
Differentiable Simulator For Dynamic & Stochastic

Optimal Gas & Power Flows

Criston Hyett1, Laurent Pagnier1, Jean Alisse2, Igal Goldshtein2,

Lilah Saban2, Robert Ferrando1, and Michael Chertkov1

1Program in Applied Mathematics & Department of Mathematics, University of Arizona, Tucson, AZ, USA
2Noga, The Israel Independent System Operator, Haifa, Israel

Abstract— In many power systems, particularly those isolated
from larger intercontinental grids, reliance on natural gas is
crucial. This dependence becomes particularly critical during
periods of volatility or scarcity in renewable energy sources,
further complicated by unpredictable consumption trends. To
ensure the uninterrupted operation of these isolated gas-grid
systems, innovative and efficient management strategies are
essential. This paper investigates the complexities of achiev-
ing synchronized, dynamic, and stochastic optimization for
autonomous transmission-level gas-grid infrastructures. We
introduce a novel methodology grounded in differentiable
programming, which synergizes symbolic programming, a con-
servative numerical method for solving gas-flow partial differ-
ential equations, and automated sensitivity analysis powered
by SciML/Julia. Our methodology refines the co-optimization
landscape for gas-grid systems by grounding gas dynamics in
physics-adherent simulation. We demonstrate efficiency and
precision of the methodology by solving a stochastic optimal
gas flow problem, phrased on an open source model of Israel’s
gas grid model.

I. INTRODUCTION & BACKGROUND

The surge in renewable energy integration has heightened

the variability in power demand, intensifying the fluctuations

represented by the duck curve. Concurrently, the shift from

coal to cleaner “bridge fuels” like natural gas places in-

creased dependence on the gas infrastructure. This reliance

extends beyond power generation to include transmission-

level gas systems, which are also impacted by residential,

commercial distribution, and exports. The disparate response

times between gas and power networks – seconds for power

systems versus hours for gas systems – add complexity to

real-time and day-ahead coordination across these sectors.

Earlier research, like that of [1] and [2], integrated gas dy-

namics into day-ahead planning through optimization models

that simplified gas network constraints. More recent efforts

have developed linear approximations for pipe segments

to balance computational efficiency against model fidelity,

aiding their incorporation into optimization frameworks [3].

Yet, efficiently and scalably addressing the full nonlinearity

inherent in gas system dynamics, especially under stress and

uncertainty, continues to pose a significant challenge.

The challenge we face is formally defined as solving a

PDE-constrained optimization problem, which is schemati-

cally represented as:

min
{u(s)(t),q(t)}

∑

s∈S

∫ T

0

C(s)(u(s)(t), q(t)) dt,

s.t. ∀s, ∀t ∈ [0, T] :
du(s)(t)

dt
= g(u(s)(t), q(t)),

(1)

where u(s)(t) denotes the time-evolving state space as-

sociated with scenario, s ∈ S and q(t) stands for the

time-evolving but scenario-independent control degrees of

freedom. The space S represents uncertainty associated, e.g.,

with stochastic fluctuation in demand and renewable gener-

ation. The term C(s)(u(s)(t), q(t)) denotes the cumulative

cost; in what follows we choose a multi-objective encapsu-

lating the discrepancy between aggregated energy generation

and demand, operational costs of gas generators, and pressure

constraints at the gas-grid nodes. Note that we allow the

cost to depend on the sample; we will use this generality

to cover the case of uncertain demands later in the paper.

For a given sample, u(s)(t) represents the spatiotemporal

gas flows, gas densities, and, indirectly via the gas equation

of state, pressures over the gas-grid. q(t) are controlled

boundary conditions, specifying gas supply/extraction at the

various nodes of the gas-grid where gas supply/generators are

positioned. The equation
du(s)(t)

dt
= g(u(s)(t), q(t)) enforces

the gas-flow equations; such that for each scenario s, u(s)(t)
is a solution to the Euler equations describing the gas flow,

subject to the controlled boundary conditions q(t). A detailed

explanation is provided in Section II.

In this paper, we propose a novel approach to solving

Eq. (1), aiming to enhance the fidelity of gas accounting

in short-term to day-ahead planning of power generation

in a computationally efficient manner. Our solution crafts a

differentiable simulator by leveraging the principles of differ-

entiable programming (DP) [4], combined with an efficient

explicit staggered-grid method [5], symbolic programming

and the robust capabilities of the SciML sensitivity ecosys-

tem [6], [7]. As we delve further, it will become evident that

our approach adeptly addresses the intertwined challenges of

nonlinearity, dimensionality, and stochastic modeling.

In the proposed framework, DP facilitates the calculation

of gradients by seamlessly solving the gas-flow PDE across a

network. This is realized by auto-generating the correspond-

ing adjoint equations, providing flexibility in formulating the

Authorized licensed use limited to: University of Arizona. Downloaded on April 20,2025 at 10:46:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. 11-node network diagram, with supply nodes (injection into the
network) in red, demand nodes (consumption from the network) in green.

be adjusted by either shedding demand or introducing a gen-

eration reserve, at a certain cost. The second term in Eq (10),

Ei(qi(t)), represents the cost of operating power generator

run on gas and located at the node i at the gas withdrawal

rate qi(t). The third term in Eq. (10),
∑

x∈nodes V (p(s)(x, t)),
is chosen to be a quasi-quadratic cost to penalize pressure

constraint violations across the network (refer to Fig. 5): with

pmin(x) and pmax(x) denoting pre-set pressure boundaries at

system nodes. The influence of the multi-objective cost C’s

components can be modulated using the hyperparameters α,

β, and γ; found as coefficients to the individual terms in

Eq[10].

E. Solving the optimization

To solve the optimization in Eq(9), we iterate over three

steps: (i) given a guess of our control q(t), solve the forward

problem Eqs(6,7,8) for u(t) = {ρ(t), φ(t)}; (ii) solve the

adjoint ODE Eqs(15,16) backward in time for λ(t); (iii)

use the solutions u(t), λ(t) to compute the update to our

control, Eq(19). Derivation and further exposition can be

found in Section IV. A complete description, including

implementation details, as well as full consideration of

application specific trade-offs of different sensitivity methods

for differentiable programming can be found in [18].

III. RESULTS

To exemplify the methodology, we solve an optimal gas

flow problem phrased on a previously studied reduced model

of Israel’s gas grid [10]. The reduced model, shown in

Fig. (6), has 11 nodes, with a total pipe length of approxi-

mately 550km. We minimize the objective in Eq. (9) over

a time horizon of 10hrs, encompassing a morning ramp

in energy use. The demand curves D(t) are aggregated

from publicly available data; the gas cost G(q) is taken

as a constant; the efficiency curves Ei(q(t)) take one of

three constant values representing efficient, nominal, and

inefficient turbines; and the pressure limits are set as pmin =
60bar, pmax = 80bar. We use a box-constrained Limited-

memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) op-

timizer; the constraints enforcing max and min injec-

tion/consumption at each node. Each node has hourly flow-

Fig. 7. Optimal gas flow results from an 11-node network, spanning
≈ 550km. The OGF is solved across a time horizon of 10 hours, using
representative data of a morning ramp in the energy demand. (Top) Shows
the quick convergence of LBGFS, despite the initial guess yielding a
large penalty. (Middle) shows the evolution of pressure at each node using
the optimized injections/withdrawals. Note that despite the dynamic initial
conditions being outside the pressure window, the optimization quickly
rectifies and holds all pressures in the acceptable range marked by the
dashed lines. (Bottom) shows that we meet demand during the morning
ramp, without waste.

rate control parameters, so the dimension of the optimization

space is 110 = 11nodes ∗ 10hrs.

The optimization results, considering a deterministic gas

consumption profile, are depicted in Fig. 7. We observe an

exponential decrease in the loss function, with the algorithm

converging to a stable minimum within 30 iterations. System

pressures remain within specified limits, except for the

uncontrolled initial data, which does not contribute to the

loss calculation. Notably, at node 6 – the system’s lowest

pressure point – there is a proactive pressure increase to

accommodate the expected rise in consumption during the

morning peak. This optimization strategy, navigating the

Authorized licensed use limited to: University of Arizona. Downloaded on April 20,2025 at 10:46:32 UTC from IEEE Xplore. Restrictions apply.

system’s nonlinearities, proves crucial for operators in mak-

ing informed real-time decisions. Impressively, the optimizer

achieves exact demand fulfillment, despite starting very far

from the optimum.

Subsequently, we applied the software to perform opti-

mization under uncertain consumption patterns, assuming

a normal distribution with a standard deviation equal to

5% of the current consumption level. This scenario aims

to simulate the uniform response of all generators to the

variability inherent in renewable energy sources. The find-

ings, illustrated in Fig. (8), indicate the network’s ability to

achieve a reduced minimum. This improvement is attributed

to effectively managing the pressures at nodes 7 and 8 (the

nodes with the highest pressure) to remain below 80bar

towards the latter part of the simulation, thereby mitigating

less frequent low-pressure breaches at node 6, the node with

the lowest pressure.

All code required to run and analyze these simulations

as well as smaller test networks is available at https://

github.com/cmhyett/DiffGasNetworks.

IV. CONCLUSION & PATH FORWARD

The chief technical contribution of this manuscript is

the integration of symbolic programming, automatic differ-

entiation, and gas-flow PDE numerics to develop a more

accurate, physics-based approach for addressing optimization

and control issues in gas networks. This was demonstrated

through the solution of a stochastic optimal gas flow problem.

Our development efforts concentrated on:

1) Efficiency: We prioritized the forward solution’s effi-

ciency and the gradient computation’s scalability us-

ing the adjoint method. Achievements in efficiency

resulted from combining symbolic programming, high-

performance ODE integrators, and advanced AD tools.

2) Consistency: For PDE-constrained optimization, espe-

cially in short-term or real-time planning, it is crucial

to maintain precise physical solutions irrespective of

grid refinement choices. The differentiable program-

ming framework ensures consistent convergence within

the physical domain and offers error assurances.

3) Flexibility: The methodology’s design allows adapt-

able network and component configurations, support-

ing a range of applications from uncertainty quan-

tification to inverse problems and data assimilation.

By preserving symbolic representations until execution

and employing Automatic Differentiation for deriva-

tive calculations, our approach facilitates selecting the

most appropriate gradient computation method from

available library of options, ensuring both application

breadth and solution specificity.

We demonstrated our ability to utilize these characteristics

to effectively solve an Optimal Gas Flow (OGF) problem

under uncertainty, preserving essential system properties and

the complete nonlinear dynamics of a representative regional

gas network.

Future endeavors will focus on integrating this method-

ology into the broader scope of gas network optimization

and control. Comparison and integration with optimization-

centric (e.g., constraint-matrix and mixed integer optimiz-

ers) approaches is a promising avenue to more completely

understand and mitigate the weaknesses of any individual

approach. Additionally, such work provides the capability to

bridge the OGF timescales of long-term planning, day-ahead

scheduling, and real-time mitigation of intraday variations or

emergencies.

Although our current model omits gas compressors due to

specific characteristics of the Israel’s system, the extension of

this method to include compressors and valves in the network

library is straightforward. Also important are representative

equations of state - while the ideal gas law is convenient for

exposition, utilization of this methodology in more extreme

environments and at higher degrees of accuracy necessitate

the adoption of more expressive equations of state. Both the

addition of network components and enriching the equation

of state are facilitated by the inherent generality of our

method’s design.

Moreover, while our Optimal Gas Flow (OGF) model

under uncertainty effectively managed the expected cost,

the realm of stochastic optimal control offers the capability

to target more specific objectives, such as managing the

higher moments of nodal pressures. Proactively addressing

and planning for these uncommon occurrences within gas-

grid system coordination remains a dynamic and critical field

of research, see e.g., [19].

Finally, there have been significant theoretical

advancements in multi-fidelity methods for outer-loop

applications[20]. By integrating the methodology presented

in this manuscript with constraint-matrix and machine

learning techniques, one might develop a comprehensive

multi-fidelity approach. This integration promises to be both

efficient and versatile, offering high-fidelity solutions to the

underlying PDEs across networks. Such an approach has

the potential for broader applicability, extending beyond

gas networks to encompass a wider spectrum of complex

systems.

APPENDICES

A. Adjoint Method

In this appendix we present the adjoint (conjugated gra-

dient) method used to compute gradient steps to resolve the

minimization problem Eq. (1).

Let us drop index (s) in Eq. (1) to simplify notations (as

if it would be just one sample), and restate Eq. (1) in the

Lagrangian form:

min
(q(t),u(t)|t∈[0,T])

max
(λ(t)|t∈[0,T])

L(q(t), u(t), λ(t)|t ∈ [0, T]),

(11)

L :=

∫ T

0

(

C(u(t), q(t)) + λ(t)T (u̇(t)− g(u(t), q(t)))
)

dt,

where (λ(t)|t ∈ [0, T]) is the functional Lagrangian multi-

plier introduced to enforce the underlying differential equa-

tion at t ∈ [0, T]:

u̇(t) = g(u(t), q(t)). (12)

Authorized licensed use limited to: University of Arizona. Downloaded on April 20,2025 at 10:46:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Results of optimization under uncertainty. We initialize the optimization using the solution in Fig. 7, and then re-perform the optimization, taking
the loss as the expectation over samples of noisy consumption as in Eq. (9). Plotted are the mean (solid line) plus/minus a standard deviation (opaque
region) for selected nodes. This procedure illustrates the ability to tune for robustness against stochastic fluctuations in the power network.

Next we rewrite Eq. (11) splitting variation over (q(t)|t ∈
[0, T]) from variation over (u(t)|t ∈ [0, T]) and (λ(t)|t ∈
[0, T]):

min
(q(t)|t∈[0,T])

L̃(q(t)|t ∈ [0, T]), (13)

L̃(q(t)|t ∈ [0, T]) := min
(u(t)|t∈[0,T])

max
(λ(t)|t∈[0,T])

L. (14)

Given the control function (q(t)|t ∈ [0, T]) our task be-

comes to find L̃(q(t)|t ∈ [0, T]) which we do replacing

minimization over (u(t)|t ∈ [0, T]) and maximization over

(λ(t)|t ∈ [0, T]) by finding the stationary point of L, that is

solving respective Euler-Lagrange (EL) equations:

t ∈]0, T [:
δL

δu(t)
= 0 =⇒ ∂uC = λT∂ug +

d

dt
λT ,

(15)

δL

δu(T)
= 0 =⇒ λ(T) = 0, (16)

t ∈ [0, T] :
δL

δq(t)
= 0 =⇒ ∂qC + λT∂qg = 0. (17)

We solve the system of the EL by, first, running Eqs. (12)

forward in time, and thus finding (u(t)|t ∈ [0, T]). Once

u(T) is found, and λ(T) is fixed to zero, according to

Eq. (16), we solve Eqs. (15) running them backwards in time

to find (λ(t)|t ∈ [0, T]). Finally, we arrive at the following

EL expression for L̃(q(t)|t ∈ [0, T])

L̃ = L(q(t), u(t), λ(t)|t ∈ [0, T])

∣

∣

∣

∣

∣

Eqs. (12,15,16))

. (18)

What is now left is to optimize over (q(t)|t ∈ [0, T]) in

Eq. (13). This last step is done iteratively – starting with

a guess for (q(t)|t ∈ [0, T]) and updating it at each step

according to, t ∈ [0, T]:

q(new)(t) = q(t)− η ·
δL̃(q(t′)|t′ ∈ [0, T])

δq(t)
, (19)

where η is the so-called learning rate and at each iteration

we update the functional L̃(q(t′)|t′ ∈ [0, T]) according to

the procedure described above and resulting in Eq. (18).

To avoid laborious encoding of derivative functions, the

functional forms – such as partial derivatives of C and g

– dependent on the current state u(t) and control q(t), are

determined and evaluated using source-to-source Automatic

Differentiation (AD).

We can now clearly point to a main difference between

the constraint-matrix and differentiable programming ap-

proaches. When encoding the PDE into the constraint matrix,

a choice of ∆x,∆t is made. This choice is likely far coarser

than would be necessary to solve the PDE (otherwise the

dimension of the equality constraints could easily reach

the tens of millions for moderately sized networks), and

results in particular choices ti for which the solutions, u(ti),
λ(ti) are available. This in turn reduces the fidelity of the

approximation to Eq. (15), so that solutions u(t) may or may

not be physical, depending on the spectrum of the differential

operator Eq. (15).

Contrast this with the differentiable programming ap-

proach, where the differential Eqs. (12,15) can be approxi-

mated at any time since it is truly solved continuously. Even

when the forward solution u(t) is not available at a needed

time, one can use interpolation, or checkpointing (shown

in Fig. 9) to obtain the needed value. This guarantees the

gradient moves us along the solution manifold and never off

of it.

B. Differentiable Programming

Source-to-source differentiation, particularly from Zy-

gote.jl [21], is a transformational capability that allows

reverse-mode automatic differentiation (AD) through pro-

gramming language constructs – enabling optimized adjoint

function evaluation without the need to write the derivatives

by hand. This freedom ensures correctness, and allows for

generality in construction of the forward pass [22].

Authorized licensed use limited to: University of Arizona. Downloaded on April 20,2025 at 10:46:32 UTC from IEEE Xplore. Restrictions apply.

