Foundational Integration Verification of a Cryptographic
Server

ANDRES ERBSEN, Google, USA

JADE PHILIPOOM, Google, Germany

DUSTIN JAMNER, Massachusetts Institute of Technology, USA
ASHLEY LIN, Massachusetts Institute of Technology, USA
SAMUEL GRUETTER, Massachusetts Institute of Technology, USA
CLEMENT PIT-CLAUDEL, EPFL, Switzerland

ADAM CHLIPALA, Massachusetts Institute of Technology, USA

We present verification of a bare-metal server built using diverse implementation techniques and languages
against a whole-system input-output specification in terms of machine code, network packets, and math-
ematical specifications of elliptic-curve cryptography. We used very different formal-reasoning techniques
throughout the stack, ranging from computer algebra, symbolic execution, and verification-condition genera-
tion to interactive verification of functional programs including compilers for C-like and functional languages.
All these component specifications and domain-specific reasoning techniques are defined and justified against
common foundations in the Coq proof assistant. Connecting these components is a minimalistic specification
style based on functional programs and assertions over simple objects, omnisemantics for program execution,
and basic separation logic for memory layout. This design enables us to bring the components together in a
top-level correctness theorem that can be audited without understanding or trusting the internal interfaces
and tools. Our case study is a simple cryptographic server for flipping of a bit of state through public-key
authenticated network messages, and its proof shows total functional correctness including static bounds on
memory usage. This paper also describes our experiences with the specific verification tools we build upon,
along with detailed analysis of reasons behind the widely varying levels of productivity we experienced be-
tween combinations of tools and tasks.

CCS Concepts: » Software and its engineering — Formal software verification; Semantics; Integration
frameworks; « Security and privacy — Public key (asymmetric) techniques.

Additional Key Words and Phrases: proof assistants, elliptic-curve cryptography, bare-metal programming

ACM Reference Format:

Andres Erbsen, Jade Philipoom, Dustin Jamner, Ashley Lin, Samuel Gruetter, Clément Pit-Claudel, and Adam
Chlipala. 2024. Foundational Integration Verification of a Cryptographic Server. Proc. ACM Program. Lang. 8,
PLDI Article 216 (June 2024), 26 pages. https://doi.org/10.1145/3656446

1T INTRODUCTION

Formal verification can conclusively rule out deviations of a software component from its formal
specification, and highly automated and effective verification tools are available for specific imple-
mentation and specification formats. However, specifications of computer-systems components

Authors’ addresses: Andres Erbsen, Google, Cambridge, USA; Jade Philipoom, Google, Berlin, Germany; Dustin Jamner,
Massachusetts Institute of Technology, Cambridge, USA; Ashley Lin, Massachusetts Institute of Technology, Cambridge,
USA; Samuel Gruetter, Massachusetts Institute of Technology, Cambridge, USA; Clément Pit-Claudel, EPFL, Lausanne,
Switzerland; Adam Chlipala, Massachusetts Institute of Technology, Cambridge, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART216

https://doi.org/10.1145/3656446

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

216:2 A. Erbsen, J. Philipoom, D. Jamner, A. Lin, S. Gruetter, C. Pit-Claudel, and A. Chlipala

(and even the languages they are written in) can be astoundingly subtle, leaving room for concern
about implementation flaws simply being replicated in these specifications or the verification tools
themselves. At the same time, the intuitive notion that the components of a system should “just
work well together” is often much easier to formalize and yet hardly ever feasible to prove directly.
We report on an experiment in integration verification, that is proving system correctness through
composing modular component proofs, for a bare-metal software stack that includes functional
and imperative languages, three qualitatively different compilers, optimized implementations of
elliptic-curve and addition-rotate-XOR cryptography, an Ethernet driver, UDP/IP networking, and
utility libraries along with a proof-of-concept application.

Our work is unique in achieving a machine-checked integrated correctness proof about all soft-
ware in a system by building on completely different reasoning methods in different subdomains.
A key challenge is creating formal specifications that delineate responsibilities between adjacent
components and justifying the use of domain-specific reasoning as a step towards a precise theo-
rem about input and output of the entire system. To enable rigorous yet flexible reasoning, we work
in the Coq proof assistant, restricting ourselves to domain-specific tools that can generate proofs
checkable by it. Conceptually, the program-verification, theory-solver, and computer-algebra tools
compatible with Coq can be taken as stand-ins for their independent counterparts, and we also
benefit from the flexibility of combining them in ad-hoc ways with incremental mechanized checks
against corner-cutting. However, insisting on foundational verification (meaning that all compo-
nent verifications must generate proofs in a common core language) also comes with challenges:
the selection of proof-producing or proven-correct verification tools is limited due both to inherent
technical challenges and skilled implementers prioritizing new research. (In particular, we make do
without modern SAT or SMT solvers due to challenges in generating efficiently checkable proofs
from them.) Thus we present separate conclusions about the conceptual plan, the specification
style we converged on, and concrete use of the research artifacts we build upon.

To make the discussion more concrete, we will now describe the demonstration system we
built and the theorem we proved about it. Yet we request that the reader keep in mind that this
system exists exactly for concreteness — we built the demo to show off the integration of the
components, not the components themselves. Our demonstration system is based on a SiFive FE310
microcontroller that runs RISC-V (RV32IM) [Waterman and Asanovic 2019] code in a bare-metal
environment. The server listens for UDP packets over Ethernet, responds to a session initiation
with an X25519 elliptic-curve Diffie-Hellman key exchange, and accepts a different packet type to
complete the handshake and authenticate the user whose authorized public key is specified in the
system configuration. After successful authentication, a general-purpose digital output is driven
based on the command from the received packet. In the physical demonstrations, this output is
connected to a motor controller that opens or closes a toy garage door, which stands in for remotely
managed real-world infrastructure such as a power plant or the gates of a dam.

The specification is simple: successfully authenticated commands should drive the actuator,
while other input should be ignored. The required elliptic-curve mathematics are proven against
affine-coordinate formulas that fit on the back of a napkin, and the network packet formats are
specified by concatenating appropriate lists of bytes in a functional language. The bottom inter-
face is RISC-V machine code. Someone who wishes to understand and audit the statement of our
system theorem does not need to read definitions of the programming languages, APIs and ABIs,
and resource accounting we use that ensures that the system will not run out of memory, over-
write code with data, or enter an infinite loop, because our statement does not include or reference
any definitions related to these concerns. The proof of our statement has to deal with all these
concerns, but the internal specifications all “cancel out” as we compose the subproofs.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

Foundational Integration Verification of a Cryptographic Server 216:3

Rupicola

----- ->{ Montgomery X/Z ladder (§3.3) ‘

K e ’
l Low-level Gallina (§3.3) | - - - ----:

_________ Arithmetic templates

FC !
Pure ANF code

RISC-V machine code

Top-level loop
Legend

Specifi

[Specifications| pecifies
Functional Reasoning

T Used in

i -

i Partial Eval (§3.4) -

i

: Rupicol
l Low-level Gallina (§3.4) % -------------- upieota RISC-V| — —-oESS

FC-to-Bedrock2 (§3.6) :

Exponentiation
by squaring (§3.4)

Fig. 1. System diagram. Contributions of this work are bolded.

Our implementation builds upon established Coq projects from each domain, reusing both meth-
ods and artifacts when practical while extending each project as required for verified integration:

e Underspecification and unconditional requirements in internal specifications are encoded
using omnisemantics [Charguéraud et al. 2023], and we use simple separation logic as an
assertion language throughout the stack, even to specify compilers.

e We build upon the Bedrock2 [Erbsen et al. 2021] framework. Its C-like language and proof
and compilation tools are the core of our approach, and we show that it can be applied to a
significantly more complex specification, with network input and output, compared to past
work. We also add support for reasoning about read-before-write aliasing.

o We adopt the Fiat Cryptography [Erbsen et al. 2019] framework, for generation of fast finite-
field arithmetic from templates expressed and proven as higher-order functional programs.
We extend it above with proofs of elliptic-curve-point representations structures and algo-
rithms, as well as below with a new verified backend targeting Bedrock2.

e We adopt the Rupicola [Pit-Claudel et al. 2022] code generator, deriving bare-metal-ready
Bedrock2 code from functional programs. We use it to build cryptographic code on top of
finite-field arithmetic and also integrate code for IP checksums from past work on Rupicola.

o We experimented with an interactive-proof-driven variant of relational compilation for gen-
erating code for algorithmically straightforward routines with memory-access-related rea-
soning bottlenecks such as ChaCha20.

Most importantly, we pull all components (Figure 1) together in a concrete case study of a bare-
metal networked cryptographic system, with full integration of these tools and their proofs into a
machine-checked end-to-end theorem (Figure 2) that connects the behavior of a piece of RISC-V
machine code to a high-level mathematical specification of cryptographic algorithms. We achieve
a trusted code base (TCB) significantly smaller than in past work for systems of this complexity
level, while allowing for use of high-level languages for challenging implementation tasks. Sec-
tion 2 explains our main theorem and integration-verification story, leaving Section 3 to present
our implementation’s components in more detail. Section 4 evaluates our artifact and approach.
Section 5 reviews the state of the art in comprehensive verification, and Section 6 concludes.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

216:4 A. Erbsen, J. Philipoom, D. Jamner, A. Lin, S. Gruetter, C. Pit-Claudel, and A. Chlipala

Definition initial_conditions mach := 0x20400000 = mach.(getPc) A [] = mach. (getlLog) ..
Theorem garagedoor_correct : forall mach : RiscvMachine, initial_conditions mach ->
always runl (eventually runl (fun mach' => io_spec mach'.(getLog))) mach.

Fig. 2. End-to-end theorem relating I/O behavior of RISC-V machines starting from states satisfying
initial_conditions to the network protocol described by the trace predicate io_spec.

Our implementation and proofs are available under a permissive open-source license.!

2 INTEGRATION VERIFICATION FROM MACHINE CODE TO NETWORK PACKETS

Figure 2 shows the statement of the end-to-end theorem that we proved about our demonstra-
tion system. This section will unpack the definitions appearing in that statement and review the
basic ingredients used to specify the functional correctness of components throughout the system.

The foundation of our verified stack is a model of the RISC-V instruction set. Specifically, run1
represents the execution of a single RISC-V instruction as a predicate transformer: it takes a post-
condition as an argument and returns the proposition that must hold one instruction earlier. Run-
time input is modeled by run1 invoking its postcondition under a universal quantifier. The defi-
nition of run1 instantiates an executable RISC-V model with omnisemantics for input nondeter-
minism [§3.4.5 Bourgeat et al. 2023; Erbsen et al. 2021]. So we can state properties of interaction
of the RISC-V processor with the outside world, our model of the processor includes the trace of
all inputs and outputs observed during its execution as a piece of ghost state.

Our system theorem covers the execution from the first programmable RISC-V instruction on-
wards, but it relies on specific conditions on the initial state: the program counter must start out
pointing to the address where the verified machine code begins, the ghost-state trace must start
out empty, the required amount of memory must be available, and so on. In return, our specifi-
cation guarantees liveness and crash-freedom: io_spec will be repeatedly reestablished without
any carve-outs for potentially running out of memory or entering a silent infinite loop instead.

This liveness guarantee is encoded using the combinators always and eventually inspired by
the temporal-logic operators 0O and ¢: always runl P mach means that P holds on the machine
state mach and that after runi, always runl P holds in any state that might result. Similarly,
eventually runl P mach means that P holds on mach or eventually runl P holds after runi,
with input received during run1 potentially influencing the number of steps until reaching P.?

While always in the specification simply encodes that we are proving an invariant, eventually
allows us to use a specification that only applies after having received an entire network packet
and potentially responded to it, but not in the middle of the transaction. As our system’s response
to one packet may depend on past inputs, we extend the trace-predicate formalism from Erbsen
et al. [2021, §3.1] with stateful protocols encoded as labeled transition systems. For the demo:
Record state := { prng_state : list byte ; x25519_ephemeral_secret : list byte }.

Definition protocol_step : state -> list MMIO -> state -> Prop := (* state machine *).
Definition protocol_spec 1 := exists s s', labeled_transitions protocol_step s s' 1.
Definition io_spec: list _ -> Prop := only_mmio_satisfying (boot_seq +++ protocol_spec).

Note that state is for protocol specification only; io_spec does not (and cannot) say how it is
represented in machine memory. The state-machine style is only used for the network protocol;
peripheral initialization preceding it (+++) is still specified using simple regex-like predicates. Both
Ihttps://github.com/mit-plv/foundational-integration-verification- of-a-cryptographic-server
ZFor always runl P, we give and prove equivalent a coinductive definition and a characterization through the existence

of an inductive invariant that implies P [Erbsen 2022, §4.4.3]. eventually is defined inductively [§3.2 Charguéraud et al.
2023; Erbsen et al. 2021, §4.3]. We also proved that the trace itself can always be extended to satisfy io_spec.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

Foundational Integration Verification of a Cryptographic Server 216:5

phases use memory-mapped input and output (MMIO), so each trace element is a read or a write
with an address and a value (other work in the same framework also uses direct memory access).

2.1 Network Protocol Specification

The possible inputs, outputs, and transitions of our simple network protocol are specified in 50
lines of ad-hoc casework making up the relation protocol_step. Protocols featuring complex
state diagrams, or sequential or parallel composition of subprotocols, would likely benefit from
expansion of the verified stack up towards simpler top-level specifications, perhaps by integrating
a certifying compiler as in Ikebuchi et al. [2022], or verification of distributed-systems properties.

However, regardless of how protocol-level control flow is ex-
pressed, the specification must relate inputs to computed values
and output actions, which we will sketch in this section by show-
ing a cross-cutting sample of definitions that specify the server
sending its first packet in the protocol.

In our demo, the output can either be a network packet or an
actuation of a general-purpose digital output pin controlling a mo-
tor that raises or lowers the door (Figure 3). Both are encoded as
MMIO writes to appropriate peripherals. For example, transmit-
ting some bytes over Ethernet is specified as a sequence of MMIO
writes, using le_combine to respect the little-endian interface:

Fig. 3. Physical demonstration

Fixpoint 1an9250_writepacket (bs : list byte) : list MMIO -> Prop := match bs with
| [J => fun trace => trace = []
| bO::b1::b2::b3::bs => 1an9250_writeword TX_DATA_FIFO (le_combine [b@;b1;b2;b3])
+++ 1an9250_writepacket bs
| _ => fun _ => False end.

The contents of the network packets are described using simple functional-program expressions
inside protocol_step. For example, here is our specification of the server’s first packet of a Diffie-
Hellman handshake featuring headers of network protocols and a fresh X25519 public key.

Ethernet header{ mac_remote ++ mac_local ++ be2 ethertype ++

let ip_hdr checksum := ih_const ++ be2 ip_length ++
ip_idff ++ [ipproto] ++ le_split 2 checksum ++
ip_local ++ ip_remote in

ip_hdr (IPChecksum.Spec.ip_checksum (ip_hdr 0)) ++

UDP header{ udp_local ++ udp_remote ++ be2 udp_length ++ be2 @ ++

garagedoor_header ++

x25519_spec x25519_ephemeral_secret Curve25519.M.B

IP header

Application data

The elliptic-curve payload of the packet is described using the same building blocks for encod-
ing and decoding as well as domain-standard mathematical constructions such as getting the X
coordinate of a point, unary integer-point multiplication, and forcing a number to be 0 mod 8:

Definition x25519_spec s P :=
le_split 32 (M.X@ (Curve25519.M.scalarmult (Curve25519.clamp (le_combine s)) P)).

The point-addition function from whose repetition multiplication arises is specified using stan-
dard affine formulas® (shown here in twisted Edwards coordinates for brevity and proven equiva-
lent to the Montgomery version):

3https:/ /en.wikipedia.org/wiki/Twisted_Edwards_curve#Addition_on_twisted_Edwards_curves

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

216:6 A. Erbsen, J. Philipoom, D. Jamner, A. Lin, S. Gruetter, C. Pit-Claudel, and A. Chlipala

Program Definition add (P1 P2 : point) : point :=
match coordinates P1, coordinates P2 return FxF with (x1, y1), (x2, y2) =>
(((xT*y2+yT1xx2) / (1+d*x1*xx2xyT1xy2)), ((y1*y2-a*x1*x2)/(1-dxx1*x2*y1*xy2))) end.

These specifications are illustrative of a more general pattern that also persists throughout the
internal interfaces of our system: we state requirements directly in terms of well-known operations
on simple objects. In the packet-content specification we see integers (Z) translated to little-endian
(le_split) or big-endian (be2) lists of bytes that are then concatenated (++). An ad-hoc pure
function describes the content of the IP header before and after checksum computation. In add, F
refers to a field that is later instantiated with Z /(22> — 19)Z and serialized using le_split. We are
highlighting this barebones style in contrast to defining a more specialized framework for packet
formats or cryptographic computations: simple functional programs work well enough and are
suitable for use as specifications of the packet-processing code written in Bedrock2, Rupicola’s
IP-checksum example, and elliptic-curve arithmetic from Fiat Cryptography.

2.2 Common Concepts Throughout Component Specifications

Specification technique: we adopt and recommend stating specifications using functional
reference implementations for computation, simple separation logic for memory layout,
and omnisemantics for execution. Traces and trace predicates to specify input and output also
worked well given our goal to prove continued correct operation regardless of invalid input.

The pursuit to verify systems of several components naturally tempts the forward-looking ar-
chitect to consider intentionally introducing uniformity to how the parts are implemented, spec-
ified, and verified. Indeed, as each gap and idiosyncratic choice that does not appear in the top-
level theorem needs to be reconciled by proof, uniformity can straightforwardly reduce acciden-
tal complexity and associated toil. Further, there is a common intuition behind many success-
ful programming-languages techniques that introducing structure (constraints) can then simplify
working with programs expressed within these constraints. For systems verification specifically,
a number of pervasive frameworks have been proposed: certified abstraction layers enforce con-
textual equivalence of implementations [Gu et al. 2016], interaction trees can be used to reason
equationally about nested reactive behaviors [Koh et al. 2019], Iris can be used to verify safety
of particular concurrent combinations of programs [Jung et al. 2015], and so on. Substantial case
studies within each framework have shown impressive integration successes, and yet none of the
past whole-system proofs surveyed in section 5 use these highly structured ecosystems, instead
relying on purpose-built components.

We integrate three independently successful projects that were not developed within a single
prescriptive framework, and yet we find that their most primitive specifications (once all domain-
specific machinery has been encapsulated) are enough to connect them with manageable glue
code and integration proofs. For example, while Fiat Cryptography relies on parametric templates
and a verified higher-order partial-evaluation engine under the hood, the generated straight-line
three-operand code and specifications like |[mulmod a b] = |a] - |#] mod m are not tied to these
tools. Similarly, Rupicola proves that code generated through relational compilation implements
the purely functional input program. Rather than adding structure throughout, we reduce project-
specific definitions to their basic Coq building blocks and rely on that common foundation for
integration at point-in-time interfaces such as function boundaries.

Three specification considerations appear throughout the components of our stack: modeling
execution of imperative languages with undefined (forbidden) and unspecified (nondeterministic)
cases, passing data by reference to addressable memory of these languages, and keeping track
of interaction with the outside world. We made consistent but unambitious choices, intentionally
favoring flexibility in case of unforeseen challenges over general properties from curated structure:

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

Foundational Integration Verification of a Cryptographic Server 216:7

(1) We specify programming languages that do not have straightforward denotations to Coq
using operational semantics. Per our goal to prove total-correctness properties of all possible
executions, we use the omnisemantics flavor [Charguéraud et al. 2023], which amounts to
weakest-precondition predicate transformers defined inductively.

(2) Preconditions and postconditions of impure programs relate functional reference models of
their arguments and return values to in-memory representations thereof using separation
logic, regardless of whether these programs are written by hand or generated by a compiler.
Most specifications use separating conjunction * as a simple disjoint-union operator; in some
cases we also use existential quantifiers for data abstraction and non-separating conjunction
for read-before-write aliasing.

(3) I/O is modeled using lists of language-appropriate events as in Erbsen et al. [2021].

While the structure of our specifications is uninventive, complex reasoning can be required to
satisfy them. The specifications of efficient algorithms for computing with mathematical objects
are described in terms of naive purely functional descriptions of the same operations. Thus the
specifications are computable in the theoretical sense, but actually running them in practice is
often infeasible: for example, sometimes multi-hundred-bit natural numbers are treated as unary.
Similarly, reconciling shallow differences between different libraries’ specifications of the same
concept is accomplished as a part of proving the integration between them, sometimes restating
the specification of one using the definitions from the other. Doing so is a chore, but it works.

2.3 Read-Before-Write Aliasing in Separation Logic

We make important use of non-separating conjunction in a few places to state preconditions of
functions whose inputs may overlap each other or the output. C’s memmove is a canonical example:

fnspec! "memmove" (dst src n : word) / (d s : list byte) (R Rs : mem -> Prop),

{ requires t m := m =x bytes src s * Rs A m =x bytes dst d *x R A
length s = n :>Z A lengthd =n :>Z A n <= 2"31;
ensures t' m := m =x bytes dst s * R A t=t' }.

The function takes two pointers and a length as arguments, assumes that each pointer points to
a list of bytes (ghost arguments d and s), and overwrites the destination with the source, taking
care to catch the entire input even if it overlaps the output. Critically, the specification here uses
separate frame quantifiers (R and Rs) in the two non-separating conjuncts asserted on the same
memory (m =*), and only the frame R of the destination buffer is preserved in the postcondition.
Depending on how the function is called, R may contain (part of) the source buffer again, in which
case that part is preserved, or not. The source frame Rs is intentionally unused in the postcondition
to indicate that it may not be preserved. We usually abbreviate such preconditions asm =*> bytes
src s, which stands for 3 Rs, bytes src s * Rs to avoid naming that frame.

Both proof automation for handwritten imperative code and compilers generating imperative
code support calling* functions specified in this manner at the same level of automation as other
separation-logic preconditions: each non-separating conjunct is solved independently, instantiat-
ing each frame quantifier through cancellation. For instance, consider a (no-op) call to memmove
with dst = src, so cancellation finds d = s and Rs = R. In this case, the two non-separating con-
juncts in the precondition are identical, and the specification overall describes an identity function.
Yet Fiat-Crypto-generated three-operand arithmetic routines whose output is some nontrivial func-
tion of the input are useful even in the case where both inputs match the output: for example, an
addition function can be used to perform in-place doubling. On the other hand, calling memmove

“The proof of memmove itself is less streamlined and relies on Bedrock2 (unlike VST and CompCert) giving the simple,
permissive semantics to compare addresses of memory potentially returned by different allocations.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

216:8 A. Erbsen, J. Philipoom, D. Jamner, A. Lin, S. Gruetter, C. Pit-Claudel, and A. Chlipala

with disjoint inputs results in each input being inferred to belong to the frame of the other, which
again makes the two non-separating conjunctions in the precondition identical but represents the
same guarantee as would be derived from a specification that used a single frame and two buffers
in both the precondition and the postcondition.

This simple specification style proved convenient for the variety of components that we verified.
As usual in Cogq, it is important that we can mention native Gallina functional programs of arbitrary
sophistication, anywhere within separation-logic specifications, “for free” Those programs wind
up translated to Bedrock2 code in a variety of ways, all of which turned out to be compatible with
this style. We carried out such proofs directly on manually written Bedrock2 programs, integrated
with four different verified or proof-generating translators (two new to our project), and connected
this specification style in the end with the Bedrock2 compiler’s proof.

We now turn to details of those different components.

3 INTEGRATING COMPONENT PROOFS
3.1 RISC-V Machine Code for Memory-Mapped 1/O and Infinite Loops

The lowest-level language considered in this study is machine code for the RISC-V instruction set.
We follow the specification and reasoning strategy from Bedrock2 [Bourgeat et al. 2023; Erbsen
et al. 2021] but target the RV32IM instruction set of a commercial microcontroller instead of a
verified processor implemented on an FPGA. While mainstream C code commonly uses inline as-
sembly and macros to access hardware features not supported by the compiler, the ad-hoc RISC-V
machine code used for similar purposes in the work we build upon is held to the same standards
of verification as the compiler-generated code.

Specification technique: treat inline assembly blocks as mini-compilers to generate ver-
ified assembly for those parts not directly expressible in the Bedrock2 source language.

The Bedrock2 compiler is proven to satisfy omnisemantics specification preservation. The state-
ment that a program c satisfies a postcondition Q is written ¢ || Q and captures safety, termination,
and an overapproximation of the set of possible outcomes. Then an optimization pass f should sat-
istyc) Q — f(c) | Q, and a compiler between languages with different state representations
needs a conclusion with a Q" defined in terms of Q. In this context, Q" includes invariants about
RISC-V registers, a decomposition of the machine memory as a disjoint union of source-language
memory and compiler-managed data structures such as function activation records on the stack,
and a mapping between Bedrock2 external-call traces and RISC-V memory-mapped I/O (MMIO)
traces. Compiler-correctness proofs proceed by induction on || under suitably strengthened hy-
potheses about the initial state [Erbsen et al. 2021, §4.2] [Charguéraud et al. 2023, §6].

The first problem solved using a mini-compiler is that our use of memory-mapped I/O to talk
to devices is not directly expressible in the Bedrock2 source language. Instead, it is modeled by
external calls, and the Bedrock2 compiler is parameterized over a mini-compiler for these external
calls, which replaces each call by either a load or store assembly instruction. Thus, the proof of
the assembly fragment for an external call must centrally establish the relationship between the
low-level and high-level I/O-trace events, but it must also show that the MMIO store does not
accidentally overwrite compiler data structures.

Moreover, the top-level loop is an infinite loop, but the Bedrock2 source-language semantics
only accept terminating programs, so we use another verified assembly macro that takes the rela-
tive addresses of an init function and a loop-body function, emitting a program that first calls the
init function and then repeatedly calls the loop-body function forever. In this case, the specification
of the assembly fragment is parametrized over that of the loop body, and this specification states
that any loop invariant is always eventually satisfied, leading to the top-level spec in Figure 2.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

Foundational Integration Verification of a Cryptographic Server 216:9

We reuse both mini-compilers from Erbsen et al. [2021]. Their specifications are considerably
longer than their implementations, and the corresponding proofs require correspondingly de-
tailed ad-hoc reasoning, but there are no surprise obstacles or hard-to-bridge abstraction gaps.
These proofs are made feasible by the use of language-independent separation-logic assertions and
straightforward elementwise relations connecting Bedrock2 and RISC-V-level I/O traces. These
techniques enable us to compose an end-to-end theorem that covers ad-hoc assembly code for
functionality without language support, as opposed to relying on some unverified assembly glue
code or extending the syntax and semantics of the languages.

3.2 Driver and Packet-Processing Verification in Bedrock2

Specification technique: next lowest-level functions written in a C-like language are spec-
ified using omnisemantics with separation-logic and trace-predicate assertions.

Again following past work, the Bedrock2 language (a simple well-defined subset of C) is at the
center of our system. However, most code in our system is not written in Bedrock2 either: we
only use it directly for I/O-heavy and computationally straightforward routines such as drivers
and packet shuffling, preferring functional programming otherwise. Nevertheless, all higher-level
compilers use Bedrock? as a target language, so the vast majority of code in our system is unti-
mately compiled by the Bedrock2 compiler, appealing to the compiler’s correctness proof.

To understand how computation-centric specifications interface with the I/O specifications, con-
sider the specification of the Ethernet transmit routine in our driver:
fnspec! "lan9250_tx" p 1 / bs ~> err,

{ requires t m := m =*> bytes p bs A 1 = length bs :>Z A 1 mod 4 =0 :> Z,;
ensures TM :=M=mA Jt', T=1t"++t A only_mmio_satisfying (fun h =>
(0 <> err A (any +++ spi_timeout) h) VvV (@ = err A lan9250_send bs h)) t' }.

This specification style will appear uniformly throughout our case study, so it is worth ex-
plaining a few of the most important structural elements. Here we are indicating that function
1an9250_tx receives two parameters named p and 1, in addition to one ghost parameter bs, which
is not passed at runtime but included to specify the relationship between the memory input and
I/O trace. The ghost parameter is separated from the other parameters with /. Then we have a
precondition in a requires clause and postcondition in an ensures clause. The precondition may
mention initial I/O trace t and memory m, while the postcondition may mention those variables
plus their final counterparts T and M. In terms of the omnisemantics specification of Bedrock2, the
ensures clause is the outcome set in which all executions must terminate, program and ghost
variables bound after fnspec! are universally quantified, and requires represents hypotheses
assumed about them - informally, V args. requires — f(args) || ensures.

In a scenario where the packet to be transmitted contains a Diffie-Hellman public key pk, the
specification would be instantiated with bs := pk. Thus, the precondition requires that the mem-
ory m contains the bytes pk of length 1 at the address p. The postcondition promises that the entire
memory remains unchanged (regardless of whether transmission succeeded) and that the return
value err corresponds to the I/O trace of the function: either a timeout was reached, or the exact
bytes bs = pk were transmitted.

The implementation loops over the 4-byte words in the packet, relying on the 1 mod 4 precon-
dition to ensure that all bytes in the packet buffer p have been transmitted once the loop exits:

Definition 1an9250_tx := func! (p, 1) ~> err {
err = 1an9250_writeword($TX_DATA_FIFO, $(2%13)|$(2*12)|1); require lerr;
err = 1an9250_writeword($TX_DATA_FIFO, 1); require lerr;
while ($3 < 1) {

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

216:10 A. Erbsen, J. Philipoom, D. Jamner, A. Lin, S. Gruetter, C. Pit-Claudel, and A. Chlipala

unpack! err = 1an9250_writeword($TX_DATA_FIFO, load4(p));
iferr{1=9%0}else{p=p+$4;, 1 =1-9%473 733
Building blocks such as 1an9259_writeword are themselves implemented similarly, bottoming

out in mini-compiler operations like MMIOWRITE (0x10024048, b) whose semantics extend the
I/O trace T with the arguments and return values. Trace predicates such as 1an9250_send used
in the specification mirror the control flow of the implementation, but they lack opportunities for
undefined behavior, are oblivious to memory layout, and use integers instead of machine words.
(Specifically, 1an9250_send describes how the packet length and metadata are communciated and
then defers to 1an9250_writepacket from Section 2.1.)

Discussion. The Bedrock2 toolchain comes with a program logic based on omnisemantics and
separation-logic assertions, featuring a selection of loop-invariant rules, symbolic execution for
straight-line code with only simple memory accesses, glue tactics for using Coq’s linear-arithmetic
prover with machine-word arithmetic from Bedrock2, and tactics for matching up I/O traces found
in program specifications and symbolic-execution output. As Bedrock2 is intended to support ver-
ification of very tricky programs, the emphasis is not on full automation but rather on taking care
of the boring parts of program proof while predictably generating tractable Coq goals (with the
proof context representing the symbolic state) for cases that cannot be solved automatically.

We found the proof tooling at this level to be okay. It is fairly common to find that simple-looking
side conditions are not proved automatically, but one can generally push predictably through these
proofs with tactics specialized to the Hoare-logic style. The main units of work and our time spent
on them are specification and proof of memmove (2 days), proof of memequal/memswap/memconst
(1 day), translating from C and proving an improved Ethernet driver (2 days), and generalization
of the compiler integration proofs from Erbsen et al. [2021] (2 weeks).

After the pieces discussed in the rest of the paper were in place, one team member spent two
weeks at 50% effort implementing the network protocol and integrating the components, so that
the full physical demo ran; then another two weeks at 50% time were spent integrating the proofs
into our top-level theorem. We also worked on X25519-specific proof integration over two to three
weeks. We do want to emphasize that there was substantial heterogeneity in who was proving
different components (not just in the compilation/proof styles used therein), so this integration
effort feels fairly realistic for a basic-research study.

3.3 Allocation-Free Functional Programming with Rupicola

Specification technique: functional programs are natural specifications for most impera-
tive computations, and C-like implementations with simple memory access but nontriv-
ial control flow can be derived from functional programs automatically.

We use Rupicola to translate functional code into imperative code. Rupicola implements the
concept of relational compilation [Pit-Claudel et al. 2022], the idea that given a source program s,
correct-by-construction compilation can be seen as a kind of proof search for proofs of 3t. R(s, t),
where R is a relation between source and target programs that serves as the specification of t.
Rupicola performs this proof search via Ltac automation using an extensible corpus of compilation
lemmas. Each lemma describes the relationship between one component of the source program,
say an addition or a map function invocation, and a snippet of imperative code that implements it.
The relation given by the pool of lemmas is generally partial because not all Gallina operations will
match compilation lemmas from the library, and the relation can be many-to-many when multiple
lemmas match the same source. For example, there might be one lemma that compiles a map to a
while loop, while another unrolls maps over known-length lists. The Rupicola compilation process
is designed for high automation, but its success in this regard can vary based on the automation’s

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

Foundational Integration Verification of a Cryptographic Server 216:11

ability to solve side conditions and the difference between the structures of the compilation lemmas
and that of the program under consideration.

Mechanically, Rupicola takes advantage of Coq’s Derive command, which allows developers
to simultaneously construct a definition and a proof of a property of that definition using tactics.
A standard Rupicola derivation defines a block of Bedrock2 code this way, where the predicate
it verifies is a Hoare triple in the Bedrock2 program logic where the postcondition describes the
expected output state of the program in terms of a related Gallina function, and the precondition
characterizes the valid inputs to that function. Rupicola then instantiates the Bedrock2 code block
by applying lemmas that fit the structure of the Gallina function and unifying their associated
Bedrock2 snippets with subterms of the code being derived.

This style is preferred for new code in our system, though it is not universally applicable. In
the more straightforward cases, we feed a functional specification directly to Rupicola and can
derive performant imperative code. If substantial concessions are required to express the data
flow in a manner that makes translation to imperative code straightforward, we prove a low-level
functional implementation against a higher-level spec and then derive the imperative code from
the low-level version. This higher-level spec could either be a readability-oriented version of the
low-level code or an independent description of what the algorithm is supposed to accomplish. For
example, our Montgomery ladder is proven to compute the Montgomery x coordinate of elliptic-
curve scalar multiplication, specified in affine coordinates. We also reuse some existing Rupicola
code and proofs verbatim to compute IP checksums.

Functional Programming and Computer Algebra. Implementations of elliptic-curve operations
contain sophisticated algorithms with large algebraic expressions and subtle case distinctions. Effi-
ciency considerations require the use of redundant representations: for a straightforward example,
a two-coordinate elliptic-curve point may be represented using three elements of the underlying
field. We do not want to tackle the proof challenges in tandem with tracking pointers through im-
perative code. Instead, we prefer to verify functional programs and then compile them effectively.

Definition montladder (scalarbits : Z) (testbit:Z->bool) (x1:F) : F :=

(while (fun '(_, i) => Z.geb i 0)

(fun '(x2, z2, x3, z3, swap, i) =>
dlet b := testbit i in dlet swap := xor swap b in
let (x2, x3) := cswap swap x2 x3 in let (z2, z3) := cswap swap z2 z3 in
dlet swap := b in let '((x2, z2), (x3, z3)) := xzladderstep x1 (x2, z2) (x3, z3) in
let i := Z.pred i in (x2, z2, x3, z3, swap, i))

(Z.to_nat scalarbits) (1%F, @%F, x1, 1%F, false, Z.pred scalarbits))

Fig. 4. Montgomery-ladder body in Gallina

Figure 4 shows an excerpt from the Montgomery-ladder algorithm for computing the scalar-
point multiplication in the case where neither input is known at compile time and must not be
leaked through timing side channels. The proof that this function corresponds to a specification in
terms of unary multiplication ((n+1)P = nP+ P) and standard point-addition formulas in affine co-
ordinates is straightforward using a combination of case analysis and Grobner-basis computations,
taking a Coq novice only a few days. In contrast, separation-logic-based verification of sophisti-
cated algorithms encoded in an imperative language is believed to take at least a semester’s worth
of training and still sometimes avoided. For example, to verify the TweetNaCl implementation of
Curve25519 using VST [Schwabe et al. 2021], a Coq program that closely mirrored the C code was
first written and proven against it, to be then analyzed further with imperative-language concerns

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

216:12 A. Erbsen, J. Philipoom, D. Jamner, A. Lin, S. Gruetter, C. Pit-Claudel, and A. Chlipala

fnspec! "montladder" pOUT pK pU / Kbytes (K : Z) (U : F _) OUT R,
{ requires t m := m =x FElem pOUT OUT * bytes pK Kbytes * FElem pU U x R A
le_combine Kbytes = K A scalarbits <= 8x(length Kbytes) :> Z;
ensures T M :=T =1t A (let OUT := montladder_lowlevel M_pos a24 scalarbits K U in
M =x FElem pOUT OUT * bytes pK Kbytes * FElem pU U * R) }.

Derive montladder_body SuchThat
(defn! "montladder" ("OUT", "K", "U") { montladder_body },
implements montladder_lowlevel using [felem_cswap; felem_copy; from_word; (*...%x) 1)
As montladder_correct. pose proof scalarbits_bound. compile. Qed.

Fig. 5. Montgomery-ladder implementation correctness

stackalloc 40 as X2; fe25519_copy(X2, U);

stackalloc 40 as Z2; fe25519_from_word(Z2, 1);

swap = 0; 1 = 255;

while 0 < i {
i=1-1; s_i=1oadl(K + i>>3)>>(i & 7) & 1;
swap = swap * s_i; felem_cswap(swap, X1, X2); felem_cswap(swap, Z1, Z2);
ladderstep(U, X1, Z1, X2, Z2); swap = s_i; unset s_i }

Fig. 6. Montgomery-ladder imperative code

out-of-the-way. In our case, the functional-language description of the optimized algorithm serves
as the input to derivation of Bedrock2 C code using Rupicola.

As the same functional program could be matched by multiple imperative programs, we write
a low-level version of it that includes hints about desired imperative-language implementation
choices. What distinguishes that low-level functional code from the high-level code of Figure 4
is that the low-level version uses special identity functions to annotate the choice between in-
place operations and stack allocations of temporaries. Algorithmically, the two are identical, and
we prove them equivalent using standard Coq proof techniques, since they are both written as
functional programs in Coq’s built-in language.

In Figure 5, we show the theorem and proof script that derives the imperative code excerpted in
Figure 6 and simultaneously proves its correctness with respect to the low-level functional code.
We first add a necessary assumption to the context (scalarbits < 2%?) and then use Rupicola’s
compile tactic to handle the proof. The compile tactic will then apply the compilation lemma asso-
ciated with each function call in the order that they occur in the program, solving side conditions
with various ancillary tactics as they arise. Specifically, here Coq’s linear-arithmetic solver proves
i>>3 stays within the bounds of the array starting at pK.

3.4 Template Metaprogramming With Rupicola

One of the key primitives missing from previous Fiat Cryptography work in order to derive a
Montgomery ladder is modular inversion (i.e., inversion in the field Z/ (25 - 19) z). For this part, we
use a combination of metaprogramming, partial evaluation, and relational compilation to generate
a Bedrock2 implementation using addition-chain exponentiation. For example, for x~! mod 89:

(1) We start with a Coq spec of modular inversion. x — x~! (mod 89)
(2) Using Euler’s theorem, we rewrite modular inverse into (naive) modular exponentiation.
x — x%7 (mod 89)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

Foundational Integration Verification of a Cryptographic Server 216:13

(3) We then replace naive exponentiation with a call to a generic exponentiation-by-squaring
algorithm (which approximates the best addition chain), implemented as a recursive Coq
function. The code is still purely functional, but its structure is close to the one we want for
the final program: internally, at run time, it computes a run-length encoding of the expo-
nent’s base-2 representation and uses a higher-order iterator repeat to perform repeated
squares (for sequences of zeroes) or squares-and-multiplies (for sequences of ones).

x — exp_by_sg_mod x 87 89

(4) Using Coq’s partial-evaluation capabilities, we precompute the base-2 decomposition (for
example, 87 = @b1010111) and unroll the recursion: x - (k%2 - x)?)?% - x)? - x)? - x
... except that we in fact keep the repeat iterator and intermediate let-bindings, to get a
purely functional program that implements exponentiation as a flat sequence of let-bindings
(each corresponds to one or multiple square or square-and-multiply operations).

x— (let r := x* in let r := > - x in let r := r? in
let r := repeat (r => r* - x % 89) r 3 in r)
(5) Finally, we use Rupicola to translate this pure program to Bedrock2. We map the higher-
order iterator to a loop and squares and multiplies to optimized in-place implementations.
void inv89(ptr x, ptr r) {
square89(r, x); square89(r, r); mult89(r, x, r); square89(r, r);
for (int i = @; i < 3; i++) { square89(r, r); mult89(r, x, r);} }

With this approach we do not have to write the Bedrock2 code by hand, yet we retain complete
control over its generation. For example, using repeat in the implementation of step 3 gives us a
more complex but smaller program. This approach squares nicely with standard Coq techniques,
so that a new example should take an expert just a few hours of work. However, we assigned this
part to a new team member as a learning-Coq exercise, and it took that person significantly longer.

3.5 Interactive Relational Compilation With Challenging Memory Accesses

After successfully using Rupicola to compile the previous examples, we went on to apply it to func-
tions that operate on memory buffers, specifically ChaCha20. While we completed the verification,
we did not achieve the same success as with X25519 due to two facets of the interaction between
ChaCha20’s specification and the Rupicola implementation’s current design decisions. First, sub-
stantial quantities of side conditions escaped solution by the corpus of tactics that Rupicola invokes.
For example, shifting between by-word and by-byte views of data required significant manual ef-
fort. Verifying such side conditions can impose a heavy burden when they do not fit within the
capabilities of the automation. This problem is hardly unique to relational compilation, but it espe-
cially stands out when using a framework designed for high levels of automation like Rupicola. In
particular, the pattern of applying a series of compilation lemmas tends to generate a large number
of similar subgoals, so when they must be solved manually, it becomes a burden.

Additionally, an initial reliance on existing Rupicola mechanisms hindered our ability to express
the low-level code in the best way and thus delayed development. Specifically, since Rupicola lem-
mas are structured following the design of Bedrock2, they handle temporary variables separately
from memory. This dichotomy meant that existing Rupicola lemmas operate only on data in mem-
ory or variables without the ability to interchange them, even though in the high-level language
it is natural to express operations on both with the same constructs.

We began ChaCha20 verification using the tools we had but found that performing certain op-
erations in memory rather than in temporary variables necessitated extra stack allocation, which
added complexity to the verification effort, including even more side conditions, and resulted in
subpar generated code. Instead of finishing this approach, we reduced our dependence on existing

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

216:14 A. Erbsen, J. Philipoom, D. Jamner, A. Lin, S. Gruetter, C. Pit-Claudel, and A. Chlipala

Rupicola idioms and implemented a separate set of lemmas, applying the idea of relational compi-
lation to the domain of (fixed-length) arrays. Just as with Rupicola’s expression and statement com-
pilation lemmas, our array-programming extension to the relational-compilation pipeline involves
building a set of verified local-variable array operations. We prove that new operations satisfy the
locals_array_expr predicate, which takes as arguments preconditions on the program state and
three equal-length lists, one of variable names, one of Bedrock2 expressions, and one of Gallina
computations. This predicate connects to existing Rupicola idioms using a standard statement-
level Rupicola compilation lemma [Pit-Claudel et al. 2022] that generates a locals_array_expr
subgoal, shifting the derivation into the array-operation modality. When we apply this lemma in
a derivation, it inserts the Bedrock2 code generated from the array operations by folding over the
list of variable names and the list of Bedrock2 expressions associated with our high-level array
operations and produces an unrolled sequence of assignment statements.

While our second approach proved successful, it still exposed some deficiencies in our current
relational-compilation setup. Rupicola’s design takes the opinionated stance that, with the right
compilation lemmas in scope, program derivation should be (mostly) automatic. In theory, it de-
grades gracefully, in that the Rupicola compilation pipeline will proceed until it reaches a goal that
it cannot solve and then offer that goal to the user. In practice, however, programs that trigger this
behavior tend to require extensive supplemental proof effort.

In summary, Rupicola performed well on problems that shared a certain degree of similarity
with the examples initially used to guide its design [Pit-Claudel et al. 2022, 2020]. However, Rupi-
cola’s current implementation did not suit the derivation of ChaCha20 well, especially with regard
to integrating with a more manual approach to relational compilation and situations where exist-
ing automation failed to solve a significant percentage of side conditions. Additionally, in part due
to design elements propagating upwards from Bedrock2 involving stack allocation and local vari-
ables, we found it easier to implement our array-processing lemmas as a separate component from
Rupicola’s existing mechanisms. While our success in grafting this machinery onto Rupicola’s ex-
isting structure speaks to the extensibility of relational-compilation approaches, it reduced the
availability and effectiveness of the automated style that Rupicola presently prefers. We speculate
that designing future frameworks around manual, tactic-driven exploration of the compilation re-
lation might facilitate relational compilation for a more varied domain of functional programs,
without some of the challenges we faced in our effort.

3.6 Field Arithmetic from Fiat Cryptography

Specification technique: an optimizing compiler operating on PHOAS-encoded [Chlipala
2008] purely functional programs with a Bedrock2 backend specified using omniseman-
tics and separation-logic assertions with read-before-write aliasing.

We used Fiat Cryptography (FC) to generate implementations of basic modular-arithmetic op-
erations used in elliptic-curve cryptography (Curve25519). Both the correctness proofs of the
arithmetic-algorithm templates from Fiat Cryptography and the correctness proof of the partial
evaluator [Gross et al. 2022] are used in the proof of our system, together guaranteeing functional
correctness of the generated code, which is effectively straightline three-address code (FC IR),
against very simple specifications in terms of integer arithmetic from the Coq standard library.

We chose to write and prove a compiler from FC IR to Bedrock2, and we are pleased to re-
port that the independently expedient encoding choices in the two languages work well together.
Specifically, the statement of the relevant compiler-correctness theorem applies to well-formed
FC IR expressions that only use operators supported by Bedrock2 and RISC-V, and it guarantees
that the generated Bedrock2 code can be executed with the expected memory-layout precondi-
tion and postcondition, which are expressed as a universally quantified omnisemantics judgment.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

Foundational Integration Verification of a Cryptographic Server 216:15

function(a : listZ) : listZ {
Definition shift_each (a : list Z) := out@ = Z_shiftr (List_nth a @) 1
map (fun x => Z.shiftr x 1) a. outl = Z_shiftr (List_nth a 1) 1
return [out@, outl] }

Fig. 7. Elementwise shift in Gallina (left) and in Fiat Cryptography IR after simplification (right)

void shift_each(uint32_t *a, uint32_t *out) {
out[@] = a[@] >> 1; out[1] = al1] > 1; }

Fig. 8. C code to shift each element in a 2-element list

Further, we express the memory-layout assertions using separation logic with non-separating con-
junctions for function inputs: as expected for cryptographic field-arithmetic implementations, the
code compiled from FC IR is always safe to call with overlapping inputs.

We contributed our FC-to-Bedrock2 compiler to FC. In addition to generating RISC-V code using
the verified Bedrock2 compiler, the FC-derived Bedrock2 code can also be pretty-printed as C. This
feature makes it usable as an alternative to the current unverified C backend of FC that directly
pretty-prints FC IR as C, translating functional lists to C arrays on-the-fly. The new C backend
provides formal guarantees about the memory-layout expectations of FC-generated C code.

3.6.1 Compiler Implementation. We will use a small code snippet to demonstrate how the com-
piler works. The Gallina code in Figure 7 shifts each element in a list. Proofs in FC normally in-
terface with definitions like this one, where list lengths are not known. After specialization to a
particular curve and passing through FC’s pipeline, we will get an expression in FC IR that oper-
ates on fixed-length lists, such as the one on the right. Note that the map from the Gallina code has
disappeared; this expression repeatedly indexes into the list instead.

Still, this IR looks pretty far from imperative code. To demonstrate the goal, Figure 8 shows a C
version of the same operation, also specialized to a 2-element list. Ultimately, the compiler’s goal
for our example is to translate Figure 7 (right) into Bedrock2 code that approximates Figure 8.

The first hurdle the compiler must clear is that Bedrock2 has a concept of memory, while FC IR
does not. The input to our final function should be pointers to arrays in memory, and the list literal
that appears in FC IR is not directly expressible in Bedrock2. Here, the compiler takes advantage of
certain specifics of FC’s domain: lists used as function arguments have compile-time-known short
lengths, contain integers, and are only indexed into with compile-time constants. Thus, it is okay to
only load from memory at the very start of a function and only store at the very end. The compiler
analyzes the type of the FC IR expression to find any lists in the arguments or return values. For
lists in the arguments, the compiler creates a Bedrock2 expression that loads each element into a
local variable. It passes this list of variables to the next stage of the compiler, which translates the
main body of the function. If there are lists in the return type, the main-body translation returns
a similar list of local variables for each one, allowing stores to be generated at the end.

The internal layers of the compiler can then associate program lists with compile-time lists of
Bedrock2 variables. When we encounter an operation like List_nth in the IR, we can simply index
into our compile-time list and extract the local variable we need. Translating internal expressions
is relatively straightforward from there. The final code looks something like Figure 9.

Figure 10 shows the specification for the final Bedrock2 program. It requires that there is space in
memory for the input and output at the given pointers. It ensures that the only memory modified is
the memory at the output pointer, which now holds a shifted version of the input list. An important

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

216:16 A. Erbsen, J. Philipoom, D. Jamner, A. Lin, S. Gruetter, C. Pit-Claudel, and A. Chlipala

func! (A_PTR, OUT_PTR) {
x0 = load(4, A_PTR + @); x1 = load(4, A_PTR + 4); x2 = x0 >> 1;
x3 = x1 >> 1; store4(x2, OUT_PTR + Q); store4(x3, OUT_PTR + 4) }

Fig. 9. Bedrock2 code for shifting 2-element lists

fnspec! "shift_each" pa pout / a x R ~> ¢,
{ requires t m :=
m =%> array32 pa a A length a = 2 A m =x array32 pout x * R A length x = 2;
ensures T M := exists out, M =x array32 pout out * R A
length out = 2 A T =t A out = map (fun x => Z.shiftr x 1) a }.

Fig. 10. Bedrock2 specification for shifting a 2-element list

Definition shift_each_correct (shift_each : list Z -> list Z) :=
forall a, shift_each a = map (fun x => Z.shiftr x 1) a.

Fig. 11. FC specification for shifting a list elementwise.

note about this specification is that it does not require the input and output pointers be separate. If
they are the same, this function will perform an in-place shift.

One more detail of the compiler’s implementation strategy is worth mentioning. The compiler is
sound but not complete; it cannot compile all FC IR programs, e.g. when they use multidimensional
lists. We formalize the exact precondition and predicate the compiler-correctness theorem on it.
Coding of the compiler is then simplified by freeing us to return any correctly typed nonsense
code when source programs use disallowed features, and the same cases are skipped in proofs.

3.6.2 Specifications and Composition. Final proofs of code from the compiler target Bedrock2-
style specifications with separation-logic predicates, as shown in Figure 10. In order to connect the
final code to its high-level mathematical behavior, we need to invoke: (1) the correctness proofs of
FC templates; (2) the correctness proof of the pipeline that translates templates into FC IR; and (3)
the correctness proof of the compiler itself.

The specifications for FC templates are expressed in very plain Coq language as predicates over
pure functions; for example, the specification for the shift-each example would look something
like Figure 11. When we apply the pipeline’s correctness proof and compose it with the template
proof, we get a statement that the function we get from interpreting the FC IR expression matches
a specification like this one.

The main bridge we now need to cross is memory representation. We can write a one-time com-
position helper lemma for each general shape of operation (for example, one for unary operations
on field elements and one for binary operations). These lemmas state: for any FC IR expression, if
(a) the expression is accepted by the compiler’s validity precondition and (b) there is a proof that
the interpreted FC IR expression matches a certain Gallina function, then the Bedrock2 function
fulfills a spec that integrates this Gallina function. For example, in Figure 10, the map function
appears between statements about arrays and traces.

Finally, we apply the helper lemma when we specialize to a specific operation on a specific curve.
Since the side conditions are formulaic, these proofs are completely automated with tactics. The
output is a proof that the final Bedrock2 function matches a specific higher-level mathematical
function, usually a field operation. This result has nothing specific to FC in it, making it straight-
forward to compose further.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

Foundational Integration Verification of a Cryptographic Server 216:17

Discussion. This implementation was a positive experience, validating our claims that our uni-
fied specification method (separation logic with limited use of non-separating conjunction) sup-
ports flexible use of multiple styles (direct Bedrock2 coding or targeting by this backend or Rupi-
cola). One team member built the backend working 30-50% time over 9 months, which included
dealing with rough edges in shared tactics that have since been improved. A later refactor, us-
ing about one person-month, improved code/proof reuse across compiled functions for different
arithmetic primitives.

4 EVALUATION
We wanted to answer several questions about our approach.

(1) Do we succeed in generating machine code obeying conventions of embedded systems?
(2) Do we generate code with sufficient performance?

(3) How productive can developers be with this style?
Table 1. Memory usage

of our generated RISC-V
machine-code program

First, we give some statistics on the scale of our case study. Recall
that our development is structured mostly as Gallina functions, which
are translated into low-level code in a variety of ways. We have 16

such functions: field-arithmetic operations, Montgomery-ladder Diffie- Aj1ocation Bytes
Hellman key exchange, ChaCha20, and the IP checksum. Through our Stack 1,460
several techniques, we compile these Gallina functions into Bedrock2 g, 4. 1616
functions and combine them with handwritten code (the top-levelloop, ,4e 26,084
5 trivial wrappers, Curve25519 clamp, the Ethernet driver, memmove, Total RW 3.076
memequal, memswap, and memconst). Pretty-printing the Bedrock?2 code- Total 29,160

base as C yields a total of 2808 lines of code® across 37 functions.

4.1 Suitability for Constrained Environments

The final system indeed meets standard restrictions for bare-metal microcontroller code. There is
no heap allocation, and stack size is analyzed statically and proven to be disjoint from static allo-
cations. The verified binary is position-independent, and we have proved termination of all func-
tions but the main loop (which intentionally does not terminate). Our formal models and proofs
do not cover side channels, but standard constant-time programming techniques are followed in
both handwritten and generated code. For Rupicola, we specifically chose compilation rules that
translate relevant source-language constructs to calls to constant-time functions (felem_cswap in
Figure 6) written and proven using Bedrock2, exercising the same flexibility that Rupicola evalua-
tion used for low-level performance engineering. The FC-to-Bedrock2 compiler always generates
straight-line code with constant-time operations.

Table 1 gives the exact sizes of the three allocated memory segments in our statically linked
executable, which add up to just over 3KiB of read-write memory and under 32 KiB of read-only
memory. As the FE310 (and many other common microcontrollers) executes code from external
read-only memory (automatically fetching and caching instructions on-demand), there is substan-
tial flexibility in the latter category. However, the 16 KiB of RAM on the FE310 would be easy to
fill, for example by creating a new copy of the packet buffer each time its contents are modified.

4.2 Performance

We test our implementation using a simple Python client (on a laptop) that drives a network con-
nection to the FE310 microcontroller, playing the client side of our cryptographic protocol to re-
quest that the garage door open or close. Table 2a compares our implementation’s performance

5Counted using cloc after clang-format with default settings

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

216:18 A. Erbsen, J. Philipoom, D. Jamner, A. Lin, S. Gruetter, C. Pit-Claudel, and A. Chlipala

Table 2. Performance results on the microcontroller

(a) End-to-end performance measurements of (b) Performance comparison of X25519

different implementations implementations
Implementation Time Implementation Cycles
Ours (compiled with Bedrock2) | 0.47s This paper (with GCC) | 4,144,983
Ours (compiled with GCC) 0.12s van den Berg [2020] 5,389,988
Ours (substituting BoringSSL) 0.12s BoringSSL 6,705,887
Test client initialization only 0.10s

to two others, in terms of client-measured time to execute the network protocol. The first line
reports our most high-assurance version: the complete software image compiled with Bedrock2,
certified with one Coq theorem about a machine-code sequence. The next line reports on a mod-
erately less high-assurance version, where we compile Bedrock2 code using GCC instead of the
verified compiler. We see about a factor of four performance cost, which may be considered un-
surprising, since the Bedrock2 compiler (which we did not modify) contains no standard compiler
optimizations beside register allocation.

The third line of Table 2a compares with a version where we substitute our peculiarly generated
X25519 code with the implementation from the popular BoringSSL library®, which is used in e.g.
the Chrome web browser. We were pleasantly surprised to see that we measured no performance
degradation. The last line of the table shows the “best possible,” relative to some parts of the ex-
perimental setup that we held fixed: the Python client that operates the demo system, which we
here modified to only import and initialize the network and cryptography libraries but to skip
interaction with the server. At least relative to that baseline, our embedded code compiled with
GCC adds just 20% of client-observed execution time.

Those end-to-end results seemed promising, suggesting that we had achieved competitive per-
formance on the cryptographic library, our primary new formally verified artifact in this project.
We decided to zoom in on that aspect. Table 2b compares our implementation against two others,
all compiled with GCC, with times measured using the microcontroller’s cycle counter. BoringSSL
is a natural baseline, though it has arguably not been optimized for RISC-V execution. In contrast,
the master’s thesis of van den Berg [2020], supervised by crypto-implementation expert Tanja
Lange, was a credible effort to maximimze RISC-V performance of primitives from the NaCl crypto
library’. Though we had been prepared to write this section of our paper apologetically, noting
that performance costs are worth paying for increased assurance, we were surprised to find that
we may have accidentally set a new performance record for this routine on RISC-V! Specifically,
van den Berg [2020] runs an X25519 operation in about 80% the time of BoringSSL, and then our
implementation runs in about 75% the time reported by van den Berg. Each reported measurement
is the average of 10 measured runs after 2 discarded runs to warm up the instruction cache (which
we confirmed to be adequate), with cycle counts extracted from the mcycle register using inline
assembly. We should also mention that performance benchmarking is unusually straightforward
in this domain as, for security reasons, routines are written to run in input-independent constant
time, so any test inputs will do. We also benchmarked on a microcontroller with no operating
system or other source of unpredictable scheduling.

Shttps://boringssl.googlesource.com/boringssl
https://nacl.cr.yp.to/

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

Foundational Integration Verification of a Cryptographic Server 216:19

Our conclusion is that it seems to be quite feasible to reach end-to-end performance parity using
our methods, if more effort is expended on optimizations in parts of the existing verified artifacts
that we did not focus on.

Table 3. Lines of code of ChaCha20 (C) and Mont-

4.3 The Development Experience gomery ladder (M)

Throughout section 3, we included discussion

on the developer experience for different tech- Pl.lrp ose . ¢ M
. : High-level algorithm 40 84

niques, deeming some more worthy of near- >
Main proofs 663 | 550

future use than others. We can also say a bit
more about the final code complexities of some
representative modules.

Rupicola lemmas & extensions | 1282 132
Generic lemmas & automation 558 222

4.3.1 Effort in New Domains Versus Established Ones. To give an idea of the effort involved in
verifying code in new domains versus established ones, we present Table 3, designed to give an
idea of where we spent our development effort. The numbers represent lines of code dedicated to
each purpose during the development of the ChaCha20 and Montgomery-ladder implementations
respectively, beyond what the existing foundation of Rupicola and Fiat Cryptography provided.
These numbers are not exact since work on both implementations involved some improvements
to existing systems, but they are largely representative. Note that the greatest effort in terms of
volume of code occurred in developing extensions to Rupicola for ChaCha20, in particular to sup-
port the patterns of loop unrolling and local-variable usage outlined earlier. Case-study code in
other categories was much smaller, with the runner-ups being the network-protocol proof (650
lines for 55 lines of code), memmove (350 and 21 lines), and the network-driver improvements
(107 lines for 14 lines of transmit path).

4.3.2 Effort of This Project. Table 4a lists each component that was newly developed for this paper,
which technique it used, and its line count.

4.3.3 Size of the Code Base Including Dependencies. The source directory with our code and all
dependencies contains over 3500 Coq files that amount to almost 400KLOC, but focusing on that
measurement is misleading, because many of these files are from different research projects and
not required for our project. To get a more representative count without resorting to manually
classifying 3500 Coq files as on-topic or off-topic, we rely on the Coq command Print Libraries
to list all files that the file containing our toplevel theorem transitively depends on, and then we
only count the lines of code of these, which leads to the numbers in Table 4b.

4.4 Verification Time

The entire Coq development (proofs and code for our demo and dependencies) can be built in 20
minutes on a recent high-end computer (7950X3D averaging 5.2GHz on the fastest core). About
3 cores are utilized on average, so the same job takes longer on “server” hardware optimized for
aggregate multicore performance at the expense of single-core performance. We measured 42 min-
utes on Xeon Gold 6268CL (2.8GHZ nominal) and 44 minutes on EPYC 7763 (3.2GHz nominal) as
offered by popular cloud-based development environments. Incremental builds and interactive
editing are much faster in most cases (often seconds), though outlier files such as the network-
protocol proof and derivations of field-arithmetic and ChaCha20 code can each take a couple of
minutes alone. 3.5 GB of memory is required.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

216:20 A. Erbsen, J. Philipoom, D. Jamner, A. Lin, S. Gruetter, C. Pit-Claudel, and A. Chlipala

Table 4. New and total lines of code of the project

(a) New lines of code of this paper (b) Required lines of code

Component Technique LOC Repository LOC
Garage door app Bedrock2 1142 Coq stdlib 85495
Transmit for LAN9250 Bedrock2 134 bedrock2 7402
Bedrock2 library functions Bedrock2 418 bedrock2Examples | 2759
ChaCha20 Rupicola 2591 compiler 14911
Montgomery ladder Bedrock2 374 Coqgprime 5650
Montgomery ladder Rupicola 1062 coqutil 11424
Modular inversion simpl, Rupicola | 467 Rewriter 30124
FC-to-Bedrock2 compiler Generic Coq 7110 riscv 6077
Invoking FC-to-Bedrock2 compiler | Generic Coq 804 Rupicola 8198
Total 14102 Fiat Crypto 83861

Total 255901

5 RELATED WORK

We are only aware of a few efforts to prove complete software-hardware stacks, and they have
tended to involve software written in single languages and compiled in relatively conventional
ways (albeit with verification applied to the compilers). Software in the pioneering CLI stack [Be-
vier et al. 1989] was written in Piton, whose programming model has similarities to Pascal and
assembly languages. The Verisoft [Alkassar et al. 2008] and Bedrock2 [Erbsen et al. 2021] stacks
rely on variants of C that allow more general memory-access patterns, producing code suitable
for embedded systems. An odd one out in this picture is CakeML Silver [Lo6w et al. 2019]: as the
name suggests, the software in this project is written in an ML-style language, allowing the self-
hosting compiler [Kumar et al. 2014] to be cross-compiled for the foundationally verified stack, but
requiring use of a garbage collector. From this category, our past work [Erbsen et al. 2021] proved
an end-to-end theorem about an application that receives network input, and none of them were
used in such proofs covering both input and output with the network.

The VeriPhy framework [Bohrer et al. 2018] extends the CakeML work with a new connection
to the KeYmaera X hybrid-system verifier [Fulton et al. 2015], allowing end-to-end verification
of controller software for cyberphysical systems. This project demonstrated the important task of
extending a verified stack upward with handling of application safety proofs in a quite-specialized
domain. However, the foundational nature was weaker than in the follow-on work with CakeML
and Silver: trusted aspects include a solver for real arithmetic, a translation between two variants
of the HOL logic, some low-level systems code, and isolation across modules of low-level software.

Another purely software-based example is the DeepSpec web server and its applications [Zhang
et al. 2021]. A simple web server was implemented in C and verified using the Verified Software
Toolchain [Appel 2014]. The C code invokes system calls that are implemented by CertiKOS [Gu
etal. 2016]. Moreover, some integration verification is carried out, with the application code proved
against system-call specifications in a style used with CertiKOS. However, the proof of CertiKOS
itself was not linked with the application proof, even at the level of C, let alone compiled machine
code. The unifying specification technique of this work is interaction trees [Koh et al. 2019], which
makes for an interesting contrast with our approach in this work (separation logic plus I/O traces
logged in ghost state). All code in this DeepSpec work is implemented directly in C and verified,
in contrast to our own work deriving C code from a variety of higher-level languages.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

Foundational Integration Verification of a Cryptographic Server 216:21

That last group of projects formulated their proofs modularly, with separate specifications for
components, such that each can be proved once and then reused in other full systems without new
proof. This appealing benefit comes at the cost of more sophisticated and labor-intensive verifica-
tion, so quite a few projects have made other choices. Closest to our scope are Notary [Athalye
et al. 2019] and Knox [Athalye et al. 2022], which consider hardware designs of embedded sys-
tems and the software running on top, doing unified symbolic execution (with SMT solvers) of
the full stacks to establish correctness and security properties. However, many software stacks are
complex enough on their own to raise the same tradeoff. Examples of systems applying symbolic
execution across software layers include Serval and its predecessors in push-button verification
of operating systems and more [Nelson et al. 2019, 2017; Sigurbjarnarson et al. 2016, 2018], plus
Vigor [Zaostrovnykh et al. 2019] for network functions. These projects have demonstrated impres-
sively low verification effort, but they provide reduced guarantees for their individual components,
which often do not have their own specifications, so that assembly of new systems from old pieces
may reveal new bugs (in addition to requiring full analysis from scratch of most source code).
Additionally, none of these verifications are foundational.

Several formal-methods tools have seen significant use in verification of systems code stacks.
The Dafny language has been applied as part of the Komodo [Ferraiuolo et al. 2017] trusted exe-
cution environment, the Ironclad [Hawblitzel et al. 2014] software-execution stack, and the Iron-
Fleet [Hawblitzel et al. 2017] distributed-systems platform. Less sweepingly, Coq has hosted func-
tional programs implementing distributed systems in Verdi [Wilcox et al. 2015] and file systems in
FSCQ and its variants [Chen et al. 2017, 2015; Ileri et al. 2018]. Such project architectures can sup-
port reasoning across significant spans of functionality, but they rely in the end on conventional
compilation. As a result, (1) performance is often worse than with C-language counterparts, (2)
compilers are unverified sources of bugs, and (3) deployed code requires garbage collection and is
unsuited for resource-constrained embedded systems.

An interesting alternative approach is embodied by Goose, a tool built for the Perennial [Chajed
et al. 2019] file-system verification. Goose translates handwritten Go code, which is importantly
lower-level than in the projects just mentioned, to a core representation inside Coq, where proofs
can be done using the Iris [Jung et al. 2015] framework. We give Perennial as just one example
of verification of concurrent code, which our own case study does not include, allowing us to
streamline the processes of both coding and proof.

Several projects have recognized the need for proof-generating compilation that produces code
suitable for OS kernels and other low-level infrastructure. The seL4 team have developed Co-
gent [O’Connor et al. 2021] and the CertiKOS team DeepSEA [Sjoberg et al. 2019], which start from
carefully designed source languages and add verified compilation to both C and functional pro-
grams embedded in theorem provers. A different take on the same challenge is the Low™ [Protzenko
et al. 2017] language, which is embedded inside the functional language F*, with constructs for
explicit manipulation of memory. Our approach allows a system to be implemented in a high-
level verification-oriented language, with no explicit memory management or imperative features,
which makes for convenient proof of higher-level properties, nonetheless supporting programmer-
guided generation of low-level code in different ways for different modules of a system.

Our application domain is cryptography, and some impressive past efforts have verified crypto-
graphic libraries. Some work verifies off-the-shelf assembly code [Chen et al. 2014], while the
Jasmin [Almeida et al. 2017] framework compiles programs written in a specialized low-level
language. The F* ecosystem has HACL” [Zinzindohoué et al. 2017] and EverCrypt [Protzenko
et al. 2020], whose proofs cover wide ranges of cryptographic functionality. The Verified Software
Toolchain has examples connecting C programs to security specifications [Beringer et al. 2015; Ye
et al. 2017]. However, all of these past projects entail writing low-level code manually, whether in

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

216:22 A. Erbsen, J. Philipoom, D. Jamner, A. Lin, S. Gruetter, C. Pit-Claudel, and A. Chlipala

assembly, C, or a domain-specific language. In comparison to them, our new work is distinguished
in allowing all cryptographic code to be written in a high-level language (Coq’s pure functional
programs) while avoiding any trust in compiler correctness. Additionally, to our knowledge, no
past cryptographic library has been used as part of a broader foundational correctness proof that
includes an application (let alone device drivers and all code needed for bare-metal execution).

That last proviso about foundational natures of proofs was important to distinguish from the
tour de force of the Noise™ project [Ho et al. 2022]. There we find a unified proof of a large family of
cryptographic protocols, using F* and Low”, with significantly more complex cryptography than
our case study features. Compile-time partial evaluation specializes the implementation to one
protocol within the family, removing any lingering performance costs of generality. In common
with several projects cited just above, there are proofs not just of functional correctness but also
of cryptographic protocol security, which our case study in this paper does not provide. However,
Noise* is much less foundational than our work, where its trusted base includes an SMT solver,
the F* implementation, the Low™ compiler, and a C compiler. Additionally, from the standpoint
of different scopes of “end-to-end” proofs, while Low* pushes the scope upward to include cryp-
tographic security, their verification also ends higher on the system stack, not including systems
software like device drivers that is needed to support a full application.

Most closely related to our own effort are our past Coq projects that we build on. The core of
our architecture is Bedrock2 [Erbsen et al. 2021], the low-level language to which almost all soft-
ware modules are compiled. While Bedrock?2’s original lightbulb-controller case study included
verified hardware, here we focus on more complex complete software images to run on a commer-
cial microcontroller. We also apply the Rupicola [Pit-Claudel et al. 2022] compiler, which guides
programmers in deriving C-like code from functional programs, again expanding upon its past
applications, including compiling template-derived code and calling code compiled from other
languages in Rupicola-generated code. Finally, we depend on Fiat Cryptography [Erbsen et al.
2019] to produce our cryptographic arithmetic, adding a verified backend targeting Bedrock2.

6 CONCLUSION

We structured our case study around compiling different parts of a pure functional program into C,
combining it with handwritten C, and compiling it in a verified way down to machine code, with
different ways of arriving at linkable formal proofs of the modules. We did avoid explicit low-level
programming in most modules, sometimes with pretty much the ideal amount of per-module au-
tomation, sometimes by pushing programming decisions into proof scripts, which telegraph code
choices through selections of proof rules. We showed that one style of specification (separation-
logic specs that cite functional reference implementations) is sufficient as the interface glue be-
tween implementation styles. There remains much opportunity to streamline the experience, with
Coq performance bottlenecks being our most common stumbling block, often leading to more
verbose program derivations than we already know how to implement in standalone compilers.
Nonetheless, the current state of the art was sufficient to derive the code for a bare-metal crypto-
graphic server that runs in a physical prototype.

ARTIFACT-AVAILABILITY STATEMENT

An open-source artifact [Erbsen et al. 2024] for this paper was evaluated and is freely available.

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation under grants CNS-2130671, CCF-
2217064, and CCF-2313023; the National Science Foundation Expedition on the Science of Deep

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

Foundational Integration Verification of a Cryptographic Server 216:23

Specification (award CCF-1521584); the National Science Foundation Graduate Research Fellow-
ship Program under Grant No. 2141064; and gifts from Amazon, Google, and the Tezos Foundation.
Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

Eyad Alkassar, Mark A. Hillebrand, Dirk Leinenbach, Norbert W. Schirmer, and Artem Starostin. 2008. The Verisoft Ap-
proach to Systems Verification. In 2nd IFIP Working Conference on Verified Software: Theories, Tools, and Experiments
(VSTTE 08) (LNCS, Vol. 5295), Natarajan Shankar and Jim Woodcock (Eds.). Springer, 209-224. https://doi.org/10.1007/
978-3-540-87873-5_18

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira,
Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub. 2017. Jasmin: High-Assurance and High-Speed Cryptography.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). Association for Computing Machinery, New York, NY, USA, 1807-1823. https://doi.org/10.1145/3133956.3134078

Andrew W. Appel. 2014. Program Logics - for Certified Compilers. Cambridge University Press. https://www.cs.princeton.
edu/~appel/papers/plcc.pdf

Anish Athalye, Adam Belay, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. 2019. Notary: A Device for Se-
cure Transaction Approval. In Proceedings of the 27th ACM Symposium on Operating Systems Principles (Huntsville,
Ontario, Canada) (SOSP ’19). Association for Computing Machinery, New York, NY, USA, 97-113. https://doi.org/10.
1145/3341301.3359661

Anish Athalye, M. Frans Kaashoek, and Nickolai Zeldovich. 2022. Verifying Hardware Security Modules with Information-
Preserving Refinement. In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22). USENIX
Association, Carlsbad, CA, 503-519. https://www.usenix.org/conference/osdi22/presentation/athalye

Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Appel. 2015. Verified Correctness and Security of
OpenSSL HMAC. In Proceedings of the 24th USENIX Conference on Security Symposium (Washington, D.C.) (SEC’15).
USENIX Association, USA, 207-221.

William R. Bevier, Warren A. Hunt, Jr., J. Strother Moore, and William D. Young. 1989. An approach to systems verification.
J. Autom. Reasoning (1989), 411-428. https://doi.org/10.1007/BF00243131

Rose Bohrer, Yong Kiam Tan, Stefan Mitsch, Magnus O. Myreen, and André Platzer. 2018. VeriPhy: Verified Controller Exe-
cutables from Verified Cyber-Physical System Models. In Proceedings of the 39th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). Association for Computing Machinery,
New York, NY, USA, 617-630. https://doi.org/10.1145/3192366.3192406

Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Gruetter, Pratap Singh, Andrew Wright, and Adam Chlipala. 2023.
Flexible Instruction-Set Semantics via Abstract Monads (Experience Report). In ICFP’23: Proceedings of the 28th ACM
SIGPLAN International Conference on Functional Programming (Seattle, WA, USA). http://adam.chlipala.net/papers/
RiscvICFP23/

Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. 2019. Verifying Concurrent, Crash-Safe Sys-
tems with Perennial. In Proceedings of the 27th ACM Symposium on Operating Systems Principles (Huntsville, Ontario,
Canada) (SOSP ’19). Association for Computing Machinery, New York, NY, USA, 243-258. https://doi.org/10.1145/
3341301.3359632

Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Gruetter. 2023. Omnisemantics: Smooth Handling of
Nondeterminism. ACM Trans. Program. Lang. Syst. 45, 1, Article 5 (mar 2023), 43 pages. https://doi.org/10.1145/3579834

Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay Ileri, Adam Chlipala, M. Frans Kaashoek, and Nickolai
Zeldovich. 2017. Verifying a High-Performance Crash-Safe File System Using a Tree Specification. In Proceedings of the
26th Symposium on Operating Systems Principles (Shanghai, China) (SOSP °17). Association for Computing Machinery,
New York, NY, USA, 270-286. https://doi.org/10.1145/3132747.3132776

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2015. Using Crash
Hoare Logic for Certifying the FSCQ File System. In Proceedings of the 25th Symposium on Operating Systems Principles
(Monterey, California) (SOSP ’15). Association for Computing Machinery, New York, NY, USA, 18-37. https://doi.org/
10.1145/2815400.2815402

Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and
Shang-Yi Yang. 2014. Verifying Curve25519 Software. In Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS’14. ACM, 299-309. http://cryptojedi.org/papers/#verify25519 Document ID:
55ab8668ce87d857c02a5b2d56d7da38.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

216:24 A. Erbsen, J. Philipoom, D. Jamner, A. Lin, S. Gruetter, C. Pit-Claudel, and A. Chlipala

Adam Chlipala. 2008. Parametric higher-order abstract syntax for mechanized semantics. In Proceedings of the 13th ACM
SIGPLAN International Conference on Functional Programming (Victoria, BC, Canada) (ICFP *08). Association for Comput-
ing Machinery, New York, NY, USA, 143-156. http://adam.chlipala.net/papers/PhoasICFP08/ 10.1145/1411204.1411226.

Andres Erbsen. 2022. Foundational Integration Verification of Diverse Software and Hardware Components. Ph. D. Disserta-
tion. Massachusetts Institute of Technology. http://adam.chlipala.net/theses/andreser.pdf

Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam Chlipala. 2021. Integration Verification across
Software and Hardware for a Simple Embedded System. In 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. Association for Computing Machinery, New York, NY, USA, 604-619. https:
//doi.org/10.1145/3453483.3454065

Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala. 2019. Simple High-Level Code for Cryp-
tographic Arithmetic - With Proofs, Without Compromises. 2019 IEEE Symposium on Security and Privacy (SP) (May
2019). https://doi.org/10.1109/sp.2019.00005

Andres Erbsen, Jade Philipoom, Dustin Jamner, Ashley Lin, Samuel Gruetter, Adam Chlipala, and Clément Pit-Claudel.
2024. Foundational Integration Verification of a Cryptographic Server. https://doi.org/10.5281/zenodo.10807084

Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. 2017. Komodo: Using Verification to Dis-
entangle Secure-Enclave Hardware from Software. In Proceedings of the 26th Symposium on Operating Systems Prin-
ciples (Shanghai, China) (SOSP ’17). Association for Computing Machinery, New York, NY, USA, 287-305. https:
/[www.microsoft.com/en-us/research/wp-content/uploads/2017/10/komodo.pdf 10.1145/3132747.3132782.

Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus V6lp, and André Platzer. 2015. KeYmaera X: An Axiomatic Tactical
Theorem Prover for Hybrid Systems. In Automated Deduction - CADE-25, Amy P. Felty and Aart Middeldorp (Eds.).
Springer International Publishing, Cham, 527-538.

Jason Gross, Andres Erbsen, Jade Philipoom, Miraya Poddar-Agrawal, and Adam Chlipala. 2022. Accelerating Verified-
Compiler Development with a Verified Rewriting Engine. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik. https:
//doi.org/10.4230/LIPICS.ITP.2022.17

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sj6berg, and David Costanzo. 2016. CertiKOS:
An Extensible Architecture for Building Certified Concurrent OS Kernels. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (Savannah, GA, USA) (OSDI'16). USENIX Association, USA, 653-669.
https://www.usenix.org/conference/osdil6/technical-sessions/presentation/gu

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath Setty, and Brian
Zill. 2017. IronFleet: Proving Safety and Liveness of Practical Distributed Systems. Commun. ACM 60, 7 (June 2017),
83-92. https://doi.org/10.1145/3068608

Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno, Danfeng Zhang, and Brian Zill. 2014. Ironclad
Apps: End-to-End Security via Automated Full-System Verification. In 11¢th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 14). USENIX Association, Broomfield, CO, 165-181. https://www.usenix.org/conference/
osdil4/technical-sessions/presentation/hawblitzel

Son Ho, Jonathan Protzenko, Abhishek Bichhawat, and Karthikeyan Bhargavan. 2022. Noise®: A Library of Verified High-
Performance Secure Channel Protocol Implementations. In 2022 IEEE Symposium on Security and Privacy (SP). 107-124.
https://doi.org/10.1109/SP46214.2022.9833621

Mirai Ikebuchi, Andres Erbsen, and Adam Chlipala. 2022. Certifying derivation of state machines from coroutines. Proc.
ACM Program. Lang. 6, POPL, Article 24 (jan 2022), 31 pages. https://doi.org/10.1145/3498685

Atalay Ileri, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2018. Proving Confidentiality in a File
System Using DISKSEC. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation
(Carlsbad, CA, USA) (OSDI'18). USENIX Association, USA, 323-338.

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15). Association for Com-
puting Machinery, New York, NY, USA, 637-650. https://doi.org/10.1145/2676726.2676980

Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky, Benjamin C. Pierce, and
Steve Zdancewic. 2019. From C to Interaction Trees: Specifying, Verifying, and Testing a Networked Server. In Proceed-
ings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs (Cascais, Portugal) (CPP 2019).
Association for Computing Machinery, New York, NY, USA, 234-248. https://doi.org/10.1145/3293880.3294106

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: A Verified Implementation of
ML. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Diego,
California, USA) (POPL ’14). Association for Computing Machinery, New York, NY, USA, 179-191. https://www.cse.
chalmers.se/~myreen/popl14.pdf 10.1145/2535838.2535841.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

Foundational Integration Verification of a Cryptographic Server 216:25

Andreas Lo6w, Ramana Kumar, Yong Kiam Tan, Magnus O Myreen, Michael Norrish, Oskar Abrahamsson, and Anthony
Fox. 2019. Verified compilation on a verified processor. In Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. 1041-1053. https://cakeml.org/pldi19.pdf 10.1145/3314221.3314622.

Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and Xi Wang. 2019. Scaling Symbolic Evalu-
ation for Automated Verification of Systems Code with Serval. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing Machinery, New York, NY, USA,
225-242. https://doi.org/10.1145/3341301.3359641

Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson, James Bornholt, Emina Torlak, and Xi Wang. 2017.
Hyperkernel: Push-Button Verification of an OS Kernel. In Proceedings of the 26th Symposium on Operating Systems
Principles (Shanghai, China) (SOSP ’17). Association for Computing Machinery, New York, NY, USA, 252-269. https:
//doi.org/10.1145/3132747.3132748

Liam O’Connor, Zilin Chen, Christine Rizkallah, Vincent Jackson, Sidney Amani, Gerwin Klein, Toby Murray, Thomas
Sewell, and Gabriele Keller. 2021. Cogent: uniqueness types and certifying compilation. Journal of Functional Program-
ming 31 (2021), 25. https://doi.org/10.1017/5095679682100023X

Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres Erbsen, and Adam Chlipala. 2022. Relational Compilation for
Performance-Critical Applications: Extensible Proof-Producing Translation of Functional Models into Low-Level Code.
In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation
(San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 918-933. https://doi.
org/10.1145/3519939.3523706

Clément Pit-Claudel, Peng Wang, Benjamin Delaware, Jason Gross, and Adam Chlipala. 2020. Extensible Extraction of Ef-
ficient Imperative Programs with Foreign Functions, Manually Managed Memory, and Proofs. In Automated Reasoning:
10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part I (Lecture Notes in Com-
puter Science, Vol. 12167), Nicolas Peltier and Viorica Sofronie-Stokkermans (Eds.). Springer International Publishing,
119-137. https://doi.org/10.1007/978-3-030-51054-1_7

Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Hawblitzel, Marina Polubelova, Karthikeyan Bhargavan, Ben-
jamin Beurdouche, Joonwon Choi, Antoine Delignat-Lavaud, Cédric Fournet, Natalia Kulatova, Tahina Ramananan-
dro, Aseem Rastogi, Nikhil Swamy, Christoph M. Wintersteiger, and Santiago Zanella-Beguelin. 2020. EverCrypt: A
Fast, Verified, Cross-Platform Cryptographic Provider. In 2020 IEEE Symposium on Security and Privacy (SP). 983-1002.
https://doi.org/10.1109/SP40000.2020.00114

Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina Ramananandro, Peng Wang, Santiago Zanella-
Béguelin, Antoine Delignat-Lavaud, Catalin Hritcu, Karthikeyan Bhargavan, Cédric Fournet, and Nikhil Swamy. 2017.
Verified Low-Level Programming Embedded in F*. Proc. ACM Program. Lang. 1, ICFP, Article 17 (Aug. 2017), 29 pages.
https://doi.org/10.1145/3110261

Peter Schwabe, Benoit Viguier, Timmy Weerwag, and Freek Wiedijk. 2021. A Coq proof of the correctness of X25519 in
TweetNaCl. In 2021 IEEE 34th Computer Security Foundations Symposium (CSF). 1-16. https://doi.org/10.1109/CSF51468.
2021.00023

Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang. 2016. Push-Button Verification of File Sys-
tems via Crash Refinement. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
16). USENIX Association, Savannah, GA, 1-16. https://www.usenix.org/conference/osdil6/technical-sessions/
presentation/sigurbjarnarson

Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney, James Bornholt, Emina Torlak, and Xi Wang. 2018. Nickel:
A Framework for Design and Verification of Information Flow Control Systems. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (Carlsbad, CA, USA) (OSDI’'18). USENIX Association, USA,
287-305. https://unsat.cs.washington.edu/papers/sigurbjarnarson-nickel.pdf

Vilhelm Sjéberg, Yuyang Sang, Shu-chun Weng, and Zhong Shao. 2019. DeepSEA: A Language for Certified System Soft-
ware. Proc. ACM Program. Lang. 3, OOPSLA, Article 136 (oct 2019), 27 pages. https://doi.org/10.1145/3360562

Stefan van den Berg. 2020. RISC-V implementation of the NaCl-library. Master’s thesis. https://pure.tue.nl/ws/portalfiles/
portal/169647601/Berg_S._ES_CSE.pdf

Andrew Waterman and Krste Asanovic. 2019. The RISC-V Instruction Set Manual. https://riscv.org/specifications/.

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas Anderson. 2015.
Verdi: A Framework for Implementing and Formally Verifying Distributed Systems. SIGPLAN Not. 50, 6 (June 2015),
357-368. https://doi.org/10.1145/2813885.2737958

Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer, Adam Petcher, and Andrew W. Appel. 2017. Verified
Correctness and Security of MbedTLS HMAC-DRBG. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (Dallas, Texas, USA) (CCS °17). Association for Computing Machinery, New York, NY, USA,
2007-2020. https://doi.org/10.1145/3133956.3133974

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

216:26 A. Erbsen, J. Philipoom, D. Jamner, A. Lin, S. Gruetter, C. Pit-Claudel, and A. Chlipala

Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Matteo Rizzo, Luis Pedrosa, Katerina Argyraki, and George Candea. 2019.
Verifying Software Network Functions with No Verification Expertise. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing Machinery, New York,
NY, USA, 275-290. https://vigor-nf.github.io/vigor-paper.pdf 10.1145/3341301.3359647.

Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-Yao Xia, Lennart Beringer, William Mansky, Benjamin
Pierce, and Steve Zdancewic. 2021. Verifying an HTTP Key-Value Server with Interaction Trees and VST. In 12th Inter-
national Conference on Interactive Theorem Proving (ITP 2021) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 193), Liron Cohen and Cezary Kaliszyk (Eds.). Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Ger-
many, 32:1-32:19. https://doi.org/10.4230/LIPIcs.ITP.2021.32

Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin Beurdouche. 2017. HACL™: A Ver-
ified Modern Cryptographic Library. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-

tions Security (Dallas, Texas, USA) (CCS °17). Association for Computing Machinery, New York, NY, USA, 1789-1806.
https://doi.org/10.1145/3133956.3134043

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 216. Publication date: June 2024.

