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Exhaled Breath Analysis: From Laboratory
Test to Wearable Sensing

Wenzheng Heng ', Shukun Yin

Abstraci—Breath analysis and monitoring have emerged
as pivotal components in both clinical research and daily
health management, particularly in addressing the global
health challenges posed by respiratory and metabolic dis-
orders. The advancement of breath analysis strategies
necessitates a multidisciplinary approach, seamlessly in-
tegrating expertise from medicine, biology, engineering,
and materials science. Recent innovations in laboratory
methodologies and wearable sensing technologies have
ushered in an era of precise, real-time, and in situ breath
analysis and monitoring. This comprehensive review eluci-
dates the physical and chemical aspects of breath analysis,
encompassing respiratory parameters and both volatile
and non-volatile constituents. It emphasizes their phys-
iological and clinical significance, while also exploring
cutting-edge laboratory testing techniques and state-of-
the-art wearable devices. Furthermore, the review delves
into the application of sophisticated data processing tech-
nologies in the burgeoning field of breathomics and exam-
ines the potential of breath control in human-machine inter-
action paradigms. Additionally, it provides insights into the
challenges of translating innovative laboratory and wear-
able concepts into mainstream clinical and daily practice.
Continued innovation and interdisciplinary collaboration
will drive progress in breath analysis, potentially revo-
lutionizing personalized medicine through entirely non-
invasive breath methodology.

Index Terms—Breath analysis, respiratory monitoring,
VOCs, nonvolatile substance, exhaled breath condensate,
personalized medicine, wearable biosensor.

|. INTRODUCTION

REATH is an intricate physiological process that orches-
B trates gas exchange between the body’s internal milieu
and the external environment through the human airway. This
process is precisely regulated by the central nervous system
through the synchronized activity of respiratory muscles, in-
cluding the diaphragm and intercostal muscles, which induce
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periodic volume changes in the thoracic cavity and lungs [1].
The ceaseless, autonomous activity of respiratory and cardiac
muscles is essential for sustaining fundamental life processes.
Under normal physiological conditions, adults engage in ap-
proximately 12-20 respiratory cycles per minute, facilitating the
uptake of about 250 mL of oxygen for metabolic processes while
expelling approximately 200 mL of carbon dioxide. This cyclical
gas exchange not only satisfies cellular metabolic requirements
but also plays a pivotal role in maintaining blood pH home-
ostasis [2]. The physiological significance of breathing extends
far beyond gas exchange. Emerging research indicates that the
respiratory process exerts substantial influences on olfactory
signal processing [3], circadian rhythm regulation [4], emotional
modulation [5], and cognitive function [6]. Given the funda-
mental role of breathing in maintaining life and its far-reaching
impacts on various physiological and psychological processes,
the imperative to comprehend and address respiratory health
cannot be overstated.

Respiratory-related diseases present a formidable challenge
to global health. Over the past five years, coronavirus disease
(COVID-19) has emerged as a representative global infectious
disease, directly claiming ~7 million lives, and indirectly
contributing to a death toll surpassing 15 million [7]. This emer-
gence, coupled with other respiratory epidemics such as severe
acute respiratory syndrome (SARS), Middle East respiratory
syndrome (MERS), and pandemics like HIN1 underscores the
urgent and critical necessity for extensive research into the res-
piratory system [8]. As a key research field in modern medicine,
respiratory diseases, such as pneumonia, chronic obstructive
pulmonary disease (COPD), and lung cancer, among other
diseases, pose serious threats to human health and constitute
major burdens on global public health expenditures. COPD,
an irreversible and progressive pulmonary disease, annually
causes more than 3 million deaths, ranking as the third leading
single cause of death globally and posing a significant threat to
the health of billions worldwide [9]. According to data from the
World Health Organization (WHO), approximately 262 million
people globally suffer from asthma [10]. Lung cancer, with an
annual diagnosis rate exceeding 2.2 million and a death toll of 1.8
million, is equally serious [11]. Evenrelatively minor respiratory
issues, such as obstructive sleep apnea syndrome (commonly
known as snoring), can significantly impact the quality of life for
patients and their partners, increasing the risk of cardiovascular
diseases and cognitive impairments [12]. The prevalence of
respiratory infectious diseases and the prominence of respiratory
disorders further highlight the imperative to propel research
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efforts aimed at addressing the multifaceted challenges in
breath analysis.

The significant value of breath analysis in the diagnosis and
monitoring of various non-respiratory diseases has also been
increasingly demonstrated. Studies have shown that breath anal-
ysis can be utilized to assess diabetes. Patients with diabetic
ketoacidosis are often characterized by an olfactory signature
reminiscent of “rotten apples,” attributable to alterations in the
levels of acetone and other ketone bodies in their exhaled breath,
reflecting perturbed lipid metabolism. In cases of renal dysfunc-
tion, blood urea nitrogen levels can be non-invasively evalu-
ated by quantifying ammonia concentrations in exhaled breath.
Consequently, a “urinous” odor in the breath often implies
compromised kidney function. Furthermore, breath analysis is
gaining prominence in liver disease diagnosis, as evidenced by
elevated sulfide concentrations in the exhaled breath of cirrhosis
patients. These applications underscore the potential of breath
analysis as a non-invasive diagnostic tool in the management of
systemic disorders [13].

In the realm of respiratory medicine, routine examinations
encompass a spectrum of diagnostic modalities, including ra-
diological assessments, bronchoscopic evaluations, pulmonary
function tests, and symptom assessments, each offering distinct
clinical insights. Despite significant strides in respiratory sys-
tem research over recent decades, these examinations are not
without inherent limitations. Imaging techniques such as X-rays
and computed tomography (CT) are limited by their inability
to discern subtle structural changes and concomitant radiation
exposure. Bronchoscopy, while informative, faces restrictions
in routine application due to its invasive nature. Pulmonary
physiological measurements, including respiratory rate and tidal
volume measurements, are hampered by manual measurement
instability and alack of disease specificity. Symptom assessment
is subjective, varies between individuals, and symptoms are of-
ten not apparent in early stages. Notably, in contrast to routinely
monitored physiological parameters such as heart rate, blood
pressure, and body temperature, physical respiratory monitoring
and assessment have not received commensurate attention in
clinical and daily health management paradigms [14]. This
discrepancy primarily stems from the paucity of economical,
portable, and accurate respiratory monitoring devices. High-
precision respiratory function testing equipment, while avail-
able, is typically cost-prohibitive, operationally complex, and
challenging to implement widely in quotidian health monitoring
scenarios. Consequently, at present, one of the few breath pa-
rameters that people often pay attention to is respiratory rate, but
its measurement in clinical settings still often relies mainly on
manual operation. Concurrently, the significance of biochemical
molecular changes as crucial triggers, manifestations, and pri-
mary diagnostic criteria for numerous diseases underscores the
importance of comprehensive biochemical information. How-
ever, routine clinical and everyday breath analysis and monitor-
ing frequently lack detailed biochemical detection capabilities.
These limitations in existing physical respiratory monitoring
technologies, coupled with the dearth of detailed biochemical
information in breath analysis, illuminate the transformative
potential of non-invasive, quantitative, and daily monitoring

of both physical and biochemical respiratory parameters. Such
advancements hold the promise of revolutionizing our under-
standing of the breath process and its intricate dynamics [15].
This comprehensive review aims to systematically explore
the multifaceted aspects of breath analysis and monitoring, en-
compassing physical and chemical information, relevant biolog-
ical and clinical contexts, advanced laboratory-based method-
ologies, and cutting-edge wearable breath monitoring devices
(Fig. 1). We begin with an in-depth analysis of the physical pa-
rameters of respiration, including respiratory rate, volume, and
flow rate. These parameters are examined in the context of vari-
ous physiological and pathological conditions, elucidating their
clinical significance. Subsequently, we delve into the gaseous
chemical composition of exhaled breath, focusing on dynamic
changes in oxygen and carbon dioxide concentrations, as well
as the burgeoning field of volatile organic compounds (VOCs)
and their potential in disease diagnosis and health monitoring.
The review then extends to the biochemical characteristics of
non-volatile substances in breath, exploring their value in non-
invasive disease diagnosis and metabolic state tracking. Finally,
we explore the emerging field of breathomics and associated
data processing methods, discuss the innovative use of breath in
human-machine interaction (HMI), and present our vision for
the integration of these diverse analysis and monitoring tech-
nologies into a non-invasive breath-based healthcare landscape.

Il. PHYSICAL MONITORING

In current respiratory monitoring, the measurement and analy-
sis of physical parameters are key to assessing respiratory health
and overall health (see Fig. 2). These parameters include respira-
tory rate, volume, flow rate, breath sounds, breath temperature
and humidity. Backed by extensive research, substantial data,
and clinical validation, these metrics are widely recognized for
their utility in clinical and daily health monitoring.

A. Respiratory Rate, Volume & Flow Rate

1) Rate: Respiratory rate stands as one of the most clinically
significant and easily measurable physiological parameters. As
a vital sign, alongside heart rate, blood pressure, and body
temperature, it serves as a fundamental indicator of human health
status [16]. The normal respiratory rate for adults is usually
between 12 and 20 breaths per minute, but this range may
vary depending on age, physical condition, and environmental
factors. Deviations from this range, such as tachypnea (>25
breaths/minute) or bradypnea (<8 breaths/minute), often signal
pathological states and may serve as early warning signs for
various serious conditions, including lung infections, heart fail-
ure, metabolic disorders, or neurological issues [17]. Therefore,
in clinical practice, monitoring of respiratory rate is of key
importance for the timely detection and evaluation of critically
ill patients [17]. The respiratory rate exhibits complex interac-
tions with the cardiopulmonary and cardiovascular systems [5],
[18], primarily through cardiopulmonary coupling mechanisms.
These interactions directly influence heart rate variability and
blood pressure fluctuations [19], [20], [21]. Further studies
have shown that conscious regulation of breathing rhythm,
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Fig. 2. Physical breath monitoring in the precision medicine via emerg-
ing wearable devices.

particularly slow, deep breaths, can significantly modulate au-
tonomic nervous system activity [22]. In addition, respiratory
rate also closely correlates with an individual’s mental state
and emotional experience. Stress or anxiety typically induces
rapid, shallow breathing, while relaxation promotes slow, deep
breaths [23]. This phenomenon not only reflects current mental
states but also offers potential for active emotional regulation.
Consequently, many psychological relaxation techniques and
meditation practices incorporate breathing regulation as a central
element. For instance, various yoga breathing exercises aim to

Overview of exhaled breath analysis - from physiological markers to clinical and personalized medicine. BAL, bronchoalveolar lavage; CT,

influence the autonomic nervous system, promoting physical
and mental relaxation and stress relief [24]. These techniques
are not only useful in the field of mental health but have also
shown positive results in the adjunctive treatment of certain
diseases. For example, in asthma patients, specific breathing
exercises can help improve lung function, reduce the frequency
of exacerbations and improve quality of life [25].

2) Volume: Respiratory volumetric indices can be catego-
rized into static and dynamic categories, also known as lung vol-
ume and pulmonary ventilation function [26]. These indicators
can provide crucial insights into lung health and performance.

Static lung function is primarily assessed through total lung
capacity (TLC) and vital capacity (VC). TLC is particularly im-
portant in evaluating restrictive lung diseases such as pulmonary
fibrosis. Decreased TLC are often indicative of parenchymal
lung lesions, thoracic deformities, or neuromuscular diseases
[26]. For VC measurement and application, spirometry plays a
vital role in assessing growth and development in children [27]
and physical fitness in athletes [28], [29]. In the critical care
setting, tidal volume (TV) is a key parameter for assessing and
guiding ventilation strategies, with low tidal volume approaches
showing improved prognosis in acute respiratory distress syn-
drome (ARDS) patients [30].

Dynamic lung function mainly consists of metrics such as
forceful lung volume (FVC) and forceful expiratory volume in
the first second (FEV1). These indices are very sensitive to most
of the diseases involving the lungs. The FEV1/FVC ratio is
the most used index for determining how good or bad airway
patency is, and it is also one of the most important reference
parameters for the diagnosis of obstructive lung disease. The
FEV1/FVC ratio is greater than 80% in normal subjects [26].
Bronchodilator testing to observe changes in FEV1/FVC can be
used to differentiate reactive reversible changes in the airways
and is often used in the diagnosis and differentiation of COPD
and asthma [31], [32].

3) Flow Rate: Respiratory flow rate primarily reflects air-
way patency and respiratory muscle strength. Key indicators
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include Peak Expiratory Flow (PEF) [33] and forced expiratory
flow (FEF) at different percentages of vital capacity (FEFxx %)
[341], [35]. These parameters are crucial for assessing airway ob-
struction and pulmonary function impairment. Peak flow meters,
due to their simplicity, are widely used in the basic measurement
of PEF and management of asthma [36]. Furthermore, exhaled
breath velocity has significant implications for gas exchange
and viral transmission, rendering it of considerable importance
to public health [37], [38].

4) Interrelationship: The intricate interplay among respi-
ratory rate, volume, and flow rate forms the foundation for
numerous areas of respiratory science research and clinical
practice. In a single breath, the velocity-volume relationship
creates a flow-volume loop, offering intuitive respiratory diag-
nostic information [39]. Over multiple breaths, the rate-volume
relationship is reflected in minute ventilation. Resting and max-
imal ventilation (MV and MVYV, respectively) indicate the vol-
ume of air breathed over a period in resting and forced states,
respectively, serving as important indicators of metabolic and
cardiopulmonary capacity [40].

This complex interrelationship guides clinical respiratory
strategies and exercise regimens, which are tailored to different
types of lung diseases. Patients with restrictive lung diseases
(e.g., pulmonary fibrosis, asbestosis, and morbid obesity) typi-
cally exhibit rapid, shallow breathing patterns due to the higher
pressures required for lung expansion. Conversely, patients with
obstructive lung diseases (e.g., asthma and COPD) benefit from
deep, slow breathing patterns, as airway obstruction necessi-
tates higher pressures to overcome flow resistance, resulting in
reduced tidal volumes [41].

5) Measurement Methods: The monitoring methodologies
for the three respiratory parameters mentioned above can be
classified into direct and indirect techniques. Direct measure-
ment analyzes airflow parameters, while indirect methods focus
on measuring changes in body or thoracic volume during res-
piration [42], [43]. Direct measurement encompasses mechani-
cal, pressure differential, and thermosensitive approaches [44].
While mechanical methods, historically prevalent in spirometry,
have largely been superseded due to sensitivity limitations and
apparatus complexity, pressure differential and thermosensitive
methods have gained prominence. These latter methods offer
enhanced sensitivity and facilitate seamless integration into
modern electronic systems [45]. However, they are susceptible
to ambient temperature and humidity fluctuations, necessitating
real-time compensation [46]. Recent advancements in ultrasonic
flow meters have led to more sensitive measurements by miti-
gating interference from temperature and humidity fluctuations
in the airflow [47], [48]. While direct measurement techniques
excel in providing high-fidelity, detailed flow measurements,
they typically require breath inlets or masks, potentially com-
promising wearer comfort.

Indirect respiratory measurements primarily focus on volu-
metric changes in the body or thorax during respiration. Body
plethysmography, a well-established clinical method, employs
air pressure measurements at various positions within a sealed
space to estimate a range of respiratory parameters. This tech-
nique has proven particularly efficacious in quantifying airway
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Fig. 3. Physical breath monitoring in the precision medicine via emerg-
ing wearable devices. [76], [55], [58], [85], [70], [74].

resistance and has become instrumental in the diagnosis and
management of obstructive pulmonary disorders [49]. Other
indirect technologies include electromagnetic [50], optical [51],
and acoustic [52] measurement systems, which leverage radar
technology, sophisticated image processing algorithms, and
sound analysis, respectively, to assess thoracic movement. These
non-invasive methodologies offer superior patient comfort, ren-
dering them especially suitable for pediatric and critically ill
populations. However, the optimal implementation of these tech-
niques typically requires fixed equipment configurations and
specialized professional oversight [53].

6) Wearable Devices: In recent years, wearable smart de-
vices for respiratory monitoring have gained considerable at-
tention [54], as shown in Fig. 3. While these devices may have
certain limitations in temporal resolution and precision, they
offer a distinct advantage as they enable continuous, real-time
monitoring in everyday settings. This functionality offers a
practical alternative to high-precision respiratory monitoring
systems, which are often expensive, bulky, and impractical for
routine use.

The most intuitive approach to respiratory parameter moni-
toring involves attaching devices to the facial region, providing
direct access to breath airflow [55], [56], [57]. Face masks,
now ubiquitous wearable items, serve as an ideal platform
for such breath monitoring [58], [59]. with some capable of
self-recharging to achieve filtration of pathogens and particulate
matter [60], [61]. Current research in this domain focuses on
measuring airflow vibrations [62], pressure [63], humidity [64],
and temperature [65] to derive insights into respiratory health.
However, several factors complicate quantitative analysis, in-
cluding the spontaneous nasal cycle during human respira-
tion, variations in device placement, and non-enclosed respi-
ratory mask spaces. Consequently, research has predominantly
yielded qualitative results, primarily regarding respiratory rate,
with fewer accurate quantitative studies on respiratory velocity
and volume. While some devices utilize enclosed masks for
qualitative respiratory analysis, the complexity of these systems
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precludes their suitability for daily use [66], [67]. Alternative ap-
proaches like chest strips utilizing electrical analysis techniques,
such as electrical impedance tomography (EIT) [68] and strain
[69], [70], [71] measurements, allow for respiratory analysis
(rate and volume) during sleep or exercise. Concurrently, mo-
tion detection [72] and photoplethysmography (PPG) devices
[73], like smart wristbands [74] and earphones [75], [76], show
promise in estimating respiratory rates through algorithm-based
approaches. However, these wearable devices often focus on
qualitative measurements of respiratory rate or relative intensity,
with limited quantitative information [77].

B. Breath Voice

Breath sounds, encompassing both audible respiratory sounds
and those detected through auscultation, are vital indicators in
clinical assessments. These acoustic phenomena originate from
mechanical vibrations generated as air traverses the complex
architecture of the respiratory system. Meticulous auscultation
and analysis of these sounds enable clinicians to identify mani-
festations of numerous pathological conditions, including pneu-
monia, asthma, pulmonary infections, and obstructive sleep ap-
nea [78]. The diverse typology of respiratory sounds provides a
wealth of diagnostic information. Wheezes are characteristically
associated with asthma, while crackles are indicative of condi-
tions such as pneumonia, pulmonary fibrosis, and pulmonary
edema. Stridor, conversely, signifies upper airway obstruction
external to the thoracic cavity [79], [80]. Moreover, cough
sounds, characterized by sudden expulsion of air accompanied
by distinctive sounds, serve as important clinical markers in over
100 diseases and medically significant conditions [81]. As an
example, breath and cough sounds can be used to distinguish
and diagnose COVID-19 [82].

Clinically, the assessment of respiratory sounds primarily
relies on the use of stethoscopes to auscultate various thoracic
regions, facilitating the acquisition of acoustic information from
diverse pulmonary structures. However, the accurate interpre-
tation of these acoustic signals often necessitates substantial
clinical experience and can be highly subjective [80]. The advent
of digital stethoscopes and artificial intelligence has precip-
itated revolutionary changes in auscultation techniques [83],
[84]. For instance, a flexible wireless auscultation device, in-
corporating miniature wireless chips and filtering functions, has
demonstrated the feasibility of remote breath voice monitoring.
This technology has proven to be a viable solution for remote
monitoring of breath voice, particularly in critical cases such as
premature infants, where it can help detect airway obstructions,
and in patients with pulmonary surgical conditions [85].

C. Breath Temperature & Humidity

Exhaled breath temperature (EBT) has shown potential cor-
relations with airway inflammation, particularly in conditions
like asthma and COPD [86]. Two primary parameters are con-
sidered: temperature rise time and plateau temperature [86],
which may reflect microvascular function, inflammation status,
or airway remodeling in the small airways. [87]. In asthma,
elevated EBT may be associated with bronchial congestion

due to inflammation or increased microvasculature resulting
from airway remodeling [88]. Conversely, lower EBT in COPD
might indicate reduced bronchial vascular function [89], [90].
However, it’s important to note that monitoring methods and
devices can significantly influence EBT, necessitating standard-
ized protocols [91].

The relative humidity of exhaled breath typically ranges
between 60-80% [92]. Some studies suggest a potential link
between breath humidity and body hydration status, with factors
such as alcohol consumption and physical exercise potentially
influencing these measurements [93]. Furthermore, other re-
search implies that breath humidity may serve as an indicator of
certain pulmonary inflammations or diseases [94], [95]. Despite
these intriguing findings, medical research on exhaled breath hu-
midity remains limited in its clinical promise and applicability.

Wearable temperature and humidity sensors have undergone
significant advancements, primarily attributed to their stream-
lined system architecture and exceptionally rapid response
times. These characteristics render them particularly suitable for
quantifying respiratory rate and intensity [96], [97], [98]. No-
tably, nanomaterial-based sensors have emerged as a promising
avenue for respiratory temperature and humidity monitoring,
due to the unique properties conferred by their microstruc-
tures [99], [100].

[ll. EXHALED GASEOUS DETECTION

Breath, as a gaseous medium, facilitates the continuous ex-
change of molecules between the body’s internal milieu and the
external environment. With the advent of non-invasive research,
the analysis of respiratory gaseous molecules has become a bur-
geoning area of interest. From the fundamental basis of breathing
- the inhalation of oxygen and expulsion of carbon dioxide - to
everyday oral odors and alcohol breath, to the apple-like scent
or urine odor of patients’ breath, the human body continuously
manifests its health status through the composition of gaseous
molecules it exhaled (Fig. 4).

A. Sampling Methods

Breath gas monitoring methodologies can be categorized into
offline analysis and online real-time monitoring. The former typ-
ically involves the collection of exhaled breath in polymer recep-
tacles, followed by preprocessing techniques such as adsorption
or enrichment. Afterward, thermal desorption is performed prior
to analysis [101]. While offline analysis offers more reliable and
precise results, it lacks the dynamic nature and convenience of
real-time detection for tracking temporal changes and long-term
trends. Online real-time breath monitoring imposes stringent
requirements on response time, demanding a duration signifi-
cantly shorter than a single respiratory cycle (approximately 4
seconds) [102]. Additionally, some online real-time monitoring
devices incorporate air pumping systems to refresh gas within
the detection chamber, enhancing accuracy but increasing their
size [103]. When it comes to the physiological sources of breath
sampling, it is imperative to understand the unique nature of
the airway as a semi-open gas environment. This environment
consists of two key components: alveolar end-tidal air and dead
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space air. The varying compositions of these components play
acrucial role in influencing the concentration of analytes origi-
nating from diverse physiological sources. By adopting specific
breath collection modes, it becomes possible to exert control
over these gas sources [104].

B. Detection Methods

A myriad of methodologies is available for the detection of
breath gases (Table 1), each offering distinct advantages and
specific applications. As illustrated in Fig. 5, sensors based
on electromagnetic, chemical, and optical principles provide a
comprehensive toolkit for exhaled gas analysis.

1) Gas Chromatography: A widely utilized technique for
separation and detection, GC leverages the difference in partition

coefficients between the stationary and mobile phases to achieve
separation. Samples are injected into a column coated with a
liquid or solid stationary phase using a carrier gas. The varying
interactions of each component with the stationary phase result
in different migration rates, facilitating separation. GC is often
coupled with detection techniques like mass spectrometry (MS),
flame ionization, and ion migration spectrometry (IMS) [105].
Itis regarded as the gold standard for detecting exhaled volatile
gases due to its exceptional sensitivity, specificity, and accuracy.
However, GC necessitates complex sample preparation, has
lower detection throughput, and is not conducive to real-time
measurements [106], [107].

2) Direct Mass Spectroscopy: Direct MS technologies
like proton transfer reaction mass spectrometry (PTR-MS) and
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selected ion flow tube mass spectrometry (SIFT-MS) techniques
have gained prominence for their online real-time detection
capabilities in breath gas analysis [108]. These methods di-
rectly ionize compounds in exhaled gases and measure their
mass-to-charge ratios. While they offer advantages such as low
fragmentation ionization and the absence of pre-enrichment or
pre-separation, they have limitations in molecular identification
and complex sample analysis. Despite these challenges, they are
evolving as ideal alternatives or complementary technologies to
traditional mass spectrometry. Specifically, PTR-MS has some
limitations in detecting molecules with low proton affinity due
to its inherent H3O™ ionization mechanism; whereas SIFT-MS
provides a broad selection of ion sources such as H;0*, NO™,
and O3, expanding the detection range. However, the high cost
of the equipment and the relatively complex operation limit their
applications in daily life to some extent [109].

3) Electrochemical: As one of the earliest methodologies
for breath analysis [110], electrochemical sensors detect re-
dox reactions of electroactive gaseous substances on electrode
surfaces or pH changes in electrolytes due to gas dissolution
[111]. Electrochemical sensors are cost-effective and portable,
rendering them suitable for real-time and wearable monitoring in
both daily life and clinical settings [112], see Fig. 6(a). Recent
advancements in solid electrolyte research have enabled elec-
trochemical sensors to operate at ambient solution-free environ-
ments for prolonged periods [113]. However, these sensors are
constrained by specific gas species, require regular calibration,
have lower sensitivity, and are less suitable for very trace gas
detection.

4) Semiconductor: Semiconductor sensors exploit the in-
teraction between gas molecules and semiconductor surfaces
(e.g., metal oxides, carbon-based materials) for target gas detec-
tion. The reaction between the gas molecule and the semiconduc-
tor surface induces changes in carrier concentration or produces
adsorption effects, altering conductivity [114]. Semiconductor
sensors are cost-effective, exhibit rapid response times, and are
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easily integrated, making them the most extensively researched
wearable gas sensors. However, their detection principle, based
on the redox properties of gas molecules, can lead to poor
selectivity and challenges in accurately distinguishing specific
gas molecules [115]. To address this, arrayed semiconductor
sensors coupled with machine learning algorithms for array data
analysis offer enhanced discrimination and molecular specificity
in complex gaseous environments [116]. Furthermore, certain
semiconductor materials also necessitate high-temperature en-
vironments and are prone to humidity interference [117], [118].
Consequently, as depicted in Fig. 6(b), pre-removal of interfer-
ing components from exhaled gas prior to detection appears to
be a viable option.

5) Optical Spectroscopy: Spectroscopy is based on the
absorption of specific light wavelengths by target gas molecules.
Specifically, as light passes through a target gas-containing
matrix, molecules absorb light at frequencies matching their
characteristic vibrations, producing absorption peaks in the
incident light’s energy spectrum [119]. This technique offers
real-time analysis and simplicity [120]. Recent advancements in
semiconductor laser diodes and photodetectors have led to the
miniaturization of spectrometric equipment, including portable
devices [121]. However, achieving high sensitivity requires a
sufficiently long effective gas path length, posing challenges for
further miniaturization and limiting its application in wearable
devices.

6) Chemiluminesceni: Chemiluminescence is a detection
technique relies on the emission of light from energy transitions
and releases during specific chemical processes. The quantifi-
cation of analyte concentration is achieved indirectly through
the measurement of chemiluminescent signal intensity. The
selection of chemical reaction systems or sensor materials that
catalyze the luminescent reaction is crucial [122]. Chemilumi-
nescence is characterized by its simplicity, high sensitivity, and
excellent specificity, and it does not require external excitation
sources. It finds particular utility in detecting nitric oxide in
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exhaled breath for medical diagnostics [123], [124]. However,
the requirement for additional chemical substances, such as
ozone, presents challenges for miniaturization.

7) Others: In addition to the aforementioned methodolo-
gies, a diverse array of techniques has been applied for exhaled
gas sensing, including colorimetric methods [125], [126], [127],
photoacoustic [128], [129], thermal conductivity sensors [130],
and surface plasmon resonance techniques [131], [132] etc. Col-
orimetric methods are among the simplest and most stable sensor
technologies available, making them particularly well-suited for
the construction of wearable devices (Fig. 6(c)). However, their
selectivity and sensitivity are relatively limited compared to
other techniques.

C. Biomarkers

1) Oxygen and Carbon Dioxide: Oxygen, an essential el-
ement for sustaining life, plays a vital role in biological pro-
cesses. During the respiratory cycle, atmospheric oxygen enters
the pulmonary system, diffusing across the alveolar-capillary
membrane into the circulatory bloodstream. Here, it binds to
erythrocyte hemoglobin, forming oxyhemoglobin, which trans-
ports oxygen to various tissues and organs. Within these tissues,
oxygen dissociates from hemoglobin and participates in cellular
respiration, acting as the terminal electron acceptor in the mito-
chondrial electron transport chain. This process culminates in the
production of adenosine triphosphate (ATP), the primary energy
currency of cells, powering diverse cellular functions. [133].

Oxygen uptake (VO3) is a critical measure, reflecting the
amount of oxygen absorbed and utilized by the body. In exercise
physiology, VO3 reflects the consumption of oxygen by exercis-
ing muscles. By analyzing the oxygen content in inhaled and ex-
haled air, researchers can quantify VO3, providing insights into
exercise capacity and metabolic capabilities. Within seconds to
minutes after the onset of intense exercise, VO, may rise rapidly
from about 0.25 L/min at rest to an individual maximum that
may exceed 5 to 6 L/min, known as maximal oxygen uptake
(VOsgmax) [134], [135]. VOg,,. has a close correlation with
exercise and metabolic capacity [136], [137]. The kinetics of
VO changes are also commonly used to analyze cardiopul-
monary function in patients with pathologically slowed VO
kinetics, such as those with COPD and other obstructive lung
diseases [138].

While oxygen is essential for cellular respiration, it also
gives rise to a metabolic waste product: carbon dioxide. After
carbon dioxide is produced during cellular metabolism, it needs
to be transported through the bloodstream to the lungs for
removal. Carbon dioxide is transported in the blood in three
main forms: dissolved in plasma, combined with hemoglobin
to form carbaminohemoglobin, or converted to bicarbonate. In
the capillaries, carbon dioxide diffuses into the erythrocytes,
where it partially combines with water to form carbonic acid,
which rapidly dissociates into hydrogen ions and bicarbonate
by the enzyme carbonic anhydrase. This process plays a key
role in maintaining acid-base balance and metabolic homeostasis
[139]. Eventually, carbon dioxide is re-released in the alveolar
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capillaries, diffuses from the blood into the alveoli, and is
expelled from the body through exhalation.

Oxygenation and ventilation are independent physiological
processes, and monitoring oxygenation alone, such as through
pulse oximetry, is insufficient for assessing ventilatory function.
Carbon dioxide levels, on the other hand, provide a more accu-
rate reflection of ventilation [ 140]. The study of carbon dioxide is
particularly relevant in the context of hypoventilation due to lung
diseases, such as hypercapnia resulting from delayed carbon
dioxide removal [141] or hypocapnia caused by hyperventilation
[142]. Exhaled carbon dioxide monitoring has important clinical
applications, including confirming endotracheal intubation and
recognizing the serious consequences of mistaken esophageal
intubation [143]. Additionally, it plays a vital role in diagnosing
obstructive sleep apnea syndrome (OSAS), enabling timely in-
tervention. Another significant medical application is the breath
13CO, test. This technology involves administering a substance
labeled with a stable isotope of carbon ('3C) to the subject,
which, upon metabolism, produces '3CO5. The ratio of '*CO; to
12C0O, in the exhaled breath is then measured, providing valuable
information about metabolic processes in the body [144]. For
instance, the Breath '3COj test can be used to assess liver func-
tion [145], diagnose Helicobacter pylori (HP) infections [146],
and monitor metabolic disorders [147]. Furthermore, synergistic
research on oxygen and carbon dioxide, exemplified by indirect
calorimetry, estimates energy metabolism and receptor utiliza-
tion, offering a profound understanding of human metabolic
dynamics and their impact on overall health [148]. Thus, carbon
dioxide monitoring stands as a cornerstone in gaining insights
into the patient’s respiratory and metabolic state.

Four prevalent clinical monitoring methods are employed
for the in vivo assessment of oxygen and carbon dioxide: 1)
arterial blood gas analysis (PaO3, PaCO3), 2) end-tidal breath
analysis (PetO, PetCO,), 3) pulse oximetry (SaO,), and 4)
transcutaneous gas analysis (PtcOg, PtcCOs). Blood gas analysis
serves as the gold standard for evaluating respiratory function
and blood acid-base balance, but its invasive nature presents
challenges for continuous monitoring [149], [150]. The other
three non-invasive methods as alternatives can reflect blood gas
parameters under certain conditions [151]. End-tidal analysis di-
rectly analyzes exhaled gas composition, offering superior real-
time capabilities, albeit requiring cuambersome equipment. Pulse
oximetry is a non-invasive method that measures the oxygen
saturation ratio in arterial blood by analyzing light absorption
changes during pulsatile blood flow. Although it is convenient, it
can be affected by factors like low perfusion, leading to potential
inaccuracies [152]. Transcutaneous gas measurements provide
a more comprehensive assessment of tissue gas content. This
technique involves locally heating the skin to induce vasodilation
and enhance gas diffusion. By doing so, it more accurately
reflects blood gas values, including not only oxygen but also
carbon dioxide levels. Consequently, transcutaneous gas moni-
toring offers broader applicability in clinical settings, enabling
continuous assessment of both ventilation efficiency and tissue
oxygenation status. [153].

Clinical oxygen and carbon dioxide sensing systems typically
consist of sampling devices and sensing units. Sampling devices

can be categorized based on medical applications and wear loca-
tions, including blood gas analyzers [154], Douglas bags [155],
respiratory masks [156], transdermal patches [157], and indirect
calorimetry hoods [156], among others. Regarding gas sensing
units, current CO3 sensors for respiratory gas analysis are based
on Non-dispersive infrared (NDIR) principles [158], offering
rapid response but requiring gas chamber and air pump systems
for gas renewal. For blood gas and transcutaneous analysis of
dissolved gases and miniaturized devices, CO3 analysis tech-
niques rely on electrochemical technology using Severinghaus
electrodes [159]. Oxygen analysis across various forms is based
on electrochemical Clark electrodes [160].

Recent research has focused on wearable analytical devices,
such as NDIR-based masks and skin electronic systems for CO2
concentration measurement[161], [162]. Wearable oxygen sens-
ing devices utilize colorimetric [163], [164] or electrochemical
methods [165], offering miniaturization and integration poten-
tial. However, practical performance still needs improvement
in terms of response speed, measurement accuracy, calibration
frequency, membrane replacement, and duration. From system-
atic perspective, minimizing the size of wearable sensors while
maintaining measurement precision is crucial for realizing the
full potential of this field.

2) Nitric Oxide: Fractional exhaled nitric oxide (FeNO) is
an important biomarker in diagnosing and managing airway
inflammation. Nitric oxide is a gas molecule produced by air-
way epithelial cells under the influence of specific enzymes
such as inducible nitric oxide synthase (iNOS). Its concentra-
tion accurately reflects the inflammatory level of the airways,
providing clinicians with a non-invasive, rapid, and reliable
assessment method to diagnose and treat airway inflammation,
like asthma. Specifically, due to chronic airway inflammation,
asthma patients typically have higher FeNO levels than healthy
individuals. Through regular FeNO measurements, doctors can
dynamically assess the severity of airway inflammation and
adjust treatment plans accordingly, particularly the dosage of
anti-inflammatory treatments like inhaled corticosteroids. [ 166].
Besides asthma, FeENO measurement is also applicable to other
eosinophil-related inflammatory airway diseases such as COPD,
allergic rhinitis, and eosinophilic bronchitis [167]. In these con-
ditions, changes in FeNO levels can reflect disease states and
treatment efficacy, providing an important reference for clinical
decision-making.

Two main methods are used to detect exhaled nitric oxide:
the ozone chemiluminescence method, considered the gold
standard, and electrochemical devices suitable for portable
applications. In the chemiluminescence method, ozone (Os3)
reacts with nitric oxide (NO) to produce nitrogen dioxide (NO3)
and oxygen (O3). During the formation of nitrogen dioxide,
some NO; molecules are in an excited state (NOs.). As these
excited NO; molecules return to their ground state, they emit
photons (i.e., luminescence) [168]. This principle is used in
commercial instruments, like the model 280i by Sievers. With
electrochemical technological advancements, FeNO measuring
devices (such as NIOX MINO) are becoming more portable and
suitable for a broader range of clinical and home environments,
making personal, independent measurements possible [169].
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These devices measure NO concentration by oxidizing NO at
a platinum electrode at 0.8 V, correlating the oxidation current
with NO concentration after removing interfering gases and
other components [170]. However, NO concentrations obtained
through commercial electrochemical devices are generally
slightly lower than those from chemiluminescence devices
[171].

3) Ammonia: Ammonia in exhaled breath is closely related
to protein metabolism in the body, primarily originating from the
breakdown of proteins, amino acids, and urea. The metabolism
and excretion of ammonia is a physiological process involving
the coordinated action of multiple organ systems [172], [173],
with the oral cavity being a significant source of ammonia
in exhaled breath. Urea in saliva is broken down by urease
produced by oral bacteria, generating substantial amounts of
ammonia, which helps neutralize acidic substances, protecting
the oral mucosa and teeth from acid erosion [174]. This natural
buffering mechanism plays a crucial role in maintaining oral
health. In certain disease states, the concentration of ammonia
in exhaled breath can change significantly, thus holding potential
diagnostic value. For instance, patients with renal insufficiency
have markedly elevated urea levels in blood and saliva due to
impaired urea excretion. This leads to the production of large
amounts of ammonia in the oral cavity, giving the patients’
breath a characteristic ammoniacal odor. This phenomenon is
not only a clinical manifestation of renal insufficiency but also
offers possibilities for non-invasive kidney function assessment
[175]. Furthermore, the levels of exhaled ammonia are also
associated with HP infection in the stomach. Studies have shown
that without urea ingestion, HP-positive individuals have lower
exhaled ammonia levels compared to normal subjects. However,
upon urea ingestion, HP-positive individuals exhibit a notable
increase in ammonia levels due to the urease produced by HP
in the stomach, which breaks down urea into ammonia. This
ammonia is then absorbed into the bloodstream and exhaled
through the lungs. In contrast, normal individuals show minimal
change in ammonia levels [176]. This difference provides a
theoretical basis for developing HP infection diagnostic methods
based on exhaled ammonia detection [177].

For the detection of breath ammonia, a crucial point to con-
sider is that ammonia is highly soluble in water. Therefore,
humidity measurement or dehumidification is necessary before
detecting gaseous ammonia. Numerous methods can achieve
breath ammonia detection [178]. However, most methods rely
on complex systems and are not suitable for daily monitoring.
Despite the development of wearable devices based on chemire-
sistive [179] and colorimetric [180] principles for ammonia
detection, these devices have not yet provided in situ quantitative
measurement data.

4) Acetone: Acetone, a prominent gas molecule in biologi-
cal analysis, is primarily produced through fat metabolism in the
body. When carbohydrate supply is insufficient, the body turns
to fat reserves for energy, generating ketone bodies like acetone
during ketogenesis. Acetone is released into the bloodstream
and expelled through breath [181]. In specific conditions, such
as in diabetic ketoacidosis, prolonged fasting, or ketogenic diets,
the concentration of acetone in exhaled breath can increase

significantly [182]. In healthy individuals, the concentration of
exhaled acetone is relatively low, typically ranging from 0.1
to 2 ppm. Mild fasting or low-carbohydrate diets may elevate
acetone concentrations to between 2 and 10 ppm, while in
cases of diabetic ketoacidosis or strict ketogenic diets, the con-
centration of acetone in exhaled breath may exceed 100 ppm,
demonstrating a wide range of concentrations [183]. Due to this
variability, breath acetone analysis shows great promise in the
fields of diabetes management [184], metabolic nutrition [185],
and liver function assessment [186].

For offline measurement of exhaled acetone content, GC-MS
is considered the gold standard. From the perspective of portable,
wearable online measurements, chemiresistive and electrochem-
ical sensors are popular research areas [183]. Chemiresistive
sensors utilize nanomaterials to enhance sensitivity and selec-
tivity for acetone gas, but have difficulty eliminating interfer-
ence from other gases. Consequently, some research focuses
on preprocessing breath gas to remove interfering components
[187], [188]. Electrochemical sensors face challenges in con-
structing the chemical reaction system, with approaches based
on enzyme systems requiring further evaluation of selectivity
[189], [190]. Other sensors are based on strong acid electrolytes,
which significantly limit their potential for wearable applica-
tions [191], [192].

5) Hydrogen and Methanol: Hydrogen-producing bacte-
ria, especially anaerobic bacteria, are present in the intestines
of both healthy people and patients suffering from lactulose
intolerance or small intestinal bacterial overgrowth. These bacte-
ria produce hydrogen by fermenting unabsorbed carbohydrates.
When small intestinal carbohydrates are malabsorbed or small
intestinal bacteria are overpopulated, large amounts of unab-
sorbed carbohydrates reach the colon, leading to significant
hydrogen production. The hydrogen is absorbed into the circula-
tion and eventually released through expiration [193]. Although
the sensitivity of the hydrogen breath test is only 30-40%, it is
popular due to its non-invasiveness [194].

Measurements of methane are closely related to hydrogen
concentrations. Approximately 15-30% of the human intesti-
nal flora contains Pseudomonas smithi, a bacterium that con-
verts four hydrogen atoms into one methane molecule [195].
In addition, studies have shown that methane concentration
is positively correlated with the constipation severity, provid-
ing new insights for the diagnosis of intestinal dysfunction
[196], [197]. Thus, combined measurements of hydrogen and
methane can significantly improve diagnostic accuracy for mal-
absorption syndromes and small intestinal bacterial overgrowth
[198].

Electrochemical [199] and chemiresistive [200] sensing tech-
nologies have made hydrogen testing equipment more afford-
able, increasing the popularity of non-invasive breath hydrogen
tests. Some sensors based on thermal conductivity measure-
ments are also commonly used for hydrogen detection due
to the significant difference in thermal conductivity between
hydrogen and other gases [201]. Additionally, sensors utilizing
the Seebeck effect, where trace hydrogen undergoes combustion
reactions, raising the temperature at the reaction interface, can
assess hydrogen content. [202], [203]. Methane monitoring is
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primarily based on optical methods, such as photoacoustic and
optical absorption [204], [205].

6) Ethanol and Acetaldehyde: Breath ethanol testing has
proven to be a remarkable success in the field of breath analysis,
establishing itself as a reliable gold standard for alcohol detec-
tion. The strong linear relationship between breath and blood
ethanol levels has made it an indispensable tool in legal and
medical settings [206]. Recent research has unveiled an intrigu-
ing phenomenon: the production of ethanol in the intestines,
even without alcohol consumption, suggesting a potential link
to obesity and fatty liver disease. This finding offers a novel
perspective on obesity-related disorders [207], [208]. Acetalde-
hyde, the first metabolite of ethanol, is primarily produced in
the liver. The concentration of acetaldehyde in exhaled breath
is typically lower than that of ethanol and can be used to assess
alcohol metabolism status [209]. Furthermore, as an aldehyde,
endogenous acetaldehyde is also important in cancer metabolism
research [210].

Breath Alcohol Concentration (BrAC) measurement has ad-
vanced significantly, with electrochemical methods leading the
way. Electrochemical fuel cell-based sensors, widely used in
commercial breathalyzers, have become prevalent due to their
simplicity, portability, cost-effectiveness, rapid detection, ac-
ceptable accuracy, data linearity, sensitivity, and alcohol selec-
tivity. These attributes facilitate real-time measurements, hand-
held device applications, and overall efficacy in both research
and practical BrAC assessment scenarios [211]. Enzymatic al-
cohol sensors present a promising alternative for BrAC mea-
surement. Sensors utilizing alcohol oxidase (AOx) and alcohol
dehydrogenase (ADH) enzymes provide cost-effective solutions
for ethanol detection [212]. Additionally, sensors based on alde-
hyde dehydrogenase enzymatic reactions excel in measuring
acetaldehyde, a key metabolite of ethanol [209]. These enzyme-
based sensors complement existing technologies, offering ad-
vantages in terms of cost and specificity for both ethanol and its
metabolites in breath analysis applications.

7) Sulfide Containing: Exhaled sulfur compounds are valu-
able biomarkers for oral hygiene assessment and airway in-
flammation detection. In oral health, bacteria in the mouth pro-
duce sulfur compounds such as hydrogen sulfide (H2S), methyl
mercaptan (CH3SH), and dimethyl sulfide (CH3SCHs) when
breaking down sulfur-containing amino acids. Detection of
volatile sulfur compounds (VSCs) enables evaluation of halitosis
severity and periodontal disease status [213], [214]. In airway
inflammation, sulfur compound detection aids in diagnosing
and monitoring inflammatory conditions like asthma and COPD
where elevated sulfur compound levels are observed [215].

Semiconductive chemiresistors are extensively studied for
VSC detection, offering structural stability, high sensitivity, and
low cost [216]. Carbon-based materials enable VSC measure-
ments at room temperature, facilitating wearable device integra-
tion [217].

8) Carbon Monoxide: Carbon monoxide (CO) is an impor-
tant biomarker for assessing smoking status [218]. Additionally,
exhaled carbon monoxide (eCO) has shown potential in assess-
ing inflammation in asthma, COPD, cystic fibrosis, and lung
cancer [219], [220], [221]. Furthermore, CO is also commonly
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used in lung diffusion testing (DLCO) to measure the lung’s
capacity for oxygen absorption [222].

Electrochemical sensors are the mainstream commercial de-
vices for CO monitoring, capable of distinguishing the com-
monly used 6 ppm threshold for smokers [223]. However, for
lower physiologically relevant endogenous CO levels, MS or
NDIR methods are required for measurement [224], [225].

9) Other VOCs: The aforementioned volatile substances
are relatively characteristic elements, either possessing distinct
physiological properties or being present in high concentrations.
However, breath still contains over 200 other VOCs of significant
medical value, though clinical trial data based on these VOCs
have not yet been fully integrated into our understanding of
functional and mechanistic physiology [226]. Relevant medical
fields include cancer [227], gastrointestinal disorders [228],
pulmonary inflammation [229], cardiovascular disease [230],
diabetes metabolism [231], and liver metabolism [232]. The
types of compounds encompass alkanes, aldehydes, ketones,
aromatics, carboxylic acids, furans, and esters. The complex in-
terplay between these compounds and clinical physiology makes
it challenging to establish a consensus on the efficacy of individ-
ual compounds in identifying specific diseases. Consequently,
omics approaches are often employed to study these VOCs.
For instance, furans, cyclic hydrocarbons, aromatic compounds,
and benzene derivatives have been consistently identified as
cancer markers. The pathophysiology of COVID-19 involves
inflammatory responses characterized by oxidative stress, which
is linked to aldehydes and hydrocarbons [233].

Many semiconductor-based VOC sensors, while capable of
measuring the equivalent total amount of VOCs, generally
lack selectivity and thus cannot be directly used for precise
classification and measurement of VOCs [234]. Therefore, MS
remains the primary tool for clinical detection of volatile organic
compounds.

IV. CHEMICAL NON-VOLATILE SUBSTANCES TEST

Breath non-volatile substances originate from the micro-
droplets of the respiratory tract. The alveolar surface is lined
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polymerase chain reaction.

with a surfactant and fluid layer containing various molecules.
The epithelial cells lining the airways (bronchioles) are covered
with airway surface liquid. During exhalation, these fluids are
disturbed by airflow, forming aerosols and droplets of varying
sizes. As shown in Fig. 7, these substances contain a broad range
of components from small ions to macromolecules like proteins.
Their composition provides valuable insights into the origin and
chemical environment within the respiratory tract, making them
highly promising non-invasive samples for assessing human
health status.

A. Sampling Methods

Breath sampling methods for non-volatile substances offer
two primary approaches: exhaled breath aerosol (EBA) and
exhaled breath condensate (EBC). As illustrated in the Fig. 8(a),
EBA collection utilizes collection films integrated into wearable
breath platforms, such as face masks. By wearing these devices
for a specified duration, sufficient EBA samples are obtained.
A solvent is then added to extract and dissolve the aerosol
particles, facilitating further biochemical analysis. While this
method is simple and cost-effective, its reliance on external
solvents can impact stability and reproducibility, limiting its use
in quantitative detection and continuous monitoring.

EBC is a liquid matrix containing non-volatile substances
and soluble gases. It is generated when high-temperature, high-
humidity exhaled air comes into contact with a cold interface,
causing breath vapor to condense into liquid while trapping
aerosols and droplets. According to the Fig. 8(b), two common
clinical collection methods involve using collection tubes in
temporary low-temperature environments or employing thermo-
electric cooling devices. While the former is simple, it has a short
cooling duration and fluctuating condensation temperatures.
The latter maintains stable temperatures but is energy-intensive.
Both methods are bulky, hindering long-term monitoring and

wearable applications. Moreover, they overemphasize extremely
low temperatures (<0°C, while the actual dew point is only
about 5 °C lower than breath temperature, ~30 °C), resulting in
excessive EBC sample production, which contradicts the current
trend in microfluidic analysis. Low temperatures also result in
high EBC dilution ratios and therefore lower biomarker concen-
trations, complicating detection. Recently, with the emergence
of passive cooling technologies, hydrogel cooling and radiative
cooling have been applied to the condensation process of EBC
[235]. These methods are compact, energy-efficient, and suitable
for wearable devices, producing desirable detection volumes and
enabling continuous monitoring. Additionally, in the sampling
of non-volatile substances in exhaled breath, several critical
factors must be considered. Primarily, the coating material of the
condensing surface at the sampling interface must possess non-
adhesive properties towards biomarkers [236]. To mitigate oral
saliva contamination, nasal exhaled breath collection methods
can be employed, or salivary amylase tests can be utilized to ver-
ify contamination levels. Furthermore, attention must be paid to
the potential degradation of active substances and dilution ratio
variations of samples due to differences in temperature and hu-
midity to ensure the accuracy and reliability of the collected data
[237]. In EBC research, it is imperative to focus on collection
methodologies and environmental conditions while mitigating
exogenous factors that may confound experimental results.

B. Detection Method

1) Spectrometry: Spectrometric technologies, including
MS [238], nuclear magnetic resonance (NMR) [239], and ion
mobility spectrometry (IMS) [240] offer both offline detection
and online monitoring capabilities for non-volatile breath anal-
ysis (see Fig. 8(c)). Liquid chromatography-mass spectrometry
(LC-MS) systems are commonly utilized for offline analysis
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of non-volatile breath metabolites and proteins. Prior to LC-
MS analysis, breath analytes typically undergo preprocessing
steps, including extraction, centrifugation, and concentration
[241]. In contrast, online spectrometric analysis involves direct,
real-time, and efficient ionization of molecules from exhaled
breath. Electrospray ionization (ESI) is a common ionization
technique employed in this context [242]. These spectrometric
methods facilitate high-throughput and accurate measurements,
often regarded as the gold standard in breath analysis. However,
it is noteworthy that these systems are generally characterized
by their complexity and substantial cost.

2) Elecirochemical: Electrochemical sensors present a
compelling option for measuring electroactive non-volatile
biomarkers in breath. Their low cost, operational simplicity,
and ease of integration into compact devices make them highly
attractive [243]. Furthermore, their versatility allows for effec-
tive integration with other biotechnologies, such as immuno-
logical techniques [244] and aptamer-based technologies [245],
resulting in sensors with multiple measurement principles. Con-
sequently, several studies have explored EBC bioanalysis using
electrochemical sensors, including the analysis of ions [246],
reactive oxygen species [247] and proteins [248]. Thus, the ease
of integration positions electrochemical sensors as a promising
technological solution for portable and wearable devices in
detecting non-volatile substances in breath.

3) Chemical Assay Kit: Chemical assay kits are widely
utilized for analyzing small molecules in EBC. These kits, with
their pre-formulated reagents and detailed protocols, offer a
convenient and standardized approach to specific analyses. Due
to the predominantly aqueous nature of EBC and the absence of
significant interfering substances, pretreatment is often unnec-
essary, allowing for direct analysis using assay kits. The advan-
tages of chemical assay kits lie in their convenience, consistency,
and reproducibility, with many kits employing colorimetric or
fluorescence detection techniques. These kits play a crucial role
in simplifying experimental procedures, enhancing efficiency,
and standardizing EBC analysis [249].

4) Immunology: Immunological methods are powerful
tools for studying biomacromolecules in EBC. Based on the
principle of specific antigen-antibody binding, these techniques
enable efficient and sensitive detection and quantification of pro-
teins [250], cytokines [251], and other biomarkers in EBC [252].
Common immunoassay techniques include enzyme-linked
immunosorbent assay (ELISA), immunofluorescence, and
electrochemical sensing, offering high specificity, sensitivity,
and the capability for multiplexed analysis. With the advance-
ments in microfluidic technologies and nanomaterials, novel im-
munosensors have shown great promise in EBC analysis, further
expanding the possibilities for accurate and reliable biomarker
detection [253].
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C. Wearable Systems

Wearable devices are at the forefront of innovation in the
analysis of non-volatile breath substances, offering a promising
avenue for non-invasive, portable, and real-time monitoring of
breath biomarkers. Research in this area primarily focuses on
two aspects: EBA studies and EBC analysis. In EBA research,
researchers are developing technologies to capture and ana-
lyze particles in exhaled breath. These particles may contain
important biomarkers such as inflammation biomarkers [247]
(Fig. 9(a)), viruses [254], [255] (Fig. 9(b)), or bacteria [256].
Mask-based platforms are of particular interest as they seam-
lessly integrate into daily life without additional burden on users,
equipped with miniature sensors and sampling media for in-situ
aerosol collection and analysis during wear [257], [258].

The smart mask-based EBC analysis system, depicted in
Fig. 9(c) [235], integrates mini-condensers, microfluidic de-
vices, and diverse sensing elements to detect multiple biomark-
ers in EBC. The primary challenge in EBC analysis revolves
around the feasibility, stability, and continuous collection of
EBC using wearable devices. Key factors influencing this pro-
cess include the condensation of exhaled breath and the material
characteristics that impact droplet nucleation and accumulation.
Passive cooling methods, such as hydrogel evaporation and
radiative cooling, are considered ideal solutions to overcome
these challenges. Another critical aspectis the miniaturization of
sensor-based devices, where electrochemical sensors excel due
to their exceptional compactness. By focusing on these areas, the
field of wearable EBC devices can advance significantly [259],
[260]. All aforementioned technologies are characterized by low
power consumption, which significantly mitigates the challenge
of power supply in wearable devices.

Given the convenience and cost-effectiveness of these wear-
able devices, extensive clinical validation is a crucial step in
the transition of novel breath analysis devices from laboratory
to practical applications. This validation process aims to as-
sess the accuracy, reliability, and practicality of these devices
in diagnosing and monitoring various health conditions. With
ongoing advancements in materials science, electronics, and
biosensing technologies, wearable breath analysis devices show
great promise in the analysis of non-volatile substances for early
disease diagnosis, chronic disease management, and personal-
ized medicine.

D. Biomarkers

1) Small Molecules:

a) pH: pH serves as a robust and reproducible biomarker
in EBC, reflecting airway acidity [261]. In healthy individuals,
the airways maintain a slightly alkaline environment [262].
However, in patients with obstructive airway diseases such as
asthma [263], COPD [264], and cystic fibrosis [265], the airways
often become acidified. This acidification process enhances the
production of acidic droplets in the airway lining fluid (ALF),
which are then more readily captured in the EBC, contributing to
its acidic nature [261]. However, the measurement of EBC pH,
while informative, presents technical challenges. It necessitates

the exclusion of volatile carbon dioxide (imparting EBC car-
bonic acid properties), typically achieved by bubbling an inert
gas (e.g., argon) through the sample or by controlling carbon
dioxide partial pressure [266]. This requirement complicates
in-situ pH monitoring of EBC.

b) Hydrogen peroxide: Elevated levels of HyO3 in
EBC have been frequently observed in patients with airway
inflammation [267], [268]. This increase is attributed to the ac-
tivation of various cells in the respiratory system during inflam-
matory processes, including airway epithelial cells, endothelial
cells, neutrophils, alveolar macrophages, and eosinophils. These
activated cells produce superoxide radicals, which subsequently
generate HoOo. However, the origin of HyO3 in EBC remains
a subject of debate. Some researchers propose that water vapor
might spontaneously generate hydrogen peroxide at the conden-
sation interface, raising questions about the source of HoOs in
EBC samples [269], [270]. Regardless of its origin, the reactive
nature of HoO5 necessitates immediate monitoring for optimal
detection and quantification [247].

Most clinical studies rely on HyO assay kits that utilize
peroxidase enzymes (such as horseradish peroxidase, HRP) to
catalyze the reaction between Hy O and specific substrates, pro-
ducing detectable fluorescent or colored products. The intensity
of these products is proportional to the H, O, in the sample [271].
The advent of electrochemical sensors has enabled real-time
analysis of HoO3 in EBC, based on the redox current of HyOo
at Prussian blue or platinum electrodes in microfluidics [272],
[273]. However, both HyO> assay kits and electrochemical
sensors exhibit relatively low sensitivity, with HyO» levels in
EBC often approaching their lower limits of detection.

c) Nitrite/nitrate: NO,~ and NO3 ™~ play dual roles as
both products and precursors in the NO metabolic cycle [274].
In healthy individuals, their levels in EBC are typically low.
However, these levels can increase significantly in conditions
such as respiratory infections, asthma, and COPD [275], [276].
This elevation generally indicates inflammatory responses in
the respiratory tract, reflecting increased NO production. Ad-
ditionally, levels of NO derivatives such as S-nitrosothiols and
nitrotyrosine may also be elevated in these conditions [277].

NO;™ and NOs ™~ assay kits utilize NO3 ™~ reductase enzymes
to convert NO3~ to NOy ™~ (alternatively only NO»™ detection
without the enzyme), followed by the Griess reaction to detect
total NO, . This reaction produces a colored azo dye, with inten-
sity proportional to the concentration of NO; ™~ and NO3 ™ in the
sample [278], [279]. The advent of ion-selective or carbon-based
redox electrodes has enabled real-time analysis of NO;~ and
NO3~ in EBC, based on the potentiometric and amperometric
response of these ions at specific membrane electrodes or elec-
trode potential (~0.7 V) [246], [280].

d) Ammonium: NH4 is the dominant ion in the EBC,
primarily originating from the dissolution of NHz [281]. This
relationship is governed by Henry’s law for soluble gas-solution
ion equilibrium, offering a potentially effective method for indi-
rectly monitoring NH3 gas levels in breath. The quantification
of NH,* in EBC presents several advantages over conven-
tional NH3 gas monitoring, particularly in addressing challenges
such as real-time measurements and humidity interference. This
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approach may prove more suitable for long-term wearable mea-
surements in breath monitoring.

NH, " assay kits typically utilize the Berthelot reaction, where
NH, T reacts with phenol and hypochlorite to form indophenol
blue, with light intensity proportional to NH,* concentration.
The development of ion-selective electrodes has enabled real-
time analysis of NHy™ in EBC, based on the potentiomet-
ric response of these ions at specific ion-selective membranes
(Nonactin-based) on electrodes [282].

e) Arachidonic acid derivatives (8-isoprostane
and leukotrienes): Arachidonic acid (AA), a polyunsatu-
rated omega-6 fatty acid predominantly found in cell membrane
phospholipids, serves as a precursor for various biologically
active substances. Through diverse enzymatic pathways, AA
is metabolized to produce compounds such as 8-isoprostane
[283], prostaglandins [284], and leukotrienes (LTs) [285]. These
metabolites exhibit potent inflammatory bioeffects on airway
epithelial cells and other airway cells. The ALF serves as a
crucial medium for these effects, containing substantial amounts
of AA and its derivatives [286], [287]. EBC, being a non-
invasive sample of ALF components, allows for the detection
of 8-isoprostane, LTs, and prostaglandins. These compounds
have emerged as important biomarkers for oxidative stress and
respiratory inflammation. Most pulmonary diseases demonstrate
elevated concentrations of these derivatives in EBC, reflecting
oxidative stress conditions [288].

Methods for detecting AA derivatives in EBC include
GC/MS, LC/MS, radioimmunoassay (RIA), and enzyme im-
munoassay (EIA). By integrating immunosensing techniques
[289] or molecularly imprinted polymer (MIP) [290] technolo-
gies, electrochemical sensors can effectively detect biomarkers
such as 8-isoprostane and leukotrienes [291].

f) Others: Electrolytes, trace metals, adenosine, glu-
cose, and lactate represent a significant class of small molecule
biomarkers that reflect the ionic balance, metabolic state, and
redox environment of the respiratory tract. Electrolytes (such
as sodium, potassium, and chloride) potentially indicate the
dilution ratio of EBC to ALF [292]. Trace metals (like iron and
zinc) are involved in the regulation of airway inflammation or
serve as monitors for specific occupational environments [293].
Adenosine acts as a signaling molecule regulating airway reac-
tivity [294], while glucose [295], [296], [297] and lactate [298],
[299] reflect the glucose content and energy metabolism status of
the pulmonary fluid environment. Encouragingly, several studies
have reported on the quantification of glucose and lactate in
EBC using electrochemical devices. This suggests the potential
for continuous, wearable monitoring of these biomarkers [300],
[301]. Concentration changes of these molecules may indicate
various respiratory diseases, including asthma, COPD, and cys-
tic fibrosis. These small molecules are relatively stable in EBC,
easily detectable, and often respond rapidly to physiological
and pathological changes. Their comprehensive analysis can
provide multidimensional information about the respiratory tract
microenvironment, aiding in early disease diagnosis, condition
monitoring, and treatment response evaluation, thus offering
crucial insights for personalized precision medicine in respi-
ratory system diseases.

2) Proteins: EBC proteins, primarily cytokines, play a cen-
tral role in the immune and inflammatory response of the host
defense system. Based on their ability to either promote or inhibit
inflammatory responses, these cytokines can be divided into
three categories: pro-inflammatory cytokines (e.g., IL-1/, IL-2,
IL-6,IL-8,IL-12, IL-17, IFN-v, and TNF-«v), anti-inflammatory
cytokines (e.g., IL-4, IL-5, IL-10, IL-13, and TGF-§), and
chemokines (e.g., IL-8, MCP-1 and MIP-18). Systematic cy-
tokine analysis is important for the diagnosis and treatment
of airway diseases [302]. Furthermore, the C-reactive protein
(CRP) content in EBC is considered to provide another useful
diagnostic tool for detecting and monitoring low-grade inflam-
mation in asthma patients [303].

Proteins in EBC can be detected by using ELISA. Studies have
reported that the levels of several cytokines in EBC ranging from
approximately 1-50 pg/mL [251], [304]. However, the accuracy
of these values remains challenging due to cytokine levels in
EBC are typically near the lower limit of the assay methodology.
Combining immunological and electrochemical methods shows
significant potential. This approach allows sensing elements to
induce electrical signals upon capturing large target molecules
like proteins [248], [305]. In addition, surface acoustic wave
(SAW) sensors can be incorporated into immunosensing tech-
nologies to enable miniaturized detection of carcinoembryonic
antigen (CEA) in EBCs [253].

3) DNA/RNA: Nucleic acid detection in EBC is promis-
ing in lung cancer research [306], with investigators focusing
on various genetic and epigenetic markers such as mutation
hotspot [307], microsatellite alterations [308], mitochondrial
genes [309], cell-free DNA [310], and microRNA [311]. These
genetic and epigenetic markers are utilized not only in lung
cancer research but also in studies of other respiratory diseases
such as COPD [312].

4) Pathogens: Respiratory infections, caused by pathogens
such as viruses and bacteria, are a major global health concern.
Traditional diagnostic methods like sputum culture or swabs
may be limited by sample collection difficulties and sensitivity.
EBC allows for non-invasive sampling, suitable for children
and patients unable to provide sputum. Pathogen detection can
be categorized into endogenous and exogenous biomarkers.
Endogenous markers result from abnormal metabolic patterns
due to infection, manifesting as changes in VOCs [313] or
biomolecules [314]. Exogenous markers primarily involve de-
tecting pathogen-specific substances [305], [314]. Analysis of
EBC components using MS, immunoassays, and other tech-
niques can identify specific pathogens. Viral pathogens such
as SARS-CoV-2 [315], [316], Torque teno virus [317], HINI
[318], and influenza virus [254], [319] are primarily identi-
fied by detecting viral nucleic acid. For bacterial pathogens,
like Methicillin-resistant Staphylococcus aureus (MRSA), My-
cobacterium tuberculosis, and Pseudomonas aeruginosa [320],
detection methods may simultaneously target their specific
proteins [305], lipids [321], and nucleic acid [320] to en-
hance diagnostic accuracy and reliability. This method of-
fers the advantages of being non-invasive, simple, and high
throughput, aiding in early diagnosis and control of respiratory
infections.
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metabolome in COVID. [339] (c) Gold nanoparticle chemiresistor array for lung cancer test. [344] (d) A pathogen infection diagnostic system
integrating physical and chemical sensing elements generates multimodal data for machine learning classification of COVID conditions. [257].

Respiratory infectious diseases primarily spread through
droplets or aerosols, making face masks the most effective
personal protective equipment in daily life [322], [323]. The
wearable, low-cost nature of masks and their direct contact
with respiration make them an ideal platform for collecting
and detecting respiratory pathogens [324]. Mask-based devices
have shown promising applications in large-scale pathogen
screening and collection in less developed regions [256], [321].
Additionally, some real-time point-of-care (POC) systems using
microfluidics have enabled on-site virus screening during the
COVID-19 pandemic based on immunoelectrochemical sensors
or CRISPR sensing technology [255], [257]. These advance-
ments demonstrate the significant potential of masks as tools for
personal respiratory pathogen assessment.

5) Drugs: Personalized treatment is increasingly vital, with
multiple factors affecting drug dosage. Therapeutic drug mon-
itoring is crucial for narrow therapeutic range medications.
Real-time breath sampling provides immediate pharmacokinetic
information, particularly beneficial for emergency, anesthesia,
and intensive care patients, enabling precise medication adjust-
ments [242]. Various drugs such as propofol [325], fentanyl
[326], methadone [327], nicotine [328], and caffeine [329] can
be detected in breath, with some showing excellent correlation
to blood concentrations. This indicates the value of investigating
non-invasive monitoring of exhaled drugs through breath.

Due to low drug concentrations in EBC and complex molec-
ular structures, detection techniques require high sensitivity and
resolution. For rapid and accurate drug concentration measure-
ment, fast, sensitive, and user-friendly instruments are needed.
MS, as one of the most sensitive and versatile analytical tools,
may play a crucial role in measuring levels of drugs and metabo-
lites for future personalized patient treatment [242]. Drugs that
can be recognized by immune elements may also be measured
electrochemically, making at-home monitoring easier [330].

6) Exogenous Particles: Ultrafine particles and nanopar-
ticles depositing in the deep lungs pose high health risks, po-
tentially causing respiratory and cardiovascular diseases. While
the causal link between mineral particle inhalation and pneu-
moconiosis is established, the role of nanoparticles in interstitial
lung diseases remains unclear. Bronchoalveolar lavage fluid and
EBC are important diagnostic tools for studying lung pathology.
Recent studies show that EBC can assess occupational exposure
and lung function impairment, but whether its particle load accu-
rately reflects deep lung conditions requires further investigation
[331], [332], [333].

V. BREATHOMICS

As illustrated in Fig. 10(a) and (b), the bioinformation
contained in breath is remarkably complex and vast, requiring
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advanced data processing techniques for comprehensive analy-
sis. While certain breath characteristics can be linked to specific
health conditions, a single molecular marker may correspond
to multiple physiological states, and conversely, a single state
can be indicated by various molecular markers. This complexity
is further compounded by individual variations in anatomical
structure, leading to substantial differences in the physiolog-
ical characteristics observed in breath. From a physical per-
spective, features such as individual breath patterns, breathing
rhythms, along with temperature and humidity, are interrelated
and collectively reflect the overall condition of the respiratory
system [257], [334]. Chemically, exhaled breath contains be-
tween 200 and 2000 different compounds, encompassing a wide
range of metabolic pathways and physiological states [335],
offering valuable insights into various processes, like glucose
metabolism and lipid oxidation [336], [337]. Additionally, the
diversity and abundance of non-volatile components, such as
various biomolecules [338], [339] and proteins [340], [341],
further contribute to the complexity of breath analysis.

To effectively tackle the complexities of breath analysis, a
comprehensive approach involving advanced data processing
methods that can handle the high dimensionality and variability
of breath data is essential. These methods are adept at iden-
tifying patterns and correlations among the diverse features
found in breath samples. Supervised learning algorithms, like
support vector machines [342] and random forests [82], are
commonly used for classification tasks, helping to distinguish
between different physiological or pathological states based
on breath profiles. Unsupervised learning methods, such as
principal component analysis (PCA) [343], [344] and clustering
[345] techniques, are useful for dimensionality reduction and
the discovery of novel breath patterns (see Fig. 10(c)).

Additionally, deep learning approaches, particularly convo-
lutional neural networks (CNNs) [346] and recurrent neural
networks (RNNs) [347], can capture complex temporal dynam-
ics and non-linear relationships within the data, making them
ideal for analyzing breath waveform and rhythm. To ensure the
robustness and accuracy of these models, rigorous validation and
cross-validation techniques are employed, alongside large, di-
verse datasets to train the algorithms effectively. Furthermore, as
shown in Fig. 10(d), integrating multi-omics data, including pro-
teomics and metabolomics, with physical analysis of breath can
enhance the understanding of underlying biological processes
and improve diagnostic accuracy [329]. By leveraging these
advanced data processing methods, researchers can develop
more precise and individualized diagnostic tools, ultimately
contributing to the advancement of precision medicine.

VI. HUMAN MACHINE INTERACTION

Breathing, a fundamental and low-energy physiological pro-
cess, has recently emerged as a focal point in the development
of human-machine interaction (HMI) technologies. Traditional
HMI methods typically depend on mechanical, acoustic, bio-
electrical, or optical inputs [348], [349]. While these established
technologies offer reliable performance, they often entail sig-
nificant motion consumption and visibility, which can constrain

their practical applications and user comfort. In contrast, breath-
ing input technology capitalizes on the natural patterns of nasal
and oral breath, enhanced by the integration of accelerometers
and advanced sensors, to provide a novel interaction mode
characterized by minimal energy expenditure and inherent nat-
uralness. By capturing variations in breath rate and pressure,
this approach facilitates the implementation of continuous and
discrete input patterns, thereby offering a more efficient and
user-friendly solution for HMI applications [350], [351].

Moreover, the use of machine learning algorithms to inter-
pret non-vocalized breath patterns has the potential to revolu-
tionize fields such as speech recognition and control systems
[352]. By training models to recognize and respond to specific
breathing patterns, this technology could enable new forms of
interaction that are less reliant on traditional voice commands.
The advantages of breathing input are underscored by its low
visibility and its capacity to protect user privacy, coupled with
its broad applicability across various user demographics and
environmental contexts. This technology is particularly promis-
ing for users with physical disabilities and diverse settings
where conventional input methods may be less effective or
practical.

The potential applications of breathing input technology ex-
tend to smart hospital environments, where breathing input could
provide intuitive control mechanisms that adapt to user needs
with minimal physical effort [353]. Additionally, in virtual and
augmented reality settings, breathing-based interactions could
enhance immersion and user engagement by integrating a natural
and seamless mode of control. As technological advancements
continue to evolve, the integration of breathing input into HMI
systems is expected to significantly enhance user experiences,
making interactions more natural, efficient, and accessible [354],
[335].

VII. OUTLOOK AND CONCLUSION

In the wake of the five-year global COVID-19 pandemic,
breath research has emerged as a critical focus across physiol-
ogy, medicine, and engineering. Respiratory science, an ancient
discipline, has been propelled forward in recent decades by
advanced technologies such as CT and magnetic resonance
imaging (MRI); sampling techniques including sputum, na-
sopharyngeal swabs, bronchoscopy, and exhaled breath analysis;
along with MS and nucleic acid detection methods. The field
of breath analysis still faces numerous pressing challenges and
promising research frontiers. These include:

1) The clinical implementation and standardization of non-
invasive breath analysis across diverse demographics to
establish a robust diagnostic database.

2) The exploration of chemical information in breath to
uncover novel biomarkers linked to physiological states
necessitates the development of advanced analytical de-
vices, requiring significant enhancements in selectivity
and sensitivity to accurately detect and quantify diverse
breath constituents at ultra-low concentrations.

3) Advanced data processing technologies, particularly ma-
chine learning, are transforming breath health analysis
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through large-scale omics data. This transformation en-
compasses raw data preprocessing, health status inference
from biomarker distributions, and the establishment of
comprehensive breathomics. This multifaceted approach
integrates diverse data types, enabling personalized diag-
nostics and treatment strategies in pulmonary medicine.;
and

4) The integration of emerging wearable technologies with

real-time sampling and detection techniques promises
to revolutionize precision and personalized medicine.
Advancements in device miniaturization and wireless
connectivity enable seamless, unobtrusive continuous
respiratory monitoring in everyday settings. This break-
through facilitates long-term monitoring across diverse
physiological states, offering rich, individualized data on
health trajectories and responses to various stimuli. Addi-
tionally, the development of cost-effective point-of-care
solutions expands the applicability of these technologies,
particularly in areas such as infectious disease
management, making healthcare more accessible and
responsive.

These directions hold the promise to provide more accurate
data support for early diagnosis and tailored treatments, opening
vast horizons for breath-related medical research and clinical
applications. The future of breath analysis hinges on interdisci-
plinary collaboration. The synergistic application of engineer-
ing, material science, computer science, and biology are poised
to catapult breath analysis and monitoring to unprecedented
heights, ushering in a new era of breath health and personalized
precision medicine.
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