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ABSTRACT

In this review,the nonparabolicity of the light-hole and electron bands at the I'-point in cubic diamond or zinc blende semiconductors is
derived from Kane’s 8 ! 8K " modelin the large spin—orbit splitting approximatiorExamples of severapproximations are given with,

InSb as an example, and their accuracy is discussed. To determine the temperature dependence of the effective masses and th&nonparabo
ity parametersthe unrenormalized bandgap must be utiliz&tiis includes only the redshift of the bandgap due to thermal expansinm%

the renormalization due to deformation-potentialectron-phonon couplingAs an application of this methodthe chemicapotentialand 3

the charge carrier concentration of intrinsic InSb are calculated from 50 to 800 K and compared with elecai@hbpticalexperiments

These results are also relevant for other semiconductors with small bandgaps as needed for mid-infrared detector applications.
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I. INTRODUCTION necessarily true in semiconductors with smabandgapssuch as
InSb, for which higher-order terms must also be considerethat
is the topic of this review.
Remarkable advances over the past two decades have enabled
theoretical predictions of the band structure of semiconductors
using fully ab initio methods; but these approaches have not yet
\)%chieved a levelof accuracy suitable fodirect comparison with
experimentFurthermoreab initio calculations lack transferability.
One calculation is only valid for a single material.Changing the
composition of a semiconductor alloy or selecting a different com-
pound will usually require a new calculationThis imposes addi-
R tional limitations on the predictive power of ab initio calculations.
Elakb % B b 1i 1) By contrastthe goalof our work is transferability simplicity, and
2mgm accuracywhich can be obtained using analyticaixpressions with
parameters fit to experimental data.
where B is the unrenormalized directbandgap (we will explain Starting from Kane’s 8 ! 8K "p-mode we will show that
later what that means),!h the reduced Planck’s constanty, the only a small number of parameteespecially the bandgap and one
free electron massnd the dimensionless parameter rthe effec-  momentum matrix element’ are sufficient to predict many semi-
tive electron mashis parabolic expression (1) is valid only if the conductor properties related to the CB nonparabolicitithile we
second term is much smaller than the bandgap B. This is not will focus our discussion on InSkhe transferability of our model

The curvature atthe bottom of the lowestconduction band
(CB) in cubic zinc blende semiconductorsuch as InSb or GaAs,
determinesmany processesincluding electron transport, low-
temperaturespecific heat, and the absorption and emission of
light! For bands with spherical symmetry, especiallyat the
-point, it can be expressed as a series of even powers of the wa
vector k,because terms with odd powers are snallin the para-
bolic band approximation,which is treated in many textbooks'*
and often sufficientthe unrenormalized CB energy is written as

1,2,9
l
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allows applicationsto other infrared detector materials,such as
InAs, and alloys, such as SiGelBiGaAsSb, or HgCdTe.

Our starting point is the classical957 paper by Kane on the
“Band structure of indium antimonide.”” We simplify Kane’s
model and only include its essentialelements to allow analytical
treatment of the results. We bring this model up to date with
current experimentalresults,especially regarding the temperature
dependence and the renormalization dfand energies due to the
deformation-potential electron-phonon interaction.

Arecent treatment of the CB nonparabolicity was also
presented by Masut. Our work is similar in some aspectbpt we
avoid the introduction of triple-index generalized Fermi-Dirac
integrals'*~'* Instead we use Fermi-Dirac integrals, &b that can
be evaluated in MaTLAB'® using polylogarithm functions!® We
discuss the validity of our approximationsesent graphical repre-
sentations ofour results, and include detailed derivations as the
supplementary materialWe apply our nonparabolicity modelto
calculate the chemicgbotential and the free carrier concentration
of intrinsic InSb as a function of temperature and compare with
experimental results.

Il. THEORETICAL MODEL
A. Notation and conventions

We begin by introducing some symbols and notation to allow
compact expressions for the electronic band structé&@kb is the
energy of a band as a function of wave vectdhls energy is posi-
tive in the CB and negative in the valence band (MBEg subscript

n is the band index for the conduction band (e) or the split-off, light,

and heavy hole bands ($lo, hh). e,&bp is the corresponding energy
above or below the band extremufhis is always positivéVe use
superscriptsto distinguish between the experimental(exp) and
unrenormalized (u) band energies.

Expressions oband energies resulting frorik "p-theory can
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functions for smallnearbyk can be obtained by solving the eigen-
value problen,

 # $

g} .
E:1106ni b Fok "Ml G Ya Eﬁkcnn: (3)

Here, mQjpjili is the momentum matrix element connecting the
bands with indices n and i at the "-pointwhich is also known as
the K " matrix element,and related to the opticaldipole matrix
element. Details of this method are included in many textbooks,
review articles,and in the supplementary materidfor small wave
vectorsk, the solutions of(3) can be obtained using perturbation
theory.

For practical purposes,one starts with deciding how many
bands should be included in the calculationThis determines the
dimension of the eigenvalue problem given by Eq/(3). For this
work, we only include the three top VBs (the p-bonding bands)
and the lowestCB (the s-antibonding band).At the -point, we
select wave functiorj§ for the CB andjX +iY i, jZi for the VB.
Without loss of generalitywe may assume tha points along the
z-direction. The only nonvanishing momentum matrix elements
are of the form & jp,jXi ¥4 'iP. The mixed momentum matrix
elementshgpjYi, etc., vanish. Including spin degeneracy,this
yields an 8 ! 8 matrix, with two identical 4 ! 4 on-diagonal block
matrices>®

0
B 0 ' kp O .
1 0 o p"fflffl 0 ;;
Hk/‘ p ffFffi 3 ) (4)5
we A s
0 0 0 0 N

and vanishing off-diagonal blockgy, is the matrix element of the

be simplified if the kinetic energy of the free electron is subtracted spin—orbit (SO) Hamiltonian, also known as the SO splitting.

from the band energlesKane 1" thereforejntroduced a modified
energy parameter,

17K2
YR LB R o
=X 4E¢i 2m

)

We use a tilde instead of a prime in E(2), because the prime (as
in ES, for example) has taken a different meaning in more recent
years.The prime denotes opticahterband transitionsalso known
as critical points, into the p-antibonding conduction band.

B. Kane’s K" p model and solution for large
SO splitting

Thek "p electronic band structure methddtakes advantage

of the Bloch wave function y.(r) Va u(Flexp(K "), where i, (r)

is periodic in the crystal lattice! We assume thathe solution of
the time-independent Schrédinger equation Fung Y4 Eﬁouno is
known at the "-point fork 72 0 with wave functionsg and eigen-
valuesE,, for example,from experimentalmeasurements ofhe
band energiedi is the Hamiltonian where the free electron kinetic
energy IKk2=2m, has been subtracted.The energiesand wave

To simplify the notation, one introduces the energy == 2P=m,
which has values between 18 and 26 eV for many semiconduc-
tors.'® More accurate® "p-models include more bands, which
requires the knowledge of other energy gaps and additional
matrix elements.For example,one might include all s- and
p-bonding and antibonding bands (which leads toa 16! 16
matrix) or bands with d-type symmetry (30 ! 3039 20

The matrix (4) has one obvious eigenvale % 0. This solu-
tion is identified with the heavy hole band. Its energy hasthe
wrong sign and is equato the kinetic energy of the free electron.
The downward curvature and warping of this heavy hole band are
caused by higher-lying CBS&/*" which we have neglected in our
simple modelWe do not consider this solution for our review and
instead use the experimentparabolic density-of-states heavy hole
massmn, ¥ 0:43 determined from Hall effect measurementsor
our calculations?

The other three eigenvalues of the matrix (4) are determined
from the cubic characteristic equat%n,

1 $
E”&EJ'Eg&E”pAO' ﬁszP E“p % 0,

(%)
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which can be solved analytically as described in the supplementarhole and electron bands,

mate.rial and shown_in Fig. 1 For our purposes,these analytical 0 i i i Fk £ £ i F i i F i
solutions to the cubic equation are not usefogcause they cannot h2K2 = hk2 2
be inverted to yield the density of states as a function ofexcess En%—b = @+ 1p ——UA , 9)
energy 6. T2m 2 2my pinEg
For very smallvalues of k,the characteristic equation (5) can
be solved perturbativeligading to the effective masses of the elec-with effective and reduced masses,
tron, split-off, and light hole bands?
. 35
1
! 1/2EF"1 (6) me/‘zﬁ,ngg' o
—= /4 = )
m, 3B 35
1
. M % oEaE 3 (11)
m, %A " -
m.m, 35
Va1, >0 12
4 $ Hin 4mepm|h 4453 (12)
a1 1 pE Ep _1 (8)
m;, ¢ 3 BB EipAg ] obtained by keeping only the lowest-order terms in E(R). Since

the matrix elementEp is much larger than the bandgap g, the
as shown in the supplementary materBue to the large nonpara- light-hole and electron masses are nearly the sdimesquare root
bolicity of the bandsthese effective mass values are only valid for in Eq. (9) can be expanded into powers df. Unfortunately,this
very small values of k, as shown by the dotted lines in Fig. 1. series only converges for small values adde Figl. The large SO
To obtain a simple analyticabolution of Eq. (5), we use the ~ approximation is very goodnd Eq.(9) represents the electron and
large SO splitting approximatio' ( A o. The characteristic equa- light-hole solutions of the characteristic equation (5) quite veelg
tion (5) then becomes quadratic and offers solutions for the light- the small difference between the solid and dashed lines in Fig. 1.

C. Nonparabolicity parameters

©
! oot 86 ko oo To calculate the density of states,which is important for §
0.8F — — large SO ap'groximation 7 . thermal and transport properties,we need to invert Eq. (9) and 8
quadratic write k? as a function of energyThis requires solving a quadratig
= D 4 . equation, which results > &
% 04 1 2 i P P £ £ £ £ i i 3 i i i i
5 | —_— 2 1fk? E 2eim:2
2 02F Ssa gt 1 — Vel - 1" 1p—=-% and 13
E ot S 2m epzme b Hin (13)
@ O
}—:u 0z h P s  fiffiffiffi ffi fi i ffi ffi ffi i i i i i £ £ 153 163 16 i
5 Ihk? B 28 my7
— 1" 1p—/7 14
§ 041 2my 4B b 2m, b HinEo ()

-06
\ for the CB and light-hole bandespectivelyWe remind the reader

0.8 \ 1 that we introduced the excess energy € in Sec. Il A.
, , , | R The nonparabolicity coefficients,and @, are defined by"**
0 0.005 0.01 0.015 0.02 0.025 0.03

wave vector k (atomic units) IKk2

2mym,

& L}
vaen 1banehb Bnel (15)

FIG.1. Band structure for InSP &t Thick lines show the heavy hole (blue), s ) )
lighthole (greenplit-offiole (blackiind electron bands (red) from the cubic They can be obtained” by expanding Eqs.(13) and (14) into a
characteristic equation ($olid)and from the large SO approximation (9) power series of¢
(dashed) as a functiothefwave vector k in atomic units (inverse Bohr radii).

Thin lines show the expansithre sfjuare raotEq. (9jncluding terms pro- 1RK2

*2 AU *4~U2
portionalo K2 (dotted)k* (dashed)and K (dotted-dasheity the electron vi1plefer MeCe  gng (16)
and light-hole bandBarabolic bands ftite heavy and split-dfbles with 2mymeey 4455 4H?1E3
experimentalasses are also shown (dot&=H.the supplementary material . .
for a similar graph showing the energies as a fuhetsmuafe tie wave 17K2 %1b mnfellf1 b m,ﬁ'eh‘? . (17)
vector. 2mpmpey, 4th% 4% B2
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The nonparabolicity parameters in the large SO splitting approxi- approximation.For this reviewwe,thereforeset 3, %2 0 for appli-

mation from an 8 ! 8% "p-model are, therefore; > cations of our nonparabolic band structure model.
. L2
Qe Vi 4me2 Y 1 “: e (18) D. Temperature dependence of the effective masses
hE B In Secsll A=l C, we did not address the temperature depen-
& ' dence of the band parameters that appear in the theoretical expres-
m4 2m e 1'm e 3 sions.Sincek "p-theory allows very accurate parameterizations of

Be e 4@ eEgz Y E2 ’ (19) the band structure,incorporating temperature effectsorrectly is
h crucial for predicting the thermalproperties as welbs the results
. from optical measurementslo calculate the temperature depen-
dence ofthe effective masses shown in Eq6l0)—(12),we ignore
ap e Va B (20)  the small variation of the momentum matrix elementEp due to
h thermal expansiof® and only consider the temperaturedepen-
& , dence of the bandgap k. Furthermore,we do not considerthe
ml*# ) 2m. 1 pmy 3 renormalization of the bandgap & due to many-body effects.
HRER Va B? 5 (21)  While these many-body effects play a role &igher temperatures
h and the corresponding high intrinsic carrier concentrations!

Figure 2 compares the “exact’ solution of the 8!8 they are beyond the scope ofhe current paper and will be dis-
cussed elsewhere.

K "p-Hamiltonian in the large SO splitting approximation given by S

Eqgs.(13) and (14) for the light-hole and electron bands with those Thg principal cause of the temperature depenqence ofhe
obtained by expansion with the nonparabolic corrections (18)_(21)electron|c band §tructure is the e[egtron-ph?non |r1teract|o.n,.,
The error obtained with just the lowest-order nonparabolicity cor- - nonons are typically calculated within - the “quasiharmonic
rection (3,=0) is about the same as the error caused by the large e_lpproxmatlon_.Thls consists ofexpant_:i_lng the |ntgr_atom|c poten-
SO approximationAdding the next term (8= 0) makes the solu- tial to quadratic order around an equilibrium posmon that _degéends
tion nearly indistinguishable from the exact large SO on the temperature due to the thermakexpansion ofthe lattice:

The origin of thermal expansion is the presenceof nonzero
anharmonic terms (higher than quadratic) in the expansion of the
interatomic potential. Within the same scheme,the electronicf

B V4

-3
5 x10 ‘ . ' band structure is calculated for a static lattice of atoms at the &
| large SO approximation / | temperature-dependengquilibrium positions. Accordingly, all S
—~ 1.8 parabolic / . . X . »
& -~ quartic / band parametersncluding the direct bandgamcquire a temperag
§ 16F = sextic 4 . ture dependence since the electronic eigenvalues are affected by the
= thermalvariations of the lattice constantVe call this bandgap thé&
g1 1 “unrenormalized” bandgapiBT b
x50 ] However, this does not account for the full temperature
2 EP=23.7 eV dependence ofhe experimentabandgap E*aTb,i.e.,the energy
S ] separation between the bottom dhe CB and the top of the VB.
% ask E0=0-243 eV | (This is also called the “thermal gap,” because it enters the calcula-
z ’ m =0.0151 tion of the carrier concentration using Fermi-Dirac statistidhe
So06r e - onset of the optical absorptioalso known as the optical activation
S m,=0.0156 ~ energy,may be higher than the experimentalband gap due the
g 041 % 1 Burstein-Moss shift”*) The dynamic deformations induced by
7 ozl , the quasiharmonic lattice vibrations also affect the electronic band
e structure and renormalize the bandgapPhenomenologicallythe

combined contributions from the electron-phonon interactions can
be written for the particular case of &s>*°

# $ #_ % # 8

R, @E®, @ | @G @& .
FIG.2. The square dhe wave vectdmn atomic units)s energy from the “@T Va @1 b @T T o
extremum for electrons (eed) lighholes (greenh InSb ad K,calculated @ @T = @Tow @T
using Egs(13)and (14)within the large SO splitting approximation (solid), . . . .
using parameters from SdThe dotted lines show the parabolic band disThe first term describes the thermal expansion energy shift
persionThe dashed and dotted-dashed lines show theméstms in the mentioned in the previous paragraph.The second term is the
Taylor expansionshef square ro@nly the firserm (§ % 0) gives a good  Debye-Waller contribution that arises from the second-order
approximation (dashed). If therfd is included (dotted-dashed), the dev'at'@]ectron-phonon Hamiltonian (simultaneous absorption or

frortr;fthe e><|asquare-roe1xpressions (13) and (14) is nearly indistinguishablg i<qion oftwo phonons by an electron) taken to first order in
on fhis scale. perturbation theory lt is usually negative? The third term is the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Energy above CB minimum or below VB maximum (eV)

(22)
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self-energy contribution thatarises from the first-order electron-
phonon Hamiltonian taken to second order in perturbation theory
(emission or absorption ofa phonon by an electron followed by
reabsorption or re-emissionrespectivelyland is often positive>”
The theory of this electron-phonon renormalization othe band
gap has been described by Cardona and Gopdl#m application
of this theory to the direct bandgap of InSb was given in Ref. 33.
From the above description,it is apparentthat a rigorous
incorporation of electron-phonon effectsnto a K "p calculation
requires firstan evaluation ofthe unrenormalized band structure
using temperature-dependerarameters such as EjoT b, which
account for thermalexpansion effectdpllowed by a calculation of

the Debye-Waller and self-energy terms described by the last two 0

terms in Eq. (22). Neither step is straightforward.
The thermal expansion term can be writteri‘as

g, ”es

v @F
o Gr . k30 pB

@p T: (23)

Here, adl b is the temperature-dependenthermal expansion
coefficient®>° and B the bulk modulus. Neglecting the tempera-
ture dependence of B ¥4 46 GPa (taken from Féi. and approxi-
mating the pressure derivative in E83) as the pressure derivative

of the experimentalbandgap at constanttemperature (taken as
0.155 eV/GPa from Réf1), we obtain
*ape® O
E;oTb Y2 B Kb ' 3B a®bde: (24)
@p 1o

The thermal expansion coefficient of zinc blende semiconduc-

tors is approximately given by

#o Sy # S
odl bV A @—D b %3 , (25)
where
o)
X xAerdx
Ip&xpb Y4 26
BoP % 1 B (26)

is the Debye integral (which can be solved numericabsimag'),
A is an adjustable parameteand ©p the Debye temperaturdhe
Debye temperature for InSb is about 168 K for ihiBbt we treat it

ARTICLE pubs.aip.org/avs/jva

6
R e— R S — o
5| ]
_ 6 -1
al TA_2.53><106K1
ALA=5.87><1O K
=37 A_=5.87x10° K 1
¢ 0
‘?o o} ]
= | F e Roucka Eq. (6)
SN Roucka Eq. (8) 1
‘-. A=17.5x10C K + Novikova
A 6,=450 K *  Cai
Rk * Gibbons i
o A Sparks
=) 1 1 L L L 1 1
0 100 200 300 00 600 700 800

400 5
Temperature T (K)

FIG. 3.Linear thermakpansion coefficient a vs temperature taken from the lit-

erature (Refs$35-38)(symbolsalong with a fitto the data using Eq(25)
(dotted) and Eq. (27) (solid).

phonons??
$, _
ad b% 'A 1 i M 3
T ké;é;ﬁer@—Tp 1% z
bA L I O §
L’; €] b T N
bAo % %ex;ﬂ% (27) 5

The vibrational properties of InSb lead to phonon parameters
Ora ¥4 537K, Oa ¥4 248 K, and Og % 244 K, calculated as
described in Reft2. The amplitudes are obtained as fit parameters:
Arp % 2:53110% K' and Aa % Ao % 5:87110% K. The
corresponding Griineisen parameters are yr, % '0:86 and
Yia Y4 Yo V4 1:33.Both expressions (25) and (27) lead to nearly the
same thermal expansion shift of the bandgap (8hgwn in Fig4;
i.e.,the negative thermatxpansion coefficient at low temperatures
is not a large contribution.

Unfortunately the parameter §£0 Kb in Eq(24) is not acces-
sible experimentallylt has been customary in the literature to use
instead E°80 Kp,but this is conceptually incorrect becaudeg to
zero-point motion the Debye—Waller and self-energy contributions

as an adjustable parameter to fit the thermal expansion coefficients Eq. (22) do not vanish at zero temperature.

With parameters A % 17:5! f0 K' and &, % 450 K, satisfactory

On the other hand, the calculation ofthe Debye-Waller and

agreement with the experimentidta can be achieved above 100 K;self-energy effects at many points in the Brillouin zone is computa-

see Fig3. An ab initio calculation of the thermaéxpansion coeffi-
cient of InSb was performed by Miranda éf al.

The agreementan be improved,especially alow tempera-
tures, by separately considering thecontributions of transverse
acoustic (TA), longitudinal acoustic (LA), and optical (O)

tionally extremely costly and rarely performed possible solution
would be using E*aT b ink "p-theory,but this assumes thathe
Debye-Wallerand self-energy correctionsfor points k = 0 are
fully determined by the correctionsat k % 0 in the manner
described b§ "p-theory, which is not justified’
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0.25 T . '

© @
w ---- experiment E® %

- thermal expansion EEE 3

——unrenormalized Eg

005 1 L 1 1 1 L 1
0 100 200 300 400 500 600 700

Temperature T (K)

800

FIG.4. Direcgap k& of InSb vs temperatuBashedexperimentgap E°
from Eq(28);dottedthermakxpansion contributidotted-dasheBebye-
Wallerand self-energgontributionffom Eq. (29); solid: unrenormalized
bandgap from Eq. (24) for calculation of effective masses.

In the following, we describe an approximate way to obtain
E; 80 Kb for application to K "p-theory. Combining this Ejé&0 Kb
and the experimental effective masses,obtain new values of the
parameter k (Secll F) that we subsequently (Setil) use to cal-
culate important thermalproperties,such as intrinsic carrier con-
centrations.The procedureinvolvesthe approximation that the

ARTICLE pubs.aip.org/avs/jva

We are now able to calculate §oT b with Eq. (24), which deter-
mines theék "p-band structure.

The experimentabandgap %Xpé'l'b and the contributions due
to thermal expansion EJF8TP and DW+SE renormalization
ESWSEST b are shown in Figt. The latter two are similar in magni-
tude over the complete range About half of the redshift of the
direct bandgap with increasing temperature is caused by thermal
expansion, the other half by deformation-potential
electron-phonon interactions.The unrenormalized temperature-
dependentoand gap EoT b follows the thermakxpansion contri-
bution E[ET P but is shifted upward by 8 meV due to the renorm-
alization of the low-temperature bandgap by zero-poinphonon
vibrations. (The electron-phonon shift obtained with the rigid
pseudoion method waslarger’®) At the lowesttemperaturesa
small (about 4 meV) increase of the band gap with increasing tem-
perature can be seen due to the negative therexgansion coeffi-
cient at low temperatures.

We are now able to calculate the temperature dependence
of the effectiveelectron and light-hole massesusing Egs. (10)
and (11). Our results obtained from K "p-theory are shown in
Fig.5. At low temperaturesa small increase of the effective masses
is seen due to the negative thermal expansion coefficifatswed
by a decrease at higher temperatufesperimentallythe tempera-
ture dependence of the effective electron mass of InSb from 40 to
260 K wasfound using magnetophonon magnetoresistance mea-
surements by Stradling and Wodd They found a 9% decrease of
the bare electron mass from 40 to 260 Khis compares favorably
with our calculated reduction by 6.6% over the same temperattire
range.The discrepancy could arise from experimentatrors,the £
complicated theory for magnetoresistanaed the use of the Iargé
spin—-orbit approximation in our calculations. §

Debye-Waller and self-energy corrections do not affect the effective  To summarize this sectiowe repeat that the unrenormalized

mass. We find good agreement with experiment.
To find E 58 K, we proceed asfollows: The experimental
bandgap was determlned to'be

) *
2
ngpﬂ- 1 XP v exp
b [% a b expQ=lgTh' 1

(28)
with parameters EEX"% 261 meV (unrenormalized bandgap),
ag® ¥ 26 meV  (electron-phonon coupling strength), and
Q Y4 18:9 meV (energy of the coupling phon@oyrecting an error
in Ref. 44). This result (28) overestimateshe electron-phonon
parametersbecause it includes the redshift due to thermatpan-

sion as well as due to the Debye-Waller (DW) and self-energy (SEo 0012 -

terms. To calculate the combined DW+SE shift

# 0 6
@F Tcx(ﬁbde, (29)

ESWSEST b 14 P60 Kb ' 3B
@p 1o

we subtractthe thermal expansion shift from the experimental

(also known as mass) bandgagy& b given by Eq(24) as showncn
in Fig. 4 must be used to calculatethe effective massesin ¥

0.016 T T T T T

> 0.015

o

o

>
T

r light hole mass (m
o
=
w

0.011 |

electron

electron mass
= = light hole mass
0.01 | | . . . I I

0 100 200 300 400 500

Temperature T (K)

600 700 800

bandgap and fit the difference (29) with a Bose-Einstein expressic FIG.5. Effective massestb electron (soliad light-hole (dashedpds

as given in £q(28). This results in parameters3/SE 14 243 meV,
agVSEv; 7:3 meV, and QPYWSEY; 10:9 meV.By definition, the
unrenormalized bandgap 0 Kp is equal to EQWSE 14 243 meV.

of InSb as a function éémperaturealculated taking into accaniy the
thermaéxpansion contribution to the bandgapcittif, Debye-Waller and
self-energy terms.
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& "p-theory "***% using Eqs. (10)=(12), not the experimental This standard practice based on the use Bi@b to calculate
bandgap (which is also known as the thermal bandgap). effective massebas resulted in a comprehensive body ofwork,
especially the compilation of matrix element parametersby
Lawaetz for many differentsemiconductors’ Lawaetz calculated
K "p-parameters based on cyclotron measurements of the effective

In a weakly ionic crystal such as InSb,an electron or hole masses and experimental low-temperature bandgdpsh include
polarizes the ions and causes a smalhange oftheir equilibrium the renormalization due to zero-point phonon motioffo exclude
positions.As the carrier moves through the crystalit mustdrag  all Debye-Waller and self-energy corrections consistentéyneed
this ionic displacement with ifThe carrier together with this strain  to fine-tune the momentum matrix elementsespecially for semi-
field is called a polaronwhich is described in many textbooks:®  conductorswith small band gaps used for mid-infrared optical
The massof this polaron is measured in transportexperiments,  detector applications.

E. Weak polaron effects

such as cyclotron resonance ormagnetotransportThis polaron Starting with the cyclotron light-hole mass iy % 0:0156 for
mass is larger than the “bare” electron or hole mass calculated witmSb at low temperature and the unrenormalized bandgap
band structure methods, suchka%p-theory. Ey 74 0:243 eV, we solve Eq. (6) to obtain
The ratio of the effegnge polaron mass gy to the effective # $
bare mass g is given by E %SEB 1b mi Vi 23:7 eV, (33)
Ih
oy 1p L, (30) |
Mpare 6 somewhatlarger than the usual value of 23.1 eV published by
LawaetZ’ The correspondingeffective electron mass (8) with
where Do ¥4 0:81 eV equals pi4 0:0136which is in excellent agreement
r ff.ff.ff.frmﬁ.ff.ff.frffgf.ff.ff.ff.frfnfnff. with the experimentalalue.If we instead use the expressions (10)
oF Ve f 2MyardMo i. l (31) and (11) from the large SO splitting approximatidhen the light-
2'h E._o €1 €5 hole mass remains the same, but the effective electron mass

increases to 0.015%lightly larger than the experimentabalue of
is the Frohlich coupling constante the electronic chargeti o the  0.014.This is a small price we need to pay for the ease of our ana-
energy of the longitudinal optical (LO) phonoand €, and € the lytical approach.
high-frequency and static dielectric constantrespectivelylUsing

the Lyddane-Sachs-Teller relation for the longitudinahd trans- ‘E
verse optical (TO) phonoris,we can write the term in parentheses !ll. APPLICATION TO THERMAL PROPERTIES E
as A. Density of states S
1 EE $ For the calculation of the chemical potential, we need the g
+ 1y 1 Bouy , (32)  density of states, £
€1 € e B
o} 6
which is easier to evaluate using infrared spectroscopy. foN¢ oN =) % d3R6 Ex'€ n A K2dkdE '€ nP: (34)

For InSb the Frohlich coupling constant is orfyar % 0:022, ™ o
and the polaron correction is less than 1%maller than the accu-
racy of the effective masses considered W&l are thereforejus-
tified to ignore polaron corrections for our purposes.

We have included the spin degeneracy and assumed that the bands
are spherically symmetric.
By taking the derivative of E(15) on both sides, we fifid

F.Momentum matrix element and effective masses dk %r frﬂfr'rfﬂf? Iy ) ! 2|<ﬂ‘éf,fiffiﬁiﬁﬂfﬁfﬁfﬁfﬁ(ﬂﬁyﬁifﬁfﬁfﬁfﬁfﬁfﬁﬁ
It has been standard practice®to calculat& "p-band struc- 21Re, 1P an€n p Brel

tures from the temperature-dependent bandggj>& b,shown by

the dotted line in Fig. 4, that includesthermal expansion,but 1#2%m $g

neglects the renormalization due to Debye-Waller and self-energy k?dk %— n

corrections at elevated'temperaturbsother.wor(?'s, one first C_a" q ffi %ffiffifﬁffifﬁff fflfflfflglff" liiniiididiniigiiniididiniiiliiinii

culatesthe unrenormalized band structurein K "p-perturbation ! 1D 0n€n b B2 1D 20n€n b 3B,6? den: (36)

theory and then adds the electron-phonon coupling as a second
perturbation.This approach is inconsistenthoweverbecause the

Heanie The density of states is, therefore?
renormalization due to the zero-point phonon motion is included y

in E EEGTID, while renormalization due to thermal excitation of # *$g

phonons is not. We prefer an approach where the Debye-Waller ahEnb 2mem,

Z‘Sas;'fl;fgj('gtys fgrézc(t;%r;gﬁgg;‘éfg tizae""ng‘r’;’ S byte 2% g mmmm A 6 £

enter thek "p-band structure not}?é‘l’iv. ! en 1banenpBrel 1P 2anen b 3Bnel 1 (37)
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We see that the nonparabolicity enhances the density of states bysimilar magnitude to those introduced by leaving out higher

factor,

&
1p 20460 b 3Bn€% 1panenp Bneﬁ +1p éanen, (38)

to first order in o€, if we set § to zero.Since the density of states
depends on m¢, we can define an energy-dependerdensity-of-
states effective mass,

“remote” bands in thek "p-modef or with the large SO approxi-

- A 6 6 T i A £ ﬁ&%ﬁﬁ@&%ﬁgnzatlon (40) of the density of states is necessary

hemical potential of a degenerateelectron gas
using Fermi-Dirac integrals.

B. Chemical potential and intrinsic carrier

q ffiffiffifﬁffiffiﬁiﬁiffgﬁffiffiffiffifﬁffiffiffiffif@fﬁffiffifﬁffifﬁﬁﬂﬁ‘mﬂfﬂtfﬁn vs temperature

My pos®nP %M ° 1 b anen b Br€2 1 2an€q b 3B €2 % (39)

By setting § ¥4 0 and keeping only terms linear in&., the effec-
tive electron mass fincreases approximately like

# $

. . 5
My podEP +m, 1D :—)cheee : (40)

In other words,when the excess energy is equalto the bandgap
B (i.e.,as€c + 1), the effective electron masé tmas nearly tripled.
This is shown in Fig. 6, which plots the effective density-of-states
electron and light-hole massesof InSb as a function of excess
energy above the conduction band minimumMost of the mass
enhancement is due to the-term (shown by the dotted line)Ve,
therefore have confidence thathe expansion (15) converges well
in the approximation for large SO splittings. Since o€, is not
exactly smallpne might wonder to what extent the linear expan-
sion (40) is accurate.As shown in Fig. 6, the linearization of
Eq. (40) introduces a smakrror, which overestimates the effective
electron massfor very high electron energies.This error has a

......... electron quadratic
- ——electron cubic

--------- light hole quadratic
- —light hole cubic

—mrmes electron linear
e light hole linear

o
o
N

o

0.03

electron or hole DOS mass (mo)

0.02

0.01

0 0.1 0.2 0.3 0.4 0.5
Energy below VB maximum or above CB minimum (eV)

FIG.6. Effective density-of-states electron masg (acknd light-hole

We apply the density of states (34) for nonparabolic bands to
calculate the chemicalotentialy and the intrinsic carrier concen-
tration n for InSb as a function of temperature T.

The electron density nin the -valley of the CB at tempera-
ture T i

8, .
nrorb % degdebf E;*8TP b e, where (41)
0
) #E " $ "
fOEP % exp b1 (42)

keT

is the Fermi-Dirac distribution function with the chemicgboten-
tial y and the Boltzmann constangkNote that we use the experi-
mental (or “thermal’) bandgap E°8TP in Eq.(41), not the “mass”
bandgap EOT b introduced in Sec. Il D.

By setting B,,=0 and keeping only terms linear in a,, we
find that the density-of-states enhancement factor (38) is
apprgximately 1 bgaeee. With the substitutions y ¥4 e=kgT and
xVap'E 5 =kgT, the electron density can be written using
Fermi-Dirac integrals as™°°

) # exp$

nroTP % NOTP F, %
B

LY11G:€T G20T Iudy 61

Yues®
kT ’

15
b 7 OekeTF;

(43)

with the prefactor®>*

# . $3-0
N,3TD %1 2mom kT ™7

2 R @)

In the case of the satellite CB valleys at the L- and X-points (see

below), m;, is the density-of-states mass for a single valley.
Similarly,the light-hole density is given By’

) # $ #

POTP % NOTP Fy kBLT b nkaTF; *

$*
u

ksT (45)

For the heavy hole bandye do not consider the nonparabolicity

mass ffjpogired) of InSb at 0 K as a functionof excess energy above thegeg-set g, ¥ 0. We fix the heavy hole mass at gy % 0:43,inde-

duction band minimumbetow the valence band maxinuatculated from
Eq.(39)(solid)The dotted lines show the results w;ith B. The dashed-
dotted lines show the linear expansion (40).

pendent of temperatur&his mass is determined by the separation
E8 between the p-bonding VB and the p-antibonding CB atthe
I-point, which has a weak relative temperature dependéhtais
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results in®

#
PhrOT B % NpdT PR

u $
ke : (46)
For completenesswe also add additionalterms to consider
the possibility of holes occupying the split-off hole band and elec-
trons occupying the higher conduction band valleys at the L- and

X-points>®
# $
, IA 0 v u

PsOTP % NOT PR T (47)
#|J "E exp$

nLOT b % 4NST PR kBTL : (48)
# m E exp$

nxaTP % 3NET PR kBT (49)

The mass rg;J calculated using Eq7) equals 0.15 at low tempera-
tures,which is within the range of values given in the literatlré.
The dominant contribution to 7 comes from the spin—orbit split-
ting Ao, and therefore the smaller gap § at 800 K causes only a
slight reduction of m_, to 0.14. For the positions of the satellite
valleys at the L- and X-points, we use Ar % 0:51 eV and
Arx V4 0:83 eV,both with a  density-of-statesmass for a single
valley of my ¥ my % 0:25, independent of temperature. We
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FIG.7. Electron (red) and hole density (bln&joods a functionobiemical
potentiadt 300 K in the parabolic approximation (datta)ith the lowest
nonparabolic corrections (sdlid).thermand mass bandgaps were taken

from Fig4, and the electron and light-hole masses were calculated in the large

SO approximation.

hole is about 30 times heavier than the lighthole. Therefore the
nonparabolicity correction doesnot matter much for the hole
bands.The nonparabolicity correction for the electron concentra-
tion is sizeablewhich can be seen from the difference between the
red dotted and solid lines. The effective electron massbecomes

assume that these valleys shift rigidly with temperature at the sami@rger at higher energies as shown by E(39), and thereforethe >

rate as E . There are four L-valleys and three X-valleys in zinc
blende semiconductors(Diamond-type semiconductorsiave six
A-valleys due to the double degeneracy #ite X-point caused by
the nonsymmorphic diamond space group.) Since little is known
about the satellite CB valleys in InShgse numbers are not much
more than an educated guesBhe carrier densities in the split-off
hole band and in the X-valleys are negligibbeit 10% of electrons
occupy the L-valleys at 800 Khis was not considered in the anal-
ysis of the Hallexperiments by Oszwaldowski and Zimpebs far
as we know.Percentages dhe electron and hole populations in
the various bands are shown in the supplementary material.

IV. RESULTS AND DISCUSSION

We can find the chemicalpotential of an intrinsic semicon-
ductor from the charge neutrality conditioh,

nrdTP b &b b k&b Y poTb b pndTP p pHTP, (50)
at a given temperature Tfor example,using polylogarithm func-
tions'®**in maTLaB."® As an example,we show the electron and
hole density of InSb at 300 K as a function of the chemipaten-
tial in Fig. 7. At this temperaturethe experimental“thermal”
bandgap E*® % 0:187 eV and the unrenormalized mass bandgap
By 4 0:221 eV. The room-temperature effective masses are
m, ¥ 0:0138 and 1y ¥ 0:0142¢alculated using Eq¢10) and (11)

electron density is larger than in the parabolic casehecause the——N
prefactor Eq(44) is proportional to r®.

For a given temperature We plot n and p as a function of |3
The intrinsic chemicabotentialis found at the location where th@
two lines cross’’ thus satisfying the charge neutrality condition™
(50).In the parabolic caséhe electron and hole densities vs chem-
ical potentialcross at [ ¥4 162 meVIn the nonparabolic casdhe
electron and hole densities cross @ lower chemicalpotential of
Er % 157 meV because of the larger electron den8it300 K,the
Fermi level is just below the bottom of the CB, because
E;™® %4 0:187 eV as mentioned earlighe intrinsic carrier concen-
tration of InSb at 300 K is 13:6 ! 10'°cm?® for parabolic bands
and 16:4 ! 10'>cm?® in the nonparabolic case.

This method is used to find the chemical potential at each tem-
peratureas shown in Fig.8 (compare Fig.1 of Masut!"). At low
temperatureghe chemicalpotentialis approximately equdb half
the band gap® and thereforethe argument of the Fermi integral is
very small. For this case, we can apply the nondegeneratg fimit,

F%d']b +exprp for n('1,

S20:

(61)

essentially using classicslaxwell-Boltzmann statistics to describe
the electron and hole population$his approximation leads to the
well-known expressions>”

# .9$

in the large SO splitting approximation.For the holes, the light- g+ @ b §kBT In mh*h and (52)
hole density is only a very smallcontribution, because the heavy 27 4 Mg
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TEmpRTRNET. () FIG.9. Intrinsic carriezoncentration vs temperaturepfmabolic bands in

the nondegenerate (dashedj degenerate (dottedses.The black solid
FIG.8. Chemicalotentials temperature for parabolic bands in the nondege¢ line shows the degenerate case with the twmpatabolic correction in the
erate (dashed) and degenerate (dottedTbassslid line shows the degen-  large SO approximatiofhe temperature dependencetbk directgap
erate case with the lowestnonparabolicorrectionin the large SO according to Eq28)was included in the Fermi-Dirac distribution function,
approximatiohhe fultemperature dependendbeflirecgap according to butthe effective masses were calculated taking into antyotie thermal
Eq. (28) was included in the Fermi-Dirac intéigeadftactive masses were  expansion contribution to the bandgap fréivt)Hihe blue line shows a fit
calculated taking into accoumly the thermaxpansion contribution to the ~ to carrier concentrationsdeterminedfrom Hall measurementsby
bandgap given by E34),notthe Debye-Waller and self-energy corrections Oszwaldowskind ZimpgRef46).
The opticalctivation energy from(£4). and the experimetitaicbandgap
(Ref44) from a fib the temperature-deperinfeated dielectric function with
a Johs—Herzinger parametric oscillatofsyrabels) are also shown.

expressioft

n % 2911070400 TE71 p 2.7 110% T T19

#
# , # . '1.5 | '4
mokBT$g& L B $. lexp 0:129'1:5110* T ’
n+2 o mgm;,, ‘exp DT (53) ksT

(54)

€2 G20z IMdy 61

where n is in units of c , T in K, and kT in eV. This Hall con- &
As shown in Fig8, these nondegenerate expressions can be used apntration is also shown in Fig9. Our calculation finds a carrier~
to 300 K for InSbbut deviations become noticeable at higher tem-concentration of1:9 1 10" cm® at 800 K, but this agreementis
peraturesThe chemical potential increases nearly linearly with tembetter than it should beOur use of the large SO splitting approxi-
perature below 300 K as implied by E452). The smalldeviation = mation overestimates the effective electron mass by 12% at 0 K and
from linearity is caused by the temperature dependence of the effénr 10% at 800 K.According to Eq. (53), our model should also
tive electron mas#\bove 300 Kwe must evaluate the Fermi-Dirac overestimate the carrier concentratidhnother uncertainty in our
integral exactly using polylogarithm functiotiBhe fully degenerate model is the temperaturedependenceof the heavy hole mass,
limit (where the argument of the Fermi-Dirac integral is very largewhich has been discussed in the literature to a good eXtent.

is never reached for intrinsic InSb. It is a common practice in the interpretation of low-field

In general,degenerate Fermi-Dirac statistics leads to a highertransport measurements of semiconductors to assume that the Hall
chemical potential than nondegenerate(classical) Maxwell-  scattering factor
Boltzmann statisticsas shown by the comparison for parabolic
bands. Including the nonparabolicity significantly reducesthe hr2i

. 4 A i

chemical potential, as we have already seen in Fig. 7. % — (55)

The intrinsic carrier concentration as a function ofempera- fri

ture is shown in Fig9. For parabolic bandsonsidering degenerate

carrier statistics reduces the carrier deri§itfnonparabolic bands is unity, where T is the scattering time and H' "i' indicatesthe

are consideredthen the effective electron massbecomedarger,  energy weighted average within the carrier population of the band.
which increases the carrierconcentration according to Eq.(53). This assumption is not always truéyoweverand deviations from
Oszwaldowskand Zimpel® obtained the temperature dependence unity by up to 10%—100% are commdii-°’ The value of the Hall

of the intrinsic carrier concentration of InSb from 200 to 800 K scattering factor varies based on the particular type cfcattering
with Hall measurementsAssuming a Hall scattering factor of process and its dependence on the energy of the cakieampli-
unity, they found an intrinsic carrier concentration near  cated dependence of;ron temperature and doping concentration
1:8110"cm® at 800 K. They fitted their results with the s often found.
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