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Abstract—Considering the difficulty of financial time series
forecasting in financial aid, much of the current research focuses
on leveraging big data analytics in financial services. One
modern approach is to utilize ”predictive analysis”, analogous
to forecasting financial trends. However, many of these time
series data in Financial Aid (FA) pose unique challenges due
to limited historical datasets and high dimensional financial
information, which hinder the development of effective predictive
models that balance accuracy with efficient runtime and
memory usage. Pre-trained foundation models are employed
to address these challenging tasks. We use state-of-the-art
time series models including pre-trained LLMs (GPT-2 as the
backbone), transformers, and linear models to demonstrate their
ability to outperform traditional approaches, even with minimal
(’few-shot”) or no fine-tuning (’zero-shot”). Our benchmark
study, which includes financial aid with seven other time series
tasks, shows the potential of using LLMs for scarce financial
datasets.

Index Terms—Financial Aid, Time Series Forecast, Deep
Learning, Foundation Models, Large Language Models

I. INTRODUCTION

The advancement of Al has taken over many domains
including the field of financial market [1] and big data [2].
In particular, financial time series forecasting has improved
significantly from using statistical models to machine learning
[3] and then deep learning [4]. These financial forecasting
areas include currency exchange rate [5], [6], stock market
[2] [5] [4], commodity prices [7] [8] and more. Pre-trained
foundation models, such as large language models (LLMs)
have driven the progress in Natural Language Processing
(NLP) and Computer Vision (CV). Foundation models like
GPT [9], and Vision Transformer [10] can perform well
on a diverse range of tasks in few-shot (little training) or
zero-shot (no training) learning. This enables applications
where historical data is limited or mostly missing.

Financial time series forecasting (FTSF) is an important
domain that needs more attention among the multivariate
time series forecasting tasks. Previous works on FTSF rely
heavily on machine learning [3] or traditional deep learning
[4] methods. With some recent works on multi-modal FTSF
[11] [12]. Financial aid (FA) is crucial to many students’
educational journeys, providing the resources needed to
pursue academic dreams while fostering educational equity.
However, the process, including tasks like processing the free
application for Federal Student Aid (FAFSA), is often manual,

time-consuming, and susceptible to errors. Access to historical
datasets is limited to yearly intervals and is subject to changes
in policy.

We describe and evaluate LLM-based foundation models in
the FTSF domain using 8 deep-learning models and compare
especially the financial aid with 7 other financial datasets. Our
research questions are,

e (QI: Which models are better as few-shot learners?
e Q2: Can pre-trained LLMs perform zero-shot learning?

Answering these questions will help us better understand
the current advancement of LLMs for financial time series
forecasting. In summary, our contributions are,

o Collect eight datasets from four financial domains (Stock,
Commodity, Currency, Institution) for over 10 years.

o Benchmark five state-of-the-art time series deep learning
models, and three LLM-based foundation models on these
datasets.

« Open source code and datasets at GitHub ' to facilitate
full reproducibility and further research in this domain.

II. METHODOLOGY
A. Problem Statement

Given the input dataset, X € RF*T, T denotes the total
timesteps in days and F input features (including past targets
and other features). With a lookback window of L past days,
the input at time ¢ is Xy = X;_(r_1),; which contains inputs
of the last L days. Given this input X;, the model f predicts
the targets O (e.g. stock prices) for the next 7,4, days. The
target output y, at time ¢ can be expressed as,

Ur = f(X}), where,
Xt =2 (n—1):t = [Te—(L—1), Te—(p—2), " > T¢] (1)
- {xfal,t}’ fE€ {1"" 7F}a le {17"' ’L}

For the financial aid data, funds allocated to each state are a
time series with 7" years (2004 to 2020). A lookback L of 10
years is used to predict funds (O) for the next year (7,4, = 1).
For all other datasets, we have daily inputs for 10 years. With

a lookback window of the past 96 days (L = 96), we predict
the targets for the next 24 days (Tyaz = 24).

Thttps://github.com/UVA-MLSys/Financial-Time-Series



TABLE I: Datasets overview. Time series indicates the number of target time series (i.e., channels). Input features are past
observations and dataset size is depicted as training, validation, and test.

Domain Dataset Date Frequency | Time series | Lookback | Horizon Size
Institution Financial Aid 2004 - 2020 Yearly 56 10 1 (137, 92, 92)
S&P 500 Sep 1, 2014 - Aug 29, 2024 | Daily 4 96 24 (1903, 231, 229)
Stock Apple Sep 2, 2014 - Aug 29, 2024 | Daily 5 96 24 (1893, 230, 228)
Microsoft Sep 3, 2014 - Aug 30, 2024 | Daily 4 96 24 (1893, 230, 228)
Crude Oil Sep 1, 2014 - Aug 29, 2024 | Daily 4 96 24 (1893, 230, 228)
Commodity | Gold Sep 1, 2014 - Aug 29, 2024 | Daily 4 96 24 (1893, 230, 228)
Natural Gas Sep 1, 2014 - Aug 29, 2024 | Daily 4 96 24 (1893, 230, 228)
Currency Exchange Rate | Aug 1, 2014 - Aug 1, 2024 | Daily 7 96 24 (1861, 225, 224)
B. Dataset TABLE II: List of available features in financial aid [13]. Aid

We use the following financial datasets: (1) Financial Aid:
Financial aid distributed to each US state by the Government
to support student education and collected from years 2004
to 2020 [13]. Details of available features are in Table II
and the yearly aggregated aid in Fig 1. (2) Stock Market
[51 [12] [4] [14]: Includes the daily stock prices (Close,
Open, High, Low) and volumes for each of the following
stocks up to 10 years from the NASDAQ database: S&P
500 (SPX), Microsoft Corporation (MSFT), and Apple Inc
(AAPL); (3) Commodities [7] [8]: Contains data (Close,
Open, Volume, High, Low) on different kinds of raw materials
such as Natural Gas, Crude Oil and Gold. (4) Currency
Exchange Rate [5] [6]: The currency units per U.S. dollar
reported daily by the issuing central bank (rates are not
recorded on the weekends and certain holidays). This data
covers the following currencies: Australian Dollar (AUD),
Canadian Dollar (CAD), Chinese yuan (CNY), Euro (EUR),
Indian rupee (INR), Japanese yen (JPY), and the U.K. pound
(GBP);
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Fig. 1: Financial Aid data aggregated at the state level from
2004 to 2020 (17 years), in billions of US dollars. Access to
historical datasets is limited to yearly intervals.

The statistics are in Table 1. The train, validation, and test
split follows the 8:1:1 ratio, the validation set follows the
train set, then the test set. The data is standard normalized
before passing to the model. The few missing values (<1%)
are imputed using last-seen valid values.

C. Models

We use the following time series models in our work. The
models are chosen based on their popularity and recently

is given based on financial needs, academic merit, or both. The
sub-categories are simplified and describe multiple features.

Category | Sub-category | Description
Identifier State id and name abbreviation.
Number Total students receiving the award.
Public/Private | Whether the funds can be used for public or
private sectors and how long (2 or 4 years).
Need, Flags 0 or 1 based on whether the aid falls in a
Merit, particular category.
both Program Aid program with the most generous
eligibility criteria.
Notes Related text.
Threshold GPA, SAT, income, and other academic or
financial limits to qualify for the aid.
Time Year Fiscal or academic year.
Target Amount Aid amount received by the students.

published work. We focus on point forecasting in our work. A
high-level overview of how pre-trained LLMs are fine-tuned
for custom datasets is illustrated in Figure 2.

1) LLM Foundation Models: The LLM-based foundation
models are selected based on their versatility in time
series forecasting. We use the configurations from [15]. The
pre-trained foundation models are frozen except for the last
layer when fine-tuning. These models use a pre-trained GPT-2
[9] as the LLM backbone. We select the following recent
models: (1) TimeLLM [16] (2) CALF [17] (3) GPT4TS (One
Fits All, [18]).

2) Traditional Models: We choose the following recent
non-pre-trained models: (1) DLinear [19] (2) iTransformer
[20] (3) TimesNet [6] (4) PatchTST [21] (5) TimeMixer [22].
Most of these models are Transformer-based and have shown
great performance in capturing temporal patterns.

D. Implementation Details

We use the PyTorch framework and follow [6] [15] to
implement our experiments. Each experiment runs three
times with different random seeds (648, 506, 608), and the
average results are presented. Following [18] [17] we use the
pre-trained GPT2 as the backbone for the LLMs and only
fine-tune the output layer during training shown in Fig. 2. The



TABLE III: Q1. Few-shot learning performance with 10% training data. TimeLLM and PatchTST outperform the other models.
The best and the second best results are in bold and underlined.

Method DLinear [19] PatchTST [21] TimesNet [6] TimeMixer [22] | iTransformer [20] | TimeLLM [23] CALF [17] GPT4TS [18]
Metric MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
Financial Aid | 2.94 136 | 223 095 | 217 104 | 3.04 136 | 222 1.14 206 108 [ 164 08 | 236 120 |
S&P 500 208 114 | 203 114 | 243 118 | 249 125 | 219 1.19 194 114 | 237 L19 | 307 140
Apple 278 130 | 236 121 | 322 141 | 344 146 | 3.05 139 300 136 | 233 121 | 280  1.29
Microsoft 251 L10 | 213 106 | 355 143 | 285  LI8 | 249 115 240 L10 | 297 127 | 340 137
Crude Oil 166 101 | 196 105 | 275 129 | 206 114 | 192 1.07 175 101 | 213 114 | 242 115
Gold 278 114 | 268 115 | 266 117 | 257 LIl | 3.00 122 271 117 | 306 124 | 338 132
Natral Gas | 220 116 | 248 124 | 255 123 | 291 134 | 212 112 236 120 | 230 L17 | 217 113
Exchange 148 092 | 128 085 | 287 134 | 129 084 | 165 0.96 120 081 | 148 092 | 122 081
Prediction Following [17], we select the last 10% training data to train
_ o>o” the models in a few-shot learning setting.
Pre-trained LLM g Output Layer Results. The few-shot learning results are shown in Table
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Fig. 2: A high-level overview of pre-training an LLM and
fine-tuning on a custom dataset (e.g. the Financial Aid dataset)
for downstream tasks.

traditional models are trained from scratch. We use the Adam
optimizer with a learning rate le-3 and a dropout rate 0.1. The
GPT4TS [18] model uses the L1 loss. The CALF [17] model
uses the weighted average of task, feature, and logit loss using
the L1 loss. The other models use the Mean Squared Error
loss. Models are trained for 10 epochs max, with batch size
32. The experiments were run on an NVIDIA 2080Ti GPU
with 11GB+ memory with 32GB RAM. Following [22] [17]
[14], we use Mean Square Error (MSE) and Mean Absolute
Error (MAE) as evaluation metrics. Lower is better for these
metrics.

III. EXPERIMENTS AND RESULTS

In this section, we investigate the research questions, the
setup, and the results.

A. Q1. Which models are better as few-shot learners?

Pre-trained models are preferred largely due to their
generalizability and good performance in few-shot or zero-shot
learning settings [24]. Since these LLMs are already trained on
many datasets, they often outperform the other models when
few training data are available [17] or without training [14].

II. All model performance drops significantly after reducing
the train data size. This is due to the models’ inability to learn
enough temporal patterns from the limited input. TimeLLM
performs the best overall (three best and four 2nd best cases).
While PatchTST performs the 2nd best with a close margin
(three best and two 2nd best cases). DLinears performance
drops significantly as it is a simple linear model. However,
overall the LLMs performed better in the few-shot learning.

B. Q2. Can LLMs perform zero-shot learning in FTSF?

Real-world scenarios can often have no available past
observations (i.e. new company stock in the market, newly
launched product). Having zero-shot learning ability is crucial
in forecasting those cases since traditional deep learning time
series models are unable to train and forecast those cases. We
investigate whether LLMs can effectively assist in those cases.
We load the pre-trained LLMs and evaluate them on the test set
without fine-tuning. Since no training is done in this part, we
exclude the traditional time series models from this analysis.

TABLE IV: Q2. Zero shot performance. GPT4TS performs
the best. The best and the second best results are in bold
and underlined. The traditional models are excluded here since
they are not pre-trained.

Method TimeLLM [23] CALF [17] GPT4TS [18]
Metric MSE MAE MSE MAE | MSE MAE
Financial Aid [[29900 129 | 382 159 | 317 141
S&P 500 5.04 1.91 3.98 1.74 3.89 1.76
Apple 417 161 | 336 144 | 305  1.36
Microsoft 5.13 1.81 4.12 1.62 3.96 1.59
Crude Oil 3.05 1.39 221 1.18 1.89 1.08
Gold 6.15 1.95 5.12 1.76 5.00 1.77
Natural Gas 4.09 1.61 3.27 143 2.96 1.35
Exchange 3.25 1.47 241 1.29 2.10 1.23

Results. Table IV shows the zero-shot results of the LLMs.
Compared to QI, the results achieved here are significantly
worse. Since each financial data may have distinct temporal
patterns, without fine-tuning the LLMs fail to forecast them
effectively. We conclude, LLMs are yet not quite effective for
zero-shot learning for financial time series.



IV. RELATED WORKS

Deep learning for time series has significantly outperformed
machine learning approaches [22] [20], also in finance [4].
[S] used RNN models to forecast stock market prices,
and currency exchange rates. Many recent deep learning
models have been used to forecast the stock market [2]
[5] [4], commodity prices [7] [8]. Foundation models in
time series have recently gained significant attention [24].
Pre-trained LLMs and vision models have been enhanced
for time series. [14] [25] showed the ability of LLMs to
perform in zero-shot and few-shot settings in time series
tasks. GPT4TS [18] leverages pre-trained language models
without altering important layers. TimeLLM [16] reprograms
LLM’s ability to reason with time series data by proposing
a prompt-as-prefix technique. CALF [17] proposed a novel
fine-tuning framework to reduce the distribution discrepancy
between textual and temporal data. Chronos [26] performed
significantly in probabilistic forecasting.

V. CONCLUSION AND FUTURE WORKS

In this paper, we benchmark financial datasets from
multiple domains using state-of-the-art time series models
and LLM-based foundation models. Our results show that
LLMs are more effective for few-shot and zero-shot learning.
Especially, the few-shot and zero-shot capabilities of LL.Ms
can be effective for financial Aid practitioners who are
currently unable to apply deep learning methods due
to limited data availability. We focus on point forecasting
with a single modality in this work. Incorporating data from
different financial modalities into time series models will be
future work, and probabilistic forecasting can help the financial
domain by outputting a probabilistic distribution. Our research
highlights the potential of foundation LLMs in financial aid
and the overall finance time series forecasting domain.
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