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PACER: Preference-Conditioned All-Terrain

Costmap Generation
Luisa Mao , Garrett Warnell , Peter Stone , Fellow, IEEE, and Joydeep Biswas , Member, IEEE

Abstract—In autonomous robot navigation, terrain cost assign-
ment is typically performed using a semantics-based paradigm in
which terrain is first labeled using a pre-trained semantic classifier
and costs are then assigned according to a user-defined mapping
between label and cost. While this approach is rapidly adaptable
to changing user preferences, only preferences over the types of
terrain that are already known by the semantic classifier can be
expressed. In this letter, we hypothesize that a machine-learning-
based alternative to the semantics-based paradigm above will allow
for rapid cost assignment adaptation to preferences expressed over
new terrains at deployment time without the need for additional
training. To investigate this hypothesis, we introduce and study
PACER, a novel approach to costmap generation that accepts as
input a single birds-eye view (BEV) image of the surrounding
area along with a user-specified preference context and generates
a corresponding BEV costmap that aligns with the preference
context. Using a staged training procedure leveraging real and
synthetic data, we find that PACER is able to adapt to new user
preferences at deployment time while also exhibiting better gener-
alization to novel terrains compared to both semantics-based and
representation-learning approaches.

Index Terms—Deep learning for visual perception, vision-based
navigation.
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I. INTRODUCTION AND RELATED WORK

R
OBUST autonomous navigation in a wide variety of envi-
ronments is a long-standing goal in robotics. While there

has been significant progress in collision-free navigation [1],
[2], successful navigation in human environments additionally
requires alignment with human preferences, e.g., preferring to
cross a busy street at a crosswalk even if doing so results in a
longer path [3], [4].

In this letter, we examine how robots can assign terrain costs
that align with human preferences for terrain-aware navigation.
This specific focus represents a special case of the broader
challenge of human preference-aligned navigation [5]. Such
alignment is crucial not only for terrain-aware navigation, but
also for adherence to constraints like social norms [6], [7]. An
alternative to learning to predict navigation costs is to directly
learn navigation policies aligned with human preferences [8],
[9], [10]. We choose to focus on predicting navigation costs due
to the ease of integration with existing cost-based navigation
planners [11], [12], [13]. While the focus of this work is on
terrain-based cost evaluation, we recognize that a full navigation
system would incorporate additional costs using established
methods such as layered costmaps [14].

We are particularly interested in terrain cost assignment ap-
proaches that can rapidly adapt to newly-expressed terrain pref-
erences. Prevalent approaches to incorporate human preference
into navigation such as inverse reinforcement learning (IRL) and
preference-based IRL (PbIRL) based on terrain patch clusters
do not admit this type of rapid adaptation due to the amount of
additional data required to express new preferences [15], [16],
[17]. Instead, to the best of our knowledge, existing solutions
for rapid adaptation to preferences rely on first segmenting
terrains into a prescribed set of classes, and assigning each class
a manually-specified cost [4], [18], [19]. While such approaches
allows rapid adaptation to new preferences, they are restricted to
expressing preferences over the pre-defined list of terrain classes
known to the segmentation algorithm.

Representation learning is a more recent approach to terrain-
aware navigation that allows preferences to no longer be lim-
ited to terrains with predefined labels [15], [16], [20], [21].
Patch-based representation learning methods for terrain under-
standing typically involve mapping small square patches from
the bird’s-eye view (BEV) to a representation vector that is
further converted into a scalar cost value. Although contin-
uous representation spaces are theoretically generalizable to
new terrains, training such a space effectively is challenging in
practice, as even humans may struggle to identify terrain types
from small patches in the presence of homography artifacts or
difficult lighting conditions. A further limitation is that each
new terrain preference ordering necessitates retraining the utility
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Fig. 1. Given an input image I and a preference context Ĥ of n ordered pairs
of terrain patches where the left terrain is more preferred than the right, PACER

generates a costmap consistent with this preference. Changing the preference
context leads to changed terrain costs, which results in a different plan aligned
to the new operator preference. The paths planned according to the different
preferences are shown above. In the costmap, black represents low cost and
white represents high cost.

function in the representation space, making these approaches
less adaptable to changing preferences.

Towards overcoming the limitations of the semantics-
based and representation-learning paradigms to terrain cost
assignment, we propose and study PACER, a novel approach
to costmap generation that accepts as input a single birds-eye
view (BEV) image of the surrounding terrain along with a
user-specified preference context and generates a corresponding
BEV cost map that aligns with that preference context (see
Fig. 1). By preference context, we mean a small set of terrain
patches and pairwise preferences over those patches that are
supplied at deployment time. We design PACER to exhibit three
design desiderata: (1) it is capable of representing a prior over
terrain preferences; (2) it is capable of adapting to a wide variety
of preference contexts; and (3) it is able to assign aligned costs to
terrains that appear in both the preference context and the BEV
image, even for novel terrain types.

Using real and synthetic terrain data, we implement a train-
ing pipeline to realize these three properties and evaluate the
resulting preference-conditioned costmap functions over a wide
variety of BEV images. Additionally, we study the impact
of the resulting costmaps on cost-optimal navigation behavior
with respect to adherence to human preferences. We find that
our method overcomes limitations in prior works by being
easily adaptable to new operator preferences and producing
fine-grained costmaps that illicit desirable navigation behaviors
even in previously unseen environments.

II. THE TERRAIN-AWARE PREFERENCE-ALIGNED PLANNING

PROBLEM

We now develop the terrain-aware preference-aligned plan-
ning problem. We will first formulate the path planning problem,
and then we will discuss the problem of learning preference-
aligned terrain costs.

A. Path Planning

In this letter, we are concerned with the general problem of
planning a path in a robot state space X (SE(2) for ground
vehicles) from a start and goal pose x1, G ∈ X as the problem
of finding the finite trajectory ΓS = [x1, . . ., xS ] consisting of
S states x ∈ X which minimizes a total objective function

ΓS = argΓ min ||xS −G||+ λJ (Γ), (1)

where ||xS −G|| is the distance between the final state xS and
G, and J (Γ) is the cost function scaled by the relative weight
λ.

A cost function J (Γ) may include various terms such as the
geometric cost of obstacles, social navigation cost, or terrain
cost,

J (Γ) = Jgeometric(Γ) + αJsocial(Γ) + βJterrain(Γ) (2)

where α, β are relative weights. This letter is concerned with the
terrain cost term Jterrain(Γ) of the general function.

B. Preference-Aligned Terrain Costs

To better understand preference-aligned terrain costs, we first
introduce a fixed terrain function to represent the spatial distribu-
tion of the terrains in the world. Let a terrain map T : X → T be
a function that maps a robot pose x ∈ X to the terrain τ ∈ T that
the robot interacts with when in posex, where a terrain τ captures
all the properties of the ground relevant to robot navigation.

Additionally, we assume the human has an unknown true cost
function H : T → R

0+ mapping terrains to scalar real-valued
costs based on their preferences. This cost function is influenced
by various factors, including the personal preferences of human
operator, the environment, and the task at hand. Let H denote
the continuous space of such cost functions, such that H ∈ H.

For terrain-aware navigation, the robot relies on its visual
observations to infer terrain-specific costs. We assume that these
observations arrive in the form of images generated according
to a black-box observation function O : X × T → I, i.e., I =
O(x, T ), wherex is the observing pose of the robot,T is a terrain
map,T is the space of terrain maps, and I is the space of images.
In practice, most methods operate on synthetic birds-eye-views
generated from the original camera images. BEV images can
be generated via static ground-plane homography [15], [16],
or a BEV accumulation algorithm [22]. Henceforth, we define
input images to be BEV images. We assume that the the visual
appearance of the terrain provides sufficient information for
the robot to perform terrain-aware navigation. The observation
function is thus fixed, but unknown to the robot.

During planning, the terrain cost of a pose is found using a
costmap C : X → R0+ that maps from robot poses to costs. We
introduce a costmap generation function R : I ×H → C as the
function mapping from the space of images I to the space of
costmaps C, conditioned on an unknown human cost function
that belongs to H.

Since the robot has no direct access to the terrain map T
and there is no clear representation of H , the terrain-aware
preference-aligned planning problem is thus to learn the function
R such that, given an image observation of terrain, the optimal
trajectory planned with respect to R is also optimal with respect
H . The conditions in the next section will be introduced as our
analyses of how we address this problem.

III. NECESSARY CONDITIONS FOR PREFERENCE-ALIGNED

NAVIGATION

Seeking training tasks to help us compute valid preference-
conditioned costmap functions R(·|H), we now state a set of
necessary conditions for these tasks to produce costmaps that
are consistent with human preferences for terrain.

In particular, we will state conditions for equivalence and
partial ordering, and we will show thatRs that produce costmaps
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that yield optimal trajectories consistent with a human prefer-
ence must obey these conditions.

Let R(·|H) denote a costmap generated according to an H ∈
H, and C|x denote that costmap C ∈ C is evaluated at pose x.
For a generated costmap R(·|H) to be consistent with H , we
specify it must exhibit both equivalence and partial ordering.
By equivalence, we mean that the terrains at two poses are given
the same cost by H if and only if the costmap generated by
R from an image observation and evaluated at those two poses
have equal cost, i.e.,

Hi(T (x1)) = Hi(T (x2)) ⇐⇒ R(O(·, T ) | Hi)
∣∣∣
x1

= R(O(·, T ) | Hi)
∣∣∣
x2

∀x1, x2, Hi . (NC1)

By partial ordering, we mean that H assigns a preference order
over the terrains at two poses if and only if the costmap generated
by R from an image observation assigns those two poses the
same preference order, i.e.,

Hi(T (x1)) < Hi(T (x2)) ⇐⇒ R(O(·, T ) | Hi)
∣∣∣
x1

< R(O(·, T ) | Hi)
∣∣∣
x2

∀x1, x2, Hi . (NC2)

We let O(·, T ) denote an image observation captured from
any observing pose from which x1, x2 are visible.

We now provide a brief proof that (NC1), (NC2) are neces-
sary for aligning the preferences of Hi with R. Specifically,
if the most optimal path with respect to R(· | Hi) has the
same optimal cost when evaluated with Hi, then the conditions
(NC1), (NC2) must hold. For a trajectory Γ composed of dis-
crete poses, let the cumulative cost function for the human’s
evaluation be denoted by H|Γ ≡

∑
xi∈Γ

H(T (xi)). Similarly,
let the cumulative cost function for the generated costmap be
denoted as R|Γ ≡

∑
xi∈Γ

R(O(·, T ) | H)|xi
. Given this setup,

the following theorem establishes the necessity of the conditions
(NC1), (NC2) such that H|Γ∗ = R|Γ.

Theorem 1: Let Γ∗ = argΓ minH|Γ, Γ = argΓ minR|Γ
denote the optimal trajectories with respect to H and R respec-
tively. If the optimal trajectory with respect to R has equal cost
to the optimal path with respect to H when both are evaluated
on H such that H|Γ∗ = R|Γ, then conditions (NC1) and (NC2)
hold.

Proof: Since H|Γ∗ = R|Γ, we must have that:
1) H|Γ1

< H|Γ2
⇒ R|Γ1

< R|Γ2
for all paths Γ1,Γ2.

Otherwise, there exist paths Γ1,Γ2 such that H|Γ1
<

H|Γ2
and R|Γ1

≥ R|Γ2
. Then, Γ2 may be selected as Γ,

but has greater cost thanH|Γ∗ when evaluated onH , which
is a contradiction.

2) R|Γ1
< R|Γ2

⇒ H|Γ1
< H|Γ2

for all paths Γ1,Γ2.
Otherwise, there exist pathsΓ1,Γ2 such thatR|Γ1

< R|Γ2

and H|Γ1
> H|Γ2

(by contraposition on (a), we eliminate
the case where R|Γ1

< R|Γ2
and H|Γ1

= H|Γ2
). Then,

Γ1 may be selected as Γ, but may have greater cost than
H|Γ∗ when evaluated on H , which is a contradiction.

By (a) and (b), we have that H|Γ1
< H|Γ2

⇐⇒ R|Γ1
<

R|Γ2
. By contraposition, we also have H|Γ1

= H|Γ2
⇐⇒

R|Γ1
= R|Γ2

. Finally, since a path Γ can consist of a single
state, conditions (NC1) and (NC2) must also then hold. �

In the next section, we use conditions (NC1) and (NC2)
to define training tasks for learning the optimal R from data,

Fig. 2. Relationships between spaces of Terrains, Image Observations, and
Costmaps. There exists a hidden “true” costing function based on human
preferences directly on terrains. PACER approximates this function from visual
observations of terrains.

which drives our proposed approach to the online generation of
costmaps which result in preference-aligned navigation.

IV. PREFERENCE-ALIGNED ALL-TERRAIN COSTMAP

GENERATION

We now present our proposed approach for computing aligned
terrain costmaps, which we refer to as Preference-aligned, All-
terrain Costmap genERation (PACER). PACER introduces the no-
tion of a preference context and comprises several components,
including a neural network architecture, and a data curation and
training methodology based on the three design desiderata.

A. Preference Context

The preference-aligned terrain costs discussed in Section II
depend on a human’s cost function H : T → R

0+. Unfortu-
nately, we do not have access to H directly since it is known
only to the human operator. Therefore, we propose to obtain
and utilize an approximate representation of H that we call a
preference context.

We define a preference context Ĥ as a set of n image patch

pairs Ĩ ≻ Ĩ
′

constructed from human input such that the hu-

man prefers the terrain observed in image Ĩ over the terrain

observed in Ĩ
′
, where an Ĩ ∈ I is an observation of terrain

as a small image patch. The small patch may be a part of a
larger bird’s-eye-view image of the ground. More specifically,

Ĥ consists of n preferences derived from H and is defined as

Ĥ ≡ {(Ĩ1 ≻ Ĩ
′

1), . . .(Ĩn ≻ Ĩ
′

n)}. Fig. 3 shows some example
preference contexts withn = 3 patch pairs and their correspond-
ing costmaps.

In our implementation, the n pairwise preferences are ex-

pressed using image patches of size h× w. Ĥ is then repre-
sented by vertically concatenating the patches within a pair with
the more-preferred terrain patch on top and forming a single
(n · c)× 2h× w tensor, where c is the number of color channels.
Given a finite preference context, it is impossible to specify
all pairwise preferences over the terrains, especially since the
terrain set is continuous - hence it is not possible to specify
a stronger sufficient condition that would guarantee that the
algorithm generates human-aligned costs.

B. Model Architecture

To generate costmaps, we propose to approximate functions

R : I ×H → C, which require H as input, with functions R̂ :

I × Ĥ → C, where Ĥ is the space of all preference contexts

as defined above. We model R̂ as a neural network with a two
encoders and a single decoder. The input image is passed through
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Fig. 3. Overview of the dataset structure. Each training example contains a preference context, image, and target costmap. We vary the preferences and images,
resulting in a large combinatorial dataset despite the relatively small amount of real recorded data. In a later training phase, we also augment with synthetic data by
artificially finding and replacing certain terrain types with synthetic terrain textures. The real-valued costs assigned to terrain types based on an input total ordering
are shown in the Generate Examples procedure, where black represents low cost and white is high cost.

a BEV image encoder FBEV to form an image embedding, and,
similarly, the input preference context is passed through a pref-
erence context encoder Fpref to form a preference embedding.
The output costmap is then generated by concatenating these
embeddings and then passing them through a decoder D. A
visual depiction of this architecture is provided in Fig. 1.

C. Loss Function

PACER is trained using supervised machine learning, i.e., given

a dataset D = {(Ĥ, I, CT )i}
N
i=1 of preference context, image,

and target costmap tuples, we seek the parameters φ of R̂ that
minimize a loss between the real and predicted costmaps. More
specifically, we seek φ∗ such that

φ∗ = argmin
φ

E(I,Ĥ,CT )∼D

[
ℓ
(
R̂φ(I, Ĥ), CT

)]
, (3)

where we use the binary cross entropy loss averaged over each
pixel as the loss function ℓ.

V. DATASET CURATION AND TRAINING PACER

We now describe the dataset curation and training process
for PACER. PACER is trained using three distinct phases of super-
vised machine learning, each corresponding to a unique training
dataset that corresponds to one of the desiderata described in
Section I. In what follows, we will first describe how we generate
training examples, then describe each of the three training phases
and the training procedure.

A. Training Example Generation

The datasets D we use to train the PACER model consist
of tuples of preference contexts, images, and target costmaps

(Ĥ, I, CT ). To construct these datasets, we bootstrap off of
semantic terrain classification and use a pretrained terrain patch
classifier that assigns one of L predefined semantic labels to a
given terrain image patch.

The inputs to the training example generation process are a
single image I along with a total ordering over terrain types τ1 ≻

τ2 ≻ . . . ≻ τL, where each terrain type τl corresponds to a bank
of image patches. PACER assumes that the cost value associated
with τl is given by H(τl) =

l−1
L−1 . The bank corresponding to τl

consists of patches of that type extracted from images collected
during robot deployment.

We use these inputs to generate Ĥ and CT . To generate Ĥ ,
we first choose n ordered pairs from the total ordering over the
L terrain types without replacement. For each of the resulting
ordered pairs, we sample uniformly at random patches from
the corresponding patch banks, and use these 2n patches to

construct Ĥ according to the process detailed in Section IV-A
above. To generate CT , we perform semantic segmentation on I
and transform the segmented image into CT by setting the cost
for a pixel labelled l to be H(τl).

Constructing training examples in this way encourages R̂φ∗

to follow our necessary conditions. First, because CT assigns
the same cost value to image locations that received the same

semantic label, R̂φ∗ is encouraged to identify regions of visually-
similar terrain and assign equivalent costs within the region, as

per condition (NC1). Second, because both Ĥ and CT are, by

construction, consistent with H , R̂φ∗ is encouraged to predict

costmaps given Ĥ which preserve the partial ordering of H ,
as per condition (NC2). Interestingly, assuming sequential seg-

mented images are temporally consistent, we observe that R̂φ∗

is encouraged to be viewpoint-invariant.
During inference time, there are no semantic labels and only

the visual appearances of terrains are considered.

B. Dataset Size

The size of the space from which we sample data is very
large. From a total ordering of L discrete terrain types, there are

m =
(
L
2

)
different ordered pairs of terrains and

(
m
n

)
different

sets of n pairs. For each set of n pairs, there n! ways to shuffle
the pairs to construct the preference context, yielding

(
m
n

)
· n!

possible preference contexts. Moreover, for each terrain type
in the preference context, we sample a patch from the bank.
Our dataset contains a bank of around 800 patches for each
terrain label, and about 950 full images. Therefore, for each
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total ordering, we have
((L2)

n

)
n! arrangements of labels into

preference contexts, where we sample a patch from a bank of 800
patches for each terrain type. For L terrains, n = L logL pairs
are needed to describe a total ordering, though we evaluate on a
smaller n = 3 pairs due to size considerations for the model and
dataset.

C. Training Phases

Each of the three system desiderata stated in Section I is mani-
fested in a distinct training phase, each of which utilizes a unique
training dataset generated using the procedure described above.
More specifically, these phases generate datasets Dreal, Dshuffled,
and Dsynthetic, which promote adherence to prior preferences in
seen terrains, robustness to new preferences, and robustness to
new terrains, respectively.

A visualization of each of these phases is given in Fig. 3, and
we describe each phase in more detail below.

Training Phase 1. Pretraining with Real Data and Realistic
Preferences: To promote a prior towards an overall “realistic”
ordering (as per our first desired property), PACER’s first training
phase constructs and utilizes a dataset Dreal generated using
real-world data collected from robot deployments around our
campus at The University of Texas at Austin and realistic prefer-
ences over terrain classes. An example of a realistic preference
ordering is as follows: concrete ≻ pebble ≻ grass ≻
marble ≻ bush. The “realistic preferences” were defined
by the first author according to considerations for robot safety
(e.g. preferring grass over loose marble for a wheeled robot)
and societal norms (e.g. preferring concrete over grass to avoid
trampling lawns, even though both terrains are relatively safe).

Training Phase 2. Augmentation with Changed Preferences:
During deployment in terrains not seen during training, the robot
should adhere to preferences given by the operator (as per our
second desired property). Even when operator preferences con-
tradict “realistic preferences”, the robot should follow operator
preferences over learned priors. To encourage this adherence to
the ordering in the preference context, we train using the same
real data but with changed preferences on a smaller corpus of
data by using a randomly-permuted total ordering over terrain
labels.

Training Phase 3. Augmentation with Synthetic Terrains: To
promote the model’s ability to generalize to terrains unseen
during training (as per our third desired property), we further
train with synthetically augmented data.

We pick a random subset of terrains to replace and randomly
permute the preference order. An image containing at least one
such terrain is selected, and those terrains are artificially replaced
with terrain textures from an open-source database [23] using
dense segmentation. We used 14 synthetic textures. The training
example is formed with a preference context (where terrains have
been replaced), the image, and a costmap with costs reassigned
according to the new preference order.

In the first phase, only Dreal is used for training examples.
In the second, both Dreal and Dshuffled are used. In the third,
all three datasets are used. Within a phase, training examples
are drawn uniformly among the datasets used. Before training
on Dreal, weights are initialized randomly. After completing a
training phase, we switch to the next phase starting from the
previous trained weights. We trained for 100 epochs in phase 1,
5 in phase 2, and 100 in phase 3.

VI. EXPERIMENTS

To evaluate PACER, we seek to answer the following questions
empirically:

1) How effectively is the robot able to navigate in terrains
seen during training when the preference context con-
tains (a) only seen terrains or (b) only previously unseen
terrains?

2) How effectively is the robot able to navigate in unseen
terrains when the preference context contains (a) only
those unseen terrains or (b) only seen terrains?

By dividing deployment scenarios into the four situations
above, we will be able to understand the performance of PACER

under the four ways to combine seen and unseen terrains in the
preference context and environment. In 1b and 2b, the prefer-
ence context does not provide information about the terrains
appearing in the environment, so the robot must rely on learned
priors about realistic cost assignment. We term this scenario as
having an uninformative context.

Evaluations are performed using simulated experiments on
an aerial map. In a later section, we also provide results from
real robot deployments. We compare against STERLING [15] (a
representation learning approach) and a classifier (a semantics-
based approach) as baselines. The classifier is the same as used
generate the training data for PACER. The same model for PACER

is utilized across all environments. No retraining or fine-tuning
is done. Additionally, a single context is used for the duration
of a simulated deployment in an environment (i.e. the context is
not switched out midway through the path-planning).

To quantify the navigation performance in our experiments,
we posit that factors such as the distance traversed or close-
ness to a human-defined trajectory do not matter as much as
traveling on only the preferred terrains. We therefore assign
terrain types in each experiment a low, medium, and high cost,
according to the human deployer’s preference and report the
proportion of the planned path which belonging to each tier.
The assignment of semantic terrain types to these three tiers
is based on a hidden total ordering of all the terrains which
appear in the environment. Each of the methods and baselines
tested are deployed with a preference (provided according to
their respective representations) consistent with the hidden total
ordering. Note that we have purposely chosen this metric to be
different from the commonly-used Hausdorff distance between
the planned trajectory and one defined by a human operator,
which can vary greatly when there are multiple valid paths to
the goal.

A. Aerial Map Experiments

In our simulated experiments, we build aerial maps from drone
footage of three locations around our campus, which we consider
seen environments. We also use open-source aerial maps [24]
from around the world, covering a wide variety of both urban
and natural terrain types and which we consider unseen. For
each of the seen and unseen environments, we provide a start
and goal location and test varying operator preferences. We test
realistic preferences, and “inverted” preferences, in which each
of the pairwise orderings in the realistic preference are reversed.
Given the robot’s pose on the aerial map, the robot’s projected
bird’s eye view can be found, and used as input to generate the
local costmap. Planning is done using the A* algorithm [25]
on the costmap. In Fig. 5, we show examples of paths planned
using PACER in our aerial map simulator. These experiments are
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Fig. 4. The effect of changing preference on path planning is shown on the left image of an aerial map. The blue path corresponds to the middle costmap and the
red path corresponds to the right costmap. The generated costmaps reflect the preferences provided in the context. Dark purple corresponds to low cost and yellow
is high cost.

Fig. 5. Examples of several paths planned using our method in an urban unseen
environment and their corresponding preference contexts. Here, we visualize the
large scale of these simulated deployments, and the diversity of visual terrain
appearances.

Fig. 6. The four environments where real-robot trials were performed. Blue
arrows and yellow stars show start and goal locations respectively. The red
dashed line marks the intended path based on operator preference.

TABLE I
PROPORTION OF PLANNED PATHS THAT TRAVERSE LOW, MEDIUM, AND

HIGH-COST TERRAINS IN SEEN ENVIRONMENTS, RELATING TO 1A,1B

an evaluation purely over planning based on terrain preference,
with no kinodynamic constraints, no errors due to localization,
and no costs associated with elevation.

Table I displays the results for seen environments. Towards
answering question 1a, PACER has similar results to the STER-
LING baseline, as both approaches were trained on the same
in-distribution data. When no useful context has been provided
for PACER (i.e. the context contains only unseen terrains which
do not match the environment as per 1b), the results are on
par with the classifier baseline. PACER’s success despite the lack
of an informative preference context shows that the model has
captured a prior over realistic cost-assignment for in-distribution
terrains.

TABLE II
PROPORTION OF PLANNED PATHS THAT TRAVERSE LOW, MEDIUM, AND

HIGH-COST TERRAINS IN UNSEEN ENVIRONMENTS, RELATING TO 2A,2B

TABLE III
PROPORTION OF PLANNED PATHS THAT TRAVERSE LOW, MEDIUM, AND

HIGH-COST TERRAINS IN SEEN ENVIRONMENTS FOR EACH TRAINING PHASE

Table II displays the results for unseen environments. To-
wards answering question 2a, when given an informative
context, PACER outperforms the STERLING baseline. Though
representation-learning approaches like STERLING should theo-
retically generalize due to their continuous representation space,
this is contingent on similar terrains forming clusters in this
space, which may not be the case for unseen terrains. Fapt
install r-base-coreor unseen environments, the classifier baseline
has been omitted, as it allows no way for a user to provide
terrain preferences for classes that are not predefined. PACER

overcomes the limitations of previous paradigms, as it both
allows preferences in unseen environments to be expressed and
generalizes well to these unseen environments. Additionally,
when no useful context has been provided for the unseen terrains
(per 2b), PACER is not able to adapt.

B. Ablation Study

To understand the effects of each phase in the training process,
we perform an ablation study using the same environments as in
the aerial simulator experiments. In the Dreal phase, the model
is trained only on real data and realistic preferences. In the
Dshuffled phase, the model is pretrained on real data with realistic
preferences, and then trained on a smaller amount of changed
preferences. In Dsynthetic phase, the model is trained according
to all three phases.

Results are shown in Tables III and IV. In seen environments,
the model trained on Dreal performs the best of the three with
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TABLE IV
PROPORTION OF PLANNED PATHS THAT TRAVERSE LOW, MEDIUM, AND

HIGH-COST TERRAINS IN UNSEEN ENVIRONMENTS FOR EACH TRAINING

PHASE

TABLE V
MARGIN RANKING ERROR FOR EACH OF THE THREE MODELS ON THE TEST

SET OF EACH OF THE THREE DATASETS

realistic preferences, but is unable to adapt when the prefer-
ences are inverted. Results for realistic preferences (black) are
significantly better than those for inverted preference (blue) for
this method in Table III. In unseen environments (Table IV), this
method performs the worst regardless of preference context. The
model trained on Dshuffled is able to adapt to changing preference
orderings in seen environments, seen by comparing results for
realistic preferences (black) to inverted preferences (blue) in
Table III. However, it is unable to recognize and match new
terrains in the preference context to the new environment as
evidenced by the drop in performance from Tables III to IV.
The model trained onDsynthetic is shown to both respect changing
preference order and recognize new terrains. Our findings indi-
cate that training the model to respond to preferences reduces
performance with realistic preferences in seen environments,
as Dshuffled and Dsynthetic have slightly poorer performance than
Dreal with realistic but far better performance with inverted
preferences. Furthermore, performance across all three methods
decreases from seen to unseen since the scenario is harder, but
Dsynthetic has the least drop in performance. Variable preferences
and unseen environments introduce greater complexity, requir-
ing models to adapt and generalize. We prioritize these harder,
practical scenarios, accepting a trade-off with peak accuracy in
simpler settings.

C. Performance on Test Set

There are infinite costmaps which may satisfy a preference
over terrains (given as a partial order of terrains), since the scale
of the numerical costs do not matter as long as the ordering
is followed. Therefore, rather that direct comparison with a
“ground-truth” costmap, we report the margin ranking error
of predicted costmaps using holdout set from each dataset in
Table V. We sample the 500 points across the costmap, then
for each pair of points, calculate the error as 0 if the relative
magnitude of the two costs is correct. Otherwise the error is the
difference between the two costs. We report the mean error for
each category.

TABLE VI
NUMBER OF SUCCESSES PER 5 TRIALS OF DIFFERENT APPROACHES ACROSS

VARIOUS ENVIRONMENTS

For each dataset, the model which was trained on that dataset
had the lowest error. Across all datasets, Dsynthetic had the low-
est or second-lowest error, and had therefore the overall best
performance.

D. Discussion

The results presented in this section demonstrate that PACER

fulfills our three design desiderata. The adherence of PACER to
realistic preferences when not given an informative preference
context fulfills the first key property of being able to make
inferences when there is no context by capturing a prior over
realistic preferences (1b). As per the second key property, PACER

has been shown to align costs to preferred terrains even as pref-
erences are varied (1a). An example of paths planned according
to different preferences is shown in Fig. 4. The performance
of PACER in both seen and unseen environments when given an
informative preference context shows that PACER exhibits the
third key property (1a, 2a).

VII. REAL ROBOT EXPERIMENTS

We now seek to demonstrate that PACER performs well during
execution in the real world. We deploy our method, STERLING,
and the classifier approach on a mobile robot at four differ-
ent locations on the UT campus which are not included in
the simulated environments. These four locations cover red
brick, concrete sidewalk, grass, mulch, and peb-
ble pavement.

Since all methods are trained to be view-point invariant and
platform-agnostic, we trained them all with the same data col-
lected from a Boston Dynamics Spot, and deployed zero-shot on
a Clearpath Jackal which has significant differences in viewpoint
and mobility than the Spot. We evaluate the performance of each
method with a realistic preference on a variety of terrain types.
In these experiments, we measure the robot’s ability to execute
the plan, which includes robustness to a different viewpoint and
platform. We integrate each method with a sampling-based local
planner [26] and maintain the same planner parameters to ensure
fairness.

Table VI shows results from real robot experiments. Our
approach had the most successful trials across all environments.
While the classifier performed well in environments 1 and 2,
we hypothesize that difficult lightning conditions and variations
in terrain appearance caused the failures in environments 3 and
4. Though STERLING performed as the best baseline in the sim-
ulated experiments (which involved only planning), it seemed
to be unable to execute these plans in real-robot experiments.
Many of the failure cases involved the robot driving slightly
off-path and just grazing the undesirable terrains. In patch-based
representations, a single patch may contain multiple different
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terrains (e.g. half sidewalk and half grass), so the cost assigned
to the patch would be some combination of the different terrain
costs, resulting in a coarser degree of control on the physical
robot. Our approach overcomes this limitation since it directly
outputs a fine-grained costmap in a single forward pass.

VIII. LIMITATIONS AND FUTURE WORK

The experiments reported in this letter were conducted on a
single campus with one robot. Future work should extend the
study to more varied terrains and deploy multiple robots with
diverse sensors. Additionally, we aim to evaluate the ease with
which human users can express preferences using our method,
as well as explore alternative mechanisms for preference ex-
pression in costmap generation. Incorporating a variable-length
preference context would also be an interesting direction for
future work, enabling greater flexibility and adaptability in rep-
resenting user preferences. Exploring other model architectures
could further enhance the system’s robustness and performance
in diverse scenarios. Finally, incorporating depth data into the
costmap generation is another key area for improvement, as our
current reliance on a homography transformation assumes flat
ground, leading to limitations like the inability to avoid obstacles
such as concrete curbs, despite their preferable terrain.

IX. CONCLUSION

In this letter, we presented PACER, a novel architecture
and training approach to quickly produce costmaps according
to arbitrary user preferences and new terrains with no fine-
tuning. Our approach was evaluated against semanics-based
and representation-learning baselines in both simulated and real
robot experiments. We have shown this approach to be highly
adaptable to new preferences and terrains, as well as able to
infer the traversability of some terrains according to realistic
preferences.
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