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Abstract

B lasiok et al. [2023] proposed distance to calibration as a natural measure of calibration error that unlike
expected calibration error (ECE) is continuous. Recently, Qiao and Zheng [2024] (COLT 2024) gave a non-
constructive argument establishing the existence of a randomized online predictor that can obtain O(

√
T )

distance to calibration in expectation in the adversarial setting, which is known to be impossible for ECE.
They leave as an open problem finding an explicit, efficient, deterministic algorithm. We resolve this problem
and give an extremely simple, efficient, deterministic algorithm that obtains distance to calibration error at
most 2

√
T + 1.
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1 Introduction

Probabilistic predictions of binary outcomes are said to be calibrated, if, informally, they are unbiased conditional
on their own predictions. For predictors that are not perfectly calibrated, there are a variety of ways to measure
calibration error. Perhaps the most popular measure is Expected Calibration Error (ECE), which measures the
average bias of the predictions, weighted by the frequency of the predictions. ECE has a number of difficulties
as a measure of calibration, not least of which is that it is discontinuous in the predictions. Motivated by this,
B lasiok et al. [2023] propose a different measure: distance to calibration, which measures how far a predictor is
in ℓ1 distance from the nearest perfectly calibrated predictor. In the online adversarial setting, it has been known
since Foster and Vohra [1998] how to make predictions with ECE growing at a rate of O(T 2/3). Qiao and Valiant
[2021] show that obtaining O(

√
T ) rates for ECE is impossible. Recently, in a COLT 2024 paper, Qiao and Zheng

[2024] showed that it was possible to make sequential predictions against an adversary guaranteeing expected
distance to calibration growing at a rate of O(

√
T ). Their algorithm is the solution to a minimax problem of size

doubly-exponential in T . They leave as an open problem finding an explicit, efficient, deterministic algorithm
for this problem. In this paper we resolve this problem, by giving an extremely simple such algorithm with an
elementary analysis.

Algorithm 1.1. Almost-One-Step-Ahead

Input: Sequence of outcomes y1:T ∈ {0, 1}T .

Output: Sequence of predictions p1:T ∈
{

0, 1
m , . . . , 1

}T
for some discretization parameter m > 0.

for each t = 1 to T :

Given look-ahead predictions p̃1:t−1, define the look-ahead bias conditional on a prediction p as:

αp̃1:t−1(p) :=

t−1∑
s=1

1[p̃s = p](p̃s − ys)

Choose two adjacent points pi = i
m , pi+1 = i+1

m satisfying:

αp̃1:t−1(pi) ≤ 0 and αp̃1:t−1(pi+1) ≥ 0

Arbitrarily predict pt = pi or pt = pi+1.

Upon observing the outcome yt, set the look-ahead prediction:

p̃t = argminp∈{pi,pi+1} |p− yt|

2 Setting

We study a sequential binary prediction setting: at every round t, a forecaster makes a prediction pt ∈ [0, 1], after
which an adversary reveals an outcome yt ∈ {0, 1}. Given a sequence of predictions p1:T and outcomes y1:T , we
measure expected calibration error (ECE) as follows:

ECE(p1:T , y1:T ) =
∑

p∈[0,1]

∣∣∣∣∣
T∑

t=1

1[pt = p](pt − yt)

∣∣∣∣∣
Following Qiao and Zheng [2024], we define distance to calibration to be the minimum ℓ1 distance between a
sequence of predictions produced by a forecaster and any perfectly calibrated sequence of predictions:

CalDist(p1:T , y1:T ) = min
q1:T∈C(y1:T )

∥p1:T − q1:T ∥1

where C(y1:T ) = {q1:T : ECE(q1:T , y1:T ) = 0} is the set of predictions that are perfectly calibrated against
outcomes y1:T . First we observe that distance to calibration is upper bounded by ECE.
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Lemma 2.1. (Qiao and Zheng [2024]) Fix a sequence of predictions p1:T and outcomes y1:T . Then,
CalDist(p1:T , y1:T ) ≤ ECE(p1:T , y1:T ).

Proof. For any prediction p ∈ [0, 1], define

yT (p) =
T∑

t=1

1[pt = p]∑T
t=1 1[pt = p]

yt

to be the average outcome conditioned on the prediction p. Consider the sequence q1:T where qt = yT (pt).
Observe that q1:T is perfectly calibrated. Thus, we have that

CalDist(p1:T , y1:T ) ≤ ∥p1:T − q1:T ∥1

=
T∑

t=1

|pt − qt|

=
∑

p∈[0,1]

T∑
t=1

1[pt = p]|p− yT (p)|

=
∑

p∈[0,1]

|p− yT (p)|
T∑

t=1

1[pt = p]

=
∑

p∈[0,1]

∣∣∣∣∣p
T∑

t=1

1[pt = p] − yT (p)
T∑

t=1

1[pt = p]

∣∣∣∣∣
=

∑
p∈[0,1]

∣∣∣∣∣
T∑

t=1

1[pt = p](p− yt)

∣∣∣∣∣
= ECE(p1:T , y1:T )

The upper bound is not tight, however. The best known sequential prediction algorithm obtains ECE
bounded by O(T 2/3) [Foster and Vohra, 1998], and it is known that there is no algorithm guaranteeing ECE
below O(T 0.54389) [Qiao and Valiant, 2021, Dagan et al., 2024]. Qiao and Zheng [2024] give an algorithm that is
the solution to a game of size doubly-exponential in T that obtains expected distance to calibration O(

√
T ). Here

we give an elementary analysis of a simple efficient deterministic algorithm (Algorithm 1.1) that obtains distance
to calibration 2

√
T + 1.

Theorem 2.1. Algorithm 1.1 (Almost-One-Step-Ahead) guarantees that against any sequence of outcomes,
CalDist(p1:T , y1:T ) ≤ 2

√
T + 1.

3 Analysis of Algorithm 1.1

Before describing the algorithm, we introduce some notation. We will make predictions that belong to a grid.
Let Bm = {0, 1/m, ..., 1} denote a discretization of the prediction space with discretization parameter m > 0, and
let pi = i/m. For a sequence of predictions p̃1, ..., p̃t and outcomes y1, ..., yt, we define the bias conditional on a
prediction p as:

αp̃1:t(p) =
t∑

s=1

1[p̃s = p](p̃s − ys)

To understand our algorithm, it will be helpful to first state and analyze a hypothetical “lookahead” algorithm
that we call “One-Step-Ahead”, which is closely related to the algorithm and analysis given by Gupta and Ramdas
[2022] in a different model. One-Step-Ahead produces predictions p̃1, ..., p̃T as follows. At round t, before observing
yt, the algorithm fixes two predictions pi, pi+1 satisfying αp̃1:t−1(pi) ≤ 0 and αp̃1:t−1(pi+1) ≥ 0. Such a pair is
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guaranteed to exist, because by construction, it must be that for any history, αp̃1:t−1(0) ≤ 0 and αp̃1:t−1(1) ≥ 0.
Note that a well known randomized algorithm obtaining diminishing ECE (and smooth calibration error) uses
the same observation to carefully randomize between two such adjacent predictions [Foster, 1999, Foster and
Hart, 2018]. Upon observing the outcome yt, the algorithm outputs prediction p̃t = argminp∈{pi,pi+1} |p − yt|.
Naturally, we cannot implement this algorithm, as it chooses its prediction only after observing the outcome, but
our analysis will rely on a key property this algorithm maintains—namely, that it always produces a sequence of
predictions with ECE upper bounded by m + 1, the number of elements in the discretized prediction space.

Theorem 3.1. For any sequence of outcomes, One-Step-Ahead achieves ECE(p̃1:T , y1:T ) ≤ m + 1.

Proof. We will show that for any pi ∈ Bm, we have |αp̃1:T (pi)| ≤ 1, after which the bound on ECE will follow:
ECE(p̃1:T , y1:T ) =

∑
pi∈Bm

|αp̃1:T (pi)| ≤ m+1. We proceed via an inductive argument. Fix a prediction pi ∈ Bm.

At the first round t1 in which pi is output by the algorithm, we have that |αp̃1:t1 (pi)| = |pt1 − yt1 | ≤ 1. Now
suppose after round t − 1, we satisfy |αp̃1:t−1(pi)| ≤ 1. If pi is the prediction made at round t, it must be that
either: αp̃1:t−1(pi) ≤ 0 and pi − yt ≥ 0; or αp̃1:t−1(pi) ≥ 0 and pi − yt ≤ 0. Thus, since αp̃1:t−1(pi) and pi − yt

either take value 0 or differ in sign, we can conclude that

|αp̃1:t(pi)| = |αp̃1:t−1(pi) + pi − yt| ≤ max{|αp̃1:t−1(pi)|, |pi − yt|} ≤ 1

which proves the theorem.

Algorithm 1.1 (Almost-One-Step-Ahead) maintains the same state αp̃1:t(p) as One-Step-Ahead (which it can
compute at round t after observing the outcome yt−1). In particular, it does not keep track of the bias of
its own predictions, but rather keeps track of the bias of the predictions that One-Step-Ahead would have made.
Thus it can determine the pair pi, pi+1 that One-Step-Ahead would commit to predict at round t. It cannot make
the same prediction as One-Step-Ahead (as it must fix its prediction before the label is observed) — so instead it
deterministically predicts pt = pi (or pt = pi+1 — the choice can be arbitrary and does not affect the analysis).
Since we have that |pi − pi+1| ≤ 1

m , it must be that for whichever choice One-Step-Ahead would have made, we
have |p̃t − pt| ≤ 1

m . In other words, although Almost-One-Step-Ahead does not make the same predictions as
One-Step-Ahead, it makes predictions that are within ℓ1 distance T/m after T rounds. The analysis then follows
by the ECE bound of One-Step-Ahead, the triangle inequality, and choosing m =

√
T .

Proof of Theorem 2.1. Observe that internally, Algorithm 1.1 maintains the sequence p̃1, ..., p̃t which
corresponds exactly to predictions made by One-Step-Ahead. Thus, by Lemma 2.1 and Theorem 3.1, we have that
CalDist(p̃1:T , y1:T ) ≤ ECE(p̃1:T , y1:T ) ≤ m+ 1. Then, we can compute the distance to calibration of the sequence
p1, ..., pT :

CalDist(p1:T , y1:T ) = min
q1:T∈C(y1:T )

∥p1:T − q1:T ∥1

= min
q1:T∈C(y1:T )

∥p1:T − p̃1:T + p̃1:T − q1:T ∥1

≤ ∥p1:T − p̃1:T ∥1 + min
q1:T∈C(y1:T )

∥p̃1:T − q1:T ∥1

≤ T

m
+ m + 1

where in the last step we use the fact that |pt − p̃t| ≤ 1/m for all t and thus ∥p1:T − p̃1:T ∥1 ≤ T/m. The result
then follows by setting m =

√
T . □
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