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We study the problem of characterizing optimal learning algorithms for playing repeated games against an

adversary with unknown payoffs. In this problem, the first player (called the learner) commits to a learning

algorithm against a second player (called the optimizer), and the optimizer best-responds by choosing the

optimal dynamic strategy for their (unknown but well-defined) payoff. Classic learning algorithms (such as

no-regret algorithms) provide some counterfactual guarantees for the learner, but might perform much more

poorly than other learning algorithms against particular optimizer payoffs.

In this paper, we introduce the notion of asymptotically Pareto-optimal learning algorithms. Intuitively, if a
learning algorithm is Pareto-optimal, then there is no other algorithm which performs asymptotically at least

as well against all optimizers and performs strictly better (by at least Ω(𝑇 )) against some optimizer. We show

that well-known no-regret algorithms such as Multiplicative Weights and Follow The Regularized Leader

are Pareto-dominated. However, while no-regret is not enough to ensure Pareto-optimality, we show that a

strictly stronger property, no-swap-regret, is a sufficient condition for Pareto-optimality.

Proving these results requires us to address various technical challenges specific to repeated play, including

the fact that there is no simple characterization of how optimizers who are rational in the long-term best-

respond against a learning algorithm over multiple rounds of play. To address this, we introduce the idea of

the asymptotic menu of a learning algorithm: the convex closure of all correlated distributions over strategy

profiles that are asymptotically implementable by an adversary. Interestingly, we show that all no-swap-regret

algorithms share the same asymptotic menu, implying that all no-swap-regret algorithms are “strategically

equivalent”.
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1 Introduction
Consider an agent faced with the problem of playing a repeated game against another strategic

agent. In the absence of complete information about the other agent’s goals and behavior, it is

reasonable for the agent to employ a learning algorithm to decide how to play. This raises the

(purposefully vague) question: What is the “best” learning algorithm for learning in games?
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One popular yardstick for measuring the quality of learning algorithms is regret. The regret
of a learning algorithm is the worst-case gap between the algorithm’s achieved utility and the

counterfactual utility it would have received if it instead had played the optimal fixed strategy

in hindsight. There exist learning algorithms which achieve sublinear 𝑜 (𝑇 ) regret when played

across 𝑇 rounds (no-regret algorithms), and researchers now have a very good understanding of the

strongest regret guarantees possible in a variety of different settings. It is tempting to conclude

that one of these regret-minimizing algorithms is the optimal choice of learning algorithm for our

agent.

However, many standard no-regret algorithms – including popular algorithms such as Multi-

plicative Weights and Follow-The-Regularized-Leader – have the unfortunate property that they

are vulnerable to strategic manipulation [Deng et al., 2019b]. What this means is that if one agent (a

learner) is using a such an algorithm to play a repeated game against a second agent (an optimizer),

there are games where the optimizer can exploit this by playing a time-varying dynamic strategy

(e.g. playing some strategy for the first 𝑇 /2 rounds, then switching to a different strategy in the

last half of the rounds). By doing so, in some games the optimizer can obtain significantly more

(Ω(𝑇 )) utility than they could by playing a fixed static strategy, often at cost to the learner. This

is perhaps most striking in the case of auctions, where [Braverman et al., 2018] show that if a

bidder uses such an algorithm to decide their bids, the auctioneer can design a dynamic auction

that extracts the full welfare of the bidder as revenue (leaving the bidder with zero net utility).

On the flip side, [Deng et al., 2019b] show that if the learner employs a learning algorithm with a

stronger counterfactual guarantee – that of no-swap-regret – this protects the learner from strategic

manipulation, and prevents the optimizer from doing anything significantly better than playing a

static strategy for all 𝑇 rounds. Perhaps, then, a no-swap-regret algorithm is the “best” learning

algorithm for game-theoretic settings.

But even this is not the complete picture: even though strategic manipulation from the other

agent may harm the learner, there are other games where both the learner and optimizer can

benefit from the learner playing a manipulable algorithm. Indeed, [Guruganesh et al., 2024] prove

that there are contract-theoretic settings where both the learner and optimizer benefit from from

the learner running a manipulable no-regret algorithm (with the optimizer best-responding to it).

In light of these seemingly contradictory results, is there anything meaningful one can say about

what learning algorithm a strategic agent should use?

1.1 Our results and techniques
In this paper, we acknowledge that there may not be a consistent total ordering among learning

algorithms, and instead study this question through the lens of Pareto-optimality. Specifically, we
consider the following setting. As before, one agent (the learner) is repeatedly playing a general-sum

normal-form game𝐺 against a second agent (the optimizer). The learner knows their own utility

𝑢𝐿 for outcomes of this game but is uncertain of the optimizer’s utility 𝑢𝑂 , and so commits to

playing according to a learning algorithm A (a procedure which decides the learner’s action at

round 𝑡 as a function of the observed history of play of both parties). The optimizer observes this

and plays a (potentially dynamic) best-response to A that maximizes their own utility 𝑢𝑂 . We

remark that in addition to capturing the strategic settings mentioned above, this asymmetry also

models settings where one of the participants in a repeated game (such as a market designer or

large corporation) must publish their algorithms up front and has to play against a large collection

of unknown optimizers.

We say one learning algorithm A (asymptotically) Pareto-dominates a second learning algorithm

A′
for the learner in this game if: i. for any utility function the optimizer may have, the learner

receives at least as much utility (up to sublinear 𝑜 (𝑇 ) factors) under committing to A as they do
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under committing to A′
, and ii. there exists at least one utility function for the optimizer where

the learner receives significantly more utility (at least Ω(𝑇 ) more) by committing to A instead

of committing to A′
. A learning algorithm A which is not Pareto-dominated by any learning

algorithm is Pareto-optimal.
We prove the following results about Pareto-domination of learning algorithms for games.

• First, our notion of Pareto-optimality is non-vacuous: there exist many learning algorithms

(including many no-regret learning algorithms) which are Pareto-dominated. In fact, we

can show that there exist large classes of games where any instantiation of the Follow-The-

Regularized-Leader (FTRL) with a strongly convex regularizer is Pareto-dominated. This set

of learning algorithms contains many of the most popular no-regret learning algorithms as

special cases (e.g. Hedge, Multiplicative Weights, and Follow-The-Perturbed-Leader).

• In contrast to this, any no-swap-regret algorithm is Pareto-optimal. This strengthens the

case for the strategic power of no-swap-regret learning algorithms in repeated interactions.

• That said, the Pareto-domination hierarchy of algorithms is indeed not a total order: there

exist infinitely many Pareto-optimal learning algorithms that are qualitatively different in

significant ways. And of the learning algorithms that are Pareto-dominated, they are not

all Pareto-dominated by the same Pareto-optimal algorithm (indeed, in many cases FTRL is

not dominated by a no-swap-regret learning algorithm, but by a different Pareto-optimal

learning algorithm).

In addition to this, we also provide a partial characterization of all no-regret Pareto-optimal

algorithms, which we employ to prove the above results. In order to understand this characterization,

we need to introduce the notion of the asymptotic menu of a learning algorithm.

To motivate this concept, consider a transcript of the repeated game 𝐺 . If the learner has 𝑚

actions to choose from each round and the optimizer has 𝑛 actions, then after playing for 𝑇 rounds,

we can describe the average outcome of play via a correlated strategy profile (CSP): a correlated
distribution over the𝑚𝑛 pairs of learner/optimizer actions. The important observation is that this

correlated strategy profile (an𝑚𝑛-dimensional object) is all that is necessary to understand the

average utilities of both players, regardless of their specific payoff functions – it is in some sense a

“sufficient statistic” for all utility-theoretic properties of the transcript.

Inspired by this, we define the asymptotic menu M(A) of a learning algorithm A to be the

convex closure of the set of all CSPs that are asymptotically implementable by an optimizer against

a learner who is running algorithm A. That is, a specific correlated strategy profile 𝜑 belongs

toM(A) if the optimizer can construct arbitrarily long transcripts by playing against A whose

associated CSPs are arbitrarily close to 𝜑 . We call this a “menu” since we can think of this as a set

of choices the learner offers the optimizer by committing to algorithm A (essentially saying, “pick

whichever CSP in this set you prefer the most”).

Working with asymptotic menus allows us to translate statements about learning algorithms

(complex, ill-behaved objects) to statements about convex subsets of the𝑚𝑛-simplex (much nicer

mathematical objects). In particular, our notion of Pareto-dominance translates directly from

algorithms to menus, as do concepts like “no-regret” and “no-swap-regret”. This allows us to prove

the following results about asymptotic menus:

• First, by applying Blackwell’s Approachability Theorem, we give a simple and complete

characterization of which convex subsets of the𝑚𝑛-simplex Δ𝑚𝑛 are valid asymptotic menus:

any set M with the property that for any optimizer action 𝑦 ∈ Δ𝑛 , there exists a learner

action 𝑥 ∈ Δ𝑚 such that the product distribution 𝑥 ⊗ 𝑦 belongs toM (Theorem 3.3).

• We then use this characterization to show that there is a unique no-swap-regret menu, which

we callM𝑁𝑆𝑅 (Theorem 3.9), can be described explicitly as a polytope, and which is contained
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as a subset of any no-regret menu (Lemma 3.8). In particular, this implies that all no-swap-

regret algorithms share the same asymptotic menu, and hence are strategically equivalent
from the perspective of an optimizer strategizing against them. This is notably not the case

for no-regret algorithms, which have many different asymptotic menus.

• In our main result, we give a characterization of all Pareto-optimal no-regret menus for

menus that are polytopes (the intersection of finitely many half-spaces). We show that such

a menuM is Pareto-optimal iff the set of points inM which minimize the learner’s utility

are the same as that for the no-swap-regret menu M𝑁𝑆𝑅 (Theorem 4.1). It is here where our

geometric view of menus is particularly useful: it allows us to reduce this general question to

a non-trivial property of two-dimensional convex curves (Lemma 4.5).

• As an immediate consequence of this, we show the no-swap-regret menu (and hence any

no-swap-regret algorithm) is Pareto-optimal (Corollary A.1), and that there exist infinitely

many distinct Pareto-optimal menus (each of which can be formed by starting with the

no-swap-regret menuM𝑁𝑆𝑅 and expanding it to include additional no-regret CSPs).

• Finally, we demonstrate instances where the asymptotic menu of FTRL is Pareto-dominated.

This would follow nearly immediately from the characterization above (in fact, for the

even larger class of mean-based no-regret algorithms), but for the restriction that the above

characterization only applies to polytopal menus. To handle this, we also find a class of

examples where we can prove that the asymptotic menu of FTRL is a polytope. Doing this

involves developing new tools for optimizing against mean-based algorithms, and may be of

independent interest.

1.2 Takeaways and future directions
What do these results imply about our original question? Can we say anything new about which

learning algorithms a learner should use to play repeated games? From a very pessimistic point

of view, the wealth of Pareto-optimal algorithms means that we cannot confidently say that any

specific algorithm is the “best” algorithm for learning in games. But more optimistically, our

results clearly highlight no-swap-regret learning algorithms as a particularly fundamental class of

learning algorithms in strategic settings (in a way generic no-regret algorithms are not), with the

no-swap-regret menu being the minimal Pareto-optimal menu among all no-regret Pareto-optimal

menus.

We would also argue that our results do have concrete implications for how one should think

about designing new learning algorithms in game-theoretic settings. In particular, they suggest that

instead of directly designing a learning algorithm via minimizing specific regret notions (which

can lead to learning algorithms which are Pareto-dominated, in the case of common no-regret

algorithms), it may be more fruitful to first design the specific asymptotic menu we wish the

algorithm to converge to (and only then worry about the rate at which algorithms approach this

menu). Our characterization of Pareto-optimal no-regret menus provides a framework under which

we can do this: start with the no-swap-regret menu, and expand it to contain other CSPs that

we believe may be helpful for the learner. For example, consider a learner who believes that the

optimizer has a specific utility function 𝑢𝑂 , but still wants to run a no-regret learning algorithm to

hedge against the possibility that they do not. This learner can use our characterization to first find

the best such asymptotic menu, and then construct an efficient learning algorithm that approaches

it (via e.g. the Blackwell approachability technique of Theorem 3.3).

There are a number of interesting future directions to explore. Most obvious is the question

of extending our characterization of Pareto-optimality from polytopal no-regret menus to all

asymptotic menus. While we conjecture the polytopal constraint is unnecessary, there do exist
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non-trivial high-regret Pareto-optimal menus (Theorem 4.9), and understanding the full class of

such menus is an interesting open problem.

Secondly, throughout this discussion we have taken the perspective of a learner who is aware of

their own payoff 𝑢𝐿 and only has uncertainty about the optimizer they face. Yet one feature of most

common learning algorithms is that they do not even require this knowledge about 𝑢𝐿 , and are

designed to work in a setting where they learn their own utilities over time. Some of our results

(such as the Pareto-optimality of no-swap-regret algorithms) carry over near identically to such

utility-agnostic settings (see the full version [Arunachaleswaran et al., 2024]), but we still lack a

clear understanding of Pareto-domination there.

Finally, we focus entirely on normal-form two-player games. But many practical applications

of learning algorithms take place in more general strategic settings, such as Bayesian games or

extensive-form games. What is the correct analogue of asymptotic menus and Pareto-optimality

for these settings?

1.3 Related work
There is a long history of work in both economics and computer science of understanding the

interplay between game theory and learning. We refer the reader to any of [Cesa-Bianchi and

Lugosi, 2006, Fudenberg and Levine, 1998, Young, 2004] for an introduction to the area. Much of

the recent work in this area is focused on understanding the correlated equilibria that arise when

several learning algorithms play against each other, and designing algorithms which approach

this set of equilibria more quickly or more stably (e.g., [Anagnostides et al., 2022a,b, Farina et al.,

2022, Piliouras et al., 2022, Syrgkanis et al., 2015, Zhang et al., 2023]). It may be helpful to compare

the learning-theoretic characterization of the set of correlated equilibria (which contains all CSPs

that can be implemented by having several no-swap-regret algorithms play against each other)

to our definition of asymptotic menu – in some ways, one can think of an asymptotic menu as a

one-sided, algorithm-specific variant of this idea.

Our paper is most closely connected to a growing area of work on understanding the strategic

manipulability of learning algorithms in games. [Braverman et al., 2018] was one of the first works

to investigate these questions, specifically for the setting of non-truthful auctions with a single

buyer. Since then, similar phenomena have been studied in a variety of economic settings, including

other auction settings [Cai et al., 2023, Deng et al., 2019a, Kolumbus and Nisan, 2022a,b], contract

design [Guruganesh et al., 2024], Bayesian persuasion [Chen and Lin, 2023], general games [Brown

et al., 2023, Deng et al., 2019b], and Bayesian games [Mansour et al., 2022]. [Deng et al., 2019b] and

[Mansour et al., 2022] show that no-swap-regret is a necessary and sufficient condition to prevent the

optimizer from benefiting by manipulating the learner. [Brown et al., 2023] introduce an asymmetric

generalization of correlated and coarse-correlated equilibria which they use to understand when

learners are incentivized to commit to playing certain classes of learning algorithms. Our no-regret

and no-swap-regret menus can be interpreted as the sets of (∅, E)-equilibria and (∅,I)-equilibria
in their model (their definition of equilibria stops short of being able to express the asymptotic

menu of a specific learning algorithm, however). In constructing an example where the asymptotic

menu of FTRL is a polytope, we borrow an example from [Guruganesh et al., 2024], who present

families of principal-agent problems which are particularly nice to analyze from the perspective of

manipulating mean-based agents.

Our results highlight no-swap-regret algorithms as particularly relevant algorithms for learning

in games. The first no-swap-regret algorithms were provided by [Foster and Vohra, 1997], who

also showed their dynamics converge to correlated equilibria. Since then, several authors have

designed learning algorithms for minimizing swap regret in games [Blum and Mansour, 2007,

Dagan et al., 2023, Hart and Mas-Colell, 2000, Peng and Rubinstein, 2023]. Our work shows that
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all these algorithms are in some “strategically equivalent” up to sublinear factors; this is perhaps

surprising given that many of these algorithms are qualitatively quite different (especially the very

recent swap regret algorithms of [Peng and Rubinstein, 2023] and [Dagan et al., 2023]).

Finally, although we phrase our results from the perspective of learning in games, it is equally

valid to think of this work as studying a Stackelberg variant of a repeated, finite-horizon game,

where one player must commit to a repeated strategy without being fully aware of the other player’s

utility function. In the full-information setting (where the learner is aware of the optimizer’s payoff),

the computational aspects of this problem are well-understood [Collina et al., 2023, Conitzer and

Sandholm, 2006, Peng et al., 2019]. In the unknown-payoff setting, preexisting work has focused

on learning the optimal single-round Stackelberg distribution by playing repeatedly against a

myopic [Balcan et al., 2015, Lauffer et al., 2022, Marecki et al., 2012] or discounting [Haghtalab et al.,

2022] follower. As far as we are aware, we are the first to study this problem in the unknown-payoff

setting with a fully non-myopic follower.

2 Model and preliminaries
We consider a setting where two players, an optimizer 𝑂 and a learner 𝐿, repeatedly play a two-

player bimatrix game𝐺 for𝑇 rounds. The game𝐺 has𝑚 actions for the optimizer and 𝑛 actions for

the learner, and is specified by two bounded payoff functions𝑢𝑂 : [𝑚] × [𝑛] → [−1, 1] (denoting the
payoff for the optimizer) and 𝑢𝐿 : [𝑚] × [𝑛] → [−1, 1] (denoting the payoff for the learner). During

each round 𝑡 , the optimizer picks a mixed strategy 𝑥𝑡 ∈ Δ𝑚 while the learner simultaneously picks

a mixed strategy 𝑦𝑡 ∈ Δ𝑛 ; the learner then receives reward 𝑢𝐿 (𝑥𝑡 , 𝑦𝑡 ) and the optimizer receives

reward 𝑢𝑂 (𝑥𝑡 , 𝑦𝑡 ) (where here we have linearly extended 𝑢𝐿 and 𝑢𝑂 to take domain Δ𝑚 × Δ𝑛). Both

the learner and optimizer observe the full mixed strategy of the other player (the “full-information”

setting).

True to their name, the learner will employ a learning algorithm A to decide how to play. For

our purposes, a learning algorithm is a family of horizon-dependent algorithms {𝐴𝑇 }𝑇 ∈N. Each 𝐴𝑇

describes the algorithm the learner follows for a fixed time horizon 𝑇 . Each horizon-dependent

algorithm is a mapping from the history of play to the next round’s action, denoted by a collection

of 𝑇 functions 𝐴𝑇
1
, 𝐴𝑇

2
· · ·𝐴𝑇

𝑇
, each of which deterministically map the transcript of play (up to the

corresponding round) to a mixed strategy to be used in the next round, i.e.,𝐴𝑇
𝑡 (𝑥1, 𝑥2, · · · , 𝑥𝑡−1) = 𝑦𝑡 .

We assume that the learner is able to see 𝑢𝐿 before committing to their algorithm A, but not 𝑢𝑂 .

The optimizer, who knows 𝑢𝐿 and 𝑢𝑂 , will approximately best-respond by selecting a sequence of

actions that approximately (up to sublinear 𝑜 (𝑇 ) factors) maximizes their payoff. They break ties

in the learner’s favor. Formally, for each 𝑇 let

𝑉𝑂 (A, 𝑢𝑂 ,𝑇 ) = sup

(𝑥1,...,𝑥𝑇 ) ∈Δ𝑇𝑚

1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑂 (𝑥𝑡 , 𝑦𝑡 )

represent the maximum per-round utility of the optimizer with payoff 𝑢𝑂 playing against A in a 𝑇

round game (here and throughout, each 𝑦𝑡 is determined by running 𝐴𝑇
𝑡 on the prefix 𝑥1 through

𝑥𝑡−1). For any 𝜀 > 0, let

X(A, 𝑢𝑂 ,𝑇 , 𝜀) =
{
(𝑥1, 𝑥2, . . . , 𝑥𝑇 ) ∈ Δ𝑇

𝑚

�� 1
𝑇

𝑇∑︁
𝑡=1

𝑢𝑂 (𝑥𝑡 , 𝑦𝑡 ) ≥ 𝑉𝑂 (A, 𝑢𝑂 ,𝑇 ) − 𝜀

}
be the set of 𝜀-approximate best-responses for the optimizer to the algorithm A. Finally, let
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𝑉𝐿 (A, 𝑢𝑂 ,𝑇 , 𝜀) = sup

(𝑥1,...,𝑥𝑇 ) ∈X(A,𝑢𝑂 ,𝑇 ,𝜀 )

1

𝑇

𝑇∑︁
𝑡=1

𝑢𝐿 (𝑥𝑡 , 𝑦𝑡 )

represent the maximum per-round utility of the learner under any of these approximate best-

responses.

We are concerned with the asymptotic per-round payoff of the learner as 𝑇 → ∞ and 𝜀 → 0.

Specifically, let

𝑉𝐿 (A, 𝑢𝑂 ) = lim

𝜀→0

lim inf

𝑇→∞
𝑉𝐿 (A, 𝑢𝑂 ,𝑇 , 𝜀). (1)

Note that the outer limit in (1) is well-defined since for each 𝑇 , 𝑉𝐿 (𝐴,𝑢𝑂 ,𝑇 , 𝜀) is decreasing in 𝜀

(being a supremum over a smaller set).

The learner would like to select a learning algorithm A that is “good” regardless of what the

optimizer payoffs 𝑢𝑂 are. In particular, the learner would like to choose a learning algorithm that is

asymptotically Pareto-optimal in the following sense.

Definition 2.1 (Asymptotic Pareto-dominance for learning algorithms). Given a fixed
𝑢𝐿 , A learning algorithm A′

asymptotically Pareto-dominates a learning algorithm A if for all
optimizer payoffs 𝑢𝑂 , 𝑉𝐿 (A′, 𝑢𝑂 ) ≥ 𝑉𝐿 (A, 𝑢𝑂 ), and for a positive measure set of optimizer payoffs
𝑢𝑂 , 𝑉𝐿 (A′, 𝑢𝑂 ) > 𝑉𝐿 (A, 𝑢𝑂 ). A learning algorithm A is asymptotically Pareto-optimal if it is not
asymptotically Pareto-dominated by any learning algorithm.

Classes of learning algorithms. We will be interested in three specific classes of learning algo-

rithms: no-regret algorithms, no-swap-regret algorithms, and mean-based algorithms (along with

their subclass of FTRL algorithms).
A learning algorithm A is a no-regret algorithm if it is the case that, regardless of the sequence

of actions (𝑥1, 𝑥2, . . . , 𝑥𝑇 ) taken by the optimizer, the learner’s utility satisfies:

𝑇∑︁
𝑡=1

𝑢𝐿 (𝑥𝑡 , 𝑦𝑡 ) ≥
(
max

𝑦∗∈[𝑛]

𝑇∑︁
𝑡=1

𝑢𝐿 (𝑥𝑡 , 𝑦∗)
)
− 𝑜 (𝑇 ).

A learning algorithm A is a no-swap-regret algorithm if it is the case that, regardless of the

sequence of actions (𝑥1, 𝑥2, . . . , 𝑥𝑇 ) taken by the optimizer, the learner’s utility satisfies:

𝑇∑︁
𝑡=1

𝑢𝐿 (𝑥𝑡 , 𝑦𝑡 ) ≥ max

𝜋 :[𝑛]→[𝑛]

𝑇∑︁
𝑡=1

𝑢𝐿 (𝑥𝑡 , 𝜋 (𝑦𝑡 )) − 𝑜 (𝑇 ).

Here the maximum is over all swap functions 𝜋 : [𝑛] → [𝑛] (extended linearly to act on elements

𝑦𝑡 of Δ𝑛). It is a fundamental result in the theory of online learning that both no-swap-regret

algorithms and no-regret algorithms exist (see [Cesa-Bianchi and Lugosi, 2006]).

Some no-regret algorithms have the property that each round, they approximately best-respond

to the historical sequence of losses. Following [Braverman et al., 2018] and [Deng et al., 2019b], we

call such algorithms mean-based algorithms. Formally, we define mean-based algorithms as follows.

Definition 2.2. A learning algorithm A is 𝛾 (𝑡)-mean-based if whenever 𝑗, 𝑗 ′ ∈ [𝑚] satisfy

1

𝑡

𝑡∑︁
𝑠=1

𝑢𝐿 (𝑥𝑡 , 𝑗 ′) −
1

𝑡

𝑡∑︁
𝑠=1

𝑢𝐿 (𝑥𝑠 , 𝑗) ≥ 𝛾 (𝑡),
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then 𝑦𝑡, 𝑗 ≤ 𝛾 (𝑡) (i.e., if 𝑗 is at least 𝛾 (𝑡) worse than some other action 𝑗 ′ against the historical average
action of the opponent, then the total probability weight on 𝑗 must be at most 𝛾 (𝑡)). A learning
algorithm is mean-based if it is 𝛾 (𝑡)-mean-based for some 𝛾 (𝑡) = 𝑜 (1).

Many standard no-regret learning algorithms are mean-based, including Multiplicative Weights,

Hedge, Online Gradient Descent, and others (see [Braverman et al., 2018]). In fact, all of the

aforementioned algorithms can be viewed as specific instantiations of the mean-based algorithm

Follow-The-Regularized-Leader. It is this subclass of mean-based algorithms that we will eventually

show is Pareto-dominated in Section B; we define it below.

Definition 2.3. FTRL𝑇 (𝜂, 𝑅) is the horizon-dependent algorithm for a given learning rate 𝜂 >

0 and bounded, strongly convex regularizer 𝑅 : Δ𝑛 → R which picks action 𝑦𝑡 ∈ Δ𝑛 via 𝑦𝑡 =

argmax𝑦∈Δ𝑛

(∑𝑡−1
𝑠=1 𝑢𝐿 (𝑥𝑠 , 𝑦) −

𝑅 (𝑦)
𝜂

)
. A learning algorithm A belongs to the family of learning

algorithms FTRL if for all 𝑇 > 0, the finite-horizon 𝐴𝑇 is of the form FTRL𝑇 (𝜂𝑇 , 𝑅) for some sequence
of learning rates 𝜂𝑇 with 𝜂𝑇 = 1/𝑜 (𝑇 ) and fixed regularizer 𝑅.

As mentioned, the family FTRL contains many well-known algorithms. For instance, we can

recover Multiplicative Weights with the negative entropy regularizer 𝑅𝑇 (𝑦) =
∑

𝑖∈[𝑛] 𝑦𝑖 log𝑦𝑖 , and

Online Gradient Descent via the quadratic regularizer 𝑅𝑇 (𝑦) = 1

2
| |𝑦 | |2

2
(see [Hazan, 2012] for details).

Other game-theoretic preliminaries and assumptions. Fix a specific game𝐺 . For any mixed strategy

𝑥 of the optimizer, let BR𝐿 (𝑥) = argmax𝑦∈[𝑛] 𝑢𝐿 (𝑥,𝑦) represent the set of best-responses to 𝑥 for

the learner. Similarly, define BR𝑂 (𝑦) = argmax𝑥∈[𝑚] 𝑢𝑂 (𝑥,𝑦).
A correlated strategy profile (CSP) 𝜑 is an element of Δ𝑚𝑛 and represents a correlated distribution

over pairs (𝑖, 𝑗) ∈ [𝑚]×[𝑛] of optimizer/learner actions. For each 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛],𝜑𝑖 𝑗 represents
the probability that the optimizer plays 𝑖 and the learner plays 𝑗 under 𝜑 . For mixed strategies

𝑥 ∈ Δ𝑚 and 𝑦 ∈ Δ𝑛 , we will use tensor product notation 𝑥 ⊗ 𝑦 to denote the CSP corresponding

to the product distribution of 𝑥 and 𝑦. We also extend the definitions of 𝑢𝐿 and 𝑢𝑂 to CSPs (via

𝑢𝐿 (𝜑) =
∑

𝑖, 𝑗 𝜑𝑖 𝑗𝑢𝐿 (𝑖, 𝑗), and likewise for 𝑢𝑂 (𝜑)).
Throughout the rest of the paper, we will impose two constraints on the set of games 𝐺 we

consider (really, on the learner payoffs 𝑢𝐿 we consider). These constraints serve the purpose of

streamlining the technical exposition of our results, and both constraints only remove a measure-

zero set of games from consideration. The first constraint is that we assume that over all possible

strategy profiles, there is one which is uniquely optimal for the learner; i.e., a pair of moves 𝑖∗ ∈ [𝑚]
and 𝑗∗ ∈ [𝑛] such that 𝑢𝐿 (𝑖∗, 𝑗∗) > 𝑢𝐿 (𝑖, 𝑗) for any (𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗). Note that slightly perturbing the

entries of any payoff 𝑢𝐿 causes this to be true with probability 1. We let 𝜑+ = (𝑖∗) ⊗ ( 𝑗∗) denote the
corresponding optimal CSP.

Secondly, we assume that the learner has no weakly dominated actions. To define this, we say an

action 𝑦 ∈ [𝑛] for the learner is strictly dominated if it is impossible for the optimizer to incentivize

𝑦; i.e., there doesn’t exist any 𝑥 ∈ Δ𝑚 for which 𝑦 ∈ BR𝐿 (𝑥). We say an action 𝑦 ∈ [𝑛] for the
learner is weakly dominated if it is not strictly dominated but it is impossible for the optimizer to

uniquely incentivize 𝑦; i.e., there doesn’t exist any 𝑥 ∈ Δ𝑚 for which BR𝐿 (𝑥) = {𝑦}. Note that this is
solely a constraint on 𝑢𝐿 (not on 𝑢𝑂 ) and that we still allow for the possibility of the learner having

strictly dominated actions. Moreover, only a measure-zero subset of possible 𝑢𝐿 contain weakly

dominated actions, since slightly perturbing the utilities of a weakly dominated action causes it

to become either strictly dominated or non-dominated. This constraint allows us to remove some

potential degeneracies (such as the learner having multiple copies of the same action) which in

turn simplifies the statement of some results (e.g., Theorem 3.9).
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Game-agnostic learning algorithms. Here we have defined learning algorithms as being asso-

ciated with a fixed 𝑢𝐿 and being able to observe the optimizer’s sequence of actions (if not their

actual payoffs). However many natural learning algorithms (including Multiplicative Weights

and FTRL) only require the counterfactual payoffs of each action from each round. In the full

version [Arunachaleswaran et al., 2024] we explore Pareto-optimality and Pareto-domination over

this class of algorithms.

3 From learning algorithms to menus
3.1 The asymptotic menu of a learning algorithm
Our eventual goal is to understand which learning algorithms are Pareto-optimal for the learner.

However, learning algorithms are fairly complex objects; instead, we will show that for our purposes

we can associate each learning algorithm with a much simpler object we call an asymptotic menu,
which can be represented as a convex subset of Δ𝑚𝑛 . Intuitively, the asymptotic menu of a learning

algorithm describes the set of correlated strategy profiles an optimizer can asymptotically incentivize

in the limit as 𝑇 approaches infinity.

More formally, for a fixed horizon-dependent algorithm 𝐴𝑇
, define the menu M(𝐴𝑇 ) ⊆ Δ𝑚𝑛

of 𝐴𝑇
to be the convex hull of all CSPs of the form

1

𝑇

∑𝑇
𝑡=1 𝑥𝑡 ⊗ 𝑦𝑡 , where (𝑥1, 𝑥2, . . . , 𝑥𝑇 ) is any

sequence of optimizer actions and (𝑦1, 𝑦2, . . . , 𝑦𝑇 ) is the response of the learner to this sequence

under 𝐴𝑇
(i.e., 𝑦𝑡 = 𝐴𝑇

𝑡 (𝑥1, 𝑥2, . . . , 𝑥𝑡−1)).
If a learning algorithm A has the property that the sequence M(𝐴1),M(𝐴2), . . . converges

under the Hausdorff metric
1
, we say that the algorithm A is consistent and call this limit value

the asymptotic menu M(A) of A. More generally, we will say that a subset M ⊆ Δ𝑚𝑛 is an

asymptotic menu if it is the asymptotic menu of some consistent algorithm. It is possible to

construct learning algorithms that are not consistent (for example, imagine an algorithm that

runs multiplicative weights when 𝑇 is even, and always plays action 1 when 𝑇 is odd); however

even in this case we can find subsequences of time horizons where this converges and define a

reasonable notion of asymptotic menu for such algorithms. We defer discussion of this to the full

version [Arunachaleswaran et al., 2024], and otherwise will only concern ourselves with consistent

algorithms. See also the full version for some explicit examples of asymptotic menus.

The above definition of asymptotic menu allows us to recast the Stackelberg game played by the

learner and optimizer in more geometric terms. Given some𝑢𝐿 , the learner begins by picking a valid

asymptotic menuM. The optimizer then picks a point 𝜑 onM that maximizes 𝑢𝑂 (𝜑) (breaking
ties in favor of the learner). The optimizer and the learner then receive utility 𝑢𝑂 (𝜑) and 𝑢𝐿 (𝜑)
respectively.

For any asymptotic menu M, define 𝑉𝐿 (M, 𝑢𝑂 ) to be the utility the learner ends up with under

this process. Specifically, define𝑉𝐿 (M, 𝑢𝑂 ) = max{𝑢𝐿 (𝜑) | 𝜑 ∈ argmax𝜑∈M 𝑢𝑂 (𝜑)}. We can verify

that this definition is compatible with our previous definition of 𝑉𝐿 as a function of the learning

algorithm A (see the full version [Arunachaleswaran et al., 2024] for proof).

Lemma 3.1. For any learning algorithm A, 𝑉𝐿 (M(A), 𝑢𝑂 ) = 𝑉𝐿 (A, 𝑢𝑂 ).

As a consequence of Lemma 3.1, instead of working with asymptotic Pareto-dominance of

learning algorithms, we can entirely work with Pareto-dominance of asymptotic menus, defined as

follows.

Definition 3.2 (Pareto-dominance for asymptotic menus). Fix a payoff 𝑢𝐿 for the learner.
An asymptotic menuM′

Pareto-dominates an asymptotic menuM if for all optimizer payoffs 𝑢𝑂 ,
1
The Hausdorff distance between two bounded subsets 𝑋 and 𝑌 of Euclidean space is given by 𝑑𝐻 (𝑋,𝑌 ) =

max(sup𝑥 ∈𝑋 𝑑 (𝑥,𝑌 ), sup𝑦∈𝑌 𝑑 (𝑦,𝑋 ) ) , where 𝑑 (𝑎, 𝐵) is the minimum Euclidean distance between point 𝑎 and the set 𝐵.
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𝑉𝐿 (M, 𝑢𝑂 ) ≥ 𝑉𝐿 (M′, 𝑢𝑂 ), and for at least one2 payoff 𝑢𝑂 , 𝑉𝐿 (M, 𝑢𝑂 ) > 𝑉𝐿 (M′, 𝑢𝑂 ). An asymptotic
menuM is Pareto-optimal if it is not Pareto-dominated by any asymptotic menu.

3.2 Characterizing possible asymptotic menus
Before we address the harder question of which asymptotic menus are Pareto-optimal, it is natural

to wonder which asymptotic menus are even possible: that is, which convex subsets of Δ𝑚𝑛 are

even attainable as asymptotic menus of some learning algorithm. In this section we provide a

complete characterization of all possible asymptotic menus, which we describe below.

Theorem 3.3. A closed, convex subsetM ⊆ Δ𝑚𝑛 is an asymptotic menu iff for every 𝑥 ∈ Δ𝑚 , there
exists a 𝑦 ∈ Δ𝑛 such that 𝑥 ⊗ 𝑦 ∈ M.

The necessity condition of Theorem 3.3 follows quite straightforwardly from the observation

that if the optimizer only ever plays a fixed mixed strategy 𝑥 ∈ Δ𝑚 , the resulting average CSP will

be of the form 𝑥 ⊗ 𝑦 for some 𝑦 ∈ Δ𝑛 . The trickier part is proving sufficiency. For this, we will need

to rely on the following two lemmas.

The first lemma applies Blackwell approachability to show that anyM of the form specified in

Theorem 3.3 must contain a valid asymptotic menu.

Lemma 3.4. Assume the closed convex set M ⊆ Δ𝑚𝑛 has the property that for every 𝑥 ∈ Δ𝑚 , there
exists a 𝑦 ∈ Δ𝑛 such that 𝑥 ⊗ 𝑦 ∈ M. Then there exists an asymptotic menuM′ ⊆ M.

Proof. We will show the existence of an algorithm A for whichM(A) ⊆ M. To do so, we will

apply the Blackwell Approachability Theorem ([Blackwell, 1956]).

Consider the repeated vector-valued game in which the learner chooses a distribution 𝑦𝑡 ∈ Δ𝑛

over their 𝑛 actions, the optimizer chooses a distribution 𝑥𝑡 ∈ Δ𝑚 over their𝑚 actions, and the

learner receives the vector-valued, bilinear payoff 𝑢 (𝑥𝑡 , 𝑦𝑡 ) = 𝑥𝑡 ⊗𝑦𝑡 (i.e., the CSP corresponding to

this round). The Blackwell Approachability Theorem states that if the setM is response-satisfiable

w.r.t. 𝑢 – that is, for all 𝑥 ∈ Δ𝑚 , there exists a 𝑦 ∈ Δ𝑛 such that 𝑢 (𝑥,𝑦) ∈ M – then there exists a

learning algorithm A such that

lim

𝑇→∞
𝑑

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢 (𝑥𝑡 , 𝑦𝑡 ),M
)
= 0,

for any sequence of optimizer actions {𝑥𝑡 } (here 𝑑 (𝑝, 𝑆) represents the minimal Euclidean distance

from point 𝑝 to the set 𝑆). In words, the history-averaged CSP of play must approach to the setM as

the time horizon grows. Since any 𝜑 ∈ M(A) can be written as the limit of such history-averaged

payoffs (as 𝑇 → ∞), this would implyM(A) ⊆ M.

Therefore all that remains is to prove that M is response-satisfiable. But this is exactly the

property we assumedM to have, and therefore our proof is complete. □

The second lemma shows that asymptotic menus are upwards closed: if M is an asymptotic

menu, then so is any convex set containing it.

Lemma 3.5. IfM is an asymptotic menu, then any closed convex setM′ satisfyingM ⊆ M′ ⊆ Δ𝑚𝑛

is an asymptotic menu.

2
Alternatively, we can ask that one menu strictly beats the other on a positive measure set of payoffs. This may seem more

robust, but turns out to be equivalent to the single-point definition. We prove this in the full version [Arunachaleswaran

et al., 2024]. Note that by Lemma 3.1, this implies a similar equivalence for Pareto-domination of algorithms.
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Proof Sketch. We defer the details of the proof to the full version [Arunachaleswaran et al.,

2024] and provide a high-level sketch here. SinceM is an asymptotic menu, we know there exists

a learning algorithm A with M(A) = M. We show how to take A and transform it to a learning

algorithm A′
withM(A′) = M′

. The algorithm A′
works as follows:

(1) At the beginning, the optimizer selects a point 𝜑 ∈ M′
they want to converge to. They

also agree on a “schedule” of moves (𝑥𝑡 , 𝑦𝑡 ) for both players to play whose history-average

converges to the point 𝜑 without ever leavingM′
. (The optimizer can communicate this to

the learner solely through the actions they take in some sublinear prefix of the game – see

the full proof for details).

(2) The learner and optimizer then follow this schedule of moves (the learner playing 𝑥𝑡 and the

optimizer playing 𝑦𝑡 at round 𝑡 ). If the optimizer never defects, they converge to the point 𝜑 .

(3) If the optimizer ever defects from their sequence of play, the learner switches to playing the

original algorithm A. In the remainder of the rounds, the time-averaged CSP is guaranteed

to converge to some point 𝜑suff = M(A) = M. Since the time-averaged CSP of the prefix

𝜑pre lies in M′
, the overall time-averaged CSP will still lie in M′

, so the optimizer cannot

incentivize any point outside ofM′
.

□

Combining Lemmas 3.4 and Lemmas 3.5, we can now prove Theorem 3.3.

Proof of Theorem 3.3. As mentioned earlier, the necessity condition is straightforward: assume

for contradiction that there exists an algorithm A with asymptotic menuM such that, for some

𝑥 ∈ Δ𝑚 , there is no point in M of the form 𝑥 ⊗ 𝑦 for any 𝑦. Then, let the optimizer play 𝑥 in each

round. The resulting CSP induced against A must be of the form 𝑥 ⊗ 𝑦 for some 𝑦 ∈ Δ𝑛 , deriving a

contradiction.

Now we will prove that if a set M has the property that ∀𝑥 ∈ Δ𝑚 , there exists a 𝑦 ∈ Δ𝑛 such

that 𝑥 ⊗ 𝑦 ∈ M, then it is a valid menu. To see this, consider any setM with this property. Then

by Lemma 3.4 there exists a valid menuM′ ⊆ M. Then, by the upwards-closedness property of

Lemma 3.5, the setM ⊇ M′
is also a menu.

□

3.3 No-regret and no-swap-regret menus
Another nice property of working with asymptotic menus is that no-regret and no-swap-regret

properties of algorithms translate directly to similar properties on these algorithms’ asymptotic

menus (the situation for mean-based algorithms is a little bit more complex, and we discuss it in

Section B).

To elaborate, say that the CSP 𝜑 is no-regret if it satisfies the no-regret constraint∑︁
𝑖∈[𝑚]

∑︁
𝑗∈[𝑛]

𝜑𝑖 𝑗𝑢𝐿 (𝑖, 𝑗) ≥ max

𝑗∗∈[𝑛]

∑︁
𝑖∈[𝑚]

∑︁
𝑗∈[𝑛]

𝜑𝑖 𝑗𝑢𝐿 (𝑖, 𝑗∗). (2)

Similarly, say that the CSP 𝜑 is no-swap-regret if, for each 𝑗 ∈ [𝑛], it satisfies∑︁
𝑖∈[𝑚]

𝜑𝑖 𝑗𝑢𝐿 (𝑖, 𝑗) ≥ max

𝑗∗∈[𝑛]

∑︁
𝑖∈[𝑚]

𝜑𝑖 𝑗𝑢𝐿 (𝑖, 𝑗∗). (3)

For a fixed 𝑢𝐿 , we will define the no-regret menu M𝑁𝑅 to be the convex hull of all no-regret

CSPs, and the no-swap-regret menu M𝑁𝑆𝑅 to be the convex hull of all no-swap-regret CSPs. In

the following theorem we show that the asymptotic menu of any no-(swap-)regret algorithm is

contained in the no-(swap-)regret menu.
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Theorem 3.6. If a learning algorithm A is no-regret, then for every 𝑢𝐿 ,M(A) ⊆ M𝑁𝑅 . If A is
no-swap-regret, then for every 𝑢𝐿 ,M(A) ⊆ M𝑁𝑆𝑅 .

Note that bothM𝑁𝑅 andM𝑁𝑆𝑅 themselves are valid asymptotic menus, since for any 𝑥 ∈ Δ𝑚 ,

they will contain some point of the form 𝑥 ⊗ 𝑦 for some 𝑦 ∈ BR𝐿 (𝑥). In fact, we can say something

much stronger about the no-swap-regret menu: it is exactly the convex hull of all such points.

Lemma 3.7. The no-swap-regret menu M𝑁𝑆𝑅 is the convex hull of all CSPs of the form 𝑥 ⊗ 𝑦, with
𝑥 ∈ Δ𝑚 and 𝑦 ∈ BR𝐿 (𝑥).

Proof. First, note that every CSP of the form 𝑥 ⊗ 𝑦, with 𝑥 ∈ Δ𝑚 and 𝑦 ∈ BR𝐿 (𝑥), is contained
in M𝑁𝑆𝑅 . This follows directly follows from the fact that this CSP satisfies the no-swap-regret

constraint (3), since no action can be a better response than 𝑦 to 𝑥 .

For the other direction, consider a CSP 𝜑 ∈ M𝑁𝑆𝑅 . We will rewrite 𝜑 as a convex combination

of product CSPs of the above form. For each pure strategy 𝑎 ∈ [𝑛] for the learner, let 𝛽 (𝑎) ∈ Δ𝑚

represent the conditional mixed strategy of the optimizer corresponding to 𝑋 given that the learner

plays action 𝑎, i.e. 𝛽 𝑗 (𝑎) =
𝜑 𝑗𝑎∑

𝑘∈ [𝑚] 𝜑𝑘𝑎
for all 𝑗 ∈ [𝑚] (setting 𝛽𝑘 (𝑎) arbitrarily if all values 𝜑𝑘𝑎 are

zero). With this, we can write 𝜑 =
∑

𝑎∈[𝑚] (
∑

𝑘∈[𝑚] 𝜑𝑘𝑎) (𝛽 (𝑎) ⊗ 𝑎).
Now, note that if 𝑎 ∉ argmax𝑏 𝑢𝐿 (𝛽 (𝑎), 𝑏), this would violate the no-swap-regret constraint

(3) for 𝑗 = 𝑎. Thus, we have rewritten 𝜑 as a convex combination of CSPs of the desired form,

completing the proof. □

One key consequence of this characterization is that it allows us to show that the asymptotic menu

of any no-regret algorithm must contain the no-swap-regret menuM𝑁𝑆𝑅 as a subset. Intuitively,

this is since every no-regret menu should also contain every CSP of the form 𝑥 ⊗𝑦 with 𝑦 ∈ BR𝐿 (𝑥),
since if the optimizer only plays 𝑥 , the learner should learn to best-respond with 𝑦 (although some

care needs to be taken with ties).

Lemma 3.8. For any no-regret algorithm A, M𝑁𝑆𝑅 ⊆ M(A).

This fact allows us to prove our first main result: that all consistent
3
no-swap-regret algorithms

have the same asymptotic menu (namely,M𝑁𝑆𝑅).

Theorem 3.9. If A is a no-swap-regret algorithm, thenM(A) = M𝑁𝑆𝑅 .

Proof. From Theorem 3.6, M(𝐴) ⊆ M𝑁𝑆𝑅 . However, since any no-swap-regret algorithm also

has no-regret, Lemma 3.8 impliesM𝑁𝑆𝑅 ⊆ M(𝐴). The conclusion follows. □

Note that in the proof of Theorem 3.9, we have appealed to Lemma 3.8 which uses the fact that

𝑢𝐿 has no weakly dominated actions. This is necessary: consider, for example, a game with two

identical actions for the learner, 𝑎 and 𝑎′ (𝑢𝐿 (·, 𝑎) = 𝑢𝐿 (·, 𝑎′)). We can consider two no-swap-regret

algorithms for the learner, one which only plays 𝑎 and never plays 𝑎′, and the other which only

plays 𝑎′ and never plays 𝑎. These two algorithms will have different asymptotic menus, both

of which contain only no-swap-regret CSPs. But as mentioned earlier, this is in some sense a

degeneracy – the set of learner payoffs 𝑢𝐿 with weakly dominated actions has zero measure (any

small perturbation to 𝑢𝐿 will prevent this from taking place).

Theorem 3.9 has a number of conceptual implications for thinking about learning algorithms in

games:

3
Actually, as a consequence of this result, it is possible to show that any no-swap-regret algorithm must be consistent: see

the full version [Arunachaleswaran et al., 2024] for details.
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(1) First, all no-swap-regret algorithms are asymptotically equivalent, in the sense that regardless

of which no-swap-regret algorithm you run, any asymptotic strategy profile you converge to

under one algorithm you could also converge to under another algorithm (for appropriate

play of the other player). This is true even when the no-swap-regret algorithms appear

qualitatively quite different in terms of the strategies they choose (compare e.g. the fixed-

point based algorithm of [Blum and Mansour, 2007] with the more recent algorithms of

[Dagan et al., 2023] and [Peng and Rubinstein, 2023]).

(2) In particular, there is no notion of regret that is meaningfully stronger than no-swap-regret

for learning in (standard, normal-form) games. That is, there is no regret-guarantee you can

feasibly insist on that would rule out some points of the no-swap-regret menuwhile remaining

no-regret in the standard sense. In other words, the no-swap-regret menu is minimal among

all no-regret menus: every no-regret menu containsM𝑁𝑆𝑅 , and no asymptotic menu (whether

it is no-regret or not) is a subset ofM𝑁𝑆𝑅 .

(3) Finally, these claims are not generally true for external regret. There are different no-regret

algorithms with very different asymptotic menus (as a concrete example,M𝑁𝑅 andM𝑁𝑆𝑅 are

often different, and they are both asymptotic menus of some learning algorithm by Theorem

3.3).

Of course, this does not tell us whether it is actually good for the learner to use a no-swap-regret

algorithm, from the point of view of the learner’s utility. In the next section we will revisit this

question through the lens of understanding which menus are Pareto optimal.

4 Characterizing Pareto-optimal menus
In this section we shift our attention to understanding which asymptotic menus are Pareto-optimal

and which are Pareto-dominated by other asymptotic menus. The ideal result would be a charac-

terization of all Pareto-optimal asymptotic menus; we will stop a little short of this and instead

provide a full characterization of all Pareto-optimal no-regret menus that are also polytopal – i.e.,

can be written as the intersection of a finite number of half-spaces. This characterization will be

sufficient for proving our main results that the no-swap-regret menu M𝑁𝑆𝑅 is Pareto-optimal, but

that the menu corresponding to multiplicative weights is sometimes Pareto-dominated.

Before we introduce the characterization, we introduce a little bit of additional notation. For

any menu M, let 𝑈 + (M) = max𝜑∈M 𝑢𝐿 (𝜑) denote the maximum learner payoff of any CSP in

M; likewise, define 𝑈 − (M) = min𝜑∈M 𝑢𝐿 (𝜑). We will also let M+ = argmax𝜑∈M 𝑢𝐿 (𝜑) and
M− = argmin𝜑∈M 𝑢𝐿 (𝜑) be the subsets of M that attain this maximum and minimum (we will

call these the maximum-value and minimum-value sets of M).

Our characterization can now be simply stated as follows.

Theorem 4.1. LetM be a polytopal no-regret menu. ThenM is Pareto-optimal iffM− = M−
𝑁𝑆𝑅

.
That is,M must share the same minimum-value set as the no-swap-regret menuM𝑁𝑆𝑅 .

Note that while this characterization only allows us to reason about the Pareto-optimality of

polytopal no-regret menus, in stating that these menus are Pareto-optimal, we are comparing them

to all possible asymptotic menus. That is, we show that they are not Pareto-dominated by any

possible asymptotic menu, even one which may have high regret and/or be an arbitrary convex

set. We conjecture that this characterization holds for all no-regret menus (even ones that are not

polytopal).

The remainder of this section will be dedicated to proving Theorem 4.1. We will begin in Section

4.1 by establishing some basic properties aboutM+
,M−

,𝑈 − (M), and𝑈 + (M) for no-regret and
Pareto-optimal menus. Then in Section 4.2 we prove our main technical lemma (Lemma 4.4),

which shows that a menu cannot be Pareto-dominated by a menu with a larger minimal set.
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Finally, we complete the proof of Theorem 4.1 in Section 4.3, and discuss some implications for the

Pareto-optimality of the no-regret and no-swap-regret menus in Section A.

4.1 Constraints on learner utilities
We begin with some simple observations on the possible utilities of the learner under Pareto-optimal

menus and no-regret menus. We first considerM+
. Recall that (by assumption) there is a unique

pure strategy profile 𝜑+ = (𝑖∗) ⊗ ( 𝑗∗) that maximizes the learner’s reward. We claim that any

Pareto-optimal menu must contain 𝜑+
.

Lemma 4.2. If M is a Pareto-optimal asymptotic menu, thenM+ = {𝜑+}.

Proof. AssumeM is a Pareto-optimal asymptotic menu that does not contain 𝜑+
. By Lemma

3.5, the set M′ = conv(M, 𝜑+) is also a valid asympotic menu. We claim M′
Pareto-dominates M.

To see this, first note that when 𝑢𝑂 = 𝑢𝐿 , 𝑉𝐿 (M′, 𝑢𝑂 ) = 𝑢𝐿 (𝜑+) > 𝑉𝐿 (M, 𝑢𝑂 ), since 𝜑+
is the

unique CSP in Δ𝑚𝑛 maximizing 𝑢𝐿 . On other hand, for any other 𝑢𝑂 , the maximizer of 𝑢𝑂 overM′

is either equal to the maximizer of 𝑢𝑂 overM, or equal to 𝜑+
. In either case, the learner’s utility

is at least as large, so 𝑉𝐿 (M′, 𝑢𝑂 ) ≥ 𝑉𝐿 (M, 𝑢𝑂 ) for all 𝑢𝑂 . It follows that M′
Pareto-dominates

M. □

Note also that 𝜑+
belongs to M𝑁𝑆𝑅 (since it a best-response CSP of the same form as in Lemma

3.7), soM+
𝑁𝑆𝑅

= 𝜑+
. SinceM𝑁𝑆𝑅 is also contained in every no-regret menu, this also means that

for any (not necessarily Pareto-optimal) no-regret menuM,M+ = M+
𝑁𝑆𝑅

= 𝜑+
.

We now consider the minimum-value setM−
. Unlike forM+

, it is no longer the case that all

Pareto-optimal menus share the same set M−
. It is not even the case (as we shall see in Section

4.3), that all Pareto-optimal menus have the same minimum learner utility𝑈 − (M).
However, it is the case that all no-regret algorithms share the same value for the minimum learner

utility 𝑈 − (M), namely the “zero-sum” utility 𝑈𝑍𝑆 = min𝑥∈Δ𝑚
max𝑦∈Δ𝑛

𝑢𝐿 (𝑥,𝑦). The reason for

this is that 𝑈𝑍𝑆 is the largest utility the learner can guarantee when playing a zero-sum game (i.e.,

when the optimizer has payoffs 𝑢𝑂 = −𝑢𝐿), and thus it is impossible to obtain a higher value of

𝑈 − (M). This is formalized in the following lemma.

Lemma 4.3. Every asymptotic menu must have 𝑈 − (M) ≤ 𝑈𝑍𝑆 . Moreover, if M is a no-regret
asymptotic menu, then𝑈 − (M) = 𝑈𝑍𝑆 , andM−

𝑁𝑆𝑅
⊆ M− .

Proof. Let (𝑥𝑍𝑆 , 𝑦𝑍𝑆 ) be the solution to the minimax problem min𝑥∈Δ𝑚
max𝑦∈Δ𝑛

𝑢𝐿 (𝑥,𝑦) (i.e.,
the Nash equilibrium of the corresponding zero-sum game). By Theorem 3.3, any asymptotic menu

M must contain a point of the form 𝑥𝑍𝑆 ⊗𝑦. By construction,𝑢𝐿 (𝑥𝑍𝑆 ⊗𝑦) ≤ 𝑈𝑍𝑆 , so𝑈
− (M) ≤ 𝑈𝑍𝑆 .

To see that every no-regret asymptotic menu satisfies 𝑈 − (M) = 𝑈𝑍𝑆 , assume that M is a

no-regret menu, and 𝜑 ∈ M satisfies 𝑢𝐿 (𝜑) < 𝑈𝑍𝑆 . Since 𝜑 has no-regret (satisfies the condi-

tions of (2)), we must also have 𝑢𝐿 (𝜑) ≥ max𝑦∈Δ𝑛
min𝑥∈Δ𝑚

𝑢𝐿 (𝑥,𝑦), since this holds for what-

ever marginal distribution 𝑥 is played by the optimizer under 𝜑 . But by the minimax theorem,

max𝑦∈Δ𝑛
min𝑥∈Δ𝑚

𝑢𝐿 (𝑥,𝑦) = 𝑈𝑍𝑆 , and so we have a contradiction.

Finally, note that since M is no-regret, M𝑁𝑆𝑅 ⊆ M and so M−
𝑁𝑆𝑅

⊆ M−
(since they share the

same minimum value). □

4.2 Pareto-domination and minimum-value sets
We now present our two main lemmas necessary for the proof of Theorem 4.1. The first lemma

shows that if one menu contains a point not present in the second menu (and both menus share the

same maximum-value set), then the first menu cannot possibly Pareto-dominate the second menu.

Lemma 4.4. LetM1 andM2 be two distinct asymptotic menus whereM+
1
= M+

2
. Then if either:
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• i.M2 \M1 ≠ ∅, or
• ii.M−

1
= M−

2
,

then there exists a 𝑢𝑂 for which 𝑉𝐿 (M1, 𝑢𝑂 ) > 𝑉𝐿 (M2, 𝑢𝑂 ) (i.e.,M2 does not Pareto-dominateM1).

Note that Lemma 4.4 holds also under the secondary assumption thatM−
1
= M−

2
. One important

consequence of this is that all menus with identical minimum value and maximum value setsM−

andM+
are incomparable to each other under the Pareto-dominance order (even such sets that

may contain each other).

The key technical ingredient for proving Lemma 4.4 is the following lemma, which establishes a

“two-dimensional” variant of the above claim.

Lemma 4.5. Let 𝑓 , 𝑔 : [𝑎, 𝑏] → R be two distinct concave functions satisfying 𝑓 (𝑎) ≤ 𝑔(𝑎) and
𝑓 (𝑏) = 𝑔(𝑏). For 𝜃 ∈ [0, 𝜋], let ˆ𝑓 (𝜃 ) = argmax𝑥∈[𝑎,𝑏 ] (𝑥 cos𝜃 + 𝑓 (𝑥) sin𝜃 ) (if the argmax is not
unique, then ˆ𝑓 (𝜃 ) is undefined). Define𝑔(𝜃 ) symmetrically. Then there exists a 𝜃 for which ˆ𝑓 (𝜃 ) > 𝑔(𝜃 ).
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Fig. 1. A visual depiction of Lemma 4.5. The purple points in the left figure denote the maximizers of 𝑓 and 𝑔
in the direction 𝜃 ; since the purple point on 𝑓 is to the right of that on 𝑔, we have ˆ𝑓 (𝜃 ) > 𝑔(𝜃 ) for this 𝜃 .

Proof. Since 𝑓 (𝑥) is a concave curve, it has a (weakly) monotonically decreasing derivative

𝑓 ′ (𝑥). This derivative is not necessarily defined for all 𝑥 ∈ [𝑎, 𝑏], but since 𝑓 is concave it is defined

almost everywhere. At points 𝑐 where it is not defined, 𝑓 still has a well-defined left derivative

𝑓 ′
𝐿
(𝑥) = limℎ→0 (𝑓 (𝑥)− 𝑓 (𝑥−ℎ))/ℎ and right derivative 𝑓 ′

𝑅
(𝑥) = limℎ→0 (𝑓 (𝑥 +ℎ)− 𝑓 (𝑥))/ℎ. We will

abuse notation and let 𝑓 ′ (𝑥) denote the interval [𝑓 ′
𝐿
(𝑥), 𝑓 ′

𝑅
(𝑥)] (at the boundaries defining 𝑓 ′ (𝑎) =

(−∞, 𝑓𝑅 (𝑎)] and 𝑓 ′ (𝑏) = [𝑓𝐿 (𝑏),∞). Similarly, the interval-valued inverse function (𝑓 ′)−1 (𝑦) is
also well-defined, decreasing in 𝑦, and uniquely-defined for almost all values of 𝑦 in (−∞,∞).

Note that since
ˆ𝑓 (𝜃 ) is the 𝑥 coordinate of the point on the curve 𝑓 (𝑥) that maximizes the inner

product with the unit vector (cos𝜃, sin𝜃 ), 𝑓 ′ ( ˆ𝑓 (𝜃 )) must contain the value − cos𝜃/sin𝜃 = − cot𝜃 .

In particular, if
ˆ𝑓 (𝜃 ) is uniquely defined,

ˆ𝑓 (𝜃 ) = (𝑓 ′)−1 (− cot𝜃 ). So it suffices to find a 𝑦 for which

(𝑓 ′)−1 (𝑦) > (𝑔′)−1 (𝑦).
To do this, we make the following observation: since 𝑓 (𝑏) − 𝑓 (𝑎) ≥ 𝑔(𝑏) − 𝑔(𝑎),

∫ 𝑏

𝑎
𝑓 ′ (𝑥)𝑑𝑥 ≥∫ 𝑏

𝑎
𝑔′ (𝑥)𝑑𝑥 4

. This means there must be a point 𝑐 ∈ (𝑎, 𝑏) where 𝑓 ′ (𝑐) > 𝑔′ (𝑐). If not, then we must

have 𝑓 ′ (𝑥) ≤ 𝑔′ (𝑥) for all 𝑥 ∈ (𝑎, 𝑏); but the only way we can simultaneously have 𝑓 ′ (𝑥) ≤ 𝑔′ (𝑥)
for all 𝑥 ∈ (𝑎, 𝑏) and

∫ 𝑏

𝑎
𝑓 ′ (𝑥)𝑑𝑥 ≥

∫ 𝑏

𝑎
𝑔′ (𝑥)𝑑𝑥 is if 𝑓 ′ (𝑥) = 𝑔′ (𝑥) for almost all 𝑥 ∈ (𝑎, 𝑏) – but

this would contradict the fact that 𝑓 and 𝑔 are distinct concave functions.

Now, take a point 𝑐 ∈ (𝑎, 𝑏) where 𝑓 ′ (𝑐) > 𝑔′ (𝑐) and choose a 𝑦 in 𝑓 ′ (𝑐). Since 𝑔′ is a decreasing
function, there must exist a 𝑐′ < 𝑐 such that 𝑦 ∈ 𝑔′ (𝑐′), and so (𝑓 ′)−1 (𝑦) > (𝑔′)−1 (𝑦). □

4
These integrals are well defined because the first derivatives of 𝑓 and 𝑔 exist almost everywhere.
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We can now prove Lemmas 4.4 through an application of the above lemma.

Proof of Lemma 4.4. We will consider the two preconditions separately, and begin by consider-

ing the case where M−
1
= M−

2
. Since M1 and M2 are distinct asymptotic menus, there must be

an extreme point 𝜑 in one menu that does not belong to the other. In particular, there must exist

an optimizer payoff 𝑢𝑂 where 𝑢𝑂 (𝜑) > 𝑢𝑂 (𝜑 ′) for any 𝜑 ′
in the other menu. Denote this specific

optimizer payoff by 𝑢0

𝑂
.

We will show that there exists a 𝑢𝑂 ∈ span(𝑢𝐿, 𝑢0𝑂 ) where𝑉𝐿 (M1, 𝑢𝑂 ) > 𝑉𝐿 (M2, 𝑢𝑂 ). To do this,

we will project M1 and M2 to two-dimensional sets 𝑆1 and 𝑆2 by letting 𝑆1 = {(𝑢𝐿 (𝜑), 𝑢0𝑂 (𝜑)) |
𝜑 ∈ M1} (and defining 𝑆2 symmetrically). By our construction of 𝑢0

𝑂
, these two convex sets 𝑆1 and

𝑆2 are distinct. Also, note that if 𝑢𝑂 = 𝜆1𝑢𝐿 + 𝜆2𝑢
0

𝑂
, we can interpret 𝑉𝐿 (M1, 𝑢𝑂 ) as the maximum

value of 𝑧1 for any point in argmax(𝑧1,𝑧2 ) ∈𝑆1 (𝜆1𝑧1 + 𝜆2𝑧2). We can interpret 𝑉𝐿 (M2, 𝑢𝑂 ) similarly.

Let us now consider the geometry of 𝑆1 and 𝑆2. Let 𝑢
−
denote the common value of𝑈 − (M1) and

𝑈 − (M2), and similarly, let 𝑢+
denote the common value of𝑈 + (M1) and𝑈 + (M2). Both 𝑆1 and 𝑆2

are contained in the “vertical” strip 𝑢− ≤ 𝑧1 ≤ 𝑢+
. We can therefore write 𝑆1 as the region between

the concave curve 𝑓up : [𝑢−, 𝑢+] (representing the upper convex hull of 𝑆1) and 𝑓down (representing

the lower convex hull of 𝑆1; define 𝑔up and 𝑔down analogously for 𝑆2. Since 𝑆1 and 𝑆2 are distinct,

either 𝑓up ≠ 𝑔up or 𝑓down ≠ 𝑔down; without loss of generality, assume 𝑓up ≠ 𝑔up (we can switch the

upper and lower curves by changing 𝑢0

𝑂
to −𝑢0

𝑂
).

Note also that since M+
1
= M+

2
and M−

1
⊆ M−

2
, we have 𝑓up (𝑢+) = 𝑔up (𝑢+) and 𝑓up (𝑢−) ≤

𝑔up (𝑢−) (since [𝑓down (𝑢−), 𝑓up (𝑢−)] ⊆ [𝑔down(𝑢−), 𝑔up (𝑢−)]). By Lemma 4.5, there exists a 𝜃 ∈ [0, 𝜋]
for which

ˆ𝑓up (𝜃 ) > 𝑔up (𝜃 ). But by the definition of
ˆ𝑓 and 𝑔, this implies that for 𝑢𝑂 = cos(𝜃 )𝑢𝐿 +

sin(𝜃 )𝑢0

𝑂
, 𝑉𝐿 (M1, 𝑢𝑂 ) > 𝑉𝐿 (M2, 𝑢𝑂 ), as desired. This proof is visually depicted in Figure 1.

The remaining case, whereM2 \M1 ≠ ∅, can be proved very similarly to the above proof. We

make the following changes:

• First, we choose an extreme point 𝜑 ofM2 that belongs toM2 but notM1. Again, we choose

a 𝑢𝑂 which separates 𝜑 fromM1. We let 𝑢∗ = 𝑢𝑂 (𝜑); note that 𝑢∗ < 𝑢+
(sinceM+

1
= M+

2
).

• Instead of defining our functions 𝑓𝑢𝑝 and 𝑔𝑢𝑝 on the full interval [𝑢−, 𝑢+], we instead restrict

them to the interval [𝑢∗, 𝑢+]. Because of our construction of𝜑 , we have that 𝑓𝑢𝑝 (𝑢∗) < 𝑔𝑢𝑝 (𝑢∗),
and 𝑓𝑢𝑝 (𝑢+) = 𝑔𝑢𝑝 (𝑢+).

• We can again apply Lemma 4.5 to these two functions on this sub-interval, and construct a

𝑢𝑂 for which 𝑉𝐿 (M1, 𝑢𝑂 ) > 𝑉𝐿 (M2, 𝑢𝑂 ).
□

One useful immediate corollary of Lemma 4.4 is that it is impossible for high-regret menus

(menus that are not no-regret) to Pareto-dominate no-regret menus.

Corollary 4.6. LetM1 andM2 be two asymptotic menus such thatM1 is no-regret andM2 is
not no-regret. ThenM2 does not Pareto-dominateM1.

Proof. If M2 does not contain 𝜑+
, add it to M2 via Lemma 4.2 (this only increases the position

ofM2 in the Pareto-dominance partial order). SinceM1 is no-regret, it must already contain 𝜑+
,

and therefore we can assumeM+
1
= M+

2
= {𝜑+}.

Since M2 is not no-regret, it must contain a CSP 𝜑 that does not lie in M𝑁𝑅 , and therefore

M2 \M1 ≠ ∅. It then follows from Lemma 4.4 thatM2 does not Pareto-dominateM1. □

4.3 Completing the proof
We can now finish the proof of Theorem 4.1.
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Proof of Theorem 4.1. We will first prove that if a no-regret menuM satisfiesM− = M−
𝑁𝑆𝑅

,

then it is Pareto-optimal. To do so, we will consider any other menuM′
and show thatM′

does

not Pareto-dominateM. There are three cases to consider:

• Case 1: 𝑈 − (M′) < 𝑈 − (M). In this case, M′
cannot dominate M since 𝑉𝐿 (M,−𝑢𝐿) >

𝑉𝐿 (M′,−𝑢𝐿) (note that 𝑈 − (M) = 𝑉𝐿 (M,−𝑢𝐿), since if 𝑢𝑂 = −𝑢𝐿 , the optimizer picks the

utility-minimizing point for the learner).

• Case 2:𝑈 − (M′) > 𝑈 − (M). By Lemma 4.3, this is not possible.

• Case 3:𝑈 − (M′) = 𝑈 − (M). IfM′
is not a no-regret menu, then by Corollary 4.6 it cannot

dominate M. We will therefore assume that M′
is a no-regret menu, i.e.M′ ⊆ M𝑁𝑅 Then,

by Lemma 4.3, M− ⊆ (M′)− . Also, by Lemma 4.2, we can assume without loss of generality

that (M′)+ = {𝜑+} = M+
(if M′

does not contain 𝜑+
, replace it with the Pareto-dominating

menu that contains it). Now, by Lemma 4.4,M′
does not dominateM.

We now must show that if M− ≠ M−
𝑁𝑆𝑅

, then it is Pareto-dominated by some other menu.

Since M is (by assumption) a no-regret menu, we must have 𝑈 − (M) = 𝑈 − (M𝑁𝑆𝑅) = 𝑈𝑍𝑆 , and

M− ⊃ M−
𝑁𝑆𝑅

(Lemmas 4.3). Consider an extreme point 𝜑0 that belongs toM−
but not toM−

𝑁𝑆𝑅
.

Construct the menu M′
as follows: it is the convex hull of M𝑁𝑆𝑅 and all the extreme points in M

except for 𝜑0. By Lemma 3.5, this is a valid menu (it is formed by adding some points to the valid

menu M𝑁𝑆𝑅). Note also that M′
has all the same extreme points of M except for 𝜑0 (since M is a

polytope, we add a finite number of extreme points toM′
, all of which are well-separated from

𝜑0), and in particular is distinct fromM.

We will show thatM′
Pareto-dominatesM. To see this, note first that, by Lemma 4.4, there is

some𝑢𝑂 such that𝑉𝐿 (𝑈M, 𝑢𝑂 ) < 𝑉𝐿 (𝑈M′ , 𝑢𝑂 ). Furthermore, for all other values of𝑢𝑂 ,𝑉𝐿 (𝑈M, 𝑢𝑂 ) ≤
𝑉𝐿 (𝑈M′ , 𝑢𝑂 ). This is since the maximizer of𝑢𝑂 overM is either the minimal-utility point 𝜑0 (which

cannot be strictly better than the maximizer of 𝑢𝑂 over M′
), or exactly the same point as the

maximizer of 𝑢𝑂 overM′
. It follows thatM′

Pareto-dominatesM. □

Note that in the Proof of Theorem 4.1, we only rely on the fact that the menu M is polytopal in

precisely one spot, when we construct a menu M′
that Pareto-dominates M by “removing” an

extreme point fromM−
. As stated, this removal operation requiresM to be a polytope: in general,

it is possible that any extreme point 𝜑0 that belongs toM−
is a limit of other extreme points inM,

and so when attempting to construct M′
per the procedure above, we would just perfectly recover

the originalM when taking the convex closure of the remaining points.

That said, it is not clear whether the characterization of non-polytopal Pareto-optimal menus is

any different than the characterization in Theorem 4.1. In fact, by the argument in the proof of

Theorem 4.1, one direction of the characterization still holds (if a non-polytopal no-regret menu

satisfiesM− = M−
𝑁𝑆𝑅

, then it is Pareto-optimal). We conjecture that this characterization holds for

non-polytopal menus (and leave it as an interesting open problem).

Conjecture 4.7. Any no-regret menuM is Pareto-optimal iffM− = M𝑁𝑆𝑅 .

On the other hand, the restriction to no-regret menus is necessary for the characterization of

Theorem 4.1 to hold. To see this, note that another interesting corollary of Lemma 4.4 is that any

minimal asymptotic menu is Pareto-optimal (in fact, we have the slightly stronger result stated

below).

Corollary 4.8. Let M be an inclusion-minimal asymptotic menu (i.e., with the property that
no other asymptotic menuM′ satisfiesM′ ⊂ M). Then the menuM′ = conv(M, {𝜑+}) is Pareto-
optimal.
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Corollary 4.8 allows us to construct some high-regret asymptotic menus that are Pareto-optimal.

For example, we can show that the algorithm that always plays the learner’s component of 𝜑+
is

Pareto-optimal.

Theorem 4.9. Let M be the asymptotic menu of the form M = {𝑥 ⊗ 𝑗∗ | 𝑥 ∈ Δ𝑚} (where 𝑗∗ is the
learner’s component of 𝜑+ = (𝑖∗) ⊗ ( 𝑗∗)). ThenM is Pareto-optimal.

Proof. By Theorem 3.3,M is inclusion-minimal. SinceM also includes the CSP 𝜑+
, it is Pareto-

optimal by Corollary 4.8. □

Note that in general, the menuM in Theorem 4.9 is not no-regret, and may have𝑈 − (M) < 𝑈𝑍𝑆 .

We leave it as an interesting open question to provide a full characterization of all Pareto-optimal

asymptotic menus.

In the interest of space, we discuss the implications of these results for no-regret and no-swap-

regret menus in Appendix A.
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A Implications for no-regret and no-swap-regret menus
Already Theorem 4.1 has a number of immediate consequences for understanding the no-regret

menu M𝑁𝑅 and the no-swap-regret menu M𝑁𝑆𝑅 , both of which are polytopal no-regret menus by

their definitions in (2) and (3) respectively. As an immediate consequence of our characterization,

we can see that the no-swap-regret menu (and hence any no-swap-regret learning algorithm) is

Pareto-optimal.

Corollary A.1. The no-swap-regret menuM𝑁𝑆𝑅 is a Pareto-optimal asymptotic menu.

It would perhaps be ideal ifM𝑁𝑆𝑅 was the unique Pareto-optimal no-regret menu, as it would

provide a somewhat clear answer as to which learning algorithm one should use in a repeated

game. Unfortunately, this is not the case – althoughM𝑁𝑆𝑅 is the minimal Pareto-optimal no-regret

menu, Theorem 4.1 implies there exist infinitely many distinct Pareto-optimal no-regret menus.

On the more positive side, Theorem 4.1 (combined with Lemma 3.5) gives a recipe for how

to construct a generic Pareto-optimal no-regret learning algorithm: start with a no-swap-regret
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learning algorithm (the menu M𝑁𝑆𝑅) and augment it with any set of additional CSPs that the

learner and optimizer can agree to reach. This can be any set of CSPs as long as i. each CSP 𝜑 has

no regret, and ii. each CSP has learner utility 𝑢𝐿 (𝜑) strictly larger than the minimax value𝑈𝑍𝑆 .

Corollary A.2. There exist infinitely many Pareto-optimal asymptotic menus.

Finally, perhaps the most interesting consequence of Theorem 4.1 is that, despite this apparent

wealth of Pareto-optimal menus and learning algorithms, the no-regret menuM𝑁𝑅 is very often

Pareto-dominated. In particular, it is easy to find learner payoffs 𝑢𝐿 for whichM−
𝑁𝑅

≠ M−
𝑁𝑆𝑅

, as we

show below.

Corollary A.3. There exists a learner payoff5 𝑢𝐿 for which the no-regret M𝑁𝑅 is not a Pareto-
optimal asymptotic menu.

Proof. Take the learner’s payoff from Rock-Paper-Scissors, where the learner and optimizer both

have actions {𝑎1, 𝑎2, 𝑎3}, and 𝑢𝐿 (𝑎𝑖 , 𝑎 𝑗 ) = 0 if 𝑗 = 𝑖 , 1 if 𝑗 = 𝑖 + 1 mod 3, and −1 if 𝑗 = 𝑖 − 1 mod 3.

For this game,𝑈𝑍𝑆 = 0 (the learner can guarantee payoff 0 by randomizing uniformly among their

actions).

Now, note that the CSP 𝜑 = (1/3) (𝑎1 ⊗𝑎1) + (1/3) (𝑎2 ⊗𝑎2) + (1/3) (𝑎3 ⊗𝑎3) has the property that
𝑢𝐿 (𝜑) = 0 = 𝑈𝑍𝑆 and that 𝜑 ∈ M𝑁𝑅 , but also that 𝜑 ∉ M𝑁𝑆𝑅 (e.g. it is beneficial for the learner

to switch from playing 𝑎1 to 𝑎2). Since M𝑁𝑅 is a polytopal no-regret menu, it follows from our

characterization in Theorem 4.1 thatM𝑁𝑅 is not Pareto-optimal. □

B Mean-based algorithms and menus
In this section, we return to one of the main motivating questions of this work: are standard

online learning algorithms (like multiplicative weights or follow-the-regularized-leader) Pareto-

optimal? Specifically, are mean-based no-regret learning algorithms, which always approximately

best-respond to the historical sequence of observed losses, Pareto-optimal?

We will show that the answer to this question is no: in particular, there exist payoffs𝑢𝐿 where the

menus of some mean-based algorithms (specifically, menus for multiplicative weights and FTRL)

are not Pareto-optimal. Our characterization of Pareto-optimal no-regret menus in the previous

section (Theorem 4.1) does most of the heavy lifting here: it means that in order to show that a

specific algorithm is not Pareto-optimal, we need only find a sequence of actions by the optimizer

that both causes the learner to end up with the zero-sum utility 𝑢𝑍𝑆 and high swap-regret (i.e., at a

point not belonging to M−
). Such games (and corresponding trajectories of play by the optimizer)

are relatively easy to find – we will give one explicit example shortly that works for any mean-based

algorithm.

However, there is a catch – our characterization in Theorem 4.1 only applies to polytopal menus

(although we conjecture that it also applies to non-polytopal menus). So, in order to formally

prove that a mean-based algorithm is not Pareto-optimal, we must additionally show that its

corresponding menu is a polytope. Specifically, we give an example of a family of games where the

asymptotic menus of all FTRL algorithms have a simple description as an explicit polytope which

we can show is not Pareto-optimal.

Theorem B.1. There exists a family of learner payoffs 𝑢𝐿 with𝑚 = 3 actions for the learner and
𝑛 = 2 actions for the optimizer where all FTRL algorithms are Pareto-dominated.

In in the interest of space, the proof of this result has been deferred to the full version [Arunachaleswaran

et al., 2024]. There, we introduce the concept of the “mean-based menu”, a menu of CSPs that is

5
In fact, there exists a positive measure of such 𝑢𝐿 . It is easy to adapt this proof to work for small perturbations of the given

𝑢𝐿 , see the full version [Arunachaleswaran et al., 2024] for a proof.
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achievable against any mean-based algorithm, and introduce the family of games we study. We

then show that for these games, the mean-based menu can be explicitly characterized as a polytope.

Finally, we prove that the asymptotic menu of any instantiation of FTRL must actually equal this

mean-based menu (instead of merely containing it).

510


	Abstract
	1 Introduction
	1.1 Our results and techniques
	1.2 Takeaways and future directions
	1.3 Related work

	2 Model and preliminaries
	3 From learning algorithms to menus
	3.1 The asymptotic menu of a learning algorithm
	3.2 Characterizing possible asymptotic menus
	3.3 No-regret and no-swap-regret menus

	4 Characterizing Pareto-optimal menus
	4.1 Constraints on learner utilities
	4.2 Pareto-domination and minimum-value sets
	4.3 Completing the proof

	Acknowledgments
	References
	A Implications for no-regret and no-swap-regret menus
	B Mean-based algorithms and menus

