupling conditions state the balance of
forces at the interface. Linear coupling is considered, i.e., the coupling conditions are evaluated
at a reference interface. Subsequently, the resulting fluid velocity is used as an input data in an
advection-reaction-diffusion model for oxygen concentration within the scaffold.

To solve the coupled problems computationally, we implemented a diffuse interface
approach [10-12]. The diffuse interface approach has several advantages over the classical
sharp interface approach. In the diffuse interface approach, the mesh nodes do not have to be
aligned with the interface, whose location is now captured using a phase-field function.
Instead, the problem unknowns are defined on the entire domain, and the mesh remains
fixed. This is particularly useful in cases where the interface between the two regions is difficult
to determine exactly (e.g. “fuzzy” boundaries between regions obtained from medical images),
or when the geometry of the interface is complex, leading to inaccurate approximations of the
boundary integrals. Furthermore, advantages of this approach are apparent in problems with
moving geometries and in the development of geometric optimization algorithms for optimal
channel architecture design, which we plan to do next. In these cases a diffuse interface
approach avoids the creation of complicated meshes following optimizing scaffold geometries,
which would be the case in the classical sharp interface approaches. In this work we develop a
diffuse interface approach to solve both the fluid and oxygen problems. In both cases, a finite
element method is used for spatial discretization, and a backward Euler method for time step-
ping. We perform a verification of our numerical diffuse interface approach by comparing the
solutions of the diffuse interface problem with the already validated solutions of a sharp inter-
face approach, showing excellent agreement. Additionally, to justify the computationally less
expensive 2D simulations, for the optimal geometry we perform the full 3D simulations and
show that the 2D simulations we used to find the optimal geometry, capture all the important
features of plasma flow and oxygen concentration in the corresponding 3D scaffold.

The diffuse interface approach is then used to investigate flow, pressure, and oxygen con-
centration in the three main geometries, discussed above. As mentioned earlier, the diffuse
interface approach developed here is particularly suitable from the computational standpoint
to study a number of different interface geometries. We find that the ultrafiltrate channel net-
work with the hexagonal geometry provides the best solution in terms of oxygen concentration
distribution and magnitude. Oxygen concentration in the hexagonal case is most uniformly
distributed throughout the entire scaffold, and the values of concentration are all well above
the critical value of oxygen below which hypoxia occurs. This is not the case for the other two
geometries considered here (vertical channels and branching channels). We then further
investigate the reasons why the hexagonal geometry performs best, and conclude that the rela-
tive angle of the channels with respect to the flow direction is one of the main contributing fac-
tors to higher Darcy velocity within the poroelastic hydrogel, and consequently the higher
concentration values in between the ultrafiltrate channels. The results obtained in this manu-
script can be used in optimal scaffold design by implementing hydrogel manufacturing tech-
niques recently developed in [2, 5].

This manuscript is organized as follows. In Section 2 we introduce the model equations in
strong/differential and weak/integral formulations. In Section 3 the diffuse interface method is
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discussed, and the fluid and oxygen problems are presented in the weak (integral) diffuse inter-
face formulations. Numerical discretization based on a finite element approach is also dis-
cussed in this section. The computational setting, which includes the computational
geometries described by the phase-field function, and parameter identification, is presented in
Section 4. In this section we also show the verification of the numerical solver by comparing
the diffuse interface solution with a monolithic solver utilizing a sharp-interface approach.
Numerical results are presented in Section 5. In Section 6, we present 3D simulations of the
optimal geometry demonstrating strong agreement with the 2D simulations. Conclusions are
presented in Section 7.

2 Methods I: The mathematical model

To model the entire scaffold, we introduce a bounded domain Q C R?, with d = 2, 3, consist-
ing of a fluid region, Qp, corresponding to the blood or blood plasma flow region bringing oxy-
gen and nutrients to the transplanted cells, and a poroelastic solid region, Qp, corresponding
to the poroelastic medium such as a biocompatible hydrogel, which hosts the transplanted
cells. The entire bioartificial organ scaffold is then comprised of the two regions so that Q =
Q,UQ, and QN Qp = ) (see Fig 2). The fluid flowing through the channels comprising the
region Qp enters the poroelastic medium Qp across the interface I', which is the interface
between Qp and Qp, defined by I' = Q, N Q,.

Fig 2 shows a sketch of a 2D and a 3D domain in which the fluid domain Q. consists of two
horizontal channels corresponding to the “inlet” and “outlet” channels, namely, they contain
the inlet boundary I} and the outlet I'}™, respectively. The two horizontal channels are con-
nected via three vertical channels describing the simplest scaffold architecture which has been
used in several research studies on bioartificial organ design [5-7]. The 3D geometry is
obtained by extruding the 2D geometry. The vertical ultrafiltrate channels are drilled to
enhance advection-dominated oxygen and nutrients supply to the cells residing in Qp. This is
just one, and the simplest example of the scaffold architecture that we will consider in this
manuscript.

To model the interaction between the flow of blood plasma in Qr and the filtration of blood
plasma through Qp, we will use a fluid-poroelastic structure interaction model, which we pres-
ent next. We assume that the fluid-poroelastic structure interaction problem is linear, and that
the displacement is small enough so that the domain remains fixed.

2.1 Fluid-poroelastic structure interaction

We assume that Q contains a viscous, incompressible, Newtonian fluid, such as blood plasma,
whose dynamics can be described by the Stokes equations:

p0v=V o, inQ. x (0, 7), (1a)

V.ov=0 inQ,x (0,T), (1b)

where v stands for the fluid velocity, pr is density, and or is the Cauchy stress tensor defined
by:

(v, pp) = —ppl + 21,D(v), (2)

where pr represents the fluid pressure, pr is the fluid viscosity, and D(v) = (Vv + Vv")/2 is the
strain rate tensor. Namely, Eq (2) is a constitutive law describing a Newtonian fluid such as
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blood plasma. Velocity v will be used in the advection-diffusion-reaction problem to convect
the oxygen concentration in Qp.

The poroelastic medium, such as agarose gel used in the design of a bioartificial pancreas,
see [4], can be described by the well-known Biot model, which has been used to describe
hydrogels in [13]. The Biot model consists of the following equations:

pSatt" + Vel = V- o, in QP 2 (07 T)a (38.)
—kVp,=q inQ, x (0,7), (3b)
O,(cpp+aV-1m)+V-q=0 inQ, x(0,T). (3¢)

Eq (3a) describes the elastodynamics of the elastic skeleton, i.e., the solid phase in the Biot
model, and is given in terms of the displacement of the elastic skeleton, denoted by 7, from its
reference configuration Qp. Constant ps denotes density of the poroelastic matrix, and yzis a
spring coefficient. For the simulations performed in 2D, adding the term yzn accounts for the
three-dimensional elastic energy effects, and helps to keep the regions that are not connected
from drifting away. More precisely, this term helps to prevent spurious numerical solutions
where sections of Qp might be excessively pulled in the direction of vertical fluid flow. Such
unrealistic large vertical displacements do not occur in 3D models due to the presence of an
elastic restoring force in the third spatial dimension. In 3D simulations this term is not needed,
so in that case we set y5 = 0.

The total Cauchy stress tensor ap for the poroelastic region is defined by

o,(n,pp) = (1) — op,l,

where « is the Biot-Willis parameter accounting for the coupling strength between the fluid
and solid phases and oy denotes the elastic stress tensor, described by the Saint Venant-Kirch-
hoff constitutive model as:

o.(1) = 2u;D(n) + Ltr(D(n))I,

where Ap and pg are Lamé parameters. Eq (3b) is the Darcy law, where pp is the fluid pore pres-
sure, q is the Darcy velocity, and k is the permeability. Eq (3¢) is the storage equation for the
fluid mass conservation in the pores of the matrix. It describes the coupled behavior of fluid
flow and solid deformation in a porous medium. In this context, the quantity copp + aV - i1
represents the total fluid content, where ¢, is a constant related to the fluid’s compressibility.
The mass conservation equation incorporates the effects of both fluid and solid compressibility
to ensure that the total mass is conserved, considering how the fluid pressure changes impact
the solid matrix and vice versa. The Darcy velocity q will be used in the advection-diffusion-
reaction problem to convect the oxygen concentration in Qp.

Coupling conditions. To couple the fluid flow model with the Biot poroelastic medium
model we use a set of four coupling conditions: two kinematic coupling conditions and two
dynamic coupling conditions, which are evaluated at the location I of the interface between
the two models. To state the coupling conditions introduce ny to denote the outward unit
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normal vector to 0Qp. At the interface I" the following coupling conditions hold:

(v—=0m) -n,=¢q-n, onl x(0,T), (4a)
y(v—90m), = —(own;), onl x (0,T), (4b)
omn,-n,=—p, onl x(0,T), (4c)
omn, =o,n, onl x(0,7T), (4d)

where for a vector v, we define a projection onto the local tangent plane on I as:
(v), =v—(v-n)n;.

The first two conditions provide information about kinematic quantities such as velocities
(kinematic coupling conditions), and the second two conditions provide information about
coupling of stresses/forces (dynamic coupling conditions). More precisely, Eq (4a) describes
the fluid mass conservation across the interface, i.e., the normal components of the free fluid
velocity v relative to the velocity of motion of the poroelastic matrix 0,1 is equal to the Darcy
velocity q across the interface. Eq (4b) describes the Beavers-Joseph-Saffman condition (4b)
with slip rate y > 0, namely, the tangential component of the free fluid velocity slips at the
interface with the slip rate proportional to the fluid shear stress (o515),. Eqs (4c) and (4d)
describe the continuity of pressures and total stresses at the interface.

Boundary and initial conditions. Problem (1a)-(4d) is supplemented with boundary and
initial conditions. In our notation, we represent the exterior boundary as I** = 9Q. The exte-
rior boundary is divided into three distinct parts: the fluid inflow boundary, the fluid outflow
boundary, and the impenetrable part of the boundary, I'** = I'y UT? U T%". For the fluid
problem, we impose the following boundary conditions:

v=v, onl} x(0,T),

v=0 onI% x(0,7),

on, =0 only x(0,T),

where v;, is a prescribed velocity, specified in Section 4.
For the poroelastic structure, we impose no flow and zero displacement at the external

boundaries:
q-n,=0 onI" x (0,7), (5)
n=0 onIy" x (0, 7). (6)

Initially, we assume that the fluid is at rest and that the deformable poroelastic structure is
in its reference configuration. Thus, we have:

v=0, =0, 9n=0, p,=0 att=0. (7)

Weak formulation. To define the weak formulation of problem (12)-(7) we introduce the
following function spaces. Given an open set S, we consider the usual Sobolev spaces H(S),
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with k > 0, and introduce the following function spaces:
V(@) = {ve (HQ)' : v=0onTLUTY},
Vep(Q) = {ve (H'Q)) : v=00onT%, v=v, onT"},
Vi(Q,) ={neH(Qy) : n=0o0nT*}.

Here V,(Q;) corresponds to the test space for the fluid velocity, V. ,(Q,) is associated with the
solution space for the fluid velocity, and V,(Q,) is associated with the function space for the
poroelastic matrix displacement. The spaces H'(Qp) and L*(Qy) are associated with the solu-
tions spaces for the fluid pressures in Q, and Qp respectively.
We say that (v, p, 0, pr) € L*(0, T; V() X H'(Q,) x L*(0, T; V(Q,)) x
(0, T; L*(Q;)) is a weak solution if for every
(W, 5, & W) € Va(Qp) X HY(Q,) X Ve (Q,) X L*(Q;), the following equality is satisfied in

D(0,7T):
;t(/ PV de+/st - §dV+c0/pPlﬁPdV>
+2,uF/QFD(v) :D(w)dV — /QF(V - w)ppdV + /QF(V VY dV

/ py iV + [ - gav+ 2, [ D) <D av
g g ®)
+x/ )(V-0) dV—oc[l (V-g)deV—l—oc/Q (V- &), dV

P P

- / (v — ). (w — &), dA — / Yoy — Om) - m dA
+/PP(W_§) nydA = 0.

Here, D'(0, T) denotes the space of distributions on (0, T), which is the dual space of the space
of test functions D(0, T') = C*(0, T'). We note that the weak formulation is obtained using the
primal formulation for the Biot problem, i.e., Eqs (3b) and (3c) have been combined so that Eq
(3¢) is written only in terms of pp and 7. The Darcy velocity can be computed by postproces-
sing using (3b).

Once the fluid velocity v and Darcy velocity q are computed from the fluid-poroelastic
structure interaction problem specified above, we can use this velocity information to formu-
late an advection-reaction-diffusion problem describing oxygen transport in the bioartificial
organ consisting of ultrafiltrate channels Qr and the poroelastic medium Qp containing the
cells.

2.2 Advection-reaction-diffusion

To model the transport of oxygen, we use an advection-reaction-diffusion model describing
oxygen transport in the fluid domain Qr and in the poroelastic medium Qp. Oxygen transport
in the human vascular system and tissues has been studied by many authors [14-18], and we
adopt the approach from [15] to study oxygen transport in the scaffold:

dc+u-Ve—V - (DVc) = H(c, cep) inQx (0,T,), (9)

ﬂXC+CMM

where c is concentration of oxygen, and D is a diffusion coefficient equal to Dy in Qrand to Dp
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in Qp. The velocity u is equal to v in Qf, and to q in Qp. The final time is T}, which we note is
different from the final time T used in the fluid-poroelastic structure interaction problem. The
reaction term on the right-hand side is active in Qp only and it accounts for the consumption
of oxygen in the scaffold. In particular, this reaction term depends on the maximum oxygen
consumption rate, R, < 0, the Michaelis-Menten constant, ¢y, corresponding to the oxy-
gen concentration when the consumption rate drops to 50% of its maximum [15], and the
function H(c, ¢y ), defined by

0, x€Q,
H(c,cr) =1 0, x€Q,andc<cy
1, x€Q,andc> cy,
accounts for the regions of the tissue/poroelastic matrix where the oxygen concentration falls
below a critical concentration ccg below which necrosis is assumed to occur [15, 19]. The val-

ues of the parameters are all specified in [15, 19].
Boundary and initial conditions. Eq (9) is supplemented with the following boundary

conditions:
c=c, onT} x (0,T,), (10a)
c=0 onI" x (0,T,), (10b)
—DVe-n=0 onI'?" x (0,T),), (10¢)

where ¢;, is a given quantity, specified in Section 4. Thus, these boundary conditions say that

we have a prescribed oxygen concentration at the inlet, zero oxygen concentration at the top

boundary of the scaffold between the inlet regions, and zero diffusive oxygen flux at the outlet.
Initially, the concentration is set to zero:

c=0 att=0. (11)

Weak formulation. To write the weak formulation of problem (9)-(11) we introduce the
following function spaces:

M={ce HQ)NL*Q) : c=0on I} UL},
M, ={ce H(Q)NL*Q) : c=00onT% c=c,onlV}.

Here M is associated with the test space for oxygen concentration and M, is associated with
the solution space for c.

We say that ¢ € L*(0, T; M ,) is a weak solution if ¢ > 0 and if for every s € M, the follow-
ing equality is satisfied in D'(0, T,):

i/cst—l—/(u-Vc)st+/DVC~Vst:/Rmax ¢
dt Jo Q Q Q c+ Cum

We have now specified two problems: a fluid-poroelastic structure interaction problem and
an advection-reaction-diffusion problem, that we would like to solve for the fluid velocity and
poroelastic structure displacement, and for oxygen concentration. The plan for this manu-
script is to investigate three different scaffold architectures, motivated by biological structures,
and numerically test which one provides the scaffold architecture with oxygen concentration
that is closest to the uniform distribution of oxygen and is above the known minimal value ¢,

H(c)sdV. (12)
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for which uninhibited insulin production by the S-cells is guaranteed [20]. See Section 5. For
this purpose we developed two numerical methods, one for the fluid-poroelastic structure
interaction problem, and one for the advection-reaction-diffusion problem, which we describe
next.

3 Methods II: Numerical method

To solve the fluid-poroelastic structure interaction and transport problems numerically, we
use the diffuse interface method [10, 11]. Let  denote the Heaviside function which equals
one in Qr and zero in Qp. Let a phase-field function @: Q — [0, 1] be a regularization of the
Heaviside function such that ® ~ 1 in Qp, ® =~ 0 in Qp, and @ smoothly transitions between
these two values on a “diffuse” layer of width € (see Fig 3). We suppose that dA ~ |V®|dV and

n= Using this notation, for functions F and f defined on Q, we can write:

/FdV:/F}ngz/F(I)dV,
Qr Q Q
/FdV:/F(1—X)de/F(1—cD)dV,
Qp Q Q

/rfdA = /Qfar dv ~ /Qf|Vd)| dv,

where 6t is a Dirac distribution at the interface I'.

Vol

1r

€=0.05
0.8 €=0.1
| e=0.2
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Fig 3. Graphical representation of the diffuse interface approach in one dimension. Top: The phase-field function
®. Bottom: The gradient of @ used to approximate the location of the interface.

https://doi.org/10.1371/journal.pchi.1012079.g003
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Using the approximations above, and n ~ — , we can write the diffuse interface for-

\Y
Vol
mulation of problem (8) as follows: Find (v, p,,, 11, p;) € L*(0, T; V;,(Q) x H'(Q)) x
L>(0, T; V(Q)) x H*(0, T; L*(Q)) such that for every
(W, ., 8 0,) € V(Q) x HY(Q) x V,(Q) x L*(Q), the following equality holds:

d
G([owwoavs [pom-ca-o)av e [ pa1-oydv
dt Q Q Q

+2,uF/D(v) :D(w)D AV — /(V -w)p®dV + /(V VYDAV

Q

+/KVpP-Vx//P(1 —(D)dV+/yEn-§(1 —d)dv

12, / D(m) : D(C)(1 — ®)dV + i, / (V-m)(V-5)(1 - ®)dv (13)

Q

s / (V- O)pp(1— )V + 2 / (V- W, (1 — ) dv
o / (v — 01)(w— ).V dV + / Uolv — ) - VDAV

—/pp(w—g)-VCDdeo,

where we used the 7 subscript to denote the “approximate” tangential component of a vector
function at the diffused interface, defined, for a vector v, as follows:

- Vo
V)T =v—(v-VOD) VoL
Tangent vectors that form a basis with V® can also be obtained directly from the phase-field
function using the algorithm described in [12, 21].

We note that in order to write (13), the variables on each subdomain have to be extended
onto the entire domain Q. This procedure introduces singularities. For example, when the
fluid velocity, which is defined on Qp, is extended into the whole domain €, the corresponding
integrand will be multiplied by ®. Since @ is zero in a large part of Qp, the resulting linear sys-
tem will have zero rows whenever this occurs, which will lead to a singular matrix. Therefore,
we use the following regularization of ®:

D~ (1-20)D + . (14)

where f is a small positive number. Therefore, ® > fand 1 — ® > f. This regularization of ®
was used in the definition of problem (13). A phase-field method for the related Stokes-Darcy
problems have been analyzed by the authors in [22] where existence of a weak solution was
proved, and its convergence to the sharp interface solution was obtained.

Because the concentration Eq (12) is already defined in Q, we do not require regularization.
In that case, f = 0. However, we use ® to define the global velocity and diffusion:

u=vd+4q(1—-®), and D=D,D®+D,(1—-).
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Numerical discretization

Problems (13) and (12) are discretized in time using the Backward Euler method, and in space
using a finite element method. Since the transport problem requires the fluid velocity, but the
fluid-poroelastic structure interaction problem does not require any information from the
transport problem, we first solve the fluid-poroelastic structure interaction problem until the
final time T is reached. Then, we solve the transport problem. Let N € N be the number of
time steps for the fluid problem, T the final time, and At = T/N the time step. We define the
discrete times " = nAt, for n =0, . . ., N. We also denote by 4 a discretization parameter associ-
ated with the triangulation 7, (Q) of Q. For each h, we choose finite dimensional subspaces
Vi CVe(Q), Vi) C Vip(Q), Vi C Vy(Q), X C LA(Q), X} C HY(Q), M" C Mand M}, C
M, over the triangulation 7, (Q2). We use MINI elements [23] to approximate the fluid veloc-
ity and pressure, P, elements to approximate the Darcy pressure and the displacement, and P,
elements to approximate the concentration.

The fully discrete fluid-poroelastic structure interaction problem is given as follows: given
(Vi Py My Phy) forn=0, .., N = 1, find (v ™!, pst gt pist) € Vi) x X X Vi x X such
that for every (w,, ¥,,,, &, Vy,) € Vi x X x Vi x X%, the following equality holds:

vn+1 vn nn+1 _2nn+ﬂn—l
/pﬂT-wthdw/st A - @)av

pn+l pPh n+l |
————V,,(1 =®)dV +2u, [ D(v,)"" : D(w,)®dV
Q
- / (V- WP 0V + [ (Vv i, 0dV-+ [ )V V0 - @)y
16,01 - ®)av - 2, [ DY) : DE( - @) dv s

T, / (V) (V¢ (1 — ®)dV = / (V- Lopi (1 — @) av

42 [ (92801~ @)av 9 ( —%) (w, — &)Vl av

n+1 _
/t/m( = A7 "") Vodav — /p"“ —¢&,) - Vo4V = 0.

To solve the transport problem, we let N, € N be the number of time steps, and Att TH/N;
the time step. The fully discrete transport problem reads as follows: for n =0, ..., N, — 1, find
¢! € M) such that for every s, € M", the following equality holds:

n+l _ n

/ G S gy o+ / W Ve, dv + / DV - Vs, dV
At

Q t Q Q (16)

:/R %H(cﬁ)sth.
Q

max
Cp T Cym

We note that according to (11), initially we have ¢} = 0.

4 Computational setting, parameters identification and verification

In this work we investigate the fluid velocity, pressure and oxygen concentration in the three
geometries/scaffold architectures shown in Fig 4. The first geometry consists of vertical
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hexagonal bifurcating straight
geometry channels channels

phase-field function

Fig 4. The phase-field function for three different network configurations considered in this work. The zoom-in
inserts show the computational mesh. The mesh is refined in the areas with large |V®|, which approximate the
interface.

https://doi.org/10.1371/journal.pcbi.1012079.9004

ultrafiltrate channels drilled through a hydrogel, which is the simplest, and a standard proce-
dure used in the design of bioartificial pancreas [3]. The second geometry consists of the
branching channels, see the middle panel in Fig 4. This was inspired by the architecture of the
branching vessels in the human body. The third geometry consists of the channels surround-
ing hexagonal pockets, shown at the bottom panel in Fig 4. This geometry was inspired by the
biological (epithelial) tissues in which interstitial fluid flows through a network of irregularly
arranged interstices between hexagonally shaped cells, which supports their structural and
functional integrity [24]. To work with comparable fluid flow scenarios, the three geometries
shown in Fig 4 were generated so that the total fluid channels’ area is the same in all three
geometries. For both 2D and 3D simulations, mesh independence tests have been performed.
The solutions obtained on the meshes we used in this work do not significantly change if even
finer meshes are used.

4.1 Computational settings

The size of the computational domain is 0.9 x 0.42 cm, corresponding to the entire scaffold Q.
Two outlet channels are added on the bottom (see Fig 2) to simulate the actual outlet channels
shown in Fig 1. Each outlet channel has a height of 0.1 cm and length of 0.06 cm. In each of the
three different geometries/architectures of the scaffold €, there is a top and a bottom
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horizontal channel of width 0.06 cm. The same width of 0.6 cm is used for the vertical channels
in the first, top configuration. The size of the channels in other configurations is chosen so that
the total channel area equals the channel area of the first configuration. In other words, the
channels occupy the same area in all three configurations. To computationally capture differ-
ent geometries/architectures of thin channels distributed within Q we use a phase-field func-
tion. The phase-field function for each of the three geometries is shown in Fig 4. Here, red
color corresponds to the value of the phase-field function ® equal to one, and blue corresponds
to @ = 0. The computational mesh is refined around the interface between the red and blue
regions where the gradient of the phase-field function |V®| is large. This is done as follows.
We first set @ = 1 in the region defined by the channels and zero elsewhere. Then, we adapt
the mesh and redefine @ on the finer mesh. To adapt the mesh, we use the adaptmesh function
in FreeFem++, where we use |V®| as a function which indicates the areas where the mesh
should be refined. After that, we solve the following Allen-Cahn problem to allow a smooth
transition between 1 and 0:

0,0 — DyAD + 9,F(®) =0 inQx(0,T,),
VO -n=0 ondQx (0,T,),

where Dg = 0.01, Tp =2 - 1077, and F(®) = 20°(® — 1) — Lis the standard form of a double-
well potential [25]. Finally, the procedure of adapting the mesh, redefining ® and solving the
Allen-Cahn problem is repeated one more time. The resulting computational mesh and ® at
time T are shown in the zoom-in inserts in Fig 4 (right). We note that this is done only ini-
tially since we assume that the fluid-poroelastic structure problem is linear and that the
domain is fixed.

4.2 Parameter identification

The fluid in Qf represents the filtered blood plasma, which enters the bioartificial organ Q
from an artery via an anastomosis graft, not shown in Fig 4. In encapsulated organs, the blood
from the anastomosis graft is filtered through semipermeable nano-pore membranes, and the
filtered blood plasma enters a gasket from which the flow of plasma filtrates through the bio-
compatible hydrogel Qp toward the cells. The horizontal channels represent the gasket con-
taining the blood plasma, and I}l corresponds to the location of the semipermeable
membranes through which blood plasma enters the top gasket. At ' we prescribe the inlet
velocity, which is taken to be v;,, = 3.5 cm/s in 2D and v;, = 5.25 cm/s in 3D, so that the flowrate
at the inlet is the same in the 2D and the 3D case. This value was obtained from the three-
dimensional numerical simulations of flow through an entire bioartificial pancreas, studied in
[9]. The numerical simulations in [9] used the experimentally derived “Darcy-like” relation-
ship between the flow Q and pressure gradient Ap through nanoporous membranes reported

in [26]: Q = Y;ﬂ Ap, where Q is the volumetric flow rate, w is the pore width, ! is the pore
length, A is the membrane thickness, # is the number of pores per (unit) membrane, 4 is the
viscosity, and Ap is the transmembrane pressure. Here, the micro-scale parameters w, I, h, and
n determine porosity. Therefore, porosity of the membrane influences the calculation of the
inlet fluid velocity. The value of 3.5 cm/s agreed well with experiments performed in Dr. Roy’s
lab [26]. The parameters used in the blood plasma simulations are standard: the dynamic vis-
cosity is set to = 0.04 dyn s/cm” and density is pp= 1 g/cm”.

The parameters for the poroelastic structure describing the hydrogen scaffold can be
obtained from [5, 9]. We took the poroelastic matrix density to be ps = 1.2 g/cm’, and the
Young’s modulus of 2.5 - 10° dyne/cm?. The Poisson’s ratio is set to 0.49 and the spring
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constant is y; = 10° dyne/cm* in 2D and 0 in 3D. The spring constant is chosen so that the
magnitude of the displacement is of the same order as the one obtained in 3D. The pressure
storage coefficient is taken as 107 cm*/dyne, and the permeability is £ = 10> cm” s/g. The slip
constant is y = 10° g/ (cm? s). We set the Biot-Willis parameter « to 1. See [9] for the Biot
parameters.

Oxygen transport in the human vascular system and tissues has been studied by many
authors [14-18, 20]. We adopt the approach from [14] to study oxygen transport in the gasket
with oxygen diffusion coefficient given by D= 3 - 10> cm?/s [14]. In the agarose gel, the oxy-
gen diffusion coefficient used in our simulations is Dp = 1.3 - 10~> cm®/s, which is the value
that was estimated in rat pancreatic islets and reported in [20, 27]. The maximum oxygen con-
sumption rate is R,,q, = —3.4 - 10~ mol/(cm” s), the Michaelis-Menten constant is ¢z, = 107
mol/cm?® and the critical oxygen concentration is ccg = 107! mol/cm?, all obtained from [15].
The concentration of oxygen at the fluid inlet is ¢;,, = 2 - 107" mol/cm’ [28].

We first perform simulations of the fluid-poroelastic structure interaction problem using
At=10""and T = 1 s, which is when a steady state is reached. Using the velocities at the final
time of the simulation, we then solve the advection-reaction-diffusion problem with Af, =5 -
107%and T, = 200 s. All computations are performed within the platform of the finite element
software FreeFem++ [29].

To trust the simulations obtained using our diffuse interface method, we validate our
computational solver by comparing the results of the diffuse interface method with the results
obtained using the “classical” sharp interface approach, on a simpler geometry, as we discuss
next. Recall that the main reason for not using the sharp interface approach is the difficulty in
generating new scaffold geometries for each new test case. This will be particularly important
in our next research phase in which a geometric optimization mathematical model and
computational solver will be developed to study optimal design of channels’ distribution in
bioartificial organ scaffolds for advection-enhanced oxygen and nutrients supply to the trans-
planted cells.

4.3 Numerical method verification

To validate our diffuse interface solver, we focus on a specific problem characterized by a
domain geometry comprising a main channel branching into two, each of which further bifur-
cates into additional two channels. See Fig 5. We solve the fluid-poroelastic structure interac-
tion problem and the advection-reaction-diffusion problem using a sharp interface approach.
The sharp interface solver is based on a classical, monolithic, fluid-poroelastic structure inter-
action approach. The solver was developed and validated in [30, 31]. In particular, the Back-
ward Euler method is used to discretize the problem in time, and a finite element method is
used for spatial discretization. The same finite element spaces are used for the diffuse and
sharp interface methods. The results of the sharp interface solver are then compared to the
results obtained using our diffuse interface solver discussed in this manuscript. All the parame-
ter settings are the same as the ones described in Section 4. Since the permeability is small, a
finer mesh close to the interface is required for both sharp and diffuse interface solvers. We
use the same mesh in both cases, consisting of 40,239 points and 80,326 elements. A compari-
son of the Stokes and Darcy pressure (left), velocity magnitude (middle), and concentration
(right) is shown in Fig 5. To better visualize the differences between the solutions, in the left
three panels in Fig 6, we show the 1D plot of each of these variables over the line indicated in
the leftmost panel in Fig 5. Finally, the right three panels of Fig 6 show the error plots for the
pressure, velocity and concentration, respectively. All the results shown here are obtained at
the final time. We observe some larger differences in the pressure, and a good agreement for
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Fig 5. A steady-state solution for the Stokes and Darcy pressure (left) and velocity magnitude (middle) obtained using the sharp interface model and the diffuse
interface model. The right two panels shows concentration obtained at T, = 200. A plot of each of these variables over the line indicated in the leftmost panel is shown in
Fig 6.

https://doi.org/10.1371/journal.pcbi.1012079.9005

the velocity and concentration. We find the approximations of the pressure to be particularly
sensitive in channel flow, especially where the channels are narrow, since in the diffuse inter-
face approach the width of channels slightly differs from the one used in the sharp interface
approach due to the diffuse approximation of the interface. However, the main goal of this
work is related to the concentration approximation, where we obtain a good match between
the two methods.

Encouraged by these results, we use the diffuse interface method described above to study
the flow and concentration of oxygen in the geometries shown in Fig 4. This is presented next.

— sharp diffuse
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Fig 6. The left three panels show the pressure, velocity and concentration, respectively, obtained using the sharp and the diffuse interface method, plotted over
the line indicated in the leftmost panel in Fig 5. The right three panels show errors for the pressure, velocity and concentration, respectively, obtained at steady state.

https://doi.org/10.1371/journal.pcbi.1012079.9006
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Fig 7. Total velocity magnitude (left) and concentration (right) in a network consisting of straight channels (top),
bifurcating channels (middle) and a hexagonal geometry (bottom).

https://doi.org/10.1371/journal.pcbi.1012079.9007

5 Results I: Numerical results

As mentioned earlier, our goal is to study blood plasma flow and oxygen concentration in
three different scaffold architectures, as described in Section 4. We are interested in a scaffold
architecture that provides concentration of oxygen that is as uniform throughout the scaffold
as possible and above the minimum concentration for uninhibited maximal insulin produc-
tion cop =5 10~ mol/em?, given in [20]. To do this, we use the diffuse interface method to
simulate fluid-poroelastic structure interaction providing advection velocity of blood plasma
carrying oxygen, and we use the advection-reaction-diffusion solver to calculate oxygen con-
centration in the entire scaffold, utilizing the advection velocity from the fluid-poroelastic
structure interaction simuations. Both models are described in Section 2. The results of the
simulations are shown in Figs 7 and 8 below. More precisely, in Fig 7 we plot the total fluid
velocity, defined as

u=vd+q(l—-0),

and oxygen concentration for the three different scenarios.
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Fig 8. Pressure (left) and the Darcy velocity (right) in a network consisting of straight channels (top), bifurcating
channels (middle) and a hexagonal geometry (bottom).

https://doi.org/10.1371/journal.pcbi.1012079.g008

We observe in Fig 7 that in the case of vertically drilled channels, most of the flow is
through the vertical channels. The pressure and the Darcy velocity are shown in Fig 8. There
are large regions in between the channels where oxygen concentration is below the critical
value copr =5 - 10~* mol/cm? [20], indicating regions of impaired insulin production.

In the case of bifurcating channel network, shown in the middle panels on Figs 7 and 8, we
see higher velocity values in the top two generations of branching channels (parent and daugh-
ter channels), and larger regions of higher Darcy velocity, shown in light green and yellow, in
between the branching vessels. Consequently, we observe larger regions of higher oxygen con-
centration in between the channels than in the case of vertical channels, see Fig 7 right, middle
panel. However, there are still large regions in between the branching trees that have low levels
of oxygen concentration, shown in blue, where insulin production is inhibited.

Finally, in the case of the hexagonal geometry, shown in the bottom panels of Figs 7 and 8,
the channels have the smallest radius and the fluid velocity is the largest. Darcy velocity in this
case is nontrivial in the entire region corresponding to the poroelastic hydrogel. As a result,
the oxygen concentration throughout the hydrogel region is high and remains close to the
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Fig 9. Geometries consisting of narrow straight channels (left) and narrow zigzag channels (right).

https://doi.org/10.1371/journal.pcbi.1012079.g009

uniform concentration above the critical value c,,. This ensures an adequate oxygen supply to
the cells in the entire hydrogel, maintaining levels of oxygen concentration above the critical
threshold necessary for normal insulin production.

As a result, oxygen concentration is high in the entire hydrogel region, and it is very close
to the uniform concentration above the critical value c,,,, as desired, providing oxygen supply
to the cells in the entire hydrogel that is above the critical value above which normal insulin
production takes place.

Two additional geometries. We consider two additional geometries to gain a better under-
standing of why the hexagonal geometry is associated with improved oxygen concentration
levels. Since hexagonal geometry architecture described above has narrower channels that are
at an angle with respect to the pressure drop-driven dominant vertical flow, we separate the
influence of the two geometric factors and consider the following two geometries: one consist-
ing of narrow vertical channels with a small radius (the width of each channel is equal to one
third of the width of vertical channels used above, shown in Fig 4), and the other consisting of
the zig-zag (angular) channels with the radius determined by the constraint that the total chan-
nel area is the same as in the vertical channel case. See Fig 9.

The flow velocity and concentration obtained in the new geometries are shown in Fig 10. In
both geometries, the peak velocity in the channels is equal to 13 cm/s. However, significant dif-
ferences can be seen in concentration. We note that having narrow channels improves the
transport through the poroelastic medium compared to having fewer wider channels (see top-
right panel in Fig 7). However, having a network with channels at an angle with respect to
dominant flow leads to increased oxygen levels overall, especially at places where the flow
changes direction. An explanation for this observation is the fact that flow through porous
interfaces is largest when the angle between flow direction and the interface is large.

This is evident in the right panel of Fig 11 where Darcy velocity is shown. The peak Darcy
velocity is twice as large when zigzag channels are used compared with the straight channels.
To improve the visualization of the peak velocity area, we show the flow in two geometries on
different scales. When straight channels are used, the flow is largest closest to the top and bot-
tom of the channels. In zigzag channels, the flow is largest in the middle of the domain. This is
an interesting observation that significantly improves oxygen supply to the cells located in the
middle of the proelastic hydrogel. We also show the total pressure in the two geometries in Fig
11. Our results show a significantly larger internal scaffold pressure in case of the zigzag net-
work, which is associated with increased Darcy flow through the hydrogel.
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Fig 10. Total velocity magnitude (left) and concentration (right) in a network consisting of narrow straight
channels (top) and narrow zigzag channels (bottom).

https://doi.org/10.1371/journal.pcbi.1012079.g010

Uninhibited maximal insulin production regions. Finally, we further quantify the behav-
ior of the three scaffold architectures shown in Fig 4 by considering the performance of the
three geometries in terms of the uninhibited maximal insulin production by the transplanted
B-cells [20]. Namely, motivated by the results in [20] we use a threshold for uninhibited maxi-
mal insulin production by the transplanted islets of ¢, = 5 - 10~® mol/cm” to identify the
regions within tissue in which the islet function is compromised. More precisely, we investi-
gate the regions within each scaffold in which the oxygen concentration is higher than the
threshold for uninhibited maximal insulin production, Copt> and compare the areas of those
regions that support islet function. This area is computed only in the poroelastic domain using
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Fig 11. Pressure (left) and the Darcy velocity (right) in a network consisting of narrow straight channels (top) and
narrow zigzag channels (bottom).

https://doi.org/10.1371/journal.pcbi.1012079.9011

the following expression:

1 ifc>c,,

/QXUP (1 =@)dV,  where 7, = { 0 otherwise.

The regions are visualized in Fig 12. Blue color shows the regions of uninhibited insulin
production, while the insulin production is compromised in the regions shown in red. The
results are quantified in Table 1.

As expected, the hydrogel geometry with the smallest area of oxygen levels above ¢, is
obtained for the network consisting of straight channels (13% of total area), followed by the
bifurcating channels, which have the uninhibited maximal insulin production area equal to
51.74% of the total area. Finally, the most efficient insulin production is observed in the hexag-
onal geometry, where more than 97% of the poroelastic region is above the uninhibited maxi-
mal insulin production threshold c,,;. We note that in the hexagonal geometry, the largest red
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Fig 12. Function x,, superimposed with the phase-field function indicating the channel geometry. Regions in red show areas
where the insulin production is inhabited, while regions in blue show areas of uninhibited insulin production.

https://doi.org/10.1371/journal.pcbi.1012079.9012

Table 1. The area where the concentration is larger than the oxygen threshold of uninhibited maximal insulin pro-
duction for all the geometries considered in this manuscript.

Geometry Total area (cm?) Relative area
straight network 0.026 13.23%
bifurcating network 0.102 51.74%
hexagonal geometry 0.192 97.13%
narrow straight network 0.172 86.94%
narrow zigzag network 0.187 94.24%

https://doi.org/10.1371/journal.pcbi.1012079.t001

regions are close to the lateral sides of the domain. This is because we impose a no flux condi-
tion on I';" and no flow on I';", which explains the boundary layers.

6 Results ll: Three-dimensional simulations

We conclude this manuscript by demonstrating that the 2D results presented above accurately
represent real-life 3D scenarios. In particular, we focus on a 3D scaffold corresponding to the
hexagonal geometry considered in 2D, as shown in Fig 13 below. Each vertical slice of this
geometry is identical to the 2D geometry shown at the bottom of Fig 4. In other words, the 3D
geometry is obtained by extruding the 2D hexagonal geometry. The dimensions of the 3D spa-
tial domain are 0.9 x 0.42 x 0.3 cm. Here 0.3 cm is the added thickness of the 3D domain. We
maintained the same inlet and outlet setup as in the 2D case, and also kept all other parameters
unchanged.

For the boundary conditions on the front and back wall of the computational domain we
imposed the no-slip boundary condition for the free fluid velocity modeled by the time-depen-
dent Stokes equations, and zero normal flux for Darcy velocity for the Biot equations. Dis-
placement of the poroelastic matrix was also set to be equal to zero on the front and back walls
of the chamber. On the rest of the boundary, we implemented the same boundary conditions
as in the 2D case. Similarly, at the inlet, shown in Fig 13, Dirichlet boundary condition was
imposed for the fluid velocity, and at the outlet, zero normal stress was imposed, as in the 2D
case. The Dirichlet velocity imposed at the inlet is given by the uniform velocity profile with
the magnitude of 5.25 cm/s, pointing downwards in the direction of the cell chamber. While
this quantity is different from the one used in the 2D case, it is chosen so that the inflow flow-
rate is the same in the 2D case and the 3D case.
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O

Fig 13. Computational Domain: The computational domain was discretized using conformal tetrahedral
elements, resulting in a total of 926K elements.

https://doi.org/10.1371/journal.pcbi.1012079.9013

A monolithic solver reported in [13, 30, 31] was used to solve the 3D linearly coupled
Stokes-Biot problem. Fig 13 depicts the computational domain, which was discretized using
conformal tetrahedron elements. Taylor-Hood elements (P2-P1) were used for the free fluid
velocity and pressure, P2 for the poroelastic structure displacement, P2 for Darcy velocity and
P1 for Darcy pressure. We set the time step to be At = 0.005 s, and allow the simulation to run
until it reached a steady state at T = 1 s. As in the 2D case, the flow is driven by the pressure
drop in the vertical direction generated by the inlet velocity and outlet normal stress data.

We examined the following quantities and compared them with the 2D simulation results:
the free fluid velocity and pressure (at the inlet and outlet channels, and in the hexagonal
geometry throughout the poroelastic medium), the Darcy velocity and Darcy pressure within
the poroelastic structure, and the deformation of the poroelastic structure.

Velocity. Fig 14 shows a comparison of the velocity obtained using 2D simulations (left)
and 3D simulations (middle and right). The middle panel shows only the free fluid (channel)
velocity, while the right panel shows only Darcy velocity (poroelastic medium). Notice two

13

1

0.56

.

0.28

6.5
velocity (cm/s)

0
-

Darcy velocity (cm/s)

0
-

Fig 14. Velocity comparison. Left: 2D simulation showing free fluid and Darcy velocity ranging from 0 to 13 cm/s. Middle: 3D simulation showing velocity in the
inlet, outlet and hexagonal geometry ranging from 0 to 13 cm/s. Right: 3D simulation showing only Darcy velocity ranging from 0 to 4.8 cm/s.

https://doi.org/10.1371/journal.pcbi.1012079.9g014
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Fig 15. Pressure comparison. Left: 2D simulation showing free fluid and Darcy pressure. Middle: 3D simulation showing Darcy pressure. Right: 3D simulation
showing pressure in the inlet, outlet and hexagonal geometry. The pressure scale is the same in all three panels—from 0 to around 6,000 dyn/cm’.

https://doi.org/10.1371/journal.pchi.1012079.g015

different scales for the middle and right panel. We see that in both 2D and 3D scenarios the
fluid velocity ranges from 0 to 13 cm/s, and that the highest velocity is achieved in the vertical
channels, as expected due to the dominant pressure drop in the vertical direction.

Pressure. Next we compared the fluid pressure. Fig 15 shows a comparison of the pressure
obtained using 2D simulations (left) and 3D simulations (middle and right). In all three panels
the pressure ranges from 0 to around 6,000 dyn/cm?. The panel on the left shows the combined
2D free fluid and Darcy pressure, while the figures on the right show separate 3D Darcy pres-
sure (middle) and 3D free fluid pressure (right). Looking at both Stokes and Darcy regions, the
pressure distributing obtained using 2D simulations is indeed, very close to the pressure distri-
bution obtained using 3D simulations.

Streamlines. To further compare 2D versus 3D spatial effects on the solution, we investi-
gated the fluid velocity streamlines inside the entire 3D scaffold. This is shown in Fig 16. We
can see that 2D effects are dominant over 3D effects, since the streamlines appear to be largely
parallel to each other in the direction perpendicular to the plane containing the hexagonal
geometry, indicating that 2D simulations approximate well the leading features of the fluid
flow in the scaffold. The streamlines obtained using 2D simulations are shown in the right
panel of Fig 16.

Displacement. Using 3D simulations we also investigated the total displacement of the por-
oelastic matrix as time increases toward the time at which the steady state solution is achieved.

velocity (cm/s)

Fig 16. Streamlines generated by the fluid and Darcy velocity. The color of the streamlines corresponds to the velocity magnitude. Left: 3D simulations, side
view. Middle: 3D simulations, front view. Right: 2D simulations.

https://doi.org/10.1371/journal.pchi.1012079.9016
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Fig 17. Displacement at the steady state. Top left: Magnitude of displacement obtained in 3D. Top right: Displacement vector field obtained in 3D. Bottom:
The displacement obtained in 2D using a model with the spring term yga (left) and by taking yg = 0 and fixing the center of each poroelastic region (right).

https:/doi.org/10.1371/journal.pcbi.1012079.9017

The magnitude of displacement at the steady state is shown in Fig 17 (top left) and the vectors
showing the displacement vector field are shown in Fig 17 (top right). We observe that all cell
compartments have expanded from their original shape, with the compartments closest to the
inlet experiencing larger expansion than those closest to the outlet. We argue that this expan-
sion is a result of flow saturation inside the cell compartments. This also results in a constric-
tion of the original hexagonal flow channels, potentially increasing the proportion of flow
passing through the cell compartments.

On the bottom of Fig 17 we also show the displacement obtained in 2D. The panel on the
bottom left shows the displacement obtained using the structure model introduced in (3a),
which has term ¥z added. While this term damps the displacement magnitude, and help to
keep the hexagonal and triangular structures from floating away, it does not resemble the dis-
placement obtained in 3D. However, the magnitude of the displacement in both cases is com-
parable. On the bottom right panel we show the displacement obtained using an alternative
approach, where we take yg = 0, but then fix the center of each interior poroelastic structure
(displacement in the middle of each structure is equal to zero). This corresponds more closely
to the 3D case, where the poroelastic structure is connected and fixed at the sides. In this case,
we obtain a better resemblance to the 3D simulations. We note that neither of the 2D models
are the same as the model used in 3D, which causes the results to differ. However, when the
concentration obtained using either of these approaches is compared, no significant differ-
ences are found.
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Fig 18. A series of screenshots depicting the transport of oxygen concentration from t = 0 s to f = 1 s, when the steady state solution is reached.

https://doi.org/10.1371/journal.pcbi.1012079.9018

Oxygen concentration. Using 3D simulations we also investigated oxygen transport within
the scaffold by solving the advection-reaction-diffusion problem described in Section 2.2. The
advection-reaction-diffusion problem was solved with the time step of At = 1e — 5s. In Fig 18
we illustrate the evolution of oxygen concentration from ¢ = 0 to ¢ = 0.15 seconds and then give
the steady state solution of the oxygen concentration which is achieved at f = 1s. Fig 18 shows
that indeed, the final oxygen concentration at t = 1 is nearly uniformly distributed throughout
the chamber, except for the thin vertical region roughly half way between the two inlets. This is
similar to the result obtained using 2D simulations, depicted in Fig 7 bottom right, which
shows nearly uniform distribution of oxygen concentration except for a thin line located
roughly in the middle between the two inlets. However, while the uninhibited maximal insulin
production occurred in 97% of the total area in the 2D case, it only occurred in the 77% of
total volume in the 3D case. This could be explained by the fact that due to the no flow condi-
tions, the velocity and the concentration at the sides and the bottom of the domain are almost
zero, and these regions account for a larger volume in 3D than in the 2D case. We conclude
that, again, 2D simulations provide a good insight into oxygen concentration distribution
within the cell chamber. Additionally, this result indicates that placing the two inlets closer to
each other might improve uniform distribution of oxygen concentration within the chamber
to include the central region between the two inlets.
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7 Discussion: Conclusions

We devised a computational approach within the diffuse interface framework to explore the
influence of scaffold architecture geometry on oxygen transport within biological scaffolds
commonly employed in bioartificial organ engineering, with a specific focus on the bioartifi-
cial pancreas. To achieve this objective, we introduced a multi-physics model comprising a
fluid flow component and an advection-reaction-diffusion model to analyze oxygen concen-
tration within the scaffold. The fluid flow model incorporates the time-dependent Stokes equa-
tions coupled with the Biot equations, characterizing the behavior of a poroelastic medium
representing the poroelastic hydrogel used in the scaffold design.

We explored three biologically inspired scaffold architecture geometries: vertically drilled
channels, branching channels, and a hexagonal geometry. From a computational standpoint,
one of the primary challenges in addressing problems with multiple varying geometries lies in
generating new computational geometries and designing appropriate matrices for spatial dis-
cretization. These matrices describe the unknown variables, such as fluid velocity, pressure,
and oxygen concentration, across different computational domains. To streamline mesh gen-
eration in complex geometries, we introduced a diffuse interface approach in this study. In the
diffuse interface approach, the unknown variables are defined across the entire scaffold
domain, with the specific geometry of the channel network captured by redefining only the
phase-field function. This simplification proves crucial not only for our current work but also
for future endeavors, where we aim to develop a geometric optimization solver. This solver
will simplify the generation of numerous channel geometries to optimize scaffold architecture.
It is important to notice that a drawback of the diffuse interface method is the large size of the
discretization matrices since the number of unknowns at the discrete level is doubled. Further-
more, to obtain higher accuracy, the mesh is commonly refined around the interface, which
leads to a higher number of degrees of freedom. However, in simulations where the permeabil-
ity is small, a fine mesh around the interface is also needed when a sharp interface method is
used to accurately resolve the pressure gradient between the Stokes and Biot regions. Such
mesh must align with the interface if a sharp interface method is used, while this is not
required for the diffuse interface method.

We demonstrated that the hexagonal geometry significantly outperforms both the branch-
ing channels’ network and the classical vertical channel geometries. Our analysis indicates that
the superior performance of the hexagonal geometry stems from the relatively large angle
between the dominant channel flow direction and the channel-hydrogel interface. This config-
uration results in a larger Darcy velocity, thereby facilitating enhanced advection-mediated
oxygen supply to the transplanted cells. This study is significant because recent developments
in hydrogel fabrication make it now possible to control hydrogel rheology [2, 5], utilizing the
computational results to generate optimized scaffold architectures.

Our future work includes the design of a geometric optimization algorithm for optimal
scaffold architecture design. In case of geometric optimization, or just a moving domain prob-
lem, we expect it to be necessary to adapt the mesh when the phase function changes signifi-
cantly. This can be done at each step, or every few steps, depending on how fast the phase field
function evolves, by using the gradient of ®.
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