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ARTICLE INFO ABSTRACT

Editor: Dr. Y Deng This study presents a novel thermal technology (high-frequency heating, HFH) for the decontamination of soil
containing per- and polyfluoroalkyl substances (PFAS) and aqueous film-forming foams (AFFFs). Ultra-fast
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in a matter of minutes. The concentrations of PFAS and the soil type had a negligible impact on degradation
Energy-efficient thermal approaches

efficiency, possibly due to the ultra-fast degradation rate overwhelming potential differences. Under the current

zlljooli-chain PFAS HFH experiment setup, we achieved near-complete degradation (e.g., >99.9%) after 1 min for perfluoroalkyl
Precursors carboxylic acids and perfluoroalkyl ether carboxylic acids and 2 min for perfluoroalkanesulfonic acids. Poly-

fluoroalkyl precursors in AFFFs were found to degrade completely within 1 min of HFH; no residual cationic,
zwitterionic, anionic, or non-ionic intermediate products were detected following the treatment. The gaseous
byproducts were considered. Most of gaseous organofluorine products of PFAS at low-and-moderate tempera-
tures disappeared when temperatures reached 890 °C, which is in the temperature zone of HFH. For the first
time, we demonstrated minimal loss of PFAS in water during the boiling process, indicating a low risk of PFAS
entering the atmosphere with the water vapor. The findings highlight HFH its potential as a promising reme-
diation tool for PFAS-contaminated soils.
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R. Sun et al.
1. Introduction
1.1. Soil contamination of per- and polyfluoroalkyl substances (PFAS)

PFAS are a broad group of synthetic chemicals known for their
unique properties, including resistance to both water and oil and strong
carbon—fluorine bonds [1-5]. Since their introduction in the 1940 s,
PFAS have been used extensively in various applications: non-stick
cookware, stain-resistant fabrics, firefighting foams, and food pack-
aging [6,7]. Despite their widespread use and valuable properties, PFAS
have emerged as a significant environmental concern due to their
persistent, bioaccumulative, and potentially toxic nature [8-12].

There are two primary categories within PFAS: perfluoroalkyl sub-
stances, with perfluorooctanoic acid (PFOA) and perfluorooctane sul-
fonate (PFOS) being the most studied, and polyfluoroalkyl counterparts.
PFOA and PFOS have been found to cause adverse effects in laboratory
animals, including developmental, reproductive, and liver toxicity [10,
13-15]. Epidemiological studies in humans have also suggested poten-
tial links between PFOA and PFOS exposure and various health effects,
such as kidney and testicular cancer [16-18], thyroid disruption [19],
and immunotoxicity [20]. In addition to perfluoroalkyl substances,
numerous polyfluorinated species, or so-called precursors, have been
detected in aqueous film-forming foams (AFFFs) [6, 21, 22].

On April 13, 2023, the US EPA started the process to regulate PFAS as
hazardous substances under the Superfund Act [23], including seven
PFAS besides PFOA and PFOS, [2] precursors to PFOA, PFOS, and seven
other PFAS; and [3] categories of PFAS. This regulatory move un-
derscores the growing emphasis on addressing PFAS-contaminated sites,
particularly soil and groundwater.

PFAS contamination in soil can occur through several pathways,
including direct release from industrial sites [24-28], landfills [29,30],
biosolids [31,32], and firefighting training areas [33-35] where
PFAS-containing AFFFs are used. Due to the use of AFFFs for fire training
alone, more than 400 locations in the United States have been identified
where known or suspected releases of PFAS to the soil have occurred
[36]. Other sources include atmospheric deposition, wastewater irriga-
tion, and the agricultural use of PFAS-containing biosolids [5, 37, 38].
Once in the soil, PFAS can persist for long periods due to their high
stability and resistance to degradation. This persistence poses a risk to
both human health and the environment, as PFAS can enter the food
chain through the uptake by plants [39,40] or consumption of
contaminated water [41,42]. Therefore, managing PFAS contamination
in soil is crucial to prevent further exposure and ensure the safety of
groundwater and food supply.

1.2. Current PFAS remediation methods and challenges

PFAS, distinguished by their carbon chains where some or all
hydrogen atoms are replaced by fluorine, possess strong C—F bonds,
granting them remarkable chemical stability and resistance to degra-
dation. While perfluoroalkyl substances (e.g., PFOA and PFOS) contain
fully fluorinated carbon chains, polyfluoroalkyl substances have carbon
chains that are only partially fluorinated. This difference in chemistry
ultimately affects their transport, persistence, and health effects. Under
conditions like heating [43]{Xiao, 2023 #6681}, oxidation [44,45], and
biological processes [46-48], polyfluoroalkyl substances can transform
into their fully fluorinated variants, possibly elevating their toxicity.

Various technologies have been developed in the past 30 years to
remediate organic-contaminated soils; however, not all these techniques
are appropriate for addressing PFAS contamination in soil. One method,
for example, is excavation and disposal at secure landfills or other
containment facilities. This method involves physically removing and
transporting the contaminated soil to a disposal facility, then replacing it
with clean soil. While it effectively reduces onsite PFAS concentrations
[41,49], it has limitations like high costs, potential secondary contam-
ination during transit, and the problem of merely relocating the
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contamination.

An alternative is soil washing, where the soil undergoes treatment
using water or solvents to separate organic compounds. The soil in-
teracts with the washing solution, mobilizing PFAS into the liquid phase
[37, 50, 51]. After separating the PFAS-containing liquid from the soil,
the latter is returned to its origin, while the former undergoes further
processing to remove the PFAS. Though effective in certain conditions
[37,51], soil washing can be expensive and energy-demanding. It re-
quires significant quantities of water or solvents, and subsequent treat-
ment of the contaminated solution is necessary. Its efficacy can also be
influenced by factors such as soil type, organic content, and the distri-
bution of contaminants. Additionally, soil washing might not be effec-
tive in completely removing PFAS from soil, as some residual
contamination may remain [51,52].

In situ immobilization is a widely researched soil remediation tech-
nique. It employs adsorbent materials, notably activated carbon, bio-
char, and clay minerals, to capture and secure contaminants within soil
[37, 53-56]. These materials can be added directly to the contaminated
soil or used in ex situ treatment systems, such as permeable reactive
barriers or filtration units. While adsorption can effectively reduce the
bioavailability of PFAS in the soil environment, it is generally consid-
ered a containment strategy rather than a degradation method.
Moderately hydrophobic PFAS can potentially be released back into the
environment. Additionally, adsorbent materials may require periodic
replacement or regeneration after being saturated with PFAS. The
effectiveness of the adsorption method can vary depending on factors
such as the soil’s composition, the type of PFAS, and prevailing envi-
ronmental conditions, making it challenging to develop a
one-size-fits-all solution.

Chemical oxidation techniques, such as supercritical water oxidation
[57], electrochemical oxidation [58,59], and photocatalytic decontam-
ination [45, 60, 61], can break down PFAS in water under specific
conditions. However, these methods may be ineffective for degrading
PFAS in soil without water, and they may require carefully controlled
conditions to be effective.

Biological treatment methods, such as bioremediation or phytor-
emediation, involve using microorganisms or plants to degrade or
immobilize PFAS in the soil. Some studies have reported the successful
degradation of certain PFAS by certain microbial strains or consortia
[47, 48, 62, 63], but the overall effectiveness of biological treatment for
PFAS remains limited due to the recalcitrant nature of these compounds.
Furthermore, biological treatments of polyfluorinated compounds may
lead to the formation of more problematic perfluorinated species
[64-66]. Phytoremediation, the use of plants for remediation, has
shown potential in laboratory settings [9, 67-69], but its large-scale
applicability and efficiency are yet to be conclusively demonstrated.

Previous reports have highlighted the nonlinear sorption of AFFF-
related polyfluoroalkyl substances to soil, characterized by concave-
down isotherms and irreversible (hysteretic) behaviors [70]. Conse-
quently, PFAS molecules that are irreversibly bound can resist physical
(e.g., washing), chemical, or biological treatments, resulting in pro-
longed periods needed to flush out PFAS plumes from an aquifer than
initially anticipated [27, 70, 71]. For instance, numerous studies have
shown that soil and groundwater contamination by PFAS persists for
several years, and in some cases, decades, even after contamination
activities have ceased [6, 27, 35, 72-76].

Thermal treatment methods, encompassing techniques like pyrolysis
[77,78], thermal air oxidation [78], thermal desorption [55,79] and
smoldering [80], subject contaminated soil to high temperatures to
break down PFAS. These methods have shown promise, particularly
against recalcitrant short-chain PFAS and perfluoroalkanesulfonic acids
(PFSAs), such as PFOS. While thermal techniques can be effective for
treating PFAS-contaminated soils [78-80], they are generally energy
intensive. Alternative innovative thermal-related strategies, such as ul-
trasound remediation [81], gas fractionation [82], and ball milling [83],
have also been explored. However, these methods necessitate additional
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research to enhance their effectiveness against specific types of PFAS.

The limitations of the existing methods for PFAS remediation in soil
highlight the need for the development of innovative, energy-efficient,
and sustainable solutions to address the challenges posed by PFAS
contamination.

1.3. Introduction to high-frequency heating (HFH) as an alternative
approach for remediation of PFAS in soil

An optimal approach to treating solid waste containing PFAS would
be effective for a broad range of PFAS compounds while achieving rapid
degradation. Additionally, the treatment method should be adaptable in
rural or remote communities lacking centralized waste treatment
facilities.

The aim of this study is to investigate the feasibility of using HFH for
the remediation of soil contaminated by PFAS. As far as we know, this
study represents the first instance of using HFH to remediate soils
contaminated with PFAS. HFH employs electromagnetic fields to pro-
duce heat in conductive mediums like soil, eliminating the need for
direct contact with the heat source. It operates on electromagnetic in-
duction; an alternating current in a coil creates an oscillating magnetic
field, inducing eddy currents in any conductive material within,
generating heat [84]. HFH is a highly energy-efficient process, as heat is
generated directly within the target material, minimizing heat loss to the
surroundings. HFH sets itself apart from conventional slow heating
methods by rapidly increasing the temperature, allowing it to pass
quickly through the low to moderate temperature ranges where many
fluorinated PFAS species are likely to be formed [77, 85, 86]. We hy-
pothesize that HFH may offer a more efficient and effective remediation
option for PFAS-contaminated soils than other remediation methods,
particularly for soils contaminated with PFAS compounds.

To test this hypothesis, we conducted a series of HFH treatments of
soil contaminated by a wide range of PFAS, including short-chain PFAS,
perfluoroalkyl carboxylic acids (PFCAs), PFSAs, perfluoroalkyl ether
carboxylic acids (PFECAs), and polyfluoroalkyl substances. In addition
to legacy PFAS, emerging PFAS such as perfluoro-2,5-dimethyl-3,6-
dioxanonanoic acid (HFPO-TA) [87,88] were included as well. In
addition, we also included PFAS-containing AFFFs and surfactant con-
centrates containing various cationic, zwitterionic, and anionic poly-
fluorinated compounds in this study. To the best of our knowledge, this
represents one of the most comprehensive studies on PFAS remediation,
encompassing a wide array of PFAS classes and their presence in rele-
vant commercial products. Ultimately, our goal is to provide a founda-
tion for further research in this area and contribute to the development
of a more sustainable and eco-friendly approach to PFAS-contaminated
soil remediation.

Furthermore, in this study, we conducted the Monte Carlo estimation
of the energy consumption by this innovative method in comparison
with mainstream thermal remediation technologies.

Lastly, the potential loss of PFAS to water vapor is a potentially
important factor to consider while studying their thermal degradation in
moist soil. Because many PFAS are surfactants, they may attach or
adsorb to water vapor or aerosols generated during the thermal treat-
ment. Therefore, we also have assessed the possible loss of PFAS in water
in boiling processes, which is pertinent to grasping their possible
mobilization during the early stages of heating. Furthermore, this in-
formation is vital for effective and safe removal of PFAS from contam-
inated soil via thermal approaches. It also aids in estimating the
potential PFAS inhalation risks that may occur due to their attachment
to water vapor or aerosols in other relevant heating processes (e.g.,
cooking, firefighting, and baking).
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2. Methods and materials
2.1. PFAS and HFH device

This study included six PFCAs (e.g., PFOA), three PFSAs (e.g., PFOS),
and three PFECAs that have been produced as alternatives to PFOA and
PFOS (Table S1 of the Supplementary document). These chemicals were
purchased from Sigma—Aldrich. This study also included two 3 M AFFF
samples (3% v/v) (#1 and #2) containing a mixture of anionic per-
fluorinated compounds and anionic, zwitterionic, and cationic poly-
fluoroalkyl substances (Table S2). Lastly, two “Fluorad” brand
fluorosurfactant concentrates containing cationic, zwitterionic, and
non-ionic polyfluoroalkyl substances (Tables S3 and S4) were included
in the HFH experiment. The structures of PFAS can be found in the
Supplementary document (Tables S1—84).

The HFH device was a handheld induction-heating tool (Bolt
Buster™) procured from LACE Technologies, Inc (Addison, IL, USA).
The maximum operating time of this HFH device is 2 min. Stainless steel
reactors (7 mL; 45 mm in height and 19 mm in outside diameter) with a
stainless-steel screw lid were obtained from the QAQC Lab Inc. (White
Stone, VA, USA) for HFH experiments. The reactor temperature during
HFH was recorded using a Digi-Sense dual-laser infrared thermometer
(Cole Parmer, IL, USA) in a continuous scan mode connected to a
computer with an infrared thermometer software package (Fig. S1).

In our experiments, we examined two potential scenarios, namely
Scenario #1 and Scenario #2, to demonstrate the impact of four vari-
ables. These variables encompass thermal attributes (i.e., HFH dura-
tion), characteristics of PFAS, the texture of the soil, and the
concentration of PFAS within the soil.

2.2. Scenario #1: HFH of PFAS pre-adsorbed on soil

The pre-adsorption of perfluorinated chemicals (Table S1) in soil was
performed in batch sorption experiments following the previous pro-
cedure [70]. The liquid phase was a landfill leachate sample provided by
Waste Management Inc. No measurable PFAS (Table S1) were detected
in microfiltered landfill leachate samples. The soil was a clay loam with
an organic matter content of 9.8% and a cation-exchange capacity of
41.0 cmol/kg [46]. Leachate samples were spiked with PFAS (Table 1)
to ~2 x 107 mol/L in the laboratory to facilitate detection. The
apparent sorption equilibrium was reached after two days [89]. After
sorption, the supernatant fluid was decanted. The remaining PFAS-laden
soil particles were freeze-dried, stored in a desiccator to reach room
temperature, and thermally treated in a sealed steel reactor by HFH.

2.3. Scenario #2: HFH experiments of AFFF and surfactant concentrate
in soil

In the case of the second scenario, we conducted experiments by
directly integrating PFAS substances or AFFF with soil particles. This
was done to emulate the unrestricted presence of PFAS molecules in the
soil and those molecules that have only a weak association with soil
particles. In brief, AFFF or surfactant methanol stock solutions were
prepared by adding 80 pL AFFF or surfactant concentrate solution into
200 mL of HPLC-grade methanol (Thermo Fisher Scientific, Pittsburgh,
USA). An aliquot (1 mL) of the AFFF or surfactant concentrate methanol
stock solution was added to the stainless-steel reactor (without a lid) and
dried in a forced-air oven at 25 °C. Then, a known amount (0.1 g) of dry
natural soil was added to the reactor, which was then screwed tight
using clamps and heated by the induction heater for 1 or 2 min

In addition to the natural soil (a clay loam), this study also included a
reference clay (KGa-1b kaolinite) purchased form the Clay Minerals
Society (GA, USA) and the Pahokee peat, a high-organic (56% organic
carbon) reference material (IHSS; St. Paul, MN).
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Table 1

Comparison of conventional heating and HFH for decomposition of PFAS.

Conventional heating (slow
heating)

HFH (fast heating)

Temperature (°C) at
which PFAS
degradation was
observed

Typical heating rate
Residence time

Reactors and heating
method

Advantages

Disadvantages

150 — 900 (PFOA and
HFPO-DA) [78, 85, 86, 90,
92]

450 — 900 (PFOS) [78, 86,
92]

10°C/min

Minutes to hours

Furnace or oven

Heat is transferred through
conduction, convection,
and radiation

A mature heating
technology

Relatively easy to scale up
[105]

Low heating efficiency (e.
8., 20 —40% for coil heaters
[98]), and thus requiring a
longer heating time to
achieve PFAS degradation

500 — 845

16°C/sec

Seconds

Metallic reactor

Heat is generated within
the metallic reactor by
electromagnetic induction
Rapid heating

High heating efficiency (80
—90%) [98]

High energy conversion
efficiency

Precise temperature control
and fast heat-up times
HFH reactors are easy to
install and maintain
Corrosion of the metallic
reactor

An emerging PFAS
treatment technology,
which lacks generalized

High energy consumption information
Long startup, processing,

and cooling times

Generation of various

fluorinated intermediates

at low to moderate

temperatures [77]

2.4. Possible PFAS mass loss due to water evaporation

We also carried out an investigation into the potential loss of PFAS
mass during the process of water boiling. Our setup consisted of a 500-
mL round-bottom evaporation flask, on a heater, containing 100 mL of
distilled water spiked with a PFAS mixture. To determine the initial
PFAS concentration prior to heating, we collected three samples from
this solution. This flask was then linked to a 250 mL round-bottom flask
via a distillation column condenser, designed to collect the evaporated
solution. The column condenser was maintained at a low temperature by
circulating cold tap water through it, which facilitated the cooling and
condensation of vapors originating from the evaporation flask. The so-
lution was allowed to boil for 25 min, after which we collected three
samples each from both the evaporation and receiving flasks, once the
solutions had sufficiently cooled.

2.5. Thermal desorption—pyrolysis—gas chromatography—MS
(TD—Pyr—GC—MS) experiments

Our team has expended considerable effort in profiling the gaseous
emissions from PFAS and their heat-induced degradation by-products.
We have accumulated a substantial amount of data, including findings
that have yet to be published. In one study, we explored the gaseous
products resulting from the thermal decomposition of AFFF samples
(Tables S2) [77] [77]. This very same system has been deployed in
earlier research efforts, where it was used to examine the gaseous
by-products formed during the thermal treatment of long-chain [78] and
short-chain [90] PFAS. For this study, we utilized unpublished findings
from our prior work [77] to shed light on the gaseous emissions resulting
from the rapid heating of AFFF samples. The analyses were conducted by
using a Frontier 3030D thermal desorption-pyrolysis system (Frontier
Labs Inc., Japan) coupled with a gas chromatography-mass spectrom-
etry (GC—MS) system (Agilent GC 7890 and 5975 C MS; Santa Clara,
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CA). We utilized a Frontier 30-m Ultra Alloy capillary column from
Frontier Labs Inc. (Japan), which had an inner diameter of 0.25 mm and
was equipped with a 5% diphenyldimethyl polysiloxane stationary
phase with a 0.25 um film thickness. The MS analysis was carried out
using electron ionization, surveying the mass range of 35-850 m/z.
Ultra-pure helium with a purity level of 99.999% served as the carrier
gas, employed at a constant flow rate of 1.1 mL/min. In the experiment,
an AFFF sample was subjected to heating at 400 °C/min (or 6.7 °C/sec),
starting from 50 °C and escalating to various temperatures [77]. The
data processing stage incorporated the evaluation of the MS fragmen-
tation pattern of potential pyrolyzates, leveraging the extensive 2005
National Institute of Standards and Technology library, which houses
190,825 spectra. Any compounds were considered provisionally iden-
tified if they demonstrated a library match quality exceeding 70% [77].

2.6. Energy consumption estimation using Monte Carlo simulation

Consider a reactor with a total surface area (A) of 600 ¢cm?> containing
100 g GAC (density: 700 kg/m®) through which the heat is being con-
ducted. We estimated the energy consumed by heating this reactor using
Monte Carlo simulations that consider all possible combinations of key
independent variables [27,91]. Three thermal treatment approaches
were compared for achieving 99% degradation/removal of PFAS from
solid materials, including HFH (T = 500-845 °C; t = 20-120 s) (this
study), thermal desorption (T = 200-500 °C; t = 5-20 d) [79], and
smoldering (T = 600-1100 °C; t = 1-24 h) [80]. The heat transfer rate
() caused by heat convection was calculated using the Newton’s law of
cooling:

Peonvection = hAAT (€8]

where @ is the heat transfer rate (W); h is the surface heat transfer co-
efficient (3.42 W/m?2 K for air and estimated at 0.25 W/m?K for soil);
AT is the temperature difference (K). The transfer rate of heat radiation
was estimated by the Stefan Boltzmann equation:

Pragiaion = €140 (T} — T3) @)

where ¢; is the emissivity (0.9); o is Stefan Boltzmann constant
(5.67 x10°8 W/mz-K"‘); T and T are temperatures (K) of the reactor
and the ambient air, respectively.

Combining Egs. 1 and 2, we can estimate the total heat consumption
(E, kW-h) using Monte Carlo simulations:

E = {hAF(AT) + e, Ac[(F(T)" — T3] } x F(1) /1000 (3)

where F represents the frequency in Monte Carlo simulations, and t is the
treatment time. The peak of this frequency distribution curve shows the
most probable value of E within the ranges of T; and t.

3. Results and discussion

3.1. Degradation efficiency of PFAS of various chain lengths and
functional groups in soil under HFH

Fig. 1 illustrates the degradation of soil-borne PFCAs with varying
chain lengths subjected to HFH in soil. The degradation curves exhibited
an overall inverted L-shape, indicating that degradation efficiency
increased with HFH time. For instance, PFOA degradation was 45.16%
after 15 s of HFH, while this efficiency escalated to 99.91% when the
heating time was extended to 60s. The PFAS chain length did not
significantly impact the degradation. This observation is exemplified by
the comparable degradation efficiencies of PFBA and PFOA, which is
also mirrored in PFAS degradation during heating at a regular rate [78,
85, 92].

The type of PFAS, including their functional groups, affects the
degradation efficiency under HFH. The degradation of PFSAs was
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Fig. 1. HFH (up to 2 min) of a mixture of PFCAs added to natural soil (0.2 g) in a sealed steel reactor. The initial mass of each PFCA was 0.02 pmol. The
decomposition efficiency was assigned to 100% if no measurable PFCA was found after the thermal treatment. Note that the actual PFCA heating time is longer than
the HFH time (e.g., 20 s) as it took approximately 65 s to cool down from ~845 °C to room temperature.

markedly lower than that of PFCAs, particularly in instances of ultra-
short treatment time (Figs. 1 and 2). For example, after 30 s of HFH,
PFBS degradation reached 37.82% (Fig. 2), while PFBA, its corre-
sponding PFCA counterpart, achieved a 91.68% degradation rate
(Fig. 1). Conversely, PFECA degradation appeared more efficient than

Decomposition (%)

Decomposition (%)

PFCA degradation (Figs. 1 and 2). After 15 s of HFH, 57% of HFPO-DA
had already degraded.

Temperature plays a critical role in the degradation of PFAS under
thermal conditions. While PFOA degradation can occur at low temper-
atures (150 —200 °C) with the presence of granular activated carbon

HFH treatment time (sec)

HFH treatment time (sec)
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%01 601 88.77-99.61% %01
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60- 69.26-100% 60- 98.26-100% 60 T 99:23-100%
401 40+ 40-
20 201 201
o| HFPO-DA| o] HFPO-TA| o] HFPO-TeA|
0 20 40 60 80 100 120 0 20 40 60 80 100 0 20 40 60 80 100

HFH treatment time (sec)

PFECAs

Fig. 2. HFH (up to 2 min) of a mixture of PFSAs and PFECAs added to 0.2 g of natural soil in a sealed steel reactor. The initial mass of each PFAS was 0.02 pmol. The
decomposition efficiency was assigned to 100% if no measurable PFAS was found after the thermal treatment. Note that the actual PFAS heating time is longer than
the HFH time (e.g., 20 s) as it took approximately 65 s to cool down from ~845 °C to room temperature.
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[85], a much higher temperature (>700 °C) would be needed to achieve
a mineralization rate of < 80% [92]. In this study, the steel reactor
temperature rapidly increased to approximately 500 °C within 30 s at a
heating rate of 14.5 °C/sec, and subsequently rose to approximately
845 °C after 1 min (Table S5). The infrared thermometer considerably
underreported the temperature of steel, a low-emissivity material
(Table S5). The high temperatures induced by the HFH device were the
critical factor in achieving the complete degradation of PFAS in such a
short period of time (Fig. 1).

Treatment time apparently is an important factor influencing the
degradation of PFAS in soil under HFH. Longer treatment times can
allow for more complete degradation of PFAS. Based on the aforemen-
tioned discussion, it appears that 1 min of HFH is adequate for achieving
near-complete degradation (approximately 100%) of PFCAs and HFPO-
DA. For PFSAs, 2 min of HFH treatment is necessary to attain a similar
degradation rate. Following 2-min HFH, the degradation of all PFAS in
soil neared 100% (Figs. 1 and 2).

3.2. Effects of contamination level and soil type on degradation of PFAS
in soil by HFH

The contamination level of PFAS in the soil is another potentially
important factor affecting the efficiency of chemical and biological
treatments. Fig. 3a and b display the degradation of PFAS adsorbed onto
soil at varying concentrations subjected to HFH. The figures employ a
logarithmic scale for the horizontal axis, as the concentrations of PFAS
in the soil span two orders of magnitude. As depicted in the figure, PFAS
in the soil exhibited high degradation rates at both low and high con-
centrations following 1 or 2 min of HFH treatment.

Furthermore, the type of soil in which PFAS contamination occurs
can significantly impact the degradation efficiency under HFH. Factors
such as organic matter content and mineralogy can influence the heating
characteristics, heat distribution, and the interaction between PFAS and
soil components. For example, soils with higher clay content may
require more energy to heat due to their low thermal conductivity [93,
94], while soils with high organic matter content can potentially
enhance the degradation of organic compounds by facilitating the

(a) In natural soil
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formation of reactive species [95-97]. The presence of certain minerals,
such as iron or other metal oxides, in soil has also been reported to
enhance PFAS degradation, possibly due to their catalytic activity at
high temperatures [98].

Our study found that soil type had a negligible effect on the degra-
dation of PFAS compounds during HFH. The degradation rate of PFAS in
different soils approached 100% (Fig. 3c). This is likely because the
ultra-fast degradation rate of PFAS under high temperatures (as induced
by the HFH device) overwhelmed any potential differences in soil
properties. Specifically, our results demonstrated that PFAS compounds
were rapidly degraded within a matter of minutes in all three types of
soils with different amounts of minerals and organic matter (as shown in
Fig. 3). Therefore, we conclude that soil type does not play a significant
role in the efficacy of HFH as a remediation technique for PFAS-
contaminated soils.

3.3. Thermal decomposition of polyfluoroalkyl substances

In addition to perfluoroalkyl substances, numerous structurally
similar compounds known as polyfluoroalkyl substances have been
identified, which contain a non-fluorinated branched chain [99-101].
We also investigated the degradation of AFFF and polyfluoroalkyl sub-
stances in surfactant concentrates during HFH. Our previous study
revealed that polyfluoroalkyl substances are more susceptible to pyrol-
ysis than perfluoroalkyl substances [85,92]. In this paper, we discovered
that 1 min of HFH resulted in complete degradation (100%) of poly-
fluoroalkyl substances (Fig. 4). After 1 min, no residual cationic, zwit-
terionic, anionic, and non-ionic polyfluoroalkyl substances
(Tables S1-S4) were detected. This finding further underscores the
effectiveness of HFH in treating PFAS-contaminated soil.

When exposed to low to moderate heat, polyfluoroalkyl sub-
stances—or precursors—within these AFFF samples can convert into
perfluorinated compounds [86]. The generation of intermediate prod-
ucts from precursors follows a bell-shaped curve; they are produced at
low to moderate heat levels and then degrade when subjected to higher
temperatures [86]. In this study, there were no detected perfluorinated
transformation products after subjecting the polyfluoroalkyl substances

(b) In natural soil

?100' O @ﬁ( 8 @ Sﬁf Ooi? 7;?
< g0
5 92.47-100%
fg‘ 60+
g 40 After 2-min HFH treatment
g O PFBS
2 204 Y PFHxS
PFOS
0.001 0.01 0.1

Contamination level (umolppas/9g.i)

120+ (¢) [ Natural Soil

[ clay Peat]

100

80 -
60 -
40 -
20-

Decomposition (%)

PFBA PFPeA PFOA PFNA

PFDA PFUnDA GenX
PFAS

PFBS PFHxS PFOS

Fig. 3. (a) and (b): Degradation of PFAS preadsorbed to natural soil by 1 or 2-min HFH. (c): 2-min HFH treatments of PFAS (0.02 pmol) added to different types of

soils (0.2 g).
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(0.1 g) in a sealed reactor. The decomposition efficiency was assigned to 100% if no measurable PFAS was found after the thermal treatment. The numbers (e.g.,
460.9334) are the m/z values of these polyfluoroalkyl substances (e.g., Table S3).

in AFFFs to HFH for 1 min. This implies a swift degradation of the
precursors and intermediate products when formed at low and moderate
temperatures [86].

3.4. Gaseous degradation products

It is also important to consider the potential formation of gaseous
products from PFAS under thermal conditions. Careful temperature
control can help minimize the risk of generating harmful gaseous
products, promoting PFAS mineralization. When heated at low and
moderate temperatures and in the absence of granular activated carbon,
a significant portion of the thermal degradation products of PFAS con-
sists of gaseous compounds [77, 92, 102-104]. One potential advantage
of HFH is its ability to rapidly increase the temperature, allowing it to
pass quickly through the low to moderate temperature range where
many fluorinated PFAS species are likely to be generated [77, 92, 102].

As depicted in Fig. 5, AFFFs generated numerous volatile pyrolysis
products at temperatures ranging from 300 — 500 °C. When the tem-
perature increased to 890 °C, most of these gaseous products vanished,
indicating their decomposition at elevated temperatures. The overall
product distribution exhibited a bell-shaped curve with respect to tem-
perature. Due to the absence of standards and effective detection
methods, the quantities of these products were characterized by their MS
peak intensities.

3.5. Loss of PFAS in water during water boiling

Understanding the behavior of PFAS during thermal soil remediation
processes is of significant importance, particularly considering that soils
contain varied moisture levels. As surfactants, PFAS could potentially
adhere to water vapor or aerosols produced during thermal treatment.
However, our recent investigations have indicated minimal PFAS
adsorption to water vapor during the boiling process (Fig. 6). No PFAS
were detected in the solution of the receiving flask. Except for PFDA, the
loss of the studied PFAS in the evaporation flask solution was less than

0.5 mol% after boiling water for 25 min (Fig. 6). This indicates a mini-
mal rate of PFAS loss during the water boiling process. These findings
hold significance as they offer the initial understanding of the potential
reduction of PFAS in water vapor.

3.6. Key advantages of HFH

Thermal remediation techniques, such as thermal desorption [79]
and smoldering [80], have shown promise for the treatment of
PFAS-contaminated soil. Thermal desorption at low and moderate
temperatures is a widely used remediation method that involves heating
contaminated soil to evaporate and separate volatile contaminants,
which are then collected and treated in an off-gas treatment system. The
goal of thermal desorption is not to decompose the contaminants, but
rather mobilize them from soil. Smoldering is a thermal technology used
for soil remediation, which employs low-temperature, self-sustaining
combustion processes to degrade, immobilize, or remove contaminants.
Through harnessing the inherent heat of reaction, this technique effec-
tively treats a wide range of organic pollutants. However, their energy
efficiency, environmental impact, and overall performance can differ
significantly.

We compared the energy consumption in the HFH process to thermal
desorption and smoldering. As illustrated in Fig. 7, while thermal
desorption can be effective in treating a range of volatile and semi-
volatile organics, its energy efficiency is low; the heat loss to the sur-
roundings can be significant, especially in large-scale or in situ appli-
cations, leading to higher energy consumption (Fig. 7). Smoldering can
be energy-efficient in comparison with thermal desorption, as the heat
generated by the combustion process is used to sustain the reaction and
treat the soil (Fig. 7). As illustrated in Fig. 7, HFH is a much more energy-
efficient method for the remediation of PFAS-contaminated soils than
thermal desorption and smoldering. The heat consumption by HFH is
markedly lower, by several orders of magnitude, than that of thermal
desorption and smoldering. These results suggest that HFH has the po-
tential to become a preferred method for energy-efficient remediation of
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Fig. 5. Formation of fluorinated species from PFAS in three AFFF samples, including AFFF#1 (i.e., AFFF 5-79), when subjected to fast heating rates (6.7 °C/sec) from
50 °C to varying temperatures. PFAS identified in these AFFF samples can be found in a previous study [86].

organic-contaminated soils.

In addition to the low energy consumption, HFH allows for rapid and
uniform heating of soil matrices in contrast to conventional thermal
methods (e.g., thermal desorption, ovens and furnaces) (Table 1). This
not only results in efficient removal and degradation of PFAS in soil
(Figs. 1-4), but also reduces the risk of harmful gaseous products formed
at low and moderate temperatures (Fig. 5). Additionally, the non-
contact nature of induction heating reduces equipment wear,
providing enhanced control over the remediation parameters (Table 1).

3.7. Potential Challenges and Limitations of HFH

Although HFH has demonstrated potential as an efficient and effec-
tive method for remediating PFAS-contaminated soil, there are several
challenges and limitations that need to be addressed for its successful
large-scale application (Table 1).

First, the scale-up of HFH technology from laboratory-scale to field-
scale applications can be challenging due to the complexity of soil
properties, contamination levels, and spatial heterogeneity at larger

scales. Effective large-scale application of HFH requires careful consid-
eration of factors such as heat distribution, temperature control, and
treatment time to ensure uniform and efficient PFAS degradation across
the contaminated area. Additionally, the design of the HFH system,
including the choice of coil configuration and power supply, needs to be
optimized for field-scale applications to maximize efficiency and mini-
mize energy consumption.

Furthermore, the potential environmental impact of HFH, such as the
formation of harmful gaseous products from PFAS, needs to be carefully
assessed and managed for large-scale applications. The release of reac-
tive F species (e.g., F radicals and HF) from PFAS can lead to corrosion in
the steel reactor, which can be costly to repair and limit its large-scale
application. Although not tested in this study, our previous research
indicates that the addition of kaolinite is effective in quenching reactive
F species released from PFAS upon heating [78]. Careful temperature
control and monitoring, as well as the development of appropriate
off-gas treatment systems, can help mitigate these environmental
concerns.

Lastly, like several intensive remediation techniques, thermal
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treatment has its drawbacks. Among these, one notable limitation is its
potential to affect soil texture adversely. The short heating duration
associated with high-frequency heating might offer a slight reprieve,
potentially causing less harm to the soil texture than other prolonged
thermal procedures or aggressive chemical and physical treatments.

3.8. Mechanisms of PFAS degradation by HFH

Understanding the mechanisms of PFAS degradation by HFH is
critical for optimizing the remediation process and developing efficient
strategies for treating PFAS-contaminated soil. The mechanisms of PFAS
degradation by HFH are potentially complex and can involve a combi-
nation of thermal degradation and reactive species formation. Xiao and
co-workers believed that PFAS can be thermally decomposed through
initial, chain propagation, termination, and recombination mechanisms
[78, 85, 86, 90, 92, 106]. The extent of thermal degradation is strongly
influenced by the temperature, with higher temperatures generally
leading to more efficient PFAS degradation. HFH can rapidly generate
high temperatures within the soil, which can overcome the thermal
stability of PFAS and promote their degradation.

Journal of Hazardous Materials 463 (2024) 132660

Another potential mechanism of PFAS thermal degradation, which
has been overlooked in the literature, is the formation of reactive spe-
cies, such as radicals or reactive species, which can attack and break the
carbon-fluorine bonds in PFAS. High temperatures generated by HFH
can promote the formation of reactive species, either through the ther-
mal decomposition of soil components, such as organic matter, or
through C—F bond dissociation releasing reactive F species from PFAS
at elevated temperatures [78, 85, 90]. F radicals are highly reactive, and
the presence of these reactive species can contribute to the fast PFAS
degradation as observed during HFH.

These mechanisms can be influenced by factors such as temperature,
soil composition, and PFAS type, highlighting the need for a compre-
hensive understanding of these factors to optimize the HFH process and
develop efficient remediation strategies. Further research is needed to
elucidate the detailed mechanisms of PFAS degradation by HFH and to
identify the optimal conditions for achieving efficient and environ-
mentally friendly remediation of PFAS-contaminated soil.

4. Conclusions

PFAS contamination in soil poses significant risks to human health
and the environment due to their persistence, bioaccumulative nature,
and potential toxicity. Existing remediation methods for PFAS-
contaminated soil include excavation and disposal in secure landfills,
soil washing, and adsorption onto activated carbon or other materials.
However, these techniques often have limitations in terms of efficiency,
cost, and environmental impact. Therefore, there is a growing need for
innovative and sustainable solutions to address PFAS contamination in
soil. HFH is a highly energy-efficient thermal remediation method, as it
generates heat directly within the target material, minimizing heat loss
to the surroundings. The use of electromagnetic fields to generate heat
within the soil allows for rapid and uniform heating, which can
contribute to shorter treatment times and lower overall energy con-
sumption. In addition, the data of this study showed varying degrada-
tion rates for PFAS in different classes during HFH. For example, the
degradation of PFAS varies in the following order: PFECAs > PFCAs
> PFSAs. This observation may be attributed to the differences in
thermal stability and the energy required to break the O—F, C—F, and
S—F bonds in PFECAs, PFCAs, and PFSAs. HFH can be tailored to target
specific PFAS class by adjusting the treatment time (Fig. 1), potentially
reducing the energy requirements of the process. These features make
HFH a viable alternative for PFAS-contaminated soil remediation and
are expected to attract increasing attention from researchers and prac-
titioners in the field. Furthermore, this study pioneers in providing the
first exploration into the potential reduction of PFAS in water vapor,
marking its critical importance in this field of research.
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removing PFAS from soil.
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When comparing HFH with other thermal remediation methods,
such as thermal desorption and smoldering, in terms of energy effi-
ciency, HFH appears to offer several advantages. Its ability to generate
heat directly within the target material, rapidly achieve high tempera-
tures, and selectively target specific PFAS contributes to its energy-
efficient nature. While each thermal remediation method has its
merits and limitations, HFH may present a more energy-efficient and
environmentally friendly alternative for the remediation of PFAS-
contaminated soil. Further research and development are needed to
optimize and scale-up HFH technology for the successful treatment of
PFAS contamination and to fully realize its potential as a sustainable and
cost-effective remediation solution.

The development and application of HFH for PFAS remediation have
significant implications for the field. As an energy-efficient and poten-
tially more cost-effective method, HFH can address some of the limita-
tions of existing remediation technologies. Its ability to rapidly generate
high temperatures and target specific contaminants offers the possibility
of more efficient and environmentally friendly PFAS degradation. By
focusing on these key areas of research and development, the environ-
mental community can work to advance the field of HFH for PFAS
remediation and contribute to the development of more sustainable and
effective solutions for managing PFAS-contaminated sites globally.

Environmental implication

PFAS contamination in soil is a major environmental concern due to
their persistent, bioaccumulative nature, and potential toxicity. This
study introduces high-frequency heating (HFH), an innovative thermal
remediation method, as a more sustainable and energy-efficient solu-
tion. With its ability to rapidly degrade PFAS in soil irrespective of their
concentrations, HFH emerges as a potentially cost-effective alternative
to current remediation methods. The widespread adoption of HFH can
significantly alleviate the environmental and health risks associated
with PFAS contamination. Ongoing research into optimizing HFH could
revolutionize this approach to managing PFAS-contaminated sites,
promoting more effective and sustainable soil remediation strategies.
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