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We study the problem of characterizing optimal learning algorithms for playing repeated games against an
adversary with unknown payoffs. In this problem, the first player (called the learner) commits to a learning
algorithm against a second player (called the optimizer), and the optimizer best-responds by choosing the
optimal dynamic strategy for their (unknown but well-defined) payoff. Classic learning algorithms (such as
no-regret algorithms) provide some counterfactual guarantees for the learner, but might perform much more
poorly than other learning algorithms against particular optimizer payoffs.

In this paper, we introduce the notion of asymptotically Pareto-optimal learning algorithms. Intuitively, if a
learning algorithm is Pareto-optimal, then there is no other algorithm which performs asymptotically at least
as well against all optimizers and performs strictly better (by at least Q(T)) against some optimizer. We show
that well-known no-regret algorithms such as Multiplicative Weights and Follow The Regularized Leader
are Pareto-dominated. However, while no-regret is not enough to ensure Pareto-optimality, we show that a
strictly stronger property, no-swap-regret, is a sufficient condition for Pareto-optimality.

Proving these results requires us to address various technical challenges specific to repeated play, including
the fact that there is no simple characterization of how optimizers who are rational in the long-term best-
respond against a learning algorithm over multiple rounds of play. To address this, we introduce the idea of
the asymptotic menu of a learning algorithm: the convex closure of all correlated distributions over strategy
profiles that are asymptotically implementable by an adversary. Interestingly, we show that all no-swap-regret
algorithms share the same asymptotic menu, implying that all no-swap-regret algorithms are “strategically
equivalent”.
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1 Introduction

Consider an agent faced with the problem of playing a repeated game against another strategic
agent. In the absence of complete information about the other agent’s goals and behavior, it is
reasonable for the agent to employ a learning algorithm to decide how to play. This raises the
(purposefully vague) question: What is the “best” learning algorithm for learning in games?
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One popular yardstick for measuring the quality of learning algorithms is regret. The regret
of a learning algorithm is the worst-case gap between the algorithm’s achieved utility and the
counterfactual utility it would have received if it instead had played the optimal fixed strategy
in hindsight. There exist learning algorithms which achieve sublinear o(T) regret when played
across T rounds (no-regret algorithms), and researchers now have a very good understanding of the
strongest regret guarantees possible in a variety of different settings. It is tempting to conclude
that one of these regret-minimizing algorithms is the optimal choice of learning algorithm for our
agent.

However, many standard no-regret algorithms — including popular algorithms such as Multi-
plicative Weights and Follow-The-Regularized-Leader — have the unfortunate property that they
are vulnerable to strategic manipulation [Deng et al., 2019b]. What this means is that if one agent (a
learner) is using a such an algorithm to play a repeated game against a second agent (an optimizer),
there are games where the optimizer can exploit this by playing a time-varying dynamic strategy
(e.g. playing some strategy for the first T/2 rounds, then switching to a different strategy in the
last half of the rounds). By doing so, in some games the optimizer can obtain significantly more
(Q(T)) utility than they could by playing a fixed static strategy, often at cost to the learner. This
is perhaps most striking in the case of auctions, where [Braverman et al., 2018] show that if a
bidder uses such an algorithm to decide their bids, the auctioneer can design a dynamic auction
that extracts the full welfare of the bidder as revenue (leaving the bidder with zero net utility).
On the flip side, [Deng et al., 2019b] show that if the learner employs a learning algorithm with a
stronger counterfactual guarantee — that of no-swap-regret — this protects the learner from strategic
manipulation, and prevents the optimizer from doing anything significantly better than playing a
static strategy for all T rounds. Perhaps, then, a no-swap-regret algorithm is the “best” learning
algorithm for game-theoretic settings.

But even this is not the complete picture: even though strategic manipulation from the other
agent may harm the learner, there are other games where both the learner and optimizer can
benefit from the learner playing a manipulable algorithm. Indeed, [Guruganesh et al., 2024] prove
that there are contract-theoretic settings where both the learner and optimizer benefit from from
the learner running a manipulable no-regret algorithm (with the optimizer best-responding to it).
In light of these seemingly contradictory results, is there anything meaningful one can say about
what learning algorithm a strategic agent should use?

1.1 Our results and techniques

In this paper, we acknowledge that there may not be a consistent total ordering among learning
algorithms, and instead study this question through the lens of Pareto-optimality. Specifically, we
consider the following setting. As before, one agent (the learner) is repeatedly playing a general-sum
normal-form game G against a second agent (the optimizer). The learner knows their own utility
uy, for outcomes of this game but is uncertain of the optimizer’s utility up, and so commits to
playing according to a learning algorithm A (a procedure which decides the learner’s action at
round ¢t as a function of the observed history of play of both parties). The optimizer observes this
and plays a (potentially dynamic) best-response to A that maximizes their own utility up. We
remark that in addition to capturing the strategic settings mentioned above, this asymmetry also
models settings where one of the participants in a repeated game (such as a market designer or
large corporation) must publish their algorithms up front and has to play against a large collection
of unknown optimizers.

We say one learning algorithm A (asymptotically) Pareto-dominates a second learning algorithm
A’ for the learner in this game if: i. for any utility function the optimizer may have, the learner
receives at least as much utility (up to sublinear o(T) factors) under committing to A as they do
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under committing to A’, and ii. there exists at least one utility function for the optimizer where
the learner receives significantly more utility (at least Q(T) more) by committing to A instead
of committing to A’. A learning algorithm A which is not Pareto-dominated by any learning
algorithm is Pareto-optimal.

We prove the following results about Pareto-domination of learning algorithms for games.

e First, our notion of Pareto-optimality is non-vacuous: there exist many learning algorithms
(including many no-regret learning algorithms) which are Pareto-dominated. In fact, we
can show that there exist large classes of games where any instantiation of the Follow-The-
Regularized-Leader (FTRL) with a strongly convex regularizer is Pareto-dominated. This set
of learning algorithms contains many of the most popular no-regret learning algorithms as
special cases (e.g. Hedge, Multiplicative Weights, and Follow-The-Perturbed-Leader).

e In contrast to this, any no-swap-regret algorithm is Pareto-optimal. This strengthens the
case for the strategic power of no-swap-regret learning algorithms in repeated interactions.

e That said, the Pareto-domination hierarchy of algorithms is indeed not a total order: there
exist infinitely many Pareto-optimal learning algorithms that are qualitatively different in
significant ways. And of the learning algorithms that are Pareto-dominated, they are not
all Pareto-dominated by the same Pareto-optimal algorithm (indeed, in many cases FTRL is
not dominated by a no-swap-regret learning algorithm, but by a different Pareto-optimal
learning algorithm).

In addition to this, we also provide a partial characterization of all no-regret Pareto-optimal
algorithms, which we employ to prove the above results. In order to understand this characterization,
we need to introduce the notion of the asymptotic menu of a learning algorithm.

To motivate this concept, consider a transcript of the repeated game G. If the learner has m
actions to choose from each round and the optimizer has n actions, then after playing for T rounds,
we can describe the average outcome of play via a correlated strategy profile (CSP): a correlated
distribution over the mn pairs of learner/optimizer actions. The important observation is that this
correlated strategy profile (an mn-dimensional object) is all that is necessary to understand the
average utilities of both players, regardless of their specific payoff functions - it is in some sense a
“sufficient statistic” for all utility-theoretic properties of the transcript.

Inspired by this, we define the asymptotic menu M(A) of a learning algorithm A to be the
convex closure of the set of all CSPs that are asymptotically implementable by an optimizer against
a learner who is running algorithm A. That is, a specific correlated strategy profile ¢ belongs
to M(A) if the optimizer can construct arbitrarily long transcripts by playing against A whose
associated CSPs are arbitrarily close to ¢. We call this a “menu” since we can think of this as a set
of choices the learner offers the optimizer by committing to algorithm A (essentially saying, “pick
whichever CSP in this set you prefer the most”).

Working with asymptotic menus allows us to translate statements about learning algorithms
(complex, ill-behaved objects) to statements about convex subsets of the mn-simplex (much nicer
mathematical objects). In particular, our notion of Pareto-dominance translates directly from
algorithms to menus, as do concepts like “no-regret” and “no-swap-regret”. This allows us to prove
the following results about asymptotic menus:

o First, by applying Blackwell’s Approachability Theorem, we give a simple and complete
characterization of which convex subsets of the mn-simplex A, are valid asymptotic menus:
any set M with the property that for any optimizer action y € A,, there exists a learner
action x € A, such that the product distribution x ® y belongs to M (Theorem 3.3).

e We then use this characterization to show that there is a unique no-swap-regret menu, which
we call Msg (Theorem 3.9), can be described explicitly as a polytope, and which is contained
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as a subset of any no-regret menu (Lemma 3.8). In particular, this implies that all no-swap-
regret algorithms share the same asymptotic menu, and hence are strategically equivalent
from the perspective of an optimizer strategizing against them. This is notably not the case
for no-regret algorithms, which have many different asymptotic menus.
e In our main result, we give a characterization of all Pareto-optimal no-regret menus for
menus that are polytopes (the intersection of finitely many half-spaces). We show that such
a menu M is Pareto-optimal iff the set of points in M which minimize the learner’s utility
are the same as that for the no-swap-regret menu Mysr (Theorem 4.1). It is here where our
geometric view of menus is particularly useful: it allows us to reduce this general question to
a non-trivial property of two-dimensional convex curves (Lemma 4.5).
As an immediate consequence of this, we show the no-swap-regret menu (and hence any
no-swap-regret algorithm) is Pareto-optimal (Corollary A.1), and that there exist infinitely
many distinct Pareto-optimal menus (each of which can be formed by starting with the
no-swap-regret menu Mpysg and expanding it to include additional no-regret CSPs).
Finally, we demonstrate instances where the asymptotic menu of FTRL is Pareto-dominated.
This would follow nearly immediately from the characterization above (in fact, for the
even larger class of mean-based no-regret algorithms), but for the restriction that the above
characterization only applies to polytopal menus. To handle this, we also find a class of
examples where we can prove that the asymptotic menu of FTRL is a polytope. Doing this
involves developing new tools for optimizing against mean-based algorithms, and may be of
independent interest.

1.2 Takeaways and future directions

What do these results imply about our original question? Can we say anything new about which
learning algorithms a learner should use to play repeated games? From a very pessimistic point
of view, the wealth of Pareto-optimal algorithms means that we cannot confidently say that any
specific algorithm is the “best” algorithm for learning in games. But more optimistically, our
results clearly highlight no-swap-regret learning algorithms as a particularly fundamental class of
learning algorithms in strategic settings (in a way generic no-regret algorithms are not), with the
no-swap-regret menu being the minimal Pareto-optimal menu among all no-regret Pareto-optimal
menus.

We would also argue that our results do have concrete implications for how one should think
about designing new learning algorithms in game-theoretic settings. In particular, they suggest that
instead of directly designing a learning algorithm via minimizing specific regret notions (which
can lead to learning algorithms which are Pareto-dominated, in the case of common no-regret
algorithms), it may be more fruitful to first design the specific asymptotic menu we wish the
algorithm to converge to (and only then worry about the rate at which algorithms approach this
menu). Our characterization of Pareto-optimal no-regret menus provides a framework under which
we can do this: start with the no-swap-regret menu, and expand it to contain other CSPs that
we believe may be helpful for the learner. For example, consider a learner who believes that the
optimizer has a specific utility function uo, but still wants to run a no-regret learning algorithm to
hedge against the possibility that they do not. This learner can use our characterization to first find
the best such asymptotic menu, and then construct an efficient learning algorithm that approaches
it (via e.g. the Blackwell approachability technique of Theorem 3.3).

There are a number of interesting future directions to explore. Most obvious is the question
of extending our characterization of Pareto-optimality from polytopal no-regret menus to all
asymptotic menus. While we conjecture the polytopal constraint is unnecessary, there do exist
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non-trivial high-regret Pareto-optimal menus (Theorem 4.9), and understanding the full class of
such menus is an interesting open problem.

Secondly, throughout this discussion we have taken the perspective of a learner who is aware of
their own payoff u; and only has uncertainty about the optimizer they face. Yet one feature of most
common learning algorithms is that they do not even require this knowledge about uy, and are
designed to work in a setting where they learn their own utilities over time. Some of our results
(such as the Pareto-optimality of no-swap-regret algorithms) carry over near identically to such
utility-agnostic settings (see the full version [Arunachaleswaran et al., 2024]), but we still lack a
clear understanding of Pareto-domination there.

Finally, we focus entirely on normal-form two-player games. But many practical applications
of learning algorithms take place in more general strategic settings, such as Bayesian games or
extensive-form games. What is the correct analogue of asymptotic menus and Pareto-optimality
for these settings?

1.3 Related work

There is a long history of work in both economics and computer science of understanding the
interplay between game theory and learning. We refer the reader to any of [Cesa-Bianchi and
Lugosi, 2006, Fudenberg and Levine, 1998, Young, 2004] for an introduction to the area. Much of
the recent work in this area is focused on understanding the correlated equilibria that arise when
several learning algorithms play against each other, and designing algorithms which approach
this set of equilibria more quickly or more stably (e.g., [Anagnostides et al., 2022a,b, Farina et al.,
2022, Piliouras et al., 2022, Syrgkanis et al., 2015, Zhang et al., 2023]). It may be helpful to compare
the learning-theoretic characterization of the set of correlated equilibria (which contains all CSPs
that can be implemented by having several no-swap-regret algorithms play against each other)
to our definition of asymptotic menu - in some ways, one can think of an asymptotic menu as a
one-sided, algorithm-specific variant of this idea.

Our paper is most closely connected to a growing area of work on understanding the strategic
manipulability of learning algorithms in games. [Braverman et al., 2018] was one of the first works
to investigate these questions, specifically for the setting of non-truthful auctions with a single
buyer. Since then, similar phenomena have been studied in a variety of economic settings, including
other auction settings [Cai et al., 2023, Deng et al., 2019a, Kolumbus and Nisan, 2022a,b], contract
design [Guruganesh et al., 2024], Bayesian persuasion [Chen and Lin, 2023], general games [Brown
et al,, 2023, Deng et al., 2019b], and Bayesian games [Mansour et al., 2022]. [Deng et al., 2019b] and
[Mansour et al., 2022] show that no-swap-regret is a necessary and sufficient condition to prevent the
optimizer from benefiting by manipulating the learner. [Brown et al., 2023] introduce an asymmetric
generalization of correlated and coarse-correlated equilibria which they use to understand when
learners are incentivized to commit to playing certain classes of learning algorithms. Our no-regret
and no-swap-regret menus can be interpreted as the sets of (0, &)-equilibria and (0, I )-equilibria
in their model (their definition of equilibria stops short of being able to express the asymptotic
menu of a specific learning algorithm, however). In constructing an example where the asymptotic
menu of FTRL is a polytope, we borrow an example from [Guruganesh et al., 2024], who present
families of principal-agent problems which are particularly nice to analyze from the perspective of
manipulating mean-based agents.

Our results highlight no-swap-regret algorithms as particularly relevant algorithms for learning
in games. The first no-swap-regret algorithms were provided by [Foster and Vohra, 1997], who
also showed their dynamics converge to correlated equilibria. Since then, several authors have
designed learning algorithms for minimizing swap regret in games [Blum and Mansour, 2007,
Dagan et al., 2023, Hart and Mas-Colell, 2000, Peng and Rubinstein, 2023]. Our work shows that
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all these algorithms are in some “strategically equivalent” up to sublinear factors; this is perhaps
surprising given that many of these algorithms are qualitatively quite different (especially the very
recent swap regret algorithms of [Peng and Rubinstein, 2023] and [Dagan et al., 2023]).

Finally, although we phrase our results from the perspective of learning in games, it is equally
valid to think of this work as studying a Stackelberg variant of a repeated, finite-horizon game,
where one player must commit to a repeated strategy without being fully aware of the other player’s
utility function. In the full-information setting (where the learner is aware of the optimizer’s payoff),
the computational aspects of this problem are well-understood [Collina et al., 2023, Conitzer and
Sandholm, 2006, Peng et al., 2019]. In the unknown-payoff setting, preexisting work has focused
on learning the optimal single-round Stackelberg distribution by playing repeatedly against a
myopic [Balcan et al., 2015, Lauffer et al., 2022, Marecki et al., 2012] or discounting [Haghtalab et al.,
2022] follower. As far as we are aware, we are the first to study this problem in the unknown-payoff
setting with a fully non-myopic follower.

2 Model and preliminaries

We consider a setting where two players, an optimizer O and a learner L, repeatedly play a two-
player bimatrix game G for T rounds. The game G has m actions for the optimizer and n actions for
the learner, and is specified by two bounded payoff functions up : [m] X [n] — [—1, 1] (denoting the
payoff for the optimizer) and uy, : [m] X [n] — [—1, 1] (denoting the payoff for the learner). During
each round t, the optimizer picks a mixed strategy x; € A,, while the learner simultaneously picks
a mixed strategy y; € A,; the learner then receives reward ur, (x;, y;) and the optimizer receives
reward up (x4, yy) (where here we have linearly extended u; and up to take domain A, X A,). Both
the learner and optimizer observe the full mixed strategy of the other player (the “full-information”
setting).

True to their name, the learner will employ a learning algorithm A to decide how to play. For
our purposes, a learning algorithm is a family of horizon-dependent algorithms {A” }7¢y. Each AT
describes the algorithm the learner follows for a fixed time horizon T. Each horizon-dependent
algorithm is a mapping from the history of play to the next round’s action, denoted by a collection
of T functions AT, AT - - -A;, each of which deterministically map the transcript of play (up to the
corresponding round) to a mixed strategy to be used in the next round, i.e., AtT (o1, %2, -+, X—1) = Ys.

We assume that the learner is able to see uy, before committing to their algorithm A, but not uo.
The optimizer, who knows u; and ug, will approximately best-respond by selecting a sequence of
actions that approximately (up to sublinear o(T) factors) maximizes their payoff. They break ties
in the learner’s favor. Formally, for each T let

T
1
Vo(A,uo,T) = sup T Z uo (Xt yr)

(x1.xr)€A], & =1

represent the maximum per-round utility of the optimizer with payoff uo playing against A ina T
round game (here and throughout, each y; is determined by running A on the prefix x; through
X¢—1). For any € > 0, let

T
1
X(ﬂ’ uo, T’ E) = {(xl,x2,~ . ~sxT) € AZn T § uo(xt’ yt‘) > VO(\?Lan T) - 5}
t=1

be the set of e-approximate best-responses for the optimizer to the algorithm A. Finally, let
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T
Vi(A,uo,T,¢) = sup % Z ur (X, Yr)
(X150e0xT) EX (A u0,T,¢) =1
represent the maximum per-round utility of the learner under any of these approximate best-
responses.
We are concerned with the asymptotic per-round payoff of the learner as T — oo and ¢ — 0.
Specifically, let

Vi(A, up) = lirré li;n inf VL (A, uo, T, ¢). (1)

Note that the outer limit in (1) is well-defined since for each T, Vi (A, uo, T, ¢) is decreasing in ¢
(being a supremum over a smaller set).

The learner would like to select a learning algorithm A that is “good” regardless of what the
optimizer payoffs up are. In particular, the learner would like to choose a learning algorithm that is
asymptotically Pareto-optimal in the following sense.

DEFINITION 2.1 (ASYMPTOTIC PARETO-DOMINANCE FOR LEARNING ALGORITHMS). Given a fixed
ur, A learning algorithm A’ asymptotically Pareto-dominates a learning algorithm A if for all
optimizer payoffs uo, Vi (A’,up) 2 VL(A,uo), and for a positive measure set of optimizer payoffs
uo, Vi (A’ up) > Vi(A, up). A learning algorithm A is asymptotically Pareto-optimal if it is not
asymptotically Pareto-dominated by any learning algorithm.

Classes of learning algorithms. We will be interested in three specific classes of learning algo-
rithms: no-regret algorithms, no-swap-regret algorithms, and mean-based algorithms (along with
their subclass of FTRL algorithms).

A learning algorithm A is a no-regret algorithm if it is the case that, regardless of the sequence
of actions (x1, xy, ..., xT) taken by the optimizer, the learner’s utility satisfies:

T T
Z urp (x4, yz) = (yr*réa[ﬁ] Z ur (xy, y*)) —o(T).

t=1 t=1
A learning algorithm A is a no-swap-regret algorithm if it is the case that, regardless of the
sequence of actions (x1, Xz, ..., xr) taken by the optimizer, the learner’s utility satisfies:

T T

Dlwleny) = max > up(x, w(y,) - o(T).
=1 min]=Inl {5
Here the maximum is over all swap functions 7 : [n] — [n] (extended linearly to act on elements
yr of Ap). It is a fundamental result in the theory of online learning that both no-swap-regret
algorithms and no-regret algorithms exist (see [Cesa-Bianchi and Lugosi, 2006]).
Some no-regret algorithms have the property that each round, they approximately best-respond
to the historical sequence of losses. Following [Braverman et al., 2018] and [Deng et al., 2019b], we

call such algorithms mean-based algorithms. Formally, we define mean-based algorithms as follows.
DEFINITION 2.2. A learning algorithm A is y(t)-mean-based if whenever j, j' € [m] satisfy

t t

Y ) 7 D) 2 (o),

t
s=1 s=1
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theny,; < y(t) (i.e, if j is at least y(t) worse than some other action j' against the historical average
action of the opponent, then the total probability weight on j must be at most y(t)). A learning
algorithm is mean-based if it is y(t)-mean-based for some y(t) = o(1).

Many standard no-regret learning algorithms are mean-based, including Multiplicative Weights,
Hedge, Online Gradient Descent, and others (see [Braverman et al., 2018]). In fact, all of the
aforementioned algorithms can be viewed as specific instantiations of the mean-based algorithm
Follow-The-Regularized-Leader. It is this subclass of mean-based algorithms that we will eventually
show is Pareto-dominated in Section B; we define it below.

DEFINITION 2.3. FTRLy(n, R) is the horizon-dependent algorithm for a given learning rate n >
0 and bounded, strongly convex regularizer R : A" — R which picks action y; € A" viay, =

arg maxXyean (Zﬁ;ll ur (xs,y) — @) A learning algorithm A belongs to the family of learning

algorithms FTRL if for all T > 0, the finite-horizon At is of the form FTRLr(nr, R) for some sequence
of learning rates nt with nt = 1/0(T) and fixed regularizer R.

As mentioned, the family FTRL contains many well-known algorithms. For instance, we can
recover Multiplicative Weights with the negative entropy regularizer Rr(y) = X;c[,) yi logy;, and
Online Gradient Descent via the quadratic regularizer Ry (y) = %||y| |2 (see [Hazan, 2012] for details).

Other game-theoretic preliminaries and assumptions. Fix a specific game G. For any mixed strategy
x of the optimizer, let BR. (x) = arg max |, uL(x,y) represent the set of best-responses to x for
the learner. Similarly, define BRo(y) = arg max, [, uo(x,y).

A correlated strategy profile (CSP) ¢ is an element of A, and represents a correlated distribution
over pairs (i, j) € [m] X [n] of optimizer/learner actions. For each i € [m] and j € [n], ¢;; represents
the probability that the optimizer plays i and the learner plays j under ¢. For mixed strategies
x € A, and y € A, we will use tensor product notation x ® y to denote the CSP corresponding
to the product distribution of x and y. We also extend the definitions of u; and up to CSPs (via
ur(p) = 2 eijur(i, j), and likewise for uo(¢)).

Throughout the rest of the paper, we will impose two constraints on the set of games G we
consider (really, on the learner payoffs u;, we consider). These constraints serve the purpose of
streamlining the technical exposition of our results, and both constraints only remove a measure-
zero set of games from consideration. The first constraint is that we assume that over all possible
strategy profiles, there is one which is uniquely optimal for the learner; i.e., a pair of moves i* € [m]
and j* € [n] such that uy (i*, j*) > up (i, j) for any (i, j) # (i¥, j*). Note that slightly perturbing the
entries of any payoff u;, causes this to be true with probability 1. We let ¢* = (i*) ® (j*) denote the
corresponding optimal CSP.

Secondly, we assume that the learner has no weakly dominated actions. To define this, we say an
action y € [n] for the learner is strictly dominated if it is impossible for the optimizer to incentivize
y; i.e., there doesn’t exist any x € A,, for which y € BRy(x). We say an action y € [n] for the
learner is weakly dominated if it is not strictly dominated but it is impossible for the optimizer to
uniquely incentivize y; i.e., there doesn’t exist any x € A, for which BR. (x) = {y}. Note that this is
solely a constraint on uy, (not on up) and that we still allow for the possibility of the learner having
strictly dominated actions. Moreover, only a measure-zero subset of possible u; contain weakly
dominated actions, since slightly perturbing the utilities of a weakly dominated action causes it
to become either strictly dominated or non-dominated. This constraint allows us to remove some
potential degeneracies (such as the learner having multiple copies of the same action) which in
turn simplifies the statement of some results (e.g., Theorem 3.9).
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Game-agnostic learning algorithms. Here we have defined learning algorithms as being asso-
ciated with a fixed u;, and being able to observe the optimizer’s sequence of actions (if not their
actual payoffs). However many natural learning algorithms (including Multiplicative Weights
and FTRL) only require the counterfactual payoffs of each action from each round. In the full
version [Arunachaleswaran et al., 2024] we explore Pareto-optimality and Pareto-domination over
this class of algorithms.

3 From learning algorithms to menus
3.1 The asymptotic menu of a learning algorithm

Our eventual goal is to understand which learning algorithms are Pareto-optimal for the learner.
However, learning algorithms are fairly complex objects; instead, we will show that for our purposes
we can associate each learning algorithm with a much simpler object we call an asymptotic menu,
which can be represented as a convex subset of A,,,,. Intuitively, the asymptotic menu of a learning
algorithm describes the set of correlated strategy profiles an optimizer can asymptotically incentivize
in the limit as T approaches infinity.

More formally, for a fixed horizon-dependent algorithm A7, define the menu M(AT) C Ay,

of AT to be the convex hull of all CSPs of the form % Zthl x; ® y;, where (x1, Xz, ..., xr) is any
sequence of optimizer actions and (yi, ¥z, . . ., yr) is the response of the learner to this sequence
under AT (ie., y, = AtT(xl, Xoy ooy Xp—1))-

If a learning algorithm A has the property that the sequence M(A'), M(A?),... converges
under the Hausdorff metric!, we say that the algorithm A is consistent and call this limit value
the asymptotic menu M(A) of A. More generally, we will say that a subset M C A, is an
asymptotic menu if it is the asymptotic menu of some consistent algorithm. It is possible to
construct learning algorithms that are not consistent (for example, imagine an algorithm that
runs multiplicative weights when T is even, and always plays action 1 when T is odd); however
even in this case we can find subsequences of time horizons where this converges and define a
reasonable notion of asymptotic menu for such algorithms. We defer discussion of this to the full
version [Arunachaleswaran et al., 2024], and otherwise will only concern ourselves with consistent
algorithms. See also the full version for some explicit examples of asymptotic menus.

The above definition of asymptotic menu allows us to recast the Stackelberg game played by the
learner and optimizer in more geometric terms. Given some uy, the learner begins by picking a valid
asymptotic menu M. The optimizer then picks a point ¢ on M that maximizes up(¢) (breaking
ties in favor of the learner). The optimizer and the learner then receive utility up(¢) and ug (¢)
respectively.

For any asymptotic menu M, define V;,(M, up) to be the utility the learner ends up with under
this process. Specifically, define Vi, (M, up) = max{ur(¢) | ¢ € arg max,,c pq uo (@) }. We can verify
that this definition is compatible with our previous definition of V; as a function of the learning
algorithm A (see the full version [Arunachaleswaran et al., 2024] for proof).

LeEMMA 3.1. For any learning algorithm A, Vi (M(A), up) = VL (A, up).

As a consequence of Lemma 3.1, instead of working with asymptotic Pareto-dominance of
learning algorithms, we can entirely work with Pareto-dominance of asymptotic menus, defined as
follows.

DEFINITION 3.2 (PARETO-DOMINANCE FOR ASYMPTOTIC MENUS). Fix a payoffuy for the learner.
An asymptotic menu M’ Pareto-dominates an asymptotic menu M if for all optimizer payoffs uo,

!The Hausdorff distance between two bounded subsets X and Y of Euclidean space is given by dy(X,Y) =
max(sup,.cx d(x,Y), SUp ey d(y, X)), where d(a, B) is the minimum Euclidean distance between point a and the set B.
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Vi(M,uo) = Vi(M’, up), and for at least oné? payoffuo, Vi (M, uo) > Vo (M, uo). An asymptotic
menu M is Pareto-optimal if it is not Pareto-dominated by any asymptotic menu.

3.2 Characterizing possible asymptotic menus

Before we address the harder question of which asymptotic menus are Pareto-optimal, it is natural
to wonder which asymptotic menus are even possible: that is, which convex subsets of A, are
even attainable as asymptotic menus of some learning algorithm. In this section we provide a
complete characterization of all possible asymptotic menus, which we describe below.

THEOREM 3.3. A closed, convex subset M C Apy is an asymptotic menu iff for every x € Ay, there
existsay € A, such thatx ® y € M.

The necessity condition of Theorem 3.3 follows quite straightforwardly from the observation
that if the optimizer only ever plays a fixed mixed strategy x € A,,, the resulting average CSP will
be of the form x ® y for some y € A,,. The trickier part is proving sufficiency. For this, we will need
to rely on the following two lemmas.

The first lemma applies Blackwell approachability to show that any M of the form specified in
Theorem 3.3 must contain a valid asymptotic menu.

LEMMA 3.4. Assume the closed convex set M C A, has the property that for every x € A, there
exists ay € A, such that x ® y € M. Then there exists an asymptotic menu M’ C M.

Proor. We will show the existence of an algorithm A for which M(A) € M. To do so, we will
apply the Blackwell Approachability Theorem ([Blackwell, 1956]).

Consider the repeated vector-valued game in which the learner chooses a distribution y; € A,
over their n actions, the optimizer chooses a distribution x; € A, over their m actions, and the
learner receives the vector-valued, bilinear payoff u(xy, y;) = x; ® y; (i.e., the CSP corresponding to
this round). The Blackwell Approachability Theorem states that if the set M is response-satisfiable
w.r.t. u — that is, for all x € A,,, there exists a y € A, such that u(x,y) € M - then there exists a
learning algorithm A such that

1 &
lim d (T ; u(x, yt),M) =0,
for any sequence of optimizer actions {x;} (here d(p, S) represents the minimal Euclidean distance
from point p to the set S). In words, the history-averaged CSP of play must approach to the set M as
the time horizon grows. Since any ¢ € M(A) can be written as the limit of such history-averaged
payoffs (as T — c0), this would imply M(A) € M.

Therefore all that remains is to prove that M is response-satisfiable. But this is exactly the
property we assumed M to have, and therefore our proof is complete. O

The second lemma shows that asymptotic menus are upwards closed: if M is an asymptotic
menu, then so is any convex set containing it.

LEmMA 3.5. If M is an asymptotic menu, then any closed convex set M’ satisfying M € M’ C Ay
is an asymptotic menu.

2 Alternatively, we can ask that one menu strictly beats the other on a positive measure set of payoffs. This may seem more
robust, but turns out to be equivalent to the single-point definition. We prove this in the full version [Arunachaleswaran
et al., 2024]. Note that by Lemma 3.1, this implies a similar equivalence for Pareto-domination of algorithms.
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Proor SKETCH. We defer the details of the proof to the full version [Arunachaleswaran et al.,
2024] and provide a high-level sketch here. Since M is an asymptotic menu, we know there exists
a learning algorithm A with M(A) = M. We show how to take A and transform it to a learning
algorithm A" with M(A’) = M’. The algorithm A’ works as follows:

(1) At the beginning, the optimizer selects a point ¢ € M’ they want to converge to. They
also agree on a “schedule” of moves (x;,y,) for both players to play whose history-average
converges to the point ¢ without ever leaving M’. (The optimizer can communicate this to
the learner solely through the actions they take in some sublinear prefix of the game — see
the full proof for details).

(2) The learner and optimizer then follow this schedule of moves (the learner playing x; and the
optimizer playing y; at round ¢). If the optimizer never defects, they converge to the point ¢.

(3) If the optimizer ever defects from their sequence of play, the learner switches to playing the
original algorithm A. In the remainder of the rounds, the time-averaged CSP is guaranteed
to converge to some point ggr = M(A) = M. Since the time-averaged CSP of the prefix
@pre lies in M’ the overall time-averaged CSP will still lie in M’, so the optimizer cannot
incentivize any point outside of M’.

O
Combining Lemmas 3.4 and Lemmas 3.5, we can now prove Theorem 3.3.

Proor oF THEOREM 3.3. As mentioned earlier, the necessity condition is straightforward: assume
for contradiction that there exists an algorithm A with asymptotic menu M such that, for some
x € Ap, there is no point in M of the form x ® y for any y. Then, let the optimizer play x in each
round. The resulting CSP induced against A must be of the form x ® y for some y € A, deriving a
contradiction.

Now we will prove that if a set M has the property that Vx € A, there exists ay € A, such
that x ® y € M, then it is a valid menu. To see this, consider any set M with this property. Then
by Lemma 3.4 there exists a valid menu M’ C M. Then, by the upwards-closedness property of
Lemma 3.5, the set M 2 M’ is also a menu.

O

3.3 No-regret and no-swap-regret menus
Another nice property of working with asymptotic menus is that no-regret and no-swap-regret
properties of algorithms translate directly to similar properties on these algorithms’ asymptotic
menus (the situation for mean-based algorithms is a little bit more complex, and we discuss it in
Section B).

To elaborate, say that the CSP ¢ is no-regret if it satisfies the no-regret constraint

D, D, e (i) = Jmax > Z ¢ijur (i, j°). @)

ie[m] je[n] ie[m] je[n

Similarly, say that the CSP ¢ is no-swap-regret if, for each j € [ ], it satisfies

2 i) = max Z pijur (i, J°)- 3
i€[m]

For a fixed uy, we will define the no-regret menu MNR to be the convex hull of all no-regret
CSPs, and the no-swap-regret menu Mysg to be the convex hull of all no-swap-regret CSPs. In
the following theorem we show that the asymptotic menu of any no-(swap-)regret algorithm is
contained in the no-(swap-)regret menu.
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THEOREM 3.6. If a learning algorithm A is no-regret, then for every ur,, M(A) € Mngr. If A is
no-swap-regret, then for every up, M(A) € Mysg-

Note that both Myg and Mysgr themselves are valid asymptotic menus, since for any x € A,,,
they will contain some point of the form x ® y for some y € BR.(x). In fact, we can say something
much stronger about the no-swap-regret menu: it is exactly the convex hull of all such points.

LEmMA 3.7. The no-swap-regret menu Mysg is the convex hull of all CSPs of the form x ® y, with
x € Ay, andy € BR(x).

Proor. First, note that every CSP of the form x ® y, with x € A, and y € BRy(x), is contained
in Mysgr. This follows directly follows from the fact that this CSP satisfies the no-swap-regret
constraint (3), since no action can be a better response than y to x.

For the other direction, consider a CSP ¢ € Mpysg. We will rewrite ¢ as a convex combination
of product CSPs of the above form. For each pure strategy a € [n] for the learner, let f(a) € A,
represent the conditional mixed strategy of the optimizer corresponding to X given that the learner

plays action g, i.e. fj(a) = ﬁ for all j € [m] (setting Sy (a) arbitrarily if all values ¢, are

zero). With this, we can write ¢ = 3 ;e [1n] (Zke[m] Pka) (B(a) ® a).

Now, note that if a ¢ argmax; uz(f(a),b), this would violate the no-swap-regret constraint
(3) for j = a. Thus, we have rewritten ¢ as a convex combination of CSPs of the desired form,
completing the proof. O

One key consequence of this characterization is that it allows us to show that the asymptotic menu
of any no-regret algorithm must contain the no-swap-regret menu Mysg as a subset. Intuitively,
this is since every no-regret menu should also contain every CSP of the form x ® y with y € BRy (x),
since if the optimizer only plays x, the learner should learn to best-respond with y (although some
care needs to be taken with ties).

LemMa 3.8. For any no-regret algorithm A, Mysg € M(A).

This fact allows us to prove our first main result: that all consistent® no-swap-regret algorithms
have the same asymptotic menu (namely, Mysg).

THEOREM 3.9. If A is a no-swap-regret algorithm, then M(A) = Mysr.

Proor. From Theorem 3.6, M(A) € Mnsgr. However, since any no-swap-regret algorithm also
has no-regret, Lemma 3.8 implies Mysg € M(A). The conclusion follows. O

Note that in the proof of Theorem 3.9, we have appealed to Lemma 3.8 which uses the fact that
uy, has no weakly dominated actions. This is necessary: consider, for example, a game with two
identical actions for the learner, a and a’ (ug (-, a) = ur (-, a’)). We can consider two no-swap-regret
algorithms for the learner, one which only plays a and never plays a’, and the other which only
plays a’ and never plays a. These two algorithms will have different asymptotic menus, both
of which contain only no-swap-regret CSPs. But as mentioned earlier, this is in some sense a
degeneracy - the set of learner payoffs u; with weakly dominated actions has zero measure (any
small perturbation to u;, will prevent this from taking place).

Theorem 3.9 has a number of conceptual implications for thinking about learning algorithms in
games:

3Actually, as a consequence of this result, it is possible to show that any no-swap-regret algorithm must be consistent: see
the full version [Arunachaleswaran et al., 2024] for details.
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(1) First, all no-swap-regret algorithms are asymptotically equivalent, in the sense that regardless
of which no-swap-regret algorithm you run, any asymptotic strategy profile you converge to
under one algorithm you could also converge to under another algorithm (for appropriate
play of the other player). This is true even when the no-swap-regret algorithms appear
qualitatively quite different in terms of the strategies they choose (compare e.g. the fixed-
point based algorithm of [Blum and Mansour, 2007] with the more recent algorithms of
[Dagan et al.,, 2023] and [Peng and Rubinstein, 2023]).

(2) In particular, there is no notion of regret that is meaningfully stronger than no-swap-regret
for learning in (standard, normal-form) games. That is, there is no regret-guarantee you can
feasibly insist on that would rule out some points of the no-swap-regret menu while remaining
no-regret in the standard sense. In other words, the no-swap-regret menu is minimal among
all no-regret menus: every no-regret menu contains Mxysg, and no asymptotic menu (whether
it is no-regret or not) is a subset of Mysg.

(3) Finally, these claims are not generally true for external regret. There are different no-regret
algorithms with very different asymptotic menus (as a concrete example, Myg and Mysr are
often different, and they are both asymptotic menus of some learning algorithm by Theorem
3.3).

Of course, this does not tell us whether it is actually good for the learner to use a no-swap-regret

algorithm, from the point of view of the learner’s utility. In the next section we will revisit this
question through the lens of understanding which menus are Pareto optimal.

4 Characterizing Pareto-optimal menus

In this section we shift our attention to understanding which asymptotic menus are Pareto-optimal
and which are Pareto-dominated by other asymptotic menus. The ideal result would be a charac-
terization of all Pareto-optimal asymptotic menus; we will stop a little short of this and instead
provide a full characterization of all Pareto-optimal no-regret menus that are also polytopal - i.e.,
can be written as the intersection of a finite number of half-spaces. This characterization will be
sufficient for proving our main results that the no-swap-regret menu Mg is Pareto-optimal, but
that the menu corresponding to multiplicative weights is sometimes Pareto-dominated.

Before we introduce the characterization, we introduce a little bit of additional notation. For
any menu M, let U (M) = maxge a1 ur(¢) denote the maximum learner payoff of any CSP in
M; likewise, define U~ (M) = mingep ur(¢). We will also let M* = arg max,,¢ o ur(¢) and
M” = argmin,,¢ y( ur (@) be the subsets of M that attain this maximum and minimum (we will
call these the maximum-value and minimum-value sets of M).

Our characterization can now be simply stated as follows.

THEOREM 4.1. Let M be a polytopal no-regret menu. Then M is Pareto-optimal iff M~ = M qp.
That is, M must share the same minimum-value set as the no-swap-regret menu Mysg.

Note that while this characterization only allows us to reason about the Pareto-optimality of
polytopal no-regret menus, in stating that these menus are Pareto-optimal, we are comparing them
to all possible asymptotic menus. That is, we show that they are not Pareto-dominated by any
possible asymptotic menu, even one which may have high regret and/or be an arbitrary convex
set. We conjecture that this characterization holds for all no-regret menus (even ones that are not
polytopal).

The remainder of this section will be dedicated to proving Theorem 4.1. We will begin in Section
4.1 by establishing some basic properties about M*, M=, U~ (M), and U*(M) for no-regret and
Pareto-optimal menus. Then in Section 4.2 we prove our main technical lemma (Lemma 4.4),
which shows that a menu cannot be Pareto-dominated by a menu with a larger minimal set.
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Finally, we complete the proof of Theorem 4.1 in Section 4.3, and discuss some implications for the
Pareto-optimality of the no-regret and no-swap-regret menus in Section A.

4.1 Constraints on learner utilities

We begin with some simple observations on the possible utilities of the learner under Pareto-optimal
menus and no-regret menus. We first consider M™*. Recall that (by assumption) there is a unique
pure strategy profile ¢* = (i*) ® (j*) that maximizes the learner’s reward. We claim that any
Pareto-optimal menu must contain ¢™.

LemMa 4.2. If M is a Pareto-optimal asymptotic menu, then M* = {¢*}.

Proor. Assume M is a Pareto-optimal asymptotic menu that does not contain ¢*. By Lemma
3.5, the set M’ = conv(M, ¢*) is also a valid asympotic menu. We claim M’ Pareto-dominates M.

To see this, first note that when up = ur, Vi.(M’,uo) = ur(¢™) > VL.(M,up), since ¢ is the
unique CSP in A,,, maximizing uy. On other hand, for any other up, the maximizer of up over M’
is either equal to the maximizer of up over M, or equal to ¢™. In either case, the learner’s utility
is at least as large, so Vo (M’,up) = Vi.(M,up) for all up. It follows that M’ Pareto-dominates
M. m|

Note also that ¢* belongs to Mysg (since it a best-response CSP of the same form as in Lemma
3.7), so MLSR = ¢™. Since MR is also contained in every no-regret menu, this also means that
for any (not necessarily Pareto-optimal) no-regret menu M, M* = M}, = ¢™.

We now consider the minimum-value set M~. Unlike for M*, it is no longer the case that all
Pareto-optimal menus share the same set M™. It is not even the case (as we shall see in Section
4.3), that all Pareto-optimal menus have the same minimum learner utility U~ (M).

However, it is the case that all no-regret algorithms share the same value for the minimum learner
utility U~ (M), namely the “zero-sum” utility Uzs = minyea,, maxyea, ur(x,y). The reason for
this is that Uz is the largest utility the learner can guarantee when playing a zero-sum game (i.e.,
when the optimizer has payoffs up = —uy), and thus it is impossible to obtain a higher value of
U~ (M). This is formalized in the following lemma.

LEMMA 4.3. Every asymptotic menu must have U~ (M) < Ugzs. Moreover, if M is a no-regret
asymptotic menu, then U~ (M) = Uzs, and My, € M™.

Proor. Let (xzs,yzs) be the solution to the minimax problem minyea,, maxyea, uz(x,y) (ie.,
the Nash equilibrium of the corresponding zero-sum game). By Theorem 3.3, any asymptotic menu
M must contain a point of the form xzs ® y. By construction, ur (xzs ®y) < Uzs,so U~ (M) < Ugs.

To see that every no-regret asymptotic menu satisfies U~ (M) = Ugs, assume that M is a
no-regret menu, and ¢ € M satisfies ur(¢) < Ugzs. Since ¢ has no-regret (satisfies the condi-
tions of (2)), we must also have uy(¢) > maxyea, mingea,, uz(x,y), since this holds for what-
ever marginal distribution x is played by the optimizer under ¢. But by the minimax theorem,
maxyea, Minyea,, Ur(x, y) = Uzs, and so we have a contradiction.

Finally, note that since M is no-regret, Mysg € M and so My, € M™ (since they share the
same minimum value). o

4.2 Pareto-domination and minimum-value sets

We now present our two main lemmas necessary for the proof of Theorem 4.1. The first lemma
shows that if one menu contains a point not present in the second menu (and both menus share the
same maximum-value set), then the first menu cannot possibly Pareto-dominate the second menu.

LEMMA 4.4. Let My and M; be two distinct asymptotic menus where M{ = M. Then if either:
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e i Moy \ M; #0, or
o ii. My = M;,
then there exists a uo for which Vi, (M, uo) > Vi.(Ma, uo) (i.e., My does not Pareto-dominate My ).

Note that Lemma 4.4 holds also under the secondary assumption that M; = M, . One important
consequence of this is that all menus with identical minimum value and maximum value sets M~
and M™ are incomparable to each other under the Pareto-dominance order (even such sets that
may contain each other).

The key technical ingredient for proving Lemma 4.4 is the following lemma, which establishes a
“two-dimensional” variant of the above claim.

LEMMA 4.5. Let f,g : [a b] — R be two distinct concave functions satisfying f(a) < g(a) and
f(b) = g(b). For 6 € [0, x], let f(9) = argmaX,.[qp] (xcos @ + f(x)sin0) (if the argmax is not
unique, thenf(@) is undefined). Define §(0) symmetrically. Then there exists a 0 for which f(@) > 4(6).

Fig. 1. A visual depiction of Lemma 4.5. The purple points in the left figure denote the maximizers of f and g
in the direction 0; since the purple point on f is to the right of that on g, we have f(8) > §(0) for this 6.

Proor. Since f(x) is a concave curve, it has a (weakly) monotonically decreasing derivative
f’(x). This derivative is not necessarily defined for all x € [a, b], but since f is concave it is defined
almost everywhere. At points ¢ where it is not defined, f still has a well-defined left derivative
£ (x) =limp_o(f (x) — f(x —h)) /h and right derivative fz(x) = limj_o(f (x+h) = f(x))/h. We will
abuse notation and let f”(x) denote the interval [f/ (x), f(x)] (at the boundaries defining f”(a) =
(=0, fr(a)] and f’(b) = [fL(b), ). Similarly, the interval-valued inverse function (f’)~!(y) is
also well-defined, decreasing in y, and uniquely-defined for almost all values of y in (—o0, c0).

Note that since f (0) is the x coordinate of the point on the curve f(x) that maximizes the inner
product with the unit vector (cos 6, sin 9), f” (f(9)) must contain the value — cos 6/sin # = — cot 6.
In particular, if f (0) is uniquely defined, f (0) = (f))"1(=cot 8). So it suffices to find a y for which
(7w > (9 (v). ,

To do this, we make the following observation: since f(b) — f(a) = g(b) — g(a), fa f(x)dx =
/ab g’ (x)dx *. This means there must be a point ¢ € (a, b) where f’(c) > ¢’(c). If not, then we must
have f’(x) < g’(x) for all x € (a,b); but the only way we can simultaneously have f’(x) < ¢’(x)
for all x € (a,b) and /ab f(x)dx > fab g’ (x)dx is if f'(x) = ¢’(x) for almost all x € (a,b) — but
this would contradict the fact that f and g are distinct concave functions.

Now, take a point ¢ € (a, b) where f’(c) > ¢’(c) and choose a y in f’(c). Since ¢’ is a decreasing
function, there must exist a ¢’ < ¢ such that y € ¢’(¢’), and so (f') "' (y) > (¢') "' (y). O

4These integrals are well defined because the first derivatives of f and g exist almost everywhere.
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We can now prove Lemmas 4.4 through an application of the above lemma.

Proor oF LEMMA 4.4. We will consider the two preconditions separately, and begin by consider-
ing the case where M[ = M; . Since M; and M, are distinct asymptotic menus, there must be
an extreme point ¢ in one menu that does not belong to the other. In particular, there must exist
an optimizer payoff up where up (@) > up(¢’) for any ¢’ in the other menu. Denote this specific
optimizer payoff by ul,.

We will show that there exists a up € span(u, u?)) where Vi (M, up) > Vi, (Ms, up). To do this,
we will project M; and M to two-dimensional sets S; and S; by letting S; = {(ur(¢), ug((p)) |
¢ € My} (and defining S; symmetrically). By our construction of u), these two convex sets S; and
S, are distinct. Also, note that if up = Ajuy + Azu%, we can interpret Vi (Mg, up) as the maximum
value of z; for any point in arg max,, ;,)es, (4121 + A222). We can interpret Vi (My, up) similarly.

Let us now consider the geometry of S; and S,. Let u~ denote the common value of U~ (M;) and
U~ (My), and similarly, let u* denote the common value of U*(M;) and U*(M). Both S; and S,
are contained in the “vertical” strip u~ < z; < u*. We can therefore write S; as the region between
the concave curve fy, : [u™,u*] (representing the upper convex hull of S;) and fyown (representing
the lower convex hull of S;; define gy, and ggown analogously for S,. Since S; and S, are distinct,
either fup # Gup Or fdown # Gdown; Without loss of generality, assume f, # gup (We can switch the
upper and lower curves by changing u, to —u,).

Note also that since M} = M and M| € M;, we have fu,(u*) = gup(u*) and fup(u™) <
Gup (u™) (since [ faown (47, fup(u™)] S [Gdown (47), gup(u™)]). By Lemma 4.5, there exists a 0 € [0, 7]
for which ﬁp(e) > gup(0). But by the definition of f and g, this implies that for up = cos(0)ur, +
sin(@)uoo, Vi(Mi,up) > Vi.(Ma,up), as desired. This proof is visually depicted in Figure 1.

The remaining case, where M, \ M; # 0, can be proved very similarly to the above proof. We
make the following changes:

e First, we choose an extreme point ¢ of M, that belongs to M, but not M;. Again, we choose
a up which separates ¢ from M. We let u* = up(¢); note that u* < u* (since M7 = MJ).

e Instead of defining our functions f,, and g,, on the full interval [u~, u*], we instead restrict
them to the interval [u*, u*]. Because of our construction of ¢, we have that f,,,(u*) < gy, (u*),
and fip () = gup ().

e We can again apply Lemma 4.5 to these two functions on this sub-interval, and construct a
uo for which Vp (M, up) > Vi, (Ms, up).

]

One useful immediate corollary of Lemma 4.4 is that it is impossible for high-regret menus
(menus that are not no-regret) to Pareto-dominate no-regret menus.

COROLLARY 4.6. Let My and M, be two asymptotic menus such that My is no-regret and M is
not no-regret. Then M, does not Pareto-dominate M.

Proor. If M, does not contain ¢*, add it to Mj via Lemma 4.2 (this only increases the position
of M in the Pareto-dominance partial order). Since M; is no-regret, it must already contain ¢*,
and therefore we can assume M} = M; = {¢*}.

Since M is not no-regret, it must contain a CSP ¢ that does not lie in Myg, and therefore
Mo\ My # 0. It then follows from Lemma 4.4 that M, does not Pareto-dominate M. m]

4.3 Completing the proof
We can now finish the proof of Theorem 4.1.
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ProOF OF THEOREM 4.1. We will first prove that if a no-regret menu M satisfies M~ = My ¢z,
then it is Pareto-optimal. To do so, we will consider any other menu M’ and show that M’ does
not Pareto-dominate M. There are three cases to consider:

e Case 1: U"(M’) < U (M). In this case, M’ cannot dominate M since Vp (M, —uy) >
VL (M, —ur) (note that U~ (M) = VL.(M, —ur), since if up = —uy, the optimizer picks the
utility-minimizing point for the learner).

e Case 2: U~ (M’) > U~ (M). By Lemma 4.3, this is not possible.

e Case3: U (M) =U~(M).If M’ is not a no-regret menu, then by Corollary 4.6 it cannot
dominate M. We will therefore assume that M’ is a no-regret menu, i.e. M’ € Mg Then,
by Lemma 4.3, M~ C (M’)~. Also, by Lemma 4.2, we can assume without loss of generality
that (M’)* = {¢*} = M* (if M’ does not contain ¢*, replace it with the Pareto-dominating
menu that contains it). Now, by Lemma 4.4, M’ does not dominate M.

We now must show that if M~ # M;,SR, then it is Pareto-dominated by some other menu.
Since M is (by assumption) a no-regret menu, we must have U~ (M) = U~ (Mnsgr) = Uzs, and
M™ D> M4 (Lemmas 4.3). Consider an extreme point ¢, that belongs to M~ but not to My ¢p.
Construct the menu M’ as follows: it is the convex hull of Mysg and all the extreme points in M
except for ¢o. By Lemma 3.5, this is a valid menu (it is formed by adding some points to the valid
menu My sg). Note also that M’ has all the same extreme points of M except for ¢, (since M is a
polytope, we add a finite number of extreme points to M’, all of which are well-separated from
¢o), and in particular is distinct from M.

We will show that M’ Pareto-dominates M. To see this, note first that, by Lemma 4.4, there is
some up such that Vi (Upy, uo) < VL (Upr, uo). Furthermore, for all other values of up, Vi, (Upy, up) <
VL(Up, uo)- This is since the maximizer of up over M is either the minimal-utility point ¢y (which
cannot be strictly better than the maximizer of up over M’), or exactly the same point as the
maximizer of up over M’. It follows that M’ Pareto-dominates M. O

Note that in the Proof of Theorem 4.1, we only rely on the fact that the menu M is polytopal in
precisely one spot, when we construct a menu M’ that Pareto-dominates M by “removing” an
extreme point from M™. As stated, this removal operation requires M to be a polytope: in general,
it is possible that any extreme point ¢, that belongs to M~ is a limit of other extreme points in M,
and so when attempting to construct M’ per the procedure above, we would just perfectly recover
the original M when taking the convex closure of the remaining points.

That said, it is not clear whether the characterization of non-polytopal Pareto-optimal menus is
any different than the characterization in Theorem 4.1. In fact, by the argument in the proof of
Theorem 4.1, one direction of the characterization still holds (if a non-polytopal no-regret menu
satisfies M~ = M;,SR, then it is Pareto-optimal). We conjecture that this characterization holds for
non-polytopal menus (and leave it as an interesting open problem).

CONJECTURE 4.7. Any no-regret menu M is Pareto-optimal iff M~ = Mnsr.

On the other hand, the restriction to no-regret menus is necessary for the characterization of
Theorem 4.1 to hold. To see this, note that another interesting corollary of Lemma 4.4 is that any
minimal asymptotic menu is Pareto-optimal (in fact, we have the slightly stronger result stated
below).

COROLLARY 4.8. Let M be an inclusion-minimal asymptotic menu (i.e., with the property that
no other asymptotic menu M’ satisfies M’ ¢ M). Then the menu M’ = conv(M, {¢*}) is Pareto-
optimal.
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Corollary 4.8 allows us to construct some high-regret asymptotic menus that are Pareto-optimal.
For example, we can show that the algorithm that always plays the learner’s component of ¢™* is
Pareto-optimal.

THEOREM 4.9. Let M be the asymptotic menu of the form M = {x ® j* | x € A,,} (where j* is the
learner’s component of p* = (i*) ® (j*)). Then M is Pareto-optimal.

Proor. By Theorem 3.3, M is inclusion-minimal. Since M also includes the CSP ¢™, it is Pareto-
optimal by Corollary 4.8. O

Note that in general, the menu M in Theorem 4.9 is not no-regret, and may have U~ (M) < Ugzs.
We leave it as an interesting open question to provide a full characterization of all Pareto-optimal
asymptotic menus.

In the interest of space, we discuss the implications of these results for no-regret and no-swap-
regret menus in Appendix A.
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A Implications for no-regret and no-swap-regret menus

Already Theorem 4.1 has a number of immediate consequences for understanding the no-regret
menu Mpyg and the no-swap-regret menu Mpysg, both of which are polytopal no-regret menus by
their definitions in (2) and (3) respectively. As an immediate consequence of our characterization,
we can see that the no-swap-regret menu (and hence any no-swap-regret learning algorithm) is
Pareto-optimal.

COROLLARY A.1. The no-swap-regret menu Mnsr is a Pareto-optimal asymptotic menu.

It would perhaps be ideal if Mysr was the unique Pareto-optimal no-regret menu, as it would
provide a somewhat clear answer as to which learning algorithm one should use in a repeated
game. Unfortunately, this is not the case — although Mg is the minimal Pareto-optimal no-regret
menu, Theorem 4.1 implies there exist infinitely many distinct Pareto-optimal no-regret menus.

On the more positive side, Theorem 4.1 (combined with Lemma 3.5) gives a recipe for how
to construct a generic Pareto-optimal no-regret learning algorithm: start with a no-swap-regret
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learning algorithm (the menu Mpysgr) and augment it with any set of additional CSPs that the
learner and optimizer can agree to reach. This can be any set of CSPs as long as i. each CSP ¢ has
no regret, and ii. each CSP has learner utility uy (¢) strictly larger than the minimax value Uygs.

CoROLLARY A.2. There exist infinitely many Pareto-optimal asymptotic menus.

Finally, perhaps the most interesting consequence of Theorem 4.1 is that, despite this apparent
wealth of Pareto-optimal menus and learning algorithms, the no-regret menu Myp is very often

Pareto-dominated. In particular, it is easy to find learner payoffs u; for which My, # My ¢y, as we
show below.

COROLLARY A.3. There exists a learner payoff uy. for which the no-regret Mg is not a Pareto-
optimal asymptotic menu.

Proor. Take the learner’s payoff from Rock-Paper-Scissors, where the learner and optimizer both
have actions {ay, a5, a3}, and ur(a;,a;) =0if j=i,1if j =i+ 1mod 3,and —1if j =i —1 mod 3.
For this game, Uzs = 0 (the learner can guarantee payoff 0 by randomizing uniformly among their
actions).

Now, note that the CSP ¢ = (1/3)(a; ® a1) +(1/3) (a2 ® az) + (1/3) (a3 ® as) has the property that
ur (@) = 0 = Uzg and that ¢ € Mpyg, but also that ¢ ¢ Mysgr (e.g. it is beneficial for the learner
to switch from playing a; to ay). Since Myp is a polytopal no-regret menu, it follows from our
characterization in Theorem 4.1 that Myp is not Pareto-optimal. O

B Mean-based algorithms and menus

In this section, we return to one of the main motivating questions of this work: are standard
online learning algorithms (like multiplicative weights or follow-the-regularized-leader) Pareto-
optimal? Specifically, are mean-based no-regret learning algorithms, which always approximately
best-respond to the historical sequence of observed losses, Pareto-optimal?

We will show that the answer to this question is no: in particular, there exist payoffs u; where the
menus of some mean-based algorithms (specifically, menus for multiplicative weights and FTRL)
are not Pareto-optimal. Our characterization of Pareto-optimal no-regret menus in the previous
section (Theorem 4.1) does most of the heavy lifting here: it means that in order to show that a
specific algorithm is not Pareto-optimal, we need only find a sequence of actions by the optimizer
that both causes the learner to end up with the zero-sum utility uzs and high swap-regret (i.e., at a
point not belonging to M ™). Such games (and corresponding trajectories of play by the optimizer)
are relatively easy to find - we will give one explicit example shortly that works for any mean-based
algorithm.

However, there is a catch — our characterization in Theorem 4.1 only applies to polytopal menus
(although we conjecture that it also applies to non-polytopal menus). So, in order to formally
prove that a mean-based algorithm is not Pareto-optimal, we must additionally show that its
corresponding menu is a polytope. Specifically, we give an example of a family of games where the
asymptotic menus of all FTRL algorithms have a simple description as an explicit polytope which
we can show is not Pareto-optimal.

THEOREM B.1. There exists a family of learner payoffs u;, with m = 3 actions for the learner and
n = 2 actions for the optimizer where all FTRL algorithms are Pareto-dominated.

In in the interest of space, the proof of this result has been deferred to the full version [Arunachaleswaran
et al., 2024]. There, we introduce the concept of the “mean-based menu”, a menu of CSPs that is

5In fact, there exists a positive measure of such uy . It is easy to adapt this proof to work for small perturbations of the given
ur, see the full version [Arunachaleswaran et al., 2024] for a proof.
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achievable against any mean-based algorithm, and introduce the family of games we study. We
then show that for these games, the mean-based menu can be explicitly characterized as a polytope.
Finally, we prove that the asymptotic menu of any instantiation of FTRL must actually equal this
mean-based menu (instead of merely containing it).
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