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ABSTRACT
In this review,the nonparabolicity of the light-hole and electron bands at the Γ-point in cubic diamond or zinc blende semiconductors is
derived from Kane’s 8 ! 8~k "~p model in the large spin–orbit splitting approximation.Examples of severalapproximations are given with
InSb as an example, and their accuracy is discussed. To determine the temperature dependence of the effective masses and the nonparabolic-
ity parameters,the unrenormalized bandgap must be utilized.This includes only the redshift of the bandgap due to thermal expansion,not
the renormalization due to deformation-potentialelectron-phonon coupling.As an application of this method,the chemicalpotentialand
the charge carrier concentration of intrinsic InSb are calculated from 50 to 800 K and compared with electricaland opticalexperiments.
These results are also relevant for other semiconductors with small bandgaps as needed for mid-infrared detector applications.

Published under an exclusive license by the AVS. https://doi.org/10.1116/6.0003929

I. INTRODUCTION
The curvature atthe bottom of the lowestconduction band

(CB) in cubic zinc blende semiconductors,such as InSb or GaAs,
determinesmany processes,including electron transport, low-
temperaturespecific heat, and the absorption and emission of
light.1 For bands with spherical symmetry, especiallyat the
Γ-point, it can be expressed as a series of even powers of the wave
vector k,because terms with odd powers are small.2,3 In the para-
bolic band approximation,which is treated in many textbooks1,4

and often sufficient,the unrenormalized CB energy is written as

Eu
e kð Þ ¼ Eu0 þ

!h2k2

2m0

1
m* , (1)

where Eu
0 is the unrenormalized directbandgap (we will explain

later what that means),!h the reduced Planck’s constant,m0 the
free electron mass,and the dimensionless parameter m* the effec-
tive electron mass.This parabolic expression (1) is valid only if the
second term is much smaller than the bandgap Eu0. This is not

necessarily true in semiconductors with smallbandgaps,such as
InSb,for which higher-order terms must also be considered.That
is the topic of this review.

Remarkable advances over the past two decades have enabled
theoreticalpredictions of the band structure of semiconductors
using fully ab initio methods,5–8 but these approaches have not yet
achieved a levelof accuracy suitable fordirect comparison with
experiment.Furthermore,ab initio calculations lack transferability.
One calculation is only valid for a single material.Changing the
composition of a semiconductor alloy or selecting a different com-
pound will usually require a new calculation.This imposes addi-
tional limitations on the predictive power of ab initio calculations.
By contrast,the goalof our work is transferability,simplicity, and
accuracy,which can be obtained using analyticalexpressions with
parameters fit to experimental data.

Starting from Kane’s 8 ! 8~k "~p-model,1,2,9we will show that
only a small number of parameters,especially the bandgap and one
momentum matrix element,10 are sufficient to predict many semi-
conductor properties related to the CB nonparabolicity.While we
will focus our discussion on InSb,the transferability of our model
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allows applicationsto other infrared detector materials,such as
InAs, and alloys, such as SiGeSn,InGaAsSb, or HgCdTe.

Our starting point is the classical1957 paper by Kane on the
“Band structure of indium antimonide.”2 We simplify Kane’s
model and only include its essentialelements to allow analytical
treatment of the results. We bring this model up to date with
current experimentalresults,especially regarding the temperature
dependence and the renormalization ofband energies due to the
deformation-potential electron-phonon interaction.

A recent treatment of the CB nonparabolicity was also
presented by Masut.11 Our work is similar in some aspects,but we
avoid the introduction of triple-index generalized Fermi–Dirac
integrals.12–14 Instead,we use Fermi–Dirac integrals Fn xð Þ that can
be evaluated in MATLAB15 using polylogarithm functions.16 We
discuss the validity of our approximations,present graphical repre-
sentations ofour results, and include detailed derivations as the
supplementary material.We apply our nonparabolicity modelto
calculate the chemicalpotentialand the free carrier concentration
of intrinsic InSb as a function of temperature and compare with
experimental results.

II. THEORETICAL MODEL
A. Notation and conventions

We begin by introducing some symbols and notation to allow
compact expressions for the electronic band structure.En kð Þ is the
energy of a band as a function of wave vector k.This energy is posi-
tive in the CB and negative in the valence band (VB).The subscript
n is the band index for the conduction band (e) or the split-off, light,
and heavy hole bands (so,lh, hh). ϵn kð Þ is the corresponding energy
above or below the band extremum.This is always positive.We use
superscriptsto distinguish between the experimental(exp) and
unrenormalized (u) band energies.

Expressions ofband energies resulting from~k "~p-theory can
be simplified if the kinetic energy of the free electron is subtracted
from the band energies.Kane,2,17 therefore,introduced a modified
energy parameter,

~Eu
n

~k
! "

¼ Eu
n

~k
! "

'
!h2k2

2m0
: (2)

We use a tilde instead of a prime in Eq.(2), because the prime (as
in E0

0, for example) has taken a different meaning in more recent
years.The prime denotes opticalinterband transitions,also known
as critical points, into the p-antibonding conduction band.

B. Kane’s ~k " ~p model and solution for large
SO splitting

The~k "~p electronic band structure method18 takes advantage
of the Bloch wave function ψn~k(~r) ¼ un~k(~r)exp(i~k "~r), where un~k(~r)
is periodic in the crystal lattice.1 We assume thatthe solution of
the time-independent Schrödinger equation ~Hun0 ¼ ~Eu

n0un0 is
known at the Γ-point for~k ¼ 0 with wave functions un0 and eigen-
values~Eu

n0, for example,from experimentalmeasurements ofthe
band energies.~H is the Hamiltonian where the free electron kinetic
energy !h2k2=2m0 has been subtracted.The energiesand wave

functions for smallnearby~k can be obtained by solving the eigen-
value problem,1

X

i
Eu

n0δni þ
!h

m0
~k " n0h j~p i0j i

# $
cni ¼ ~Eu

n~kcnn: (3)

Here, n0h j~p i0j i is the momentum matrix element connecting the
bands with indices n and i at the Γ-point,which is also known as
the ~k "~p matrix element,and related to the opticaldipole matrix
element.4 Details of this method are included in many textbooks,1

review articles,9 and in the supplementary material.For small wave
vectors~k, the solutions of(3) can be obtained using perturbation
theory.

For practicalpurposes,one starts with deciding how many
bands should be included in the calculation.This determines the
dimension of the eigenvalue problem given by Eq.(3). For this
work, we only include the three top VBs (the p-bonding bands)
and the lowestCB (the s-antibonding band).At the Γ-point, we
select wave functionsSj i for the CB and X + iYj i , Zj i for the VB.
Without loss of generality,we may assume that~k points along the
z-direction. The only nonvanishing momentum matrix elements
are of the form Sh jpx Xj i ¼ 'iP. The mixed momentum matrix
elements Sh jpx Yj i , etc., vanish. Including spin degeneracy,this
yields an 8 ! 8 matrix,with two identical 4 ! 4 on-diagonal block
matrices,2,9

~H~k ¼

Eu
0 0 ' !hk

m0
iP 0

0 ' 2Δ0
3

ffiffi
2

p
Δ0

3 0
!hk
m0

iP
ffiffi
2

p
Δ0

3 ' Δ0
3 0

0 0 0 0

0

BBBB@

1

CCCCA
, (4)

and vanishing off-diagonal blocks.Δ0 is the matrix element of the
spin–orbit (SO) Hamiltonian, also known as the SO splitting.
To simplify the notation, one introduces the energy EP = 2P2=m0,
which has values between 18 and 26 eV for many semiconduc-
tors.10 More accurate~k "~p-models include more bands, which
requires the knowledge of other energy gaps and additional
matrix elements.For example, one might include all s- and
p-bonding and antibonding bands (which leads to a 16 ! 16
matrix) or bands with d-type symmetry (30 ! 30).19,20

The matrix (4) has one obvious eigenvalue~Eu ¼ 0.This solu-
tion is identified with the heavy hole band. Its energy hasthe
wrong sign and is equalto the kinetic energy of the free electron.
The downward curvature and warping of this heavy hole band are
caused by higher-lying CBs,17,21 which we have neglected in our
simple model.We do not consider this solution for our review and
instead use the experimentalparabolic density-of-states heavy hole
massmhh ¼ 0:43 determined from Hall effect measurementsfor
our calculations.22

The other three eigenvalues of the matrix (4) are determined
from the cubic characteristic equation,2

~Eu ~Eu ' E u
0

& ' ~Eu þ Δ0
& '

'
!h2k2EP

2m0
~Eu þ

2Δ0

3

# $
¼ 0, (5)
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which can be solved analytically as described in the supplementary
material and shown in Fig. 1. For our purposes,these analytical
solutions to the cubic equation are not useful,because they cannot
be inverted to yield the density of states as a function ofexcess
energy ϵn.

For very smallvalues of k,the characteristic equation (5) can
be solved perturbatively,leading to the effective masses of the elec-
tron, split-off, and light hole bands,2,9

1
m*

lh
¼

2
3

EP

Eu
0

' 1, (6)

1
m*

so
¼

EP

3 Eu
0 þ Δ0ð Þ

' 1, (7)

1
m*

e
¼ 1 þ

EP

3
2
Eu

0
þ

1
Eu

0 þ Δ0

# $
, (8)

as shown in the supplementary material.Due to the large nonpara-
bolicity of the bands,these effective mass values are only valid for
very small values of k, as shown by the dotted lines in Fig. 1.

To obtain a simple analyticalsolution of Eq. (5), we use the
large SO splitting approximation~Eu ( Δ 0. The characteristic equa-
tion (5) then becomes quadratic and offers solutions for the light-

hole and electron bands,2,9

Eu
e,lh ¼

!h2k2

2m0
þ

Eu
0

2
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ
!h2k2

2m0

2
μlhEu

0

s0

@

1

A , (9)

with effective and reduced masses,

m*
e ¼

3Eu
0

2EP þ 3Eu
0

, (10)

m*
lh ¼

3Eu
0

2EP ' 3E u
0

, (11)

μlh ¼
m*

em*
lh

m*
e þ m *

lh
¼

3Eu
0

4EP
, (12)

obtained by keeping only the lowest-order terms in Eq.(9). Since
the matrix element EP is much larger than the bandgap Eu

0, the
light-hole and electron masses are nearly the same.The square root
in Eq. (9) can be expanded into powers ofk2. Unfortunately,this
series only converges for small values of k;see Fig.1. The large SO
approximation is very good,and Eq.(9) represents the electron and
light-hole solutions of the characteristic equation (5) quite well;see
the small difference between the solid and dashed lines in Fig. 1.

C. Nonparabolicity parameters
To calculate the density of states,which is important for

thermal and transport properties,we need to invert Eq. (9) and
write k2 as a function of energy.This requires solving a quadratic
equation, which results in23,24

!h2k2

2m0
¼ ϵu

e þ
Eu

0
2m*

e
1 '

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ
2ϵu

em*2
e

μlhEu
0

s !

and (13)

!h2k2

2m0
¼ Eu

lh þ
Eu

0
2m*

lh
1 '

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ
2Eu

lhm*2
lh

μlhEu
0

s !

(14)

for the CB and light-hole band,respectively.We remind the reader
that we introduced the excess energy ϵ in Sec. II A.

The nonparabolicity coefficients αn and βn are defined by23,24

!h2k2

2m0mn
¼ ϵu

n 1 þ αnϵu
n þ β nϵ

u2
n

& '
: (15)

They can be obtained23 by expanding Eqs.(13) and (14) into a
power series of ϵn,

!h2k2

2m0meϵu
e

¼ 1 þ
m*2

e ϵ
u
e

4μ2
lhEu

0
'

m*4
e ϵ

u2
e

4μ3
lhEu2

0
and (16)

!h2k2

2m0mlhϵu
lh

¼ 1 þ
m*2

lhϵ
u
lh

4μ2
lhEu

0
þ

m*4
lhϵ

u2
lh

4μ3
lhEu2

0
: (17)

FIG.1. Band structure for InSb at0 K.Thick lines show the heavy hole (blue),
lighthole (green),split-offhole (black),and electron bands (red) from the cubic
characteristic equation (5)(solid)and from the large SO approximation (9)
(dashed) as a function ofthe wave vector k in atomic units (inverse Bohr radii).
Thin lines show the expansion ofthe square rootin Eq. (9),including terms pro-
portionalto k2 (dotted),k4 (dashed),and k6 (dotted-dashed)for the electron
and light-hole bands.Parabolic bands forthe heavy and split-offholes with
experimentalmasses are also shown (dotted).See the supplementary material
for a similar graph showing the energies as a function ofthe square ofthe wave
vector.
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The nonparabolicity parameters in the large SO splitting approxi-
mation from an 8 ! 8~k "~p-model are, therefore,23–25

αe ¼
m*2

e
4μ2

lhEu
0

¼
1 ' m *

e
& ' 2

Eu
0

, (18)

βe ¼ '
m*4

e
4μ3

lhEu2
0

¼
'2m *

e 1 ' m *
e

& ' 3

Eu2
0

, (19)

αlh ¼
m*2

lh
4μ2

lhEu
0

¼
1 þ m*

lh
& ' 2

Eu
0

, (20)

βlh ¼
m*4

lh
4μ3

lhEu2
0

¼
2m*

lh 1 þ m*
lh

& ' 3

Eu2
0

: (21)

Figure 2 compares the “exact” solution of the 8 ! 8
~k "~p-Hamiltonian in the large SO splitting approximation given by
Eqs.(13) and (14) for the light-hole and electron bands with those
obtained by expansion with the nonparabolic corrections (18)–(21).
The error obtained with just the lowest-order nonparabolicity cor-
rection (βn=0) is about the same as the error caused by the large
SO approximation.Adding the next term (βn = 0) makes the solu-
tion nearly indistinguishable from the exact large SO

approximation.For this review,we,therefore,set βn ¼ 0 for appli-
cations of our nonparabolic band structure model.

D. Temperature dependence of the effective masses
In Secs.II A–II C, we did not address the temperature depen-

dence of the band parameters that appear in the theoretical expres-
sions.Since~k "~p-theory allows very accurate parameterizations of
the band structure,incorporating temperature effectscorrectly is
crucial for predicting the thermalproperties as wellas the results
from optical measurements.To calculate the temperature depen-
dence ofthe effective masses shown in Eqs.(10)–(12),we ignore
the small variation of the momentum matrix elementEP due to
thermal expansion26 and only consider the temperaturedepen-
dence of the bandgap E0. Furthermore,we do not considerthe
renormalization of the bandgap E0 due to many-body effects.
While these many-body effects play a role athigher temperatures
and the corresponding high intrinsic carrier concentrations,27,28

they are beyond the scope ofthe current paper and will be dis-
cussed elsewhere.

The principal cause of the temperature dependence ofthe
electronic band structure is the electron-phonon interaction.
Phonons are typically calculated within the “quasiharmonic”
approximation.This consists ofexpanding the interatomic poten-
tial to quadratic order around an equilibrium position that depends
on the temperature due to the thermalexpansion ofthe lattice.29

The origin of thermal expansion is the presenceof nonzero
anharmonic terms (higher than quadratic) in the expansion of the
interatomic potential. Within the same scheme,the electronic
band structure is calculated for a static lattice of atoms at the
temperature-dependentequilibrium positions. Accordingly, all
band parameters,including the direct bandgap,acquire a tempera-
ture dependence since the electronic eigenvalues are affected by the
thermalvariations of the lattice constant.We call this bandgap the
“unrenormalized” bandgap Eu

0 Tð Þ.
However, this does not account for the full temperature

dependence ofthe experimentalbandgap Eexp
0 Tð Þ,i.e., the energy

separation between the bottom ofthe CB and the top of the VB.
(This is also called the “thermal gap,” because it enters the calcula-
tion of the carrier concentration using Fermi–Dirac statistics.The
onset of the optical absorption,also known as the optical activation
energy,may be higher than the experimentalband gap due the
Burstein–Moss shift.30,31) The dynamic deformations induced by
the quasiharmonic lattice vibrations also affect the electronic band
structure and renormalize the bandgap.Phenomenologically,the
combined contributions from the electron-phonon interactions can
be written for the particular case of E0 as32,33

@Eexp
0

@T
¼

@E0
@T

# $

TE
þ

@E0
@T

# $

DW
þ

@E0
@T

# $

SE
: (22)

The first term describes the thermal expansion energy shift
mentioned in the previous paragraph.The second term is the
Debye–Wallercontribution that arises from the second-order
electron-phonon Hamiltonian (simultaneous absorption or
emission of two phonons by an electron) taken to first order in
perturbation theory.It is usually negative.33 The third term is the

FIG.2. The square ofthe wave vector(in atomic units)vs energy from the
extremum for electrons (red)and lightholes (green)in InSb at0 K,calculated
using Eqs.(13)and (14)within the large SO splitting approximation (solid),
using parameters from Sec.II F.The dotted lines show the parabolic band dis-
persion.The dashed and dotted-dashed lines show the nexttwo terms in the
Taylor expansions ofthe square root.Only the firstterm (βn ¼ 0) gives a good
approximation (dashed). If the βn-term is included (dotted-dashed), the deviation
from the exactsquare-rootexpressions (13) and (14) is nearly indistinguishable
on this scale.
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self-energy contribution thatarises from the first-order electron-
phonon Hamiltonian taken to second order in perturbation theory
(emission or absorption ofa phonon by an electron followed by
reabsorption or re-emission,respectively)and is often positive.33

The theory of this electron-phonon renormalization ofthe band
gap has been described by Cardona and Gopalan.32 An application
of this theory to the direct bandgap of InSb was given in Ref. 33.

From the above description,it is apparentthat a rigorous
incorporation of electron-phonon effectsinto a ~k "~p calculation
requires firstan evaluation ofthe unrenormalized band structure
using temperature-dependentparameters,such as Eu

0 Tð Þ, which
account for thermalexpansion effects,followed by a calculation of
the Debye–Waller and self-energy terms described by the last two
terms in Eq. (22). Neither step is straightforward.

The thermal expansion term can be written as34

@Eu0
@T

¼
@E0
@T

# $

TE
¼ '3α Tð ÞB

@Eu0
@p

# $

T
: (23)

Here, α Tð Þ is the temperature-dependentthermal expansion
coefficient35–39 and B the bulk modulus.Neglecting the tempera-
ture dependence of B ¼ 46 GPa (taken from Ref.40) and approxi-
mating the pressure derivative in Eq.(23) as the pressure derivative
of the experimentalbandgap at constant temperature (taken as
0.155 eV/GPa from Ref.41), we obtain

Eu
0 Tð Þ ¼ Eu0 0 Kð Þ ' 3B

@Eexp
0

@p

# $

T

ðT

0
α θð Þdθ: (24)

The thermal expansion coefficient of zinc blende semiconduc-
tors is approximately given by42

α Tð Þ¼ A
T

ΘD

# $ 3

ID
ΘD

T

# $
, (25)

where

ID xDð Þ ¼
ðxD

0

x4exdx
ex ' 1ð Þ2 (26)

is the Debye integral (which can be solved numerically inMATLAB15),
A is an adjustable parameter,and ΘD the Debye temperature.The
Debye temperature for InSb is about 168 K for InSb,36 but we treat it
as an adjustable parameter to fit the thermal expansion coefficients.35

With parameters A ¼ 17:5 ! 10'6 K'1 and ΘD ¼ 450 K, satisfactory
agreement with the experimentaldata can be achieved above 100 K;
see Fig.3. An ab initio calculation of the thermalexpansion coeffi-
cient of InSb was performed by Miranda et al.39

The agreementcan be improved,especially atlow tempera-
tures, by separately considering thecontributions of transverse
acoustic (TA), longitudinal acoustic (LA), and optical (O)

phonons,42

α Tð Þ¼ 'A TA
ΘTA

T

# $ 2 exp ΘTA=Tð Þ
exp ΘTA=Tð Þ ' 1½ *2

þ A LA
T

ΘLA

# $ 3
ID

ΘLA

T

# $

þ A O
ΘO

T

# $ 2 exp ΘO=Tð Þ
exp ΘO=Tð Þ ' 1½ *2

: (27)

The vibrational properties of InSb lead to phonon parameters
ΘTA ¼ 53:7 K, ΘLA ¼ 248 K, and ΘO ¼ 244 K, calculated as
described in Ref.42.The amplitudes are obtained as fit parameters:
ATA ¼ 2:53 ! 10'6 K'1 and ALA ¼ AO ¼ 5:87 ! 10'6 K'1 . The
corresponding Grüneisen parameters42 are γTA ¼ '0:86 and
γLA ¼ γO ¼ 1:33.Both expressions (25) and (27) lead to nearly the
same thermal expansion shift of the bandgap (24),shown in Fig.4;
i.e.,the negative thermalexpansion coefficient at low temperatures
is not a large contribution.

Unfortunately,the parameter Eu0 0 Kð Þ in Eq.(24) is not acces-
sible experimentally.It has been customary in the literature to use
instead Eexp

0 0 Kð Þ,but this is conceptually incorrect because,due to
zero-point motion,the Debye–Waller and self-energy contributions
in Eq. (22) do not vanish at zero temperature.

On the other hand, the calculation ofthe Debye–Waller and
self-energy effects at many points in the Brillouin zone is computa-
tionally extremely costly and rarely performed.A possible solution
would be using Eexp

0 Tð Þ in~k "~p-theory,but this assumes thatthe
Debye–Wallerand self-energy correctionsfor points k = 0 are
fully determined by the corrections at k ¼ 0 in the manner
described by~k "~p-theory, which is not justified.43

FIG. 3.Linear thermalexpansion coefficient α vs temperature taken from the lit-
erature (Refs.35–38)(symbols)along with a fitto the data using Eq.(25)
(dotted) and Eq. (27) (solid).
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In the following, we describe an approximate way to obtain
Eu

0 0 Kð Þ for application to ~k "~p-theory. Combining this Eu
0 0 Kð Þ

and the experimental effective masses,we obtain new values of the
parameter EP (Sec.II F) that we subsequently (Sec.III) use to cal-
culate important thermalproperties,such as intrinsic carrier con-
centrations.The procedureinvolves the approximation that the
Debye–Waller and self-energy corrections do not affect the effective
mass. We find good agreement with experiment.

To find E u
0 0 Kð Þ, we proceed asfollows: The experimental

bandgap was determined to be44

Eexp
0 Tð Þ ¼ Eexp

B ' a exp
B 1 þ

2
exp Ω=kBTð Þ' 1

) *
(28)

with parameters Eexp
B ¼ 261 meV (unrenormalized bandgap),

aexp
B ¼ 26 meV (electron-phonon coupling strength), and

Ω ¼ 18:9 meV (energy of the coupling phonon,correcting an error
in Ref. 44). This result (28) overestimatesthe electron-phonon
parameters,because it includes the redshift due to thermalexpan-
sion as well as due to the Debye–Waller (DW) and self-energy (SE)
terms. To calculate the combined DW+SE shift

EDWSE
0 Tð Þ ¼ Eexp

0 0 Kð Þ ' 3B
@Eexp

0
@p

# $

T

ðT

0
α θð Þdθ, (29)

we subtract the thermal expansion shift from the experimental
bandgap and fit the difference (29) with a Bose–Einstein expression
as given in Eq.(28). This results in parameters EDWSE

B ¼ 243 meV,
aDWSE

B ¼ 7:3 meV, and ΩDWSE ¼ 10:9 meV. By definition, the
unrenormalized bandgap Eu0 0 Kð Þ is equal to EDWSE

B ¼ 243 meV.

We are now able to calculate Eu0 Tð Þ with Eq. (24), which deter-
mines the~k "~p-band structure.

The experimentalbandgap Eexp
0 Tð Þ and the contributions due

to thermal expansion ETE
0 Tð Þ and DW+SE renormalization

EDWSE
0 Tð Þ are shown in Fig.4. The latter two are similar in magni-

tude over the complete range.About half of the redshift of the
direct bandgap with increasing temperature is caused by thermal
expansion, the other half by deformation-potential
electron-phonon interactions.The unrenormalized temperature-
dependentband gap Eu

0 Tð Þ follows the thermalexpansion contri-
bution ETE

0 Tð Þ but is shifted upward by 8 meV due to the renorm-
alization of the low-temperature bandgap by zero-pointphonon
vibrations. (The electron-phonon shift obtained with the rigid
pseudoion method waslarger.33) At the lowest temperatures,a
small (about 4 meV) increase of the band gap with increasing tem-
perature can be seen due to the negative thermalexpansion coeffi-
cient at low temperatures.

We are now able to calculate the temperature dependence
of the effectiveelectron and light-hole massesusing Eqs. (10)
and (11). Our results obtained from ~k "~p-theory are shown in
Fig.5. At low temperatures,a small increase of the effective masses
is seen due to the negative thermal expansion coefficients,followed
by a decrease at higher temperatures.Experimentally,the tempera-
ture dependence of the effective electron mass of InSb from 40 to
260 K wasfound using magnetophonon magnetoresistance mea-
surements by Stradling and Wood.45 They found a 9% decrease of
the bare electron mass from 40 to 260 K.This compares favorably
with our calculated reduction by 6.6% over the same temperature
range.The discrepancy could arise from experimentalerrors, the
complicated theory for magnetoresistance,and the use of the large
spin–orbit approximation in our calculations.

To summarize this section,we repeat that the unrenormalized
(also known as mass) bandgap Eu

0 Tð Þ given by Eq.(24) as shown
in Fig. 4 must be used to calculate the effective massesin

FIG.4. Directgap E0 of InSb vs temperature.Dashed:experimentalgap Eexp
0

from Eq.(28);dotted:thermalexpansion contribution;dotted-dashed:Debye–
Wallerand self-energycontributionsfrom Eq. (29); solid: unrenormalized
bandgap from Eq. (24) for calculation of effective masses.

FIG.5. Effective masses ofthe electron (solid)and light-hole (dashed)bands
of InSb as a function oftemperature,calculated taking into accountonly the
thermalexpansion contribution to the bandgap shift,notthe Debye–Waller and
self-energy terms.
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~k "~p-theory11,45,46 using Eqs. (10)–(12), not the experimental
bandgap (which is also known as the thermal bandgap).

E. Weak polaron effects
In a weakly ionic crystal such as InSb,an electron or hole

polarizes the ions and causes a smallchange oftheir equilibrium
positions.As the carrier moves through the crystal,it must drag
this ionic displacement with it.The carrier together with this strain
field is called a polaron,which is described in many textbooks.47,48

The massof this polaron is measured in transportexperiments,
such as cyclotron resonance ormagnetotransport.This polaron
mass is larger than the “bare” electron or hole mass calculated with
band structure methods, such as~k "~p-theory.

The ratio of the effective polaron mass mpol to the effective
bare mass mbare is given by47–52

mpol

mbare
+ 1 þ

1
6

αF, (30)

where

αF ¼
1
2

e2

!h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mbarem0

ELO

r
1
ϵ1

'
1
ϵs

# $
(31)

is the Fröhlich coupling constant,e the electronic charge,ELO the
energy of the longitudinal optical (LO) phonon,and ϵ1 and ϵs the
high-frequency and static dielectric constant,respectively.Using
the Lyddane–Sachs–Teller relation for the longitudinaland trans-
verse optical (TO) phonons,53 we can write the term in parentheses
as

1
ϵ1

'
1
ϵs

¼
1
ϵs

E2
LO

E2
TO

' 1
# $

, (32)

which is easier to evaluate using infrared spectroscopy.
For InSb,the Fröhlich coupling constant is only48 αF ¼ 0:022,

and the polaron correction is less than 1%,smaller than the accu-
racy of the effective masses considered here.We are,therefore,jus-
tified to ignore polaron corrections for our purposes.

F.Momentum matrix element and effective masses
It has been standard practice11,46to calculate~k "~p-band struc-

tures from the temperature-dependent bandgap ETE
0 Tð Þ,shown by

the dotted line in Fig. 4, that includes thermal expansion,but
neglects the renormalization due to Debye–Waller and self-energy
corrections at elevated temperatures.In other words,one first cal-
culatesthe unrenormalized band structurein ~k "~p-perturbation
theory and then adds the electron-phonon coupling as a second
perturbation.This approach is inconsistent,however,because the
renormalization due to the zero-point phonon motion is included
in E TE

0 Tð Þ, while renormalization due to thermal excitation of
phonons is not. We prefer an approach where the Debye–Waller
and self-energy correctionsare treated asa whole, given by the
square brackets in Eq.(28). Therefore,the energy Eu

0 Tð Þ should
enter the~k "~p-band structure, not ETE

0 Tð Þ.

This standard practice based on the use of ETE
0 Tð Þ to calculate

effective masseshas resulted in a comprehensive body ofwork,
especially the compilation of matrix element parametersby
Lawaetz for many differentsemiconductors.10 Lawaetz calculated
~k "~p-parameters based on cyclotron measurements of the effective
masses and experimental low-temperature bandgaps,which include
the renormalization due to zero-point phonon motion.To exclude
all Debye–Waller and self-energy corrections consistently,we need
to fine-tune the momentum matrix elements,especially for semi-
conductorswith small band gaps used for mid-infrared optical
detector applications.

Starting with the cyclotron light-hole mass m*lh ¼ 0:0156 for
InSb at low temperature and the unrenormalized bandgap
Eu

0 ¼ 0:243 eV, we solve Eq. (6) to obtain

EP ¼
3
2

Eu
0 1 þ

1
m*

lh

# $
¼ 23:7 eV, (33)

somewhatlarger than the usual value of 23.1 eV published by
Lawaetz.10 The correspondingeffective electron mass (8) with
Δ0 ¼ 0:81 eV equals m*e ¼ 0:0136,which is in excellent agreement
with the experimentalvalue.If we instead use the expressions (10)
and (11) from the large SO splitting approximation,then the light-
hole mass remains the same, but the effective electron mass
increases to 0.0151,slightly larger than the experimentalvalue of
0.014.This is a small price we need to pay for the ease of our ana-
lytical approach.

III. APPLICATION TO THERMAL PROPERTIES
A. Density of states

For the calculation of the chemical potential, we need the
density of states,53

gn ϵnð Þ ¼
1

4π3

ð
d3~kδ En~k ' ϵ n

& '
¼

1
π2

ð1

0
k2dkδ Enk ' ϵ nð Þ: (34)

We have included the spin degeneracy and assumed that the bands
are spherically symmetric.

By taking the derivative of Eq.(15) on both sides, we find24

dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffim0mn

2!h2ϵn

r 1 þ 2αnϵn þ 3βnϵ2
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ αnϵn þ β nϵ2
n

p dϵn and (35)

k2dk ¼
1
2

2m0mn

!h2

# $ 3
2

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵn 1 þ αnϵn þ β nϵ2

n
& 'q

1 þ 2αnϵn þ 3βnϵ
2
n

& '
dϵn: (36)

The density of states is, therefore,11,53

gn ϵnð Þ¼
1

2π2
2m0m*

n
!h2

# $ 3
2

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵn 1 þ αnϵn þ β nϵ2

n
& 'q

1 þ 2αnϵn þ 3βnϵ
2
n

& '
: (37)
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We see that the nonparabolicity enhances the density of states by a
factor,

1 þ 2αnϵn þ 3βnϵ
2
n

& ' ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ αnϵn þ β nϵ2

n

q
+ 1 þ

5
2

αnϵn, (38)

to first order in αnϵe if we set βn to zero.Since the density of states
depends on m*3

2n , we can define an energy-dependentdensity-of-
states effective mass,

m*
n,DOS ϵnð Þ ¼ m*

n
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ αnϵn þ β nϵ2

n

q
1 þ 2αnϵn þ 3βnϵ

2
n

& ' 2
3: (39)

By setting βe ¼ 0 and keeping only terms linear in αeϵe, the effec-
tive electron mass me increases approximately like

m*
e,DOSϵð Þ + m*

e 1 þ
5
3

αeϵe

# $
: (40)

In other words,when the excess energy ϵe is equalto the bandgap
E0 (i.e.,αeϵe + 1), the effective electron mass m*

e has nearly tripled.
This is shown in Fig.6, which plots the effective density-of-states
electron and light-hole massesof InSb as a function of excess
energy above the conduction band minimum.Most of the mass
enhancement is due to the αe-term (shown by the dotted line).We,
therefore,have confidence thatthe expansion (15) converges well
in the approximation for large SO splittings. Since αeϵe is not
exactly small,one might wonder to what extent the linear expan-
sion (40) is accurate.As shown in Fig. 6, the linearization of
Eq. (40) introduces a smallerror, which overestimates the effective
electron massfor very high electron energies.This error has a

similar magnitude to those introduced by leaving out higher
“remote” bands in the~k "~p-model2 or with the large SO approxi-
mation. The linearization (40) of the density of states is necessary
to evaluate the chemical potential of a degenerateelectron gas
using Fermi–Dirac integrals.

B. Chemical potential and intrinsic carrier
concentration vs temperature

We apply the density of states (34) for nonparabolic bands to
calculate the chemicalpotentialμ and the intrinsic carrier concen-
tration n for InSb as a function of temperature T.

The electron density nΓ in the Γ-valley of the CB at tempera-
ture T is53,54

nΓ Tð Þ ¼
ð1

0
dϵge ϵð Þf Eexp

0 Tð Þ þ ϵ
+ ,

, where (41)

f Eð Þ ¼ exp
E ' μ
kBT

# $
þ 1

) * '1
(42)

is the Fermi–Dirac distribution function with the chemicalpoten-
tial μ and the Boltzmann constant kB. Note that we use the experi-
mental (or “thermal”) bandgap Eexp

0 Tð Þ in Eq.(41),not the “mass”
bandgap Eu0 Tð Þ introduced in Sec. II D.

By setting βn=0 and keeping only terms linear in α n, we
find that the density-of-states enhancement factor (38) is
approximately 1 þ 5

2αeϵe. With the substitutions y ¼ ϵ=kBT and
x ¼ μ ' E exp

0
& '

=kBT, the electron density can be written using
Fermi–Dirac integrals as55,56

nΓ Tð Þ ¼ Ne Tð Þ F1
2

μ ' E exp
0

kBT

# $)
þ

15
4

αekBTF3
2

μ ' E exp
0

kBT

# $*
, (43)

with the prefactor53,54

Nn Tð Þ ¼
1
4

2m0m*
nkBT

π!h2

# $ 3=2

: (44)

In the case of the satellite CB valleys at the L- and X-points (see
below),m*

n is the density-of-states mass for a single valley.
Similarly,the light-hole density is given by56,57

plh Tð Þ ¼ Nlh Tð Þ F1
2

'
μ

kBT

# $
þ

)
15
4

αlhkBTF3
2

'
μ

kBT

# $*
: (45)

For the heavy hole band,we do not consider the nonparabolicity24

and set αhh ¼ 0. We fix the heavy hole mass at mhh ¼ 0:43,inde-
pendent of temperature.This mass is determined by the separation
E0

0 between the p-bonding VB and the p-antibonding CB atthe
Γ-point, which has a weak relative temperature dependence.58 This

FIG.6. Effective density-of-states electron mass m*
e,DOS(black)and light-hole

mass m*lh,DOS(red) of InSb at 0 K as a function of excess energy above the con-
duction band minimum orbelow the valence band maximum,calculated from
Eq.(39)(solid).The dotted lines show the results with βn ¼ 0. The dashed-
dotted lines show the linear expansion (40).
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results in56

phh Tð Þ ¼ Nhh Tð ÞF1
2

'
μ

kBT

# $
: (46)

For completeness,we also add additionalterms to consider
the possibility of holes occupying the split-off hole band and elec-
trons occupying the higher conduction band valleys at the L- and
X-points,56

pso Tð Þ ¼ Nso Tð ÞF1
2

'Δ 0 ' μ
kBT

# $
, (47)

nL Tð Þ ¼ 4NL Tð ÞF1
2

μ ' E exp
L

kBT

# $
, (48)

nX Tð Þ ¼ 3NX Tð ÞF1
2

μ ' E exp
X

kBT

# $
: (49)

The mass m*
so calculated using Eq.(7) equals 0.15 at low tempera-

tures,which is within the range of values given in the literature.1,10

The dominant contribution to m*so comes from the spin–orbit split-
ting Δ0, and therefore,the smaller gap Eu0 at 800 K causes only a
slight reduction of m*

so to 0.14. For the positions of the satellite
valleys at the L- and X-points, we use ΔΓL ¼ 0:51 eV and
ΔΓX ¼ 0:83 eV,both with a density-of-statesmass for a single
valley of mL ¼ mX ¼ 0:25, independent of temperature. We
assume that these valleys shift rigidly with temperature at the same
rate as Eexp

0 . There are four L-valleys and three X-valleys in zinc
blende semiconductors.(Diamond-type semiconductorshave six
Δ-valleys due to the double degeneracy atthe X-point caused by
the nonsymmorphic diamond space group.) Since little is known
about the satellite CB valleys in InSb,these numbers are not much
more than an educated guess.The carrier densities in the split-off
hole band and in the X-valleys are negligible,but 10% of electrons
occupy the L-valleys at 800 K.This was not considered in the anal-
ysis of the Hallexperiments by Oszwaldowski and Zimpel,46 as far
as we know.Percentages ofthe electron and hole populations in
the various bands are shown in the supplementary material.

IV. RESULTS AND DISCUSSION
We can find the chemicalpotential of an intrinsic semicon-

ductor from the charge neutrality condition,59

nΓ Tð Þ þ nL Tð Þ þ nX Tð Þ ¼ plh Tð Þ þ phh Tð Þ þ pso Tð Þ, (50)

at a given temperature T,for example,using polylogarithm func-
tions16,44 in MATLAB.15 As an example,we show the electron and
hole density of InSb at 300 K as a function of the chemicalpoten-
tial in Fig. 7. At this temperature,the experimental“thermal”
bandgap Eexp

0 ¼ 0:187 eV and the unrenormalized mass bandgap
Eu

0 ¼ 0:221 eV. The room-temperature effective masses are
m*

e ¼ 0:0138 and m*lh ¼ 0:0142,calculated using Eqs.(10) and (11)
in the large SO splitting approximation.For the holes,the light-
hole density is only a very smallcontribution, because the heavy

hole is about30 times heavier than the lighthole. Therefore,the
nonparabolicity correction doesnot matter much for the hole
bands.The nonparabolicity correction for the electron concentra-
tion is sizeable,which can be seen from the difference between the
red dotted and solid lines. The effective electron massbecomes
larger at higher energies as shown by Eq.(39), and therefore,the
electron density is larger than in the parabolic case,because the
prefactor Eq.(44) is proportional to m1:5

e .
For a given temperature T,we plot n and p as a function of μ.

The intrinsic chemicalpotential is found at the location where the
two lines cross,60 thus satisfying the charge neutrality condition
(50). In the parabolic case,the electron and hole densities vs chem-
ical potentialcross at EF ¼ 162 meV.In the nonparabolic case,the
electron and hole densities cross ata lower chemicalpotential of
EF ¼ 157 meV because of the larger electron density.At 300 K,the
Fermi level is just below the bottom of the CB, because
Eexp

0 ¼ 0:187 eV as mentioned earlier.The intrinsic carrier concen-
tration of InSb at 300 K is 13:6 ! 1015 cm'3 for parabolic bands
and 16:4 ! 1015 cm'3 in the nonparabolic case.

This method is used to find the chemical potential at each tem-
perature,as shown in Fig.8 (compare Fig.1 of Masut.11). At low
temperatures,the chemicalpotentialis approximately equalto half
the band gap,53 and therefore,the argument of the Fermi integral is
very small. For this case, we can apply the nondegenerate limit,61–63

F1
2

ηð Þ + exp ηð Þ for η ( '1, (51)

essentially using classicalMaxwell–Boltzmann statistics to describe
the electron and hole populations.This approximation leads to the
well-known expressions,53,54

μ +
E0

2
þ

3
4

kBT ln
m*

hh
m*

e

# $
and (52)

FIG.7. Electron (red) and hole density (blue) ofInSb as a function ofchemical
potentialat 300 K in the parabolic approximation (dotted)and with the lowest
nonparabolic corrections (solid).The thermaland mass bandgaps were taken
from Fig.4,and the electron and light-hole masses were calculated in the large
SO approximation.
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n + 2
m0kBT
2π!h2

# $ 3
2

m*
em

*
hh

& ' 3
4exp '

E0

2kBT

# $
: (53)

As shown in Fig.8, these nondegenerate expressions can be used up
to 300 K for InSb,but deviations become noticeable at higher tem-
peratures.The chemical potential increases nearly linearly with tem-
perature below 300 K as implied by Eq.(52). The small deviation
from linearity is caused by the temperature dependence of the effec-
tive electron mass.Above 300 K,we must evaluate the Fermi–Dirac
integral exactly using polylogarithm functions.16 The fully degenerate
limit (where the argument of the Fermi–Dirac integral is very large)
is never reached for intrinsic InSb.

In general,degenerate Fermi–Dirac statistics leads to a higher
chemical potential than nondegenerate(classical) Maxwell–
Boltzmann statistics,as shown by the comparison for parabolic
bands. Including the nonparabolicity significantly reducesthe
chemical potential, as we have already seen in Fig. 7.

The intrinsic carrier concentration as a function oftempera-
ture is shown in Fig.9. For parabolic bands,considering degenerate
carrier statistics reduces the carrier density.60 If nonparabolic bands
are considered,then the effective electron massbecomeslarger,
which increases the carrierconcentration according to Eq.(53).
Oszwaldowskiand Zimpel46 obtained the temperature dependence
of the intrinsic carrier concentration of InSb from 200 to 800 K
with Hall measurements.Assuming a Hall scattering factor of
unity, they found an intrinsic carrier concentration near
1:8 ! 1018 cm'3 at 800 K. They fitted their results with the

expression46

n ¼ 2:9 ! 1011 2400 ' Tð Þ0:75 1 þ 2:7 ! 10 '4 T
& '

T1:5

! exp '
0:129 ' 1:5 ! 10 '4 T

kBT

# $
, (54)

where n is in units of cm'3 , T in K, and kBT in eV. This Hall con-
centration is also shown in Fig.9. Our calculation finds a carrier
concentration of1:9 ! 1018 cm'3 at 800 K,but this agreementis
better than it should be.Our use of the large SO splitting approxi-
mation overestimates the effective electron mass by 12% at 0 K and
by 10% at 800 K.According to Eq. (53), our model should also
overestimate the carrier concentration.Another uncertainty in our
model is the temperaturedependenceof the heavy hole mass,
which has been discussed in the literature to a good extent.46

It is a common practice in the interpretation of low-field
transport measurements of semiconductors to assume that the Hall
scattering factor

rH ¼
τ2h i
τh i 2 (55)

is unity, where τ is the scattering time and " " "h i indicatesthe
energy weighted average within the carrier population of the band.
This assumption is not always true,however,and deviations from
unity by up to 10%–100% are common.64–67The value of the Hall
scattering factor varies based on the particular type ofscattering
process and its dependence on the energy of the carrier.A compli-
cated dependence of rH on temperature and doping concentration
is often found.

FIG.8. Chemicalpotentialvs temperature for parabolic bands in the nondegen-
erate (dashed) and degenerate (dotted) cases.The solid line shows the degen-
erate case with the lowest nonparaboliccorrectionin the large SO
approximation.The fulltemperature dependence ofthe directgap according to
Eq. (28) was included in the Fermi–Dirac integral, butthe effective masses were
calculated taking into accountonly the thermalexpansion contribution to the
bandgap given by Eq.(24),notthe Debye–Waller and self-energy corrections.
The opticalactivation energy from Eq.(56) and the experimentaldirectbandgap
(Ref.44) from a fitto the temperature-dependentinfrared dielectric function with
a Johs–Herzinger parametric oscillator model(symbols) are also shown.

FIG.9. Intrinsic carrierconcentration vs temperature forparabolic bands in
the nondegenerate (dashed)and degenerate (dotted)cases.The black solid
line shows the degenerate case with the lowestnonparabolic correction in the
large SO approximation.The temperature dependence ofthe direct gap
according to Eq.(28)was included in the Fermi–Dirac distribution function,
butthe effective masses were calculated taking into accountonly the thermal
expansion contribution to the bandgap from Eq.(24).The blue line shows a fit
to carrier concentrationsdetermined from Hall measurementsby
Oszwaldowskiand Zimpel(Ref.46).
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We also compare the resultsfor the chemical potential in
Fig. 8 with optical measurements ofthe band gap.44 The optical
activation energy (i.e.,the bandgap observed in opticalabsorption
or an ellipsometry experiment) is increased through the Burstein–
Moss shift and given by68

EA ¼ max E0, E0 þ 1 þ
m*

e
m*

hh

# $
μ ' E 0ð Þ

) *
: (56)

The optical activation energy is equalto E0 if the Fermi level is
below the conduction band minimum,but increases as the Fermi
level moves into the conduction band above 400 K.The ratio of the
masses takes into account that direct opticalinterband transitions
are not possibleat k ¼ 0 if the Fermi level is larger than the
bandgap.This optical activation energy is also shown in Fig.8. It
qualitatively describes the upward trend of the ellipsometry data of
Rivero Arias et al.44 shown by symbols at higher temperatures.

V. SUMMARY
We have shown how a simple 8 ! 8~k "~p model due to Kane2

within the large spin–orbit splitting approximation can be used to
describethe nonparabolicity of the light-hole and conduction
bands in cubic diamond and zinc blende semiconductors atthe
Γ-point. This model treats the interaction of the p-bonding valence
bands with the s-antibonding conduction band with a single
parameter EP, which is related to the momentum matrix element.
The bandgap E0 and the spin–orbit splitting Δ0 are the other two
parameters of the model.As an application,we have derived ana-
lytical expressions for the effective electron and light hole masses,
the chemicalpotential, and the carrier concentration ofintrinsic
InSb as a function of temperature.The results are in excellent
agreement with Hall measurements of the carrier concentration46 if
the unrenormalized bandgap Eu0 is used to calculate the effective
masses.Eu

0 includes the contribution ofthermal expansion to the
temperature dependence of the band gap,but not its renormaliza-
tion due to Debye–Waller and self-energy electron-phonon interac-
tions. The replacementof the experimentalbandgap E0 by the
unrenormalized gap Eu0 requires a small adjustment of the momen-
tum matrix element.

SUPPLEMENTARY MATERIAL
The following content is provided as supplementary material:

(1) a detailed derivation of the ~k "~p band structure of InSb
and related materials (GaAs, α-Sn) based on Kane’s 8 ! 8
Hamiltonian2 from degenerate perturbation theory with analytical
and graphical results in various approximations;(2) a survey of
different treatmentsfor the nonparabolicity of the electron and
light-hole bands and the resulting electron and hole density of
states;(3) general expressions for the chemical potential and intrin-
sic carrier concentration of semiconductorswith nonparabolic
bands and their evaluation based on severalscenarios for the tem-
perature dependence ofthe effective mass;(4) a discussion ofthe
linear thermal expansion coefficient of InSb based on the model of
Roucka et al.;42 and (5) the occupation of the various electron and
hole bands of InSb at elevated temperatures.
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