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Abstract—We study the approximability of general convex sets
in R™ by intersections of halfspaces, where the approximation
quality is measured with respect to the standard Gaussian
distribution and the complexity of an approximation is the
number of halfspaces used. While a large body of research has
considered the approximation of convex sets by intersections of
halfspaces under distance metrics such as the Lebesgue measure
and Hausdorff distance, prior to our work there has not been
a systematic study of convex approximation under the Gaussian
distribution.

We establish a range of upper and lower bounds, both for
general convex sets and for specific natural convex sets that are
of particular interest. Our results demonstrate that the landscape
of approximation is intriguingly different under the Gaussian
distribution versus previously studied distance measures.

Our results are proved using techniques from many different
areas. These include classical results on convex polyhedral
approximation, Cramér-type bounds on large deviations from
probability theory, and—perhaps surprisingly—a range of topics
from computational complexity, including computational learning
theory, unconditional pseudorandomness, and the study of influ-
ences and noise sensitivity in the analysis of Boolean functions.

Index Terms—convex geometry, polyhedral approximation,
Boolean functions

I. INTRODUCTION

A long line of mathematical research has investigated convex
polyhedral approximation of convex bodies, i.e. the broad
question of how to best approximate general convex bodies
using intersections of halfspaces (or equivalently, convex hulls
of finite point sets). Research on questions of this sort dates
back at least to the first half of the twentieth century, see
for example the early works of Sas [65], Fejes T6th [71] and
Macbeath [53], among others. Contemporary motivation for the
study of polyhedral approximation of convex bodies arises from
many areas including discrete and computational geometry,
geometric convexity, the study of finite-dimensional normed
spaces, and optimization. Given this breadth of connections, it
is not surprising that the existing body of work on the subject
is vast, as witnessed by the hundreds of references that appear
in multiple surveys (including the 1983 [33] and 1993 [34]
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surveys of Gruber and the 2008 survey of Bronstein [15]) on
approximation of convex bodies by polyhedra.

In the polyhedral approximation literature to date, a number
of different distance notions have been used to measure the
accuracy of convex polyhedral approximations of convex sets.
These include the Hausdorff distance, the Nikodym metric
(volume of the symmetric difference), the Banach-Mazur
distance, distances generated by various L, metrics, and more.
(See [15] for descriptions of each of these metrics and for an
extensive overview of approximability results under each of
those distance measures.)

This paper adopts a new perspective, by considering approx-
imation of convex bodies in R™ using the (standard) Gaussian
volume of the symmetric difference as the distance measure.
We refer to this distance measure simply as the Gaussian
distance. This is a natural and well-studied distance measure in
theoretical computer science, as witnessed by the many works
that have considered learning, testing, derandomization, and
other theoretical computer science problems using it (see e.g.
[17], [20], [21], [27], [29], [37], [39]-{41], [43], [45]-[47],
[55], [61], [72] and references therein). Given this body of
work, it is perhaps surprising that Gaussian distance does not
appear to have been previously studied in a systematic way
for convex polyhedral approximation.

Let us make our notion of approximation precise:

Definition 1. Given (measurable) sets K, L C R™, we define
the Gaussian distance between K and L to be

distq(K,L):= Pr

[x e KAL
xz~N(0,I,,)

where N(0,1,,) denotes the n-dimensional standard Gaussian
distribution and K AL = (K \ L)U (L \ K) is the symmetric
difference of the sets K and L.

We consider approximators which are intersections of finitely
many n-dimensional halfspaces, and we measure the complexity
of such an approximator by the number of halfspaces (facets)
that it contains; we refer to this as its facet complexity. Thus,
we are concerned with the following broad question:

Given a convex set K in R” and a value 0 < € <
1/2, what is the minimum facet complexity of an



intersection of halfspaces L such that distg (K, L) <
e?

Motivation

The broad approximation question stated above arises
naturally in the context of contemporary theoretical computer
science. As alluded to earlier, an increasing number of results
across different areas of TCS involve convex sets and the
Gaussian distance; taking the next step on various natural
problems in these areas would seem to require an understanding
of how well intersections of halfspaces can approximate convex
sets in R™. We give two specific examples below:

o Testing Convex Sets: A number of researchers have
considered the property testing problem of efficiently deter-
mining whether an unknown set X C R"™ is convex versus
far from convex [6], [8], [9], [18], [19], [63]. The Gaussian
distance provides a clean mathematical framework for this
problem, and one in which a natural analogy emerges
between the well-studied problem of monotonicity testing
over the Boolean hypercube and convexity testing [19].
Understanding how convex sets can be approximated by
“simpler objects” under the Gaussian distance seems likely
to be helpful in developing algorithms and lower bound
arguments for testing convexity. (In support of this thesis,
we recall that the study of approximating linear threshold
functions by “simpler objects” [66] yielded insights and
technical ingredients, namely the notion of the “critical
index,” that played an essential role in the development of
efficient algorithms for testing linear threshold functions
[55].) Indeed, a very recent work has used constructions
that are inspired by the construction employed in our upper
bound in Section V to give the first super-constant lower
bound for testing convexity over R™ [19]. We also recall
that several papers have given efficient testing algorithms
for single halfspaces [55] and intersections of k halfspaces
[20], [21] over R™ under the Gaussian distance; combining
these results with results about approximating general
convex sets by intersections of halfspaces offers a potential
avenue to developing efficient testers for general convex
sets.

o Properly Learning Convex Sets: It has long been known
[16] that monotone Boolean functions over {—1,1}"
can be learned to any constant accuracy under the
uniform distribution in time 2°(V?), via the “low-degree”
algorithm based on the Fourier decomposition. Similarly,
it has been known for some time [45] that convex sets can
be learned to any constant accuracy under the Gaussian
distance, via a “Hermite polynomial” variant of the low-
degree algorithm. However, neither the algorithms of [16]
nor [45] are proper: in the monotone case the output
hypothesis of the learning algorithm is not a monotone
function, and in the convex setting the output hypothesis
is not a convex set. Exciting recent work [49] has given a
20(v")_time uniform-distribution learning algorithm for
monotone Boolean functions over {—1,1}" that is proper
(even in the demanding agnostic learning model, see

[50]); given this, it is a natural goal to seek a 20(v/n)_
time proper learning algorithm for convex sets under the
Gaussian distance. What would the output hypothesis of
such a hoped-for proper learning algorithm look like? It
seems quite plausible that it would be an intersection of
halfspaces; this begs the question of understanding the
capabilities and limitations of intersections of halfspaces
as approximators for general convex sets in R"”.

We further note that intersections of halfspaces have been
intensively studied in many branches of “concrete complexity
theory;” indeed, many of the TCS results alluded to earlier
that involve Gaussian distance are more specifically about
intersections of halfspaces, e.g. [17], [20], [21], [29], [37],
[45], [72].

We also remark that the suite of tools which turn out to
be relevant in our study link our investigations closely to
theoretical computer science. Perhaps unexpectedly, we will
see that there are close connections between the study of facet
complexity of polyhedral convex approximators and a number
of fundamental ingredients and results (such as noise sensitivity,
random restrictions, influence of variables/directions, various
extremal constructions, etc.) in the analysis of Boolean func-
tions over the discrete domain {—1,1}". From this perspective,
our study can be seen as a continuation of the broad theme
of exploring the emerging analogy between convex sets in
R™ under the Gaussian distribution and monotone Boolean
functions over {—1,1}" under the uniform distribution (see
e.g. [24], [25], [28], [37]).

As a point aspect of motivation, we mention that results on
the (in)approximability of general convex sets by intersections
of few halfspaces can be useful for the study of probability
theory in its own right. Indeed, the lower bounds that we prove
in Section VII of this paper have very recently been used to
give a lower bound on sparsifying Gaussian processes while
approximately preserving their suprema [22].

Before turning to an overview of our results and techniques,
let us fix some convenient notation and terminology:

Notation 2. If L C R"™ is an intersection of N halfspaces,
then as stated earlier we say that the facet complexity of L
is N. Given a convex set K CR™ and a value 0 <& < 1/2,
we write FC(K, ) to denote the minimum value N such that
there is a convex set L that is an intersection N halfspaces
satisfying distq (K, L) < e.

II. OVERVIEW OF RESULTS AND TECHNIQUES

We start with an overview of our positive results.

A. Overview of Positive Results

We start with our positive results on approximability of
convex sets under the Gaussian distance by intersections of
halfspaces.

a) Universal Approximation via Hausdorff Distance Ap-
proximation: As a warmup, we begin in Section IV-A by
giving a fairly simple “universal approximation™ result that
upper bounds FC(K, ¢) for any convex set K C R™. The key



observation (implicit in the proof of Theorem 18) is that for
any convex set K, if L is an intersection of halfspaces which is
a high-accuracy outer! approximator of K under the Hausdorff
distance measure, then L is also a (slightly lower accuracy)
distg-approximator for K. (Recall that the Hausdorff distance
between two sets S, T C R"™ is

max {sup s — T, sup ¢ - S||}
sES tesS

where ||z —Y|| = inf, ey ||z —y|| and ||z —y]| is the Euclidean
distance between z and y.) This is easy to establish by simply
integrating Keith Ball’s universal O(n'/*) upper bound [3] on
the Gaussian surface area of any convex set (see Theorem 15),
using the fact that for any ¢ > 0 and any convex set K, the
“t-enlargement” K, of K is also a convex set (see the proof
of Theorem 18).

Combining the above observation with standard Gaussian
tail bounds and classical upper bounds on the facet complexity
of an outer Hausdorff approximator for any convex body with
bounded radius, we obtain the following:

Theorem 3 (Informal version of Theorem 18). For any convex
set K and any & > 0, we have FC(K,¢) < (n/e)0™).

b) A “Relative-Error” Universal Approximation Sharp-
ening of Theorem 3: Suppose that K C R" is a convex set
whose Gaussian volume is very large, i.e. 1 — § where ¢ is
very small. In this situation the trivial approximator which is
all of R™ already has distg(K,R™) = 4§, so a natural goal
for approximation is to achieve small error relative to the ¢
amount of mass which lies outside of K, i.e. to construct an
intersection of halfspaces L for which

distq (K, L) < 6.

While Theorem 3 shows that (n/())°(™) halfspaces suffice
for this, in Section IV-B we give a stronger result which has a
significantly improved dependence on §:

Theorem 4 (Informal version of Theorem 19). Let0 < &, < 1
and let K C R™ be a convex set with Vol(K) = 1 — 4. Then

U 1y

FC(K,ed) < 5 (5 log <6)> .

(We remark that the strengthening which Theorem 19 achieves
over Theorem 18 will be crucial for the construction of our ¢,
ball approximators, discussed below.)

We briefly explain the main idea underlying the construction
of the approximator of Theorem 19. First, we recall a basic
property of the N (0, I,,) distribution, which is that along any
ray {tv : t > 0} from the origin in R", the distribution of
Gaussian mass along that ray follows the chi-distribution (see
Section III-B). Since Vol(K) = 1 — 4, this means that the
“amount of chi-distribution mass” which is “lopped off” by
K along direction v, averaged over all directions v, is §. The

IRecall that L is an outer (respectively inner) approximator to K if K C L
(respectively L C K).

high-level idea of our construction of the approximator L is
to place tangent hyperplanes on the boundary of K in such a
way as to “lop off” at least a (1 — ¢)-fraction of the total §
amount of Gaussian mass that lies outside the set K. We do
this via an analysis that proceeds direction by direction: We
can ignore directions in which K “lops off” only a very small
amount (less than £§/4, say) of the chi-distribution’s mass. For
the other directions, we use a bucketing scheme, a suitable net
construction for the points in each bucket, and a mixture of
careful geometric arguments and tail bounds to argue that not
too many halfspaces are required to adequately handle all of
the other directions.

c) Sub-Exponential Approximation for Specific Convex
Sets: Going beyond the universal approximation results
mentioned above, it is natural to wonder whether improved
approximation bounds can be obtained for specific interesting
convex sets. Perhaps the two most natural convex sets to
consider in this context are the ¢; and ¢ balls of Gaussian
volume 1/2, which we briefly discuss below.2

The ¢; ball of Gaussian volume 1/2, also known as the
“spectrahedron” or “cross-polytope,” is the convex set

{z eR" :|z[; <en},

where ¢ = /2/m £ 0,,(1) (this is an easy consequence of the
Berry-Esseen theorem). This set is an intersection of exactly
2™ halfspaces, namely

bz + -+ + bpzy < cnforall (by,...,b,) € {—1,1}",
and it is natural to wonder whether this set can be approximated
as an intersection of significantly fewer than 2" halfspaces.

(As we will explain later, it is slightly more convenient for us
to work with a slight rescaling of this ball, namely the set

2
By = {x ER” : |z|) < \/;n},

which can easily be shown to have Vol(B;) = 1/2 £+ 0,(1).)

The /5 ball of Gaussian volume 1/2 is simply the Euclidean
ball

{x ER™ :|z? < median(XQ(n))}.

(Of course, writing this set exactly as an intersection of
halfspaces requires infinitely many halfspaces.) Using well-
known bounds on the chi-squared distribution we have that
the Euclidean ball of radius \/n, which we denote B(y/n),
has Gaussian volume 1/2 + 0,(1); it will be slightly more
convenient for us to use this as the ¢ ball that we seek to
approximate.

21t is also natural to wonder about the foc ball, but the oo ball
{z €R™ : ||z||co < T} is an intersection of 2n halfspaces —r < z; <
r,i € [n].



d) A 200" _Facet Approximator for the {5 Ball: For
several standard distance measures, including the Hausdorff
distance and the symmetric-difference measure, the ¢5 ball is the
“hardest case” for approximation by intersections of halfspaces,
matching or essentially matching known upper bounds for
universal approximation. For example, it is known [15] that
any intersection of halfspaces which is an e-approximator
to B(y/n) in Hausdorff distance must have facet complexity
Q((v/n/e)™=1/2), matching the universal approximation up-
per bound for Hausdorff distance to within a constant factor
[2]. For the symmetric-difference measure, Ludwig, Schiitt
and Werner [52] showed that if L is an intersection of M
halfspaces for which

Leb(L A B(y/n)) <
Leb(B(vn)
(here Leb denotes volume under the standard Lebesgue
measure), where ¢ > 0 is some absolute constant, then M
must be at least 22(").

In contrast, for the Gaussian distance we are able to exploit
the rotational symmetry of the standard Gaussian distribution
and tail bounds on the chi-distribution to get an approximation
of the /5 ball which uses much fewer than 2" facets, and hence
is much better than the universal approximation upper bounds
given by Theorem 3 or Theorem 4. For any constant ¢, we
give a probabilistic construction of a 20(v™)_facet polytope
which is an e-approximator of the ¢» ball. This construction
is analogous to a probabilistic construction of O’Donnell and
Wimmer [62], which shows that a variant of a random monotone
CNF construction due to Talagrand [69] gives an e-accurate
approximator for the Boolean Majority function. We similarly
modify a probabilistic construction of a convex body due to
Nazarov [57], and use it to prove the following in Section V:

Theorem 5 (Informal version of Theorem 26). Let By denote
the /2 ball of radius v/n in R™ (so Vol(Bs) = 1/2 + 0,,(1)).
Then for any constant € > 0,

FC(By,e) < 200V™),

e) A 2000*"™)_Facet Approximator for the £1-Ball: Since
the ¢; ball does not enjoy the same level of rotational symmetry
as the /5 ball, it is natural to wonder whether it can be similarly
approximated with a sub-exponential number of facets. As we
now explain, another motivation for this question comes from
considering a result of O’Donnell and Wimmer on the inability
of small CNF formulas to approximate the “tribes” Boolean
DNF formula over {0, 1}", in the context of a recently-explored
analogy between monotone Boolean functions and symmetric
convex sets [24], [25], [28], [37].

In [62] O’Donnell and Wimmer showed that any CNF
formula that computes the n-variable DNF tribes function
correctly on (1 — ¢) - 2" inputs, for ¢ = 0.1, must have
28Un/logn) clauses. As detailed in [25], [28], there is a natural
correspondence between s-clause CNF formulas over {0, 1}"
and symmetric intersections of 2s halfspaces over N(0,I,,)
(this correspondence is at the heart of the main lower bound of

[28] and several of the results of [25], [37]). Thus, in seeking
convex sets that may require 2°(") halfspaces to approximate
under N(0,1)™, it is natural to look for a Gaussian space
convex analogue of of the DNF tribes function over {0, 1}".
Now,

e The DNF tribes function is the Boolean dual of the CNF
Tribes function;

o The Gaussian-space polytope corresponding to the CNF
Tribes function is the ¢, ball [25], [37]; and

o The polytope which is dual to the /., ball is the ¢; ball.

Thus the following question naturally suggests itself:

Does the ¢, ball B; in R" require 2°*(") halfspaces
for constant-accuracy approximation, analogous to
how the DNF Tribes function requires 2*("™)-clause
CNFs for constant-accuracy approximation?

While the above conjecture may seem intuitively plausible (and
indeed, the authors initially tried to prove it), it turns out to be
false. In Section 6 of the full version of this paper [26], we show
that the ¢, ball can be approximated to any constant accuracy
as an intersection of sub-exponentially many halfspaces:

Theorem 6 (Theorem 29 of [26]). Let B; denote the origin-
centered /1 ball, i.e.

2
B, = {a: eR” : |z]1 < Un}.
s

Then for any constant €, we have
FC(By,e) < 2000,

We prove Theorem 6 using a probabilistic construction, but
one which is very different from the probabilistic construction
described above in the sketch of Theorem 5 for the /5 ball.
The high-level intuition is as follows: Determining whether or
not a point € R™ lies within Bj is the same as determining
whether or not the sum |z1] + |z2| + - + |z, | exceeds the
threshold value \/2/7n. Given this, the main idea is to take a
probabilistic approach which exploits both anti-concentration
and sampling:

« Anti-concentration tells us that for @ ~ N(0, I,,), only a
small fraction of outcomes of |x1|+- - -+ |x, | will lie very
close to the boundary value of /2/7n. Thus, at the cost
of a small error, we can assume that a typical outcome
x of x either has |z1| + -+ + |x,| > /2/7n + 7 (call
this a “heavy” x), or has |z1|+ -+ |z, < /2/mn—7T
(call this a “light” z) for a suitable margin parameter 7.

o Given this, we can use a sampling-based approach: if we
uniformly sample m coordinates 1, ..., %, from [n] and
evaluate |z;, |+ - -+]|z;,, |, then for a suitable threshold 6,
there will be a noticeable gap between (i) the (extremely
large) probability that |z;, | + - + |25, | < 61 when
is a typical light point, and (ii) the (still very large, but
slightly smaller) probability that |z;, | + - - + |z;, | < 61
when x is a typical heavy point.




The above gap means that by ANDing together a carefully
chosen number M of random sets of the form

{z eR™ & |og |+ + |z, | <61}, (1)

we get an approximator for By which is accurate on almost
all of the points z € R™ which are either light or heavy (and,
as sketched above, almost all points drawn from N(0, I,,)
are either light or heavy, by anti-concentration). The detailed
analysis requires sophisticated Cramér-type bounds which give
very tight multiplicative control on tails of sums of random
variables drawn without replacement from a finite population
of values.

Note that each set of the form (1) is an m-variable “junta” ¢,
ball over its m relevant coordinates (and is also an intersection
of 2™ halfspaces), so the AND of M such sets is an intersection
of M2™ many halfspaces. With careful setting of parameters
we get that this is at most 20(n*%) halfspaces, for any constant-
factor approximation. )

We can in fact extend this approach to obtain a 2000™") facet
approximator for the ¢,, ball of volume-1/2 for 1 < p < 2; we
refer the interested reader to the full version of this paper [26]
for more details. This upper bound crucially relies on our
“relative-error” universal approximation bound, Theorem 4.

B. Overview of Lower Bounds

We now turn to a technical overview of our lower bounds.
a) Non-Explicit Average-Case Lower Bounds: It is well
known that standard counting arguments easily yield strong
(average-case) lower bounds on the complexity of approximat-
ing (non-explicit) Boolean functions that map {—1,+1}" to
{—1,+1}. For a range of different computational models, these
lower bounds show that even achieving approximation error
1/2 — 0,(1) requires any approximator to be exponentially
large.

In our context of approximating convex sets in R" by
intersections of halfspaces, counting arguments are not quite
as straightforward because there are infinitely many distinct
halfspaces over R™. Nevertheless, counting arguments can
be brought to bear to prove lower bounds. In more detail,
[45] used a counting argument to establish the existence of
N = 22" distinct convex sets Kq,..., Ky in R™, each of
which is an intersection of 22(v") many halfspaces, such that
distq (K, K;) > 1/44000 for each 1 < i # j < N. Using this
result, it is possible to establish the existence of a convex set
K (one of the sets K7, ..., Ky) such that FC(K,c) > 2evn,
where ¢ > 0 is a small absolute constant.

In Section VI we give a stronger (but still non-explicit)
lower bound, which shows that many halfspaces are required
even to achieve error 1/2 — 0,,(1); in other words, we give an
average-case lower bound (also known as a correlation bound).
Our lower bound trades off the accuracy of the approximator
against the number of halfspaces:

Theorem 7 (Informal version of Theorem 28). For any 7 =
w(n=1/2 . logn), there exists some convex set K C R" that
has FC(K, 3 — 7) = 2%V,

For example, taking 7 = n~'/4, Theorem 7 implies the

existence of an n-dimensional convex set K such that no
. . 1/4 .
intersection of 2" many halfspaces can approximate K
to accuracy even as large as 1/2 + n~1/*; taking 7 to be
a constant, we recover the non-explicit 22v") Jower bound
mentioned in the previous paragraph.

The proof of Theorem 7 combines classical results from
statistical learning theory with an information theoretic lower
bound on weak learning convex sets under N (0, I,,) that was
established in recent work [28]. A high-level sketch is as
follows: If every convex set could be approximated to high
accuracy (1/2 — 7) by an intersection of “few” halfspaces,
then classical results from statistical learning theory would
imply the existence of (computationally inefficient but sample-
efficient) algorithms to “weakly” learn any convex set K to
error 1/2 — 7/2. On the other hand, a recent result of De
and Servedio [28] gives a strong lower bound on the error
that any sample-efficient weak learning algorithm for convex
sets must incur. The tension between these two bounds can be
shown to imply a lower bound on the number of halfspaces
that any (1/2 — 7)-approximator must use; see Section VI for
the detailed argument. We remark that the proof of Theorem 7
is the first result we know of in which an information-theoretic
sample complexity lower bound for learning is used to establish
an inapproximability result.

b) Average-Case Lower Bounds via Gaussian Noise
Sensitivity: One drawback of Theorem 7 is that it is non-
constructive: not only does it not exhibit any particular convex
set which is hard to approximate, it does not establish any
particular criterion that implies that a convex set is hard to
approximate. Section 8 of the full version of this paper [26]
gives such a criterion. We show that any set with very high
Gaussian noise sensitivity (at least 1/2 — 1/poly(n)) at very
low noise rates (at most 1/poly(n)) requires many halfspaces
to approximate to accuracy even 1/2 + 1/poly(n):

Theorem 8 (Theorem 49 of [26]). If K C R™ is any convex
set which satisfies GNS,,-<(K) > £ —n ¢, then FC(K, § —
n=c) > 2”52(1), where ¢ > 0 is a suitable absolute constant.

Theorem 8 naturally raises the question of whether there in
fact exist n-dimensional convex sets that have Gaussian noise
sensitivity as high as 1/2 — 1/poly(n) at noise rates that are
as low as 1/poly(n). While natural, this question does not
appear [60] to have been asked or answered prior to the current
work. In Section 8.5 of [26], we combine the information-
theoretic lower bounds of [28] on weak learning convex sets
with the “low-degree algorithm” for learning bounded functions
to show that there do exist n-dimensional convex sets K with
GNS; /poly(n)(K) > 1/2 — 1/poly(n). We believe that this
result may be of independent interest.

c) Lower Bounds via Convex Influences: Neither of the
two lower bound techniques discussed thus far yield lower
bounds for any explicit convex sets that we know of. For our
final lower bound, we use the recently introduced notion of
convex influences [24], [25] to prove lower bounds for the ¢,
and /5 balls. In more detail, in Section VII we give a general



criterion on a convex set KX C R™ which suffices to ensure
that FC(K, e) = 22(vV7)_ where ¢ is a suitable constant. This
criterion is that K is symmetric’ and has maximal convex
influence, up to a multiplicative constant factor. Since both the
¢; ball of Gaussian volume 1/2 and the ¢ ball of volume 1/2
satisfy this condition, we get a 2%(V™) Jower bound for each
of these explicit sets.

The notion of convex influence was recently introduced in
the paper [25] as an analogue of the classical notion of influence
from Boolean function analysis over the discrete cube [38],
[59]. In particular, for any unit vector v and convex set K,
I,[K] is meant to capture how K varies just in the direction v
(while averaging out every other direction) — see Definition 34
for the precise formulation. An attractive feature of this notion
of influence is that for any orthonormal basis of R™, say
{v1,...,vn}, the sum > I I, [K] is independent of the
choice of the basis and depends only on the set K. This
leads us to the notion of total influence of a set K, denoted by
I[K] =", L,[K] (where {v,...,v,} is any orthonormal
basis of R™).

[25] proved several structural properties of both influence
and total influence. In particular, Proposition 19 of [25]
established that the total influence of any convex set K is
O(y/n); furthermore, this bound is tight, as exhibited by
K = B(y/n), which is shown in [25] to be the convex set of
maximal total influence.

In this paper, we show that any symmetric set K with
maximal total influence (up to a constant factor) requires any
approximator to have high facet complexity. In particular, we
prove the following theorem:

Theorem 9 (Informal version of Theorem 39). If K is
symmetric and I[K] = Q(y/n), then for a suitable constant
£ > 0 we have that FC(K,¢) = 29%(V™),

The main idea in the proof of the above theorem is a
new structural result establishing that if L is a convex set
which is an intersection of s halfspaces, then I[L] = O(log s)
(Proposition 38). Coupled with the fact that I[K] can be
expressed in terms of the degree-2 Hermite coefficients of K, a
fairly simple argument using Parseval’s identity and Cantelli’s
inequality leads to Theorem 9.

Once again, we observe that there is an analogy here with
the Boolean setting. Namely, Boppana [11] showed that for any
s-clause CNF formula, its total influence (as defined over the
Boolean cube) is bounded by O(log s). We note that despite
the syntactic analogy with Proposition 38, the underlying
techniques are completely different; while Proposition 38 is
an inherently geometric argument, the proof of Boppana relies
on the method of random restrictions [36].

C. Discussion

The current paper takes the first steps in studying polytopal
approximations of convex sets under Gaussian measure. Several

3Recall that a set K C R™ is symmetric if x € K implies —x € K.

tantalizing questions emerge from our work; we highlight a
few of these now.

Perhaps the most natural question is to close the gap
between the worst case upper and lower bounds on FC(K, ¢)
in the constant-¢ regime. In particular, both Theorem 39 and
Theorem 28 guarantee the existence of convex sets K such that
FC(K,e) = 2°(V™) for some constant ¢ > 0. On the other
hand, Theorems 18 and 19 show that for any constant € > 0,
FC(K,e) = n®™_ Can we close this gap?

In a related vein, it would also be interesting to obtain tighter
upper and lower bounds on FC(K,¢) when K is the ¢, ball
of Gaussian volume 1/2. In particular, for p > 2, we do not
have an upper bound on the facet complexity (when the error €
is a constant) that is better than n°(™)_ Is it possible to obtain
polytopal approximations for the £, ball with 27""° facets for
constant ¢ > 0 in the constant error regime?

Finally, looking ahead, it would be interesting to study
Gaussian-distance polytopal approximation of convex sets via
approximators with small vertex complexity. Very little seems to
be known here and indeed, the vertex complexity analogues of
many questions considered in the current paper seem to be wide
open. For example, Section V gets a 2°0(v™)_facet approximator
for the /5 ball. Can we obtain a similar approximator for the
£5 ball which has subexponential vertex complexity?

III. PRELIMINARIES

Section III-A recalls basic background and sets up notation,
Section III-B gives standard facts about the Gaussian and chi-
squared distributions, Section III-C recalls known bounds on
Gaussian surface area, and finally Section III-D defines the
various distance metrics between convex sets that we will use.

A. Basic Notation and Terminology

We use boldfaced letters such as x, f, A, etc. to denote
random variables (which may be real-valued, vector-valued,
function-valued, or set-valued; the intended type will be clear
from the context). We write & ~ D to indicate that the random
variable x is distributed according to probability distribution D.
We will frequently identify a set K C R™ with its 0/1-valued
indicator function.

Notation 10 (Multiplicative approximation). We use the
following notation to denote that two nonzero reals a, b are
multiplicatively close: For v > 0,

ar,b << e V<alb<e”

(note that this condition is symmetric in a and b).

a) Geometry.: We write e; € R™ to denote the 7" standard
basis vector. For r > 0, we write S"~!(r) to denote the origin-
centered sphere of radius r in R™ and B(r) to denote the
origin-centered ball of radius r in R", i.e.,

s (r) = {x ER™: ||z|| = 7"}

and
B(r) = {33 ER": ||z]| < r},

where ||z| denotes the {5 norm || - |2 of z € R™. We also
write S"~1 for the unit sphere S"~1(1).



b) Convex Sets and Convex Bodies.: A set K C R"
is convex if z,y € K implies az + (1 — a)y € K for all
a € [0,1]. We recall (see e.g. [48]) that all convex sets are
Lebesgue measurable.

A convex body in R™ is a compact convex set with non-
empty interior. Our results will hold for general convex sets
(not only bodies), but since we are working with Gaussian
distance, it is easy to see that it suffices to consider only convex
bodies. (If a convex set has empty interior then its Gaussian
volume is 0; the Gaussian volume of the closure of a convex
set is the same as the Gaussian volume of the set; and if a
convex set A is unbounded, we can “truncate” it by intersecting
it with a sufficiently large ball to obtain a bounded convex set
A" C A with distg (4, A’) <e/2.)

Finally, for sets K, L C R™, we write K + L to denote the
Minkowski sum {x+y : z € K and y € L}. Foraset K C R"
and r > 0 we write rK to denote the set {rz : x € K}.

c) Intersections of Halfspaces and Approximation.: For
the sake of readability we will mostly state our results in a
self-contained way, but the following notation will sometimes
be useful:

o We write Facet(n, M) to denote the class of all convex
sets which are intersections of M halfspaces in R", i.e. the
class of all M-facet convex sets.

o For a convex set K C R™ and a value 0 < € < 1, we write
FC(K,¢) to denote the minimum value M such that there
is some intersection of M halfspaces L € Facet(n, M)
such that distg(K, L) < ¢, i.e. FC(K,¢) is the minimum
“facet complexity” of any e-approximator of K.

B. The Gaussian and Chi-Squared Distributions

We write N(0,I,) to denote the n-dimensional standard
Gaussian distribution, and denote its density function by ¢,,,
ie.

on(x) = (2m) /2= 1217/2,

When the dimension is clear from context, we may simply
write ¢ instead of ¢,,. We write Vol(K) to denote the Gaussian
measure of a (Lebesgue measurable) set K C R", that is

Pr

Vol(K) := o

[x € K].

We recall the following standard tail bound on Gaussian random
variables:

Proposition 11 (Theorem 1.2.6 of [31] or Equation 2.58 of
[74]). Suppose g ~ N(0,1) is a one-dimensional Gaussian
random variable. Then for all » > 0,

1 1 1 1 3

Y . >r] < T
P1(r) (r 1"3) - ng(I(.),l)[g 21l < eu(r) (7‘ 73 + 7’5>
where ¢ is the one-dimensional Gaussian density.

We will also make use of the Berry-Esseen central limit
theorem [7], [32] (alternatively, see Section 11.5 of [59]):

Theorem 12. Let X4,...,X,, be independent random vari-
ables with E[X;] = 0 and Var[X;] = o7, and assume

S o?=1.Let S=>" X,;and let Z ~ N(0,1) be a
standard univariate Gaussian. Then for all v € R,

|Pr(S <u]—Pr[Z <u]|<cy
where N
y=) E [|Xz'|3]
i=1
and ¢ < 0.56 is a universal constant.

Recall that the norm of an n-dimensional Gaussian random
vector is distributed according to the chi-squared distribution
with n degrees of freedom, i.e. if x ~ N(0,I,) then ||z|* ~
x2(n). It is well known (see e.g. [75]) that the mean of the
x?(n) distribution is n, the median is n(1 — ©(1/n)), and
for n > 2 the pdf is everywhere at most 1. We note that an
easy consequence of these facts is that the origin-centered ball
B(y/n) of radius v/n in R™ has Vol(B(y/n)) = 1/2 4 0,(1).

We will require the following tail bound on x?(n) random
variables:

Proposition 13 (Section 4.1 of [51]). Suppose y ~ x2(n).
Then for any ¢ > 0, we have

Pr [y >n 4 2vnt + 2t} < exp (—t),
y~x3(n)
Pr [y <n-— 2\/nt] < exp(—t).
y~x2(n)

C. Bounds on Gaussian Surface Area

Given a measurable set K C R"™, recall that the Gaussian
surface area of K—which we will denote as GSA (K )—is
given by

GSA(K) = lim Vol (K + B(g)) — Vol(x)

For convex sets (more generally, for sets which are sufficiently
regular, e.g. have smooth boundary except at a set of measure
zero), we have
GSAK) = [ () doa) @
OK
See [57] or Definition 2 of [45] for further discussion on this
point. The following upper bound on the Gaussian surface

area of an intersection of halfspaces was obtained by Nazarov;
see [42], [45].

Theorem 14 (Nazarov’s bound). Suppose K C R” is an
intersection of s halfspaces. Then we have

GSA(K) <+v2lns+2.

We will also require the following upper bound on the
Gaussian surface area of an arbitrary convex set in R™, which
was obtained by Ball [3]:

Theorem 15 (Ball’s theorem). Suppose K C R" is a convex
set. Then we have

GSA(K) < O(n'/*).



Finally, we recall the Gaussian isoperimetric inequality [12],
[67]:

Theorem 16. Suppose K C R”. Let H C R”™ be a halfspace
(e H={r € R": (z,v) <0} forve S" ! and § € R)
such that Vol(H) = Vol(K). Then

GSA(K) > GSA(H) = ¢1(0)
where ¢; denotes the univariate Gaussian p.d.f.

D. Distance Metrics Between Sets

The primary distance metric we will use throughout this
paper is the following: Given two measurable sets K, L C R",
we define

distg(K,L):= P K L(x).

st (K. L) = Pr  [K(@)# Lx)]

In other words, distg (K, L) = Vol(K A L), i.e. the Gaussian

measure of the symmetric difference of the sets K and L.
We also recall the Hausdorff distance between two sets

K, L CR™, which is defined as

disty (K, L) := max < sup inf d(z,y), sup inf d(z,y)
zeK yel yeLxeK

where d(x,y) = |z — y|l2 denotes the usual Euclidean
{5 distance between the points x and y. We will rely on
bounds on polytope approximation under the Hausdorff distance
in Section IV-A.

IV. GENERIC UPPER BOUNDS

We first give upper bounds on the facet complexity of
arbitrary convex sets in R™ under the Gaussian distance metric.

A. Warmup: Universal Approximation via Hausdorff Distance
Approximation

The following upper bound on the facet complexity of
polytope approximators under the Hausdor{f distance (cf. Sec-
tion III-D) was independently obtained by Dudley [30] and by
Bronstein and Ivanov [14]; see also Section 4.1 of [15].

Theorem 17. Suppose K C R™ is a compact convex set with
non-empty interior that is contained in the unit ball in R”, i.e.

K C B(1).

For 0 < & < 1073, there exists a convex body L which is the
intersection of

9\ (n~1/2

3vn <) halfspaces
€

such that K C L and disty (K, L) <e.

We remark that the original results due to [14], [30] consider
the vertex complexity (i.e. number of vertices) of approximators
instead of the facet complexity and furthermore only consider
inner approximators to K (i.e. L C K in the above); their
arguments, however, can be easily modified to obtain the above

[1]. Finally, we note that the bound in Theorem 17 is known
to be close to tight: any outer (or inner) approximation to the

unit ball B(1) in R" requires Q(1/e~1/2) halfspaces [2],
[15].

Theorem 17 and Ball’s universal bound on the Gaussian
surface area of any convex set (Theorem 15) imply the
following upper bound for approximating generic convex sets
in R™ under the Gaussian distance:

Theorem 18 (Universal approximation of convex sets.). Let
0 < e < 1073, For every convex set K C R"”, there exists a
convex set L which is an intersection of

n—1)/2
; <n5/4 4 ond/4 1n(2/5)> (b

3

halfspaces

such that distq(K,L) < e, ie. we have FC(K,e) <
0 (n5/4+2n3/4, /n(2/%) > (n=1)/2

)

Proof. For the rest of the argument, set

2
r*i=+/n+2 ln(> and e = @(f)
€ ni/4

Recalling that the squared norm of a Gaussian vector is
distributed according to a x?(n) distribution, we have by
Proposition 13 that

Pr [ja]? >
x~N(0,1,)
9 2 2

< Pr y " >n+24/nln| — | +2In{ -

y~x3(n) € €

€
<—. 3
<3 3

It thus suffices to (¢/2)-approximate K’ := K N B(r*) under
the Gaussian distance metric.
It is easy to see by definition of the Hausdorff distance that

distg(K, L) < ¢ is equivalent to disty(¢K,tL) < 4.

In particular, consider the convex set (1/r*)K’ C B(1), and
let L C R™ be the polytope guaranteed to exist by Theorem 17
such that X C L and
1 1
disty (*K’,*L) <=
r r

— 27‘*7

/

which implies that disty (K’, L) < % Recalling our choice of
¢’, note that Theorem 17 guarantees that L is an intersection
of

n—1)/2
O<18\£/E7"*>( )/ :O<n5/4+2n3/4

3

e /5)> (/e

halfspaces. We will show that L is in fact an (g/2)-
approximator for K’ under the Gaussian distance, which would
complete the proof as

distg(K, L) < distq (K, K') + distg(K',L) <e. (4



Indeed, by definition of the Hausdorff distance we have that
K'CLCK]

where K., := {a: € R™: inf d(x,y) < 5’}. ©)
yeK

Consequently, the Gaussian distance between the sets K’ and
Lis

distq(K', L) = mNAl?(an) [K'(z) # L(x)]
= P L\ K’
mwN(g,Iﬂ,) [w € \ ]
< P K, \ K’
- mwN(g,In) [w € Ko\ ]
= / / p(z) dx dt
t=0 Jx€OK;
E/
— | GSA(K,)dt
t=0
< 0(n'*) 6)
€
= 7

Here, K, is defined as in Equation (5); it is easy to see that if
K is a convex, then so is K; for all ¢ > 0. Note that we used
Keith Ball’s bound on the Gaussian surface area of convex
sets (Theorem 15) to obtain Equation (6). The theorem now
follows from Equations (4) and (7). O]

B. A Relative-Error Sharpening of Theorem 18

We now establish a sharpening of Theorem 18 that gives a
much better bound in the regime where K has volume very
close to 1:

Theorem 19. Let 0 < § < 1. Suppose K C R"™ is a closed
convex set with
Vol(K) =1—0.

Then for all € > 0, there exists a convex set L which is the

intersection of
O(n
1 nl 1 ™
5 \2%\5

halfspaces such that distg(K,L) < &6; i.e., FC(K,&d) <
O(n)

1 n 1

5 (zlog (3)) :

We mention that in the most interesting regime, when ¢ is

smaller than some absolute constant (which can be taken to

be 1/10), our proof of Theorem 19 is self-contained and does

not rely on the result of Bronstein—Ivanov (Theorem 17).

To contrast Theorem 19 with Theorem 18, note that Theo-
rem 18 would give an ej-approximation to K using

- (n—1)/2
(O(n5/4/65)) halfspaces

where the O hides a logarithmic factor in log(1/e6). The
crucial difference between Theorem 19 and Theorem 18 is that
the dependence of Theorem 19 on § is only % -log(1/6)°
rather than (1/6)©(™). This can make a major difference if & is

very small; for example, if § =1/ 2V and £ = 0.01 (observe
that with these parameters, the desired approximator of K
must correctly “lop off” at least 99% of the 1/ 2V amount
of mass that lies outside of K), then Theorem 18 would only
give a bound of 20(n?/%) halfspaces whereas Theorem 19 gives
a bound of 20" halfspaces. Indeed, our 20("**)_halfspaces
approximation of ¢, balls for p € (1,2), given in the full
version [26], will crucially rely on a savings of this sort that
comes from the sharper parameters provided by Theorem 19.

1) Proof Overview: We set up some useful notation and
give a high-level proof overview of Theorem 19. Throughout
this section as well as the next, let K C R" be a fixed convex
set with volume 1 — § as in the statement of Theorem 19. We
may assume without loss of generality that K is closed, since
Vol(K) is the same as the volume of the closure of K for any
convex set K.

We first remark that if § > 1/10 then the claimed bound is
an immediate consequence of Theorem 18, so we henceforth
suppose that 6 < 1/10.

As in the proof of Theorem 18, we may assume that K is
contained in a ball of sufficiently large radius, namely

K C B(R) where R :=+/n+24/In <26>’
5

Vol(R) > 1 — §7

SO

and that the goal is to obtain an (£§/2)-approximation to K.*

Definition 20 (“Length” function). Given a vector v € S" 1,
we define the function £: S"~! — R as
£(v) := sup {(x,v).
zeK
In other words, ¢(v) is the “length” of the set K along the
direction v from the origin. We remark that since Vol(K) >
0.9 > 1/2, the set K must contain the origin. We further
remark that the function ¢ : S*~! — R is sometimes called
the Minkowski or support functional of the set K [70].

Notation 21. We write m(t) for

2
yNIx)’f(n) [y = }

Note that m(t) is simply the tail mass of the x2(n)
distribution beyond the point t2. We can also view it as
the probability that a Gaussian draw x ~ N(0,I,) has
|z||> > t, even conditioned on x lying on any particular
ray {rv:r € R>o} for any fixed v € S"~'. See Figure 1 for
a schematic of the setup thus far.

From Definition 20, Notation 21, and the definition of the
set K in Theorem 19, we have that

E_ [m(tw)| =9

v~Sn—1

m(t) :=

“In particular, we may intersect K with B(R) to obtain a convex set K’
and aim for an (£d/2)-approximation to K’ as in Section IV-A; for notational
simplicity, however, we do not introduce the new set K’ in this section.



Fig. 1. Setup for the proof of Theorem 19. The length of the solid line is
£(v), and the conditional Gaussian mass on the dashed ray (conditioned on
the Gaussian lying on the ray from the origin in direction v) corresponds
to m(£(v)). The cross-hatched region corresponds to the (at most) £§,/2
approximation error incurred by intersecting K with B(R).

since Vol(K) =1 — §. Note that this uses the convexity of the
set K and the fact that K contains the origin.

Finally, since Vol(K) =1 —§ > 0.9, we have that B(1) C
K. To see this, note that if there exists € B(1) such that
x ¢ K, then the separating hyperplane through = for K “lops
off” at least 1 — ®(1) > 0.1 of the Gaussian mass, and hence
Vol(K') < 0.9, which is a contradiction. We record this fact
for convenience:

Fact 22. We have that B(1) C K.

We now turn to a high-level description of the approximator
L. As in the proof of Theorem 18, L will be an outer
approximator to the set K (i.e. K C L). We will construct L
by placing tangent hyperplanes to K that “lop off” at least a
(1 — e)-fraction of the total 6 amount of Gaussian mass that
lies outside the set K. In more detail, call a direction v € S*~1
“good” if m(£(v)) < (e4/4), and “bad” otherwise.

« For all “good” directions, we will not worry about lopping
off mass. Indeed, even if we failed to lop any probability
mass off in all such directions, the total contribution to
our overall error would be at most (¢/4).

¢ In order to handle “bad” directions, we first bucket them
according to the value of m(¢(v)) (which, as stated
earlier, is proportional to the amount of Gaussian mass
along v outside of K). We will obtain an appropriate
covering of the points in each bucket, and we will place
tangent hyperplanes to K at the points in our covering. A
geometric argument (which will make use of the fact that
B(1) C K), together with suitable tail bounds, will then
give that the total error incurred from all “bad” directions
is at most (£6/4).

Putting everything together, we will obtain an (£§/2)-
approximation to the set K; since we assumed K C B(R),

we already incurred (ed/2)-error, which overall gives
distg (K, L) < &6.

2) Proof of Theorem 19: As mentioned earlier, we may
suppose that § < 1/10. We start by describing the bucketing
alluded to in the proof overview.

Definition 23 (Bucketing S~ !). Let 7 > 0 be a parameter
that we will fix later. For k € N, we define

buck(k) :=
{v e S" 1 im(L(v)) € ((1 +7)7F 1+ 7)_’“4‘1} }

We will fix 7 (which will be a small quantity between 0
and 1) later in the course of the proof. Informally, buck(k) is
the set of directions for which the probability that a Gaussian
vector in that direction lies outside K is roughly (1 + 7)~*.

For large enough k, the amount of mass outside K along
the directions in buck(K) will be small, and so intuitively
we should be able to ignore such directions. (We called such
directions “good” in the proof overview.) To make this precise,
set a parameter k* to be

1 4
fi=—In|— ).
K Tn(55>

We then have for all v € buck(k) with k& > k* that

m(l(v)) < (14 7)™ < exp(—7k*) < %

As discussed previously, we will only have to worry about the
“bad” directions corresponding to

o
|_| buck(k) (8)
k=1

and ignore the “good” directions; this will incur at most £§/4
error. We will use the following lemma to separately handle
each bucket buck(k) for k& < k*.

Lemma 24. Suppose A C S"~! and 6 € (0,7/2). There
exists a set S4(0) C A consisting of at most (12/6)™ points
such that for all z € A, there exists a point y € S4(f) such
that

Z(z,y) = arccos (z,y) < 6.

Proof. Note that /(x,y) < @ for z,y € S*~! if and only if
|z —y|| = 2sin(6/2). It thus suffices to construct a 2sin(6/2)-
net (cf. Section 4.2 of [73]) of A. From Exercise 4.2.10 of [73],
the size of such a net is upper bounded by the size of a sin(6/2)-
net for S, which in turn is at most

This bound is standard; see, for example, Corollary 4.2.13
of [73]. Finally, since sin(-) is concave on the interval [0, 7/2],

we have that
sin g > Q
2) = 4’



and so we have that the desired net consists of at most

12\" . ¢
— oints
9 p )
which completes the proof. O

We will construct the approximator L by placing tangent
hyperplanes to K at the points in .S where we define

L
S = || Souek(r(67)

k=1

where Sy (k) (0*) is as in Lemma 24 for an appropriate choice
of 6*. It follows that the total number of halfspaces in our
approximator L is at most

12 1 4 12\"
< * — — ). [ =
s (3) = (5) ()

where 7 and 6* are parameters that we will set below.
a) Setting Parameters.: Setting the parameters 7 and 6*
fixes our approximator L. We will take

)

gd
T= ",

8

g2 16 16 n
= — 24+ — ) [2R*(2 — = 1
0 =5, R<+€)<R<+ ) 4> (10)

Our choices above are dictated by the error analysis below;
we note that it follows from Equations (9) and (10) that L
has the desired number of halfspaces. Before proceeding, we
introduce the following notation:

Notation 25. For k € [k*], we define

inf

Lk max ‘—
( ) Sub vEbuck(k)

vebuck(k)

2(v) and  L(k)min =

b) Error Analysis.: We will analyze the error in approxi-
mating K by L on a direction-by-direction basis; recall that we
only need to worry about the “bad” directions (Equation (8)).
Fix a “bad” direction v € S"~!, and suppose v € buck(k)
(where k£ < k*). Consider the two-dimensional setup (corre-
sponding to the two-dimensional plane span{O, U, W}) as in
Figure 2:

e Let O denote the origin 07;
e Let V € OK be the point of intersection of the ray

{tv:t >0} and 0K;

o Let U € 0K, U € Spyck(r)(0*) be a point in buck(k)
such that 6 := A(O_'L, O_N) < 6*; and

« By construction, we put down a halfspace tangent to K
at U; let W be the point of intersection of this halfspace

with the ray {tv : ¢ > 0}.

With this setup in hand, note that the error incurred along

direction v is given by

error(v) := m(||V]]) — m(|W]]).

Fig. 2. A two-dimensional setup to analyze the error of our approximator.
Here V € buck(k) and U € Shyci (k) (0*) and so Z(0V,0U)=6 < 6~

We will next establish that this quantity is at most £§/4, which
will imply that the total error incurred from all the “bad”
directions is at most £6/4. Note that

error(v) = m([|[V]]) — m(|W]))
< m(0(F)n) —m (W)
= (m(E(F)in) —~ m(E(F) )
+ (m(UE)max) = m(IW])). (D)

It suffices to show that Equation (11) is upper bounded by 4 /4.
Indeed, recall that we incurred (a) £6/2 error from “capping”
the set K by intersecting it with B(R); (b) €§/4 error from the

/(v). bad” directions from buck(k) for & > k*; and finally (c) £6/4
error from all of the “good” directions from Equation (11) (as

we will establish in the remainder of the argument); this will
complete the proof of Theorem 19.

We will bound each term in Equation (11) separately. By
definition of the buckets (Definition 23), we have that

m(0(k)min) — m(€(F)max) < el

rl+7)F<r= 5
In order to bound the second term in Equation (11), recall
that by Brahmagupta’s formula (cf. Figure 2), we have

(12)

sin(m — k) _ sin(k —0)
W]l U]
This can be rewritten as
sin k sin k
— . < ————— (k) max- 13
Wl = g V1S oy e (13

Recalling Fact 22, since B(1) C K C B(R), we have that
dist (O W/) 1
>

dist (U O L iT))

tank =



where we write dist(O, W/) to mean the distance between
the origin and the line WV, which is guaranteed to be at least 1
thanks to the convexity of K and the fact that B(1) C K; and
dist(U,0 L W) is the distance between U and the point on
the line UW closest to O, which must be at most dist(O, U)
(since the hypotenuse is the longest side in a right triangle),
which in turn is at most R by out setup. (See Figure 2.)
Returning to Equation (13), the above lower bound on tan s
implies that

sin K sink
sin(k — )  sinkcosf — cos ksinf
1
- __ siné@
cosf — o0
1

<—F——.
cosf — Rsinf
For 6 > 0, recalling the standard trigonometric inequalities
2

sinf < 6 and cosﬁzl—?,
we thus get that
sin K 1
sin(k — 0) ~ cosf — Rsinf
1
T1-RI-2

2
<1+42RH <1+ 2RH"

where the penultimate inequality can be readily verified from
the definitions of R and #, and the final inequality relies on
the fact that 6 < 6 since U € Spyuei(i)(0*) and V' € buck(k).
Plugging the above bound back into Equation (13), we get
that
W] < 00k)max(1 + 2R07).

As m (cf. Notation 21) is a decreasing function, we have that

m(L(k)max) — m(|W]]) (14)
< m(ﬁ(k‘)max) — m(ﬁ(k:)max(l + 2R9*))
1 (0(k) ma (1 + 2RO*
— (k) ) <1 Bl ) > (é)llx) ”)
m(U(k)max (1 + 2R0%))
<4 (1 - (o) ) (15)

where Equation (15) relies on the observation that m(¢(v)) < §
for any direction v € S”—1. To see this, note that if tv € K is
such that m(t) > 4, then the supporting hyperplane tangent to
K at tv will “lop off” strictly greater than § mass. Consequently,
Vol(K') < 1 — 4, which is a contradiction.
Now, note that it suffices to show that
m(0(k)max(1 + 2R0*)) o1 ¢
1 (£(k)max) -8
in order to complete the proof. The remainder of the proof
establishes Equation (16). We split into two cases depending
on £(k)max:

(16)

¢) Case I: l(k)max > vVn—1.. . Let A > 0 be a
parameter that we will set later. We have
m(é(k)max(l + 2R9*))
m(€(k)max)
m(0(k)max (1 + 2RO*)) — m(€(k)max(1 + (2 + A)RE*))
m (k) max) — m(f(k)max(l +(2+ A)RH*))

a7

Note that the right hand side of the above equation is lower
bounded by

18
() ma(@ + A) R~ pdE ) (E(F)ma) (18)
- < A > PAf () ((K)max (1 + (2 + A) RO*))
S \2+A pdf, () (C(k)max)

where (18) used the fact that the pdf, ,)(z) is decreasing in

x for x > v/n —1, and
T= ((1 +(2+ A)RO*)" L exp (A)), where

_p2
A= R
2

In particular, (19) relies on the formula for the density function
of the x(n)-distribution, which is given by

(2(2 + AR + (2 + A)2R29*2).

2

1 n—1 _xZ :
0 if £ <0
and the fact that ¢(k)pnax < R. (This is because we truncated
K by intersecting it with B(R).)

We will take
16

)

e

A

as a consequence of which, Equation (16) follows from showing
that

e

64"

In particular, using the inequality 1 + z

show that
&2
T 0*) > - .
(n, R,0%) 2 exp | — &~

T(TL7R, 0*) 2 1 -

< €%, it suffices to

We have that

Y(n,R,0%) > <(1 +(2+ A)RO))" L exp (72339*(2 + A)z))

> exp e*<<2ZA>nR 2R3(2+A)2>




where the first inequality uses R6* < 1, the second inequality
uses 1+ x > e*/2 for 2 € [0,1], and the third inequality uses
the choice of 6*, which we recall was

g2 16 16\ n
0* = — 24 =) [2R?(24+ =) - =
64 R(+5><R(+5> 4)

d) Case 2: l(k)max < +/n— 1. First, note that
pdf, () () is at most 1 for all z. It follows that

-1

£(k)max (1+2RO™)
/ pdf, () (%) dz < 20(k)max RO™ < 2RO™\/n.
¢

(F)max
(20)

Furthermore, since £(k)max < v/n — 1 which is the mode of
the x(n)-distribution it follows that

This, together with Equation (20), lets us write

(s (14 2R0%)) 0 (E()max) — 200y
m(f(k)max) m(g(k)max)
>1—4R0*\/n
2 1- %a

establishing Equation (16) (the final inequality above is
straightforward to verify from our choice of 6*).

Putting both cases together completes the proof of the
theorem. O

V. IMPROVED APPROXIMATION FOR THE /5 BALL

For the Hausdorff and Lebesgue distance metrics (cf. Sec-
tion III-D), the /5 ball is often an extremal example for known
upper bounds on the vertex or facet complexity of polyhedral
approximators [5], [13], [30], [52]. In this section, we show
that—perhaps surprisingly—the +/n-radius ¢ ball B(\/n),
which has Gaussian volume 1/2+ 0,,(1), can be approximated
to within any constant error by an intersection of only 2°0(v7)
many halfspaces. This is a substantial improvement on the
exponential-in-n approximation upper bounds obtained in
Section IV for general convex bodies.

Throughout this section, we will write By := B(y/n) for
ease of notation (the “2” subscript is because we are dealing
with the /5 ball).

Theorem 26. Let 0 < ¢ < c for some sufficiently small
absolute constant c. Then there exists a polytope K which is
the intersection of

1 1
s=exp|© <\/ﬁ - log (5>> halfspaces

such that distg(Bs, K) < e.

Fig. 3. A cartoon of how a polytope drawn from Naz(w, s), for suitable
s = 29(Vn) 4 ~ n3/4, approximates the radius-\/n ball in R™. Our
depiction of By = B(4/n) is inspired by Milman’s “hyperbolic” drawings of
high-dimensional convex sets [56].

Theorem 26 is inspired by Theorem 2.1 of O’Donnell and
Wimmer [62], which shows that the n-bit majority function
Maj,, : {0,1}™ — {0,1}, defined as

Maj,(z) =1 Zml >n/2 5,
i=1

can be approximated by a monotone CNF formula of size
20(v7) O’Donnell and Wimmer’s construction is probabilistic
and bears a close resemblance to Talagrand’s random CNF [69].
Our approach for approximating B employs a modification of a
probabilistic construction of a convex body due to Nazarov [57].
Looking ahead, in Section VII we will show that Theorem 26
is tight for constant €; more precisely, we will show that any
e-approximation to By must have 22(v™) facets for a suitable
small constant ¢ > 0.

To prove Theorem 26, we begin by defining a suitable
distribution over intersections of randomly chosen halfspaces:

Definition 27. For w,s > 0, we write Naz(w, s) to be the
distribution over s-facet polytopes in R™ where draw from
Naz(w, s) is obtained as follows:
1) For i € [s], draw i.id. g) ~ N(0,I,) and let H;
denote the halfspace

om0 ) <)
2) Output the convex set K :=(;_, H;.

With Definition 27 in hand, we turn to the proof of
Theorem 26:

Proof of Theorem 26. We will show that there exists an out-
come K in the support of Naz(w, s) for an appropriate choice
of parameters w and s that has the desired properties.

To show this, it suffices to show that

E Pr

K B <
K~Naz(w,s) | 2~N(0,I,,) [ (l’) 7& 2(213)} 6,



which, by commuting the order of integration, is equivalent to
showing that

E Pr

K B <e.
x~N(0,I,,) | K~Naz(w,s) [ (iL’) 7& 2($)} =

21

Equation (21) allows us to control the error on an “x-by-x
basis.” We set parameters

dip 1= /71 — Z and  dyy i= /1 + Z. (22)
We will show that when ||z|| < di, or ||z] > dout,
5
P K B < -. 2
KNNazr(w,s) [ (-’17) 7& 2(37)] -2 ( 3)

Since the Gaussian volume of the annulus {y € R™ : dj, <
lyll < dout} is at most § (this is an easy consequence of the
standard fact that for n > 1, the pdf of the x?(n)-distribution
is everywhere at most 1), this establishes Equation (21) which
in turn completes the proof.

Note that by construction (Definition 27), for any fixed
z € R™ we have that

Pr [r€K]= <I><“’>
K~Naz(w,s) ||]JH

where ® : R — [0, 1] denotes the cumulative density function
of the univariate Gaussian distribution N(0,1). To see this,
note that

(@,99) =" 2ig? ~ N(O, ||?)
=1
and so

[(x,g(j)> <wforall j € [s]} = @(HI‘;OS

due to independence.
This observation informs our setting of the parameters w
and s. We take w to satisfy the equation

.....

1—®(w/dout) B % é
1—®(w/dyn) 51n<5) 24
and take s to be
-1
€ w

(We will argue that there is a valid solution to Equation (24)
later on in the proof.) Given Equations (24) and (25),

e For z € R™ with ||z| < din, we have

[z € K] :@(ﬁfc’”y

Pr
K~Naz(w,s)

where the first inequality relies on the fact that ®(-) is
an increasing function, the following equality relies on
our choice of s in Equation (25), and the final inequality
makes use of the fact that (1—a)® > 1—ab. As ||z|| < di,
implies that © € Bg, we pick up at most /4 error on
such points.

o For x € R with ||z|| > doyy and K ~ Naz(w, s),

Prlz € K| :@(”ZY

Il
—
|
NS
7N
—
|
KA
N
e
N———
N——
E
/N
LS
N———
w

where we once again used the fact that ®(-) is increasing
in the first inequality. The following equalities follow
from rearranging Equations (24) and (25), and the final
inequality is due to the fact that (1 + z) < exp(x). As
x > doyu implies that z ¢ Bs, we pick up at most £/4
error on such points as well.

In particular, the above establishes Equation (23), which in

turn establishes Equation (21) and so there exists a set K in

the support of Naz(w, s) that e-approximates Bs.

It remains to argue that there exists a valid solution to
Equation (24), and to bound the number of facets of K (i.e. the
parameter s); we start with the former. Using standard Gaussian
tail bounds (Proposition 11), provided that w/di,, w/dou =
(1) (which holds with room to spare; below we will see that
these quantities are Q(n'/4)), we can write Equation (24) as

w1 1 4[4
2<d—d) o= n(3)

exp

Taking logarithms on both sides, for € at most some sufficiently
small constant we get that

=o(u?) wu())

Recalling our choices of dy, and d;,, we have
(n—e2/16)

n3/2
ev/n _@< € )

Plugging this back into the previous expression and taking
square roots on both sides gives

(s(2) ()

(dindout)2
2 - A2

out

(dindout)2
2, —d2

out

3/4

w:=0|n (26)



This lets us bound s, which is the number of facets of K.
From Equation (25) and once again using standard tail bounds
(Proposition 11), we have

—1
€ w € w? din, 3
=2(1=- <Z | Zn _ Zin
° 4<1 (I)<din>> =P <2d?n><w w3>

From Equations (22) and (26) we get that

1 4 4
L _e|al,| - <log <> + loglog ()) ,
din € 15 €
from which the claimed bound on s is immediate. O

VI. NON-EXPLICIT AVERAGE-CASE LOWER BOUNDS

The goal of this section is to prove the following theorem:

Theorem 28 (Non-explicit average-case lower bound.). There
is an absolute constant C' > 0 such that for any sufficiently
large n and any € = w(n*1/2 -log n), there exists some convex
set ' C R™ such that for any L which is an intersection of at
most M := 2€°¢'V" halfspaces,

Vol(KAL) > % — €.

We note that Theorem 28 gives an average-case lower bound,
i.e. it establishes “strong inapproximability” by intersections
of not-too-many halfspaces. For example, taking ¢ = n~1/4, it
shows that there is an n-dimensional convex set K such that
no intersection of 27" many halfspaces can approximate K
to accuracy even as large as 1/2 + n=1/4,

The proof of this theorem will go via the notion of VC-
dimension, a fundamental measure of complexity in statistical
learning theory. Recall that given a set F of Boolean functions
over some domain X, the VC-dimension of F is the largest
size of any S C X which is shattered by F, meaning that
every possible 0/1 labeling of the points in S is achieved by
some function in F. (See the book [44] for more details.)

To use VC-dimension in our context, we will also need the
notion of agnostic learning. We recall the following standard
definition:

Definition 29. A class F of Boolean functions over R"” is
said to be agnostically PAC learnable with sample complexity
m(e,d) if for every €, > 0, the following holds. There is
an algorithm 4 which for any f : R™ — {0,1} and any
distribution D over R™, given m(e,d) many i.i.d. labeled
samples of the form (x, f(x)) (where each & ~ D), outputs a
hypothesis 4 : R™ — {0, 1} such that with probability 1 — 4,

Pr [i(z) # f(x)] <+ min Pr [1"(z) # f(=)].

A central result of statistical learning theory is that any
concept class F of Boolean functions is agnostically PAC
learnable where the sample complexity is proportional to the

VC-dimension of F. We state a sharp form of the bound below,
which is due to Talagrand [68]:

Theorem 30. Any concept class F of Boolean functions
over R™ is agnostically PAC learnable with sample complexity

mr(e,d) = @<VC'CE§1(]'—) + logg/é))

where VC-dim(F) is the VC-dimension of F.

Recall that Facet(n, M) denotes the class of convex sets
in R™ which are intersection of at most M halfspaces. The
following is shown in [10] (and is now a standard fact, see
e.g. Exercise 3.4 of [44]):

Fact 31. VC-dim(Facet(n, M)) = O(nM log M).

The final ingredient we will require is a recent result of De
and Servedio (Theorem 2 in [28]) which establishes a lower
bound on the query complexity of any algorithm which “weakly
learns” (meaning that the output hypothesis has an error rate
only slightly less than 1/2) convex sets over the Gaussian
space. (This lower bound of course also holds for the sample
complexity of any algorithm which only receives independent
labeled samples (x, f(x)) where each  ~ N(0, I,,).)

Theorem 32 (Theorem 2 of [28]). For sufficiently large n, for
any s > n, there is a distribution D over centrally symmetric
convex sets K C R™ with the following property: for a target
convex set K ~ D, for any black box query algorithm A
making at most s many queries to K, the expected error of
A (the probability over K ~ D, over any internal randomness
of A, and over a random Gaussian x ~ N(0,1™), that the
output hypothesis h of A predicts incorrectly on @) is at least
1/2 _ O(logs) )

ni/2

We now combine these ingredients to establish Theorem 28:

Proof of Theorem 28. First, let us assume that for every con-
vex set K, there is a convex set L which is an intersection of
at most M halfspaces such that

Vol(KAL) < % — €.

Now, consider the task of “weak learning” an unknown
convex set K C R™ given i.i.d. labeled samples of the form
(z, K(x)) where & ~ N(0,1I,) and K(-) is identified with
the indicator function of the convex set K. To do this, we run
the agnostic PAC learning algorithm from Theorem 30 for the
class Facet(n, M) with parameters £/2 and J on the samples.

Now, given that there is a convex set L € Facet(n, M) such
that Vol(K A L) < % — g, it follows that with probability 1—9,
the algorithm from Theorem 30 outputs a hypothesis h such
that

Pr [h(z) # K(x)] < 1 —e+¢g/2= 1 —e/2.
x~N(0,I,,) -2 2

Further, the sample complexity of this algorithm is given by
S(e, d) defined as

S(e, ) = @(

VC-dim(Facet(n, M)) N 10g(1/§)>
g2 g2



Applying Fact 31, we get that
Mlog M  log(1
S(e,6) = 0(” og M log( /5)>

g? g2
In particular, if we set § = £/4, then we get that there is
a PAC learning algorithm for convex sets (where the data
x ~ N(0,1,)) with sample complexity

S(e,e/4) = O (”M i‘;g M, logg/ E>>

which has expected error at most 1/2 — 3¢/4 (where the
expectation is over the internal randomness as well as the
randomness of the data points  ~ N™(0,1)). On the other
hand, by Theorem 32, we get that the expected error must
be at least 1/2 — O(n~/2 - log S(e,/4)). Combining these
bounds, we get that

1 3e S 1

- -1/2
5" 123 O(n log S(g,e/4)).

This implies that log S(e,e/4)) = Q(e-y/n). This implies that
nM log M
o2
Since € = w(n~'/2 -logn) and M > 1, the first term on the
left hand side is the dominant one, and thus we have

log(1
n Og;/f) _ 99ev/m)

2
Mlog M = = . 9%vn),
n
Again using ¢ = w(n~ /2 -logn), we have that
Mlog M = 2evm) and thus
This finishes the proof of Theorem 28. O

VII. LOWER BOUNDS FOR THE /; AND {5 BALLS (AND
MORE) VIA CONVEX INFLUENCES

M = 2%V,

Taking € to be a sufficiently small constant in Theorem 28,
we can infer the existence of some convex set in R™ such that
29UV halfspaces are required for any e-approximator, but
that result does not let us conclude that any particular convex
set is hard to approximate.

In this section we show that the ¢; and ¢5 balls B; and By
(defined in Equation (30) of the full version [26]) are each
hard to approximate:

Theorem 33. Any intersection of halfspaces that approximates
By to error ¢ must have at least 20(v/n) facets, for some
absolute positive constant € > 0. The same is true for Bj.

Theorem 33 implies that the upper bound obtained in Sec-
tion V is tight in the constant error regime, up to constant
factors in the exponent.

Our proof of Theorem 33 will crucially make use of the
notion of convex influence which was introduced by [24], [25].
More generally, we prove a lower bound on the number of facets
required to approximate any symmetric’ convex set whose
convex influence is asymptotically maximal up to constant
multiplicative factors (cf. Theorem 39); see Section VII-C for
more on this.

SRecall that a set K C R™ is symmetric if x € K implies —x € K.

A. Convex Influences

The following notion was introduced in [24], [25] as an
analogue of the well-studied notion of influence of a variable
on a Boolean function (cf. Chapter 2 of [59]).

Definition 34. Given a convex set K C R™ with 0™ € K, the
convex influence of a direction v € S"~! on K is defined as

Inf,[K] := ENN]%]O’IH) [K(m)(l - <m,v>2)],

where K (-) is the 0/1-valued indicator function of the convex
set K. We further define the fotal convex influence of K as

I[K] = Zj; nf [K]= B {K(a:) (n - ||m2)] .

We note that the definitions of Inf,[K] and I[K] as defined
in [25] include an additional multiplicative factor of 1/ V/2 that
we omit here. The total convex influence as defined above can
be understood as capturing the rate of growth of the Gaussian
measure of a convex set under dilations. More formally, we
have the following:

Proposition 35 (Dilation formulation of convex influence).
Given K C R"™ with 0" € K, we have

1K) = lim Vol((1+6)K) — Vol(K) .
6—0 )

Note that if K C R™ is convex with 0™ € K, then I[K] is
non-negative. Proposition 35 is analogous to the well-known
Margulis—Russo lemma [54], [64] from the analysis of Boolean
functions, and a proof of it can be found in Appendix A of
[23]. We note that a similar “dilation formulation” holds for
the convex influence of a single direction v € S*~! on K,
although we will not require it here.

We will use the following alternative formulation of the total
convex influence of a convex set, which was communicated to
us by Joe Neeman [58]:

Lemma 36 (Influence via a surface integral). Given a measur-
able set K C R™ with 0" € K and a direction v € S* !, we
have

I[K] = - (z,vz) - p(x) do(x)

where v, denotes the unit normal to 0K at x.

Proof. The proof is a straightforward computation using
integration by parts. Recall that via Definition 34, we have

B K@ (- 1?)]
= [ = lalP) - pl) da

:/K,C<|x?”2> cp(z)dx

I[K]



where for a function f : R™ — R we define L(f) := Af —
(Vf,Vf). Integrating by parts then gives

)= [ (o) plo) do)
oK
completing the proof. O

Remark 37. We note that the surface integral formulation of
total convex influence can be viewed as analogous to the fact
that the total influence of a Boolean function is equal to its
average sensitivity (cf. Chapter 2 of [59]). Although we will not
require it for our purposes, we note that a similar formulation
holds for the convex influence of a direction v € S"~! on K:

Inf,[K] = /E)K (z,0)  (Vz,v) - p(x) do(z)

where as before v, denotes the unit normal to 0K at x.

B. Bounds on the Convex Influence of Polytopes

In this subsection we give an upper bound on the total
convex influence of an intersection of halfspaces in terms of
the number of halfspaces. An analogous statement for CNF
formulas over {0,1}", showing that the influence of any s-
clause CNF is at most O(log s), was first given by Boppana [11]
using the technique of random restrictions [35].% The proof
of Proposition 38 is inspired by the proof of Theorem 14 due
to Nazarov; we give a self-contained proof of Proposition 38
below (see [4] for a proof sketch of Nazarov’s bound).

Proposition 38 (Convex influence upper bound for intersec-
tions of halfspaces.). Let K C R"™ be an intersection of s > 3
halfspaces that contains the origin. Then

I[K] < 7lns.

We remark that the upper bound of Proposition 38 is best
possible up to the hidden constant; the ¢, ball K = {x €
R™ : ||z]leo <7} is an intersection of 2n halfspaces, and it
is shown in Example 18 of [25] that for a suitable choice of r
we have I[K] = O(logn).

Proof of Proposition 38. We let K = ﬂ‘;zl H; for s > 1
where each H; is a halfspace of the form
H; = {{IJ eR": <.T,Ui> < Hl}

where v; € S"7! for i € [s]. Note that each 6; > 0 since K
contains the origin. Using Lemma 36, we have

1K) = /BK (2, v2) - 0() do(z)
Z </8H ok (,v) - p(x) da(m)). 27

Now, we observe that (1) GSA(K) =

Dy (faHmaKgo(x)dU(x)); (i) for z € 0H; N 0K
we have (z,v,) = 0;; and (iii) for each ¢ € [s], we have

®In fact, Boppana [11] obtains an upper bound of O(log?~'(s)) on the
total influence of functions computed by depth-d size-s circuits.

faHmaKgo(m)dJ(:c) < f(,)Hiw(:v)do(a:) = GSA(H,).
Combining these three observations, we get that
27) < max 0;GSA(K) + 0,GSA(H;).
1S s WOSAG) + 36,6840
0;>v2Ins
(28)

We will control each of the two quantities in Equation (28)
separately. For the first, we have that

21ns<v21n5+2) < 5lns,

(29)
where the first inequality is by Nazarov’s bound on GSA
(Theorem 14). For the second sum, we have that

2 2

JEls] JEls]
0;>v2Ins 6;>v2Ins

<s- max {Hj-
j:0i>Vv21Ins

max

0(i)-GSA(K) <
i€[s]:0;<v21Ins

—02/2
9j e J

6_912'/2}.

(30)

0; - GSA(H;) =

. 2 . . . .
Since ze /% is a decreasing function for z > 1, and since

s > 1, it follows that ¢, - ¢~9/2 is maximized for 0; =v2Ins
which lets us conclude that

(30) <v2Ins < 2lIns. (31)
The result follows from Equations (28) to (31). ]

C. Lower Bounds for Approximating Convex Sets with Maximal
Influence

We finally establish the following lower bound on approxi-
mating symmetric convex sets with close-to-maximal convex
influence. (The specific constants in the theorem below were
chosen mostly for concreteness; other constants could have
been used instead.)

Theorem 39. Suppose K C R™ is a symmetric convex set
with Vol(K) = 1/2 £+ 0,(1) and I[K] > 0.1y/n. Then any
convex polytope L that 6.25 x 10~ “-approximates & must
have at least 25-1¥10°°vn halfspaces.

Proof. Theorem 39 can be inferred along the lines of the proof
of Theorem A.l from [62], but we give a slightly simpler
argument below. Our proof will make use of the Hermite basis;
we refer the reader to Appendix A of the full version [26]
for a primer on Hermite analysis over the Gaussian measure.
Writing e; € R™ for the standard basis vector along the i
coordinate direction, we have that

Inf. [K] = V2 K(2¢;).

(This is an immediate consequence of the fact that the degree-2
univariate Hermite polynomial ho(x) is (1 — 2%)/v/2.) Since
K is symmetric, it follows from Proposition 9 of [25] that
Inf.,[K] > 0. We will use the following simple claim that
relies on this fact:



Claim 40. Suppose K is as in the statement of Theorem 39.

Then at least 0.002-fraction of directions {eq,...,e,} must
have
Inf,, [K] > 0.05. (32)
i \/ﬁ
Proof. Let i ~ [n] uniformly at random. We have
0.1 1
E [Inf.[K]] > — and Var [Inf, [K]] < =
i~[n] Vn in[n] n

where the upper bound on the variance follows from Parseval’s
formula. Recall Cantelli’s inequality, which says that for a
non-negative random variable X with mean p and variance o,

92

Pr(X > p—060] > T

for 6 € [0, 1]. (Cantelli’s inequality is a straightforward conse-
quence of the Paley—Zygmund inequality.) Since Inf.,[K] is
non-negative due to the symmetry of K (Proposition 9 of [25]),
it follows that

0.05 0.0025
Pr |Inf . [K]> —| > ———— > 0.002
Mﬁ][n“{ 1> \/ﬁ]—1.0025> ’
which completes the proof. O
Without loss of generality, let {eq,...,e;} be the coordinate

directions for which Inf..[K] > 0.05//n where t > 0.002n,
as guaranteed by Claim 40.

Now, let L be a convex polytope that 6.25 x 1077-
approximates K, as in the theorem statement. We observe
that L must contain the origin, since if it did not, by the
symmetry of K and the fact that Vol(K) = 1 £ 0,(1) we
would have that distg (K, L) > 0.249. Hence we can (and
will) analyze the influences of various coordinates on L.

Suppose that I[L] < 2.5 x 10~°/n. It then follows that at
most /2 of {eq,...,e:} have

S 0.05
= o/n

In other words, for at least ¢/2 > 0.001n of the coordinates
in {ey,...,e:}, we have

Inf,. [L]

0.05
2/n’
Call these coordinates “bad” coordinates. Using Parseval’s
formula and Equations (32) and (33), we get that

dist(K, L) =

B (K (@) L(x))?]

= > (K(a) - L())®

a€eNn

> Z (K (2¢;) — L(2¢;))?

e; is bad

Inf.,[L] < (33)

0.05

2
) =625x10"7
2\/75) 6.25 x 1077,

> 0.001n - (

which contradicts the fact that distg (K, L) < 6.25 x 1077,
Hence we must have I[L] > 2.5 x 10~°y/n, and by Proposi-
tion 38 this means that L must be an intersection of at least

«10—4
2(0.25;[]]12 >\/ﬁ > 25.1><1076\/ﬁ
many halfspaces. O

As a consequence of Theorem 39, we immediately obtain
lower bounds for approximating the {5 and ¢; balls of Gaussian
measure A~ 1/2:

Example 41 (¢; ball). Example 13 of [25] establishes that
I[Bo] = ©(v/n).

Lemma 36 and Gaussian isoperimetry, however, allow us to
obtain a lower bound on the constant hidden by the O(-). Since
B> is an intersection of infinitely many halfspaces all of which
are at distance /n from the origin, we have

I[Bo] = vn- GSA(B,) > \/Z(l — 0,(1)) > 0.398v/n

where the first equality is due to Lemma 36 and the sec-
ond inequality follows from Gaussian isoperimetry. Together
with Theorem 39, this immediately implies that any 6.25x10~7-
approximation to B(,/n) requires 2°*(vV™) facets. This in turn
implies that Theorem 26 is tight up to constant factors when
£=16.25x107".

Examples 42 (Cross-polytope). Let B; be the cross-polytope,

i.e. the set
" 2
By :=}XaxeR":|z|]1 <4{/=n,.
™

Note that B; is an intersection of 2" halfspaces, and from
Section 6.1 of the full version [26] that Vol(B;) = 1/2 +
on(1). By the Gaussian isoperimetric inequality, we have that
GSA(B;) > 0.398, and so using Lemma 36 we have

I[B)] = \/? GSA(B,) > 0.1y/n.

Together with Theorem 39, this immediately implies that
any 6.25 x 10~ 7-approximation to B; requires 2°(V™) facets.
(Recall from Theorem 29 of the full version [26] that B; can
be 0.01-approximated using 20(n*/") halfspaces.)
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