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Abstract— Despite recent advances, developing general-
purpose universal denoising and artifact-removal networks
remains largely an open problem: Given fixed network weights,
one inherently trades-off specialization at one task (e.g., removing
Poisson noise) for performance at another (e.g., removing speckle
noise). In addition, training such a network is challenging due
to the curse of dimensionality: As one increases the dimensions
of the specification-space (i.e., the number of parameters needed
to describe the noise distribution) the number of unique speci-
fications one needs to train for grows exponentially. Uniformly
sampling this space will result in a network that does well at very
challenging problem specifications but poorly at easy problem
specifications, where even large errors will have a small effect on
the overall mean squared error. In this work we propose training
denoising networks using an adaptive-sampling/active-learning
strategy. Our work improves upon a recently proposed universal
denoiser training strategy by extending these results to higher
dimensions and by incorporating a polynomial approximation of
the true specification-loss landscape. This approximation allows
us to reduce training times by almost two orders of magnitude.
We test our method on simulated joint Poisson-Gaussian-Speckle
noise and demonstrate that with our proposed training strategy,
a single blind, generalist denoiser network can achieve peak
signal-to-noise ratios within a uniform bound of specialized
denoiser networks across a large range of operating conditions.
We also capture a small dataset of images with varying amounts
of joint Poisson-Gaussian-Speckle noise and demonstrate that a
universal denoiser trained using our adaptive-sampling strategy
outperforms uniformly trained baselines.

Index Terms— Denoising, active sampling, deep learning.

I. INTRODUCTION

EURAL networks have become the gold standard for
solving a host of imaging inverse problems [1]. From
denoising and deblurring to compressive sensing and phase
retrieval, modern deep neural networks significantly outper-
form classical techniques like BM3D [2] and KSVD [3].
The most straightforward and common approach to apply
deep learning to inverse problems is to train a neural
network to learn a mapping from the space of cor-
rupted images/measurements to the space of clean images.
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In this framework, one first captures or creates a train-
ing set consisting of clean images xp, x3,... and corrupted
images yi, y2, ... according to some known forward model
p(yilxi, 0), where 6 € O denotes the latent variable(s)
specifying the forward model. For example, when training a
network to remove additive white Gaussian noise

lyi — xi )1
p_

1
oam ¢ 207
and the latent variable 6 is the standard deviation o. With a
training set of L pairs {x;, y,-}l.L:1 in hand, one can then train
a network to learn a mapping from y to x.

Typically, we are not interested in recovering signals from
a single corruption distribution (e.g., a single fixed noise
standard deviation o) but rather a range of distributions. For
example, we might want to remove additive white Gaus-
sian noise with standard deviations anywhere in the range
[0,50] (® = {olo € [0,50]}). The size of this range
determines how much the network needs to generalize and
there is inherently a trade-off between specialization and
generalization. By and large, a network trained to reconstruct
images over a large range of corruptions (a larger set ®) will
under-perform a network trained and specialized over a narrow
range [4].

This problem becomes significantly more challenging when
dealing with mixed, multi-distribution noise. As one increases
the number of parameters (e.g., Gaussian standard deviation,
Poisson rate, number of speckle realizations, ...) the space
of corrupted signals one needs to reconstruct grows exponen-
tially: The specification space becomes the Cartesian product
(e'g-’ O = OGaussian X OPoisson X ®speckle) of the spaces of
each of the individual noise distributions.

This expansion does not directly prevent someone (with
enough compute resources) from training a “universal” denois-
ing algorithm. One can sample from ®, generate a training
batch, optimize the network to minimize some reconstruction
loss, and repeat. However, this process depends heavily on
the policy/probability-density-function 7 used to sample from
®. As noted in [5] and corroborated in Section V, uniformly
sampling from ® will produce networks that do well on
hard examples but poorly (relative to how well a specialized
network performs) on easy examples.

p(yilxi, 0) = )

A. Our Contribution

In this work, we develop an adaptive-sampling/active-
learning strategy that allows us to train a single “universal”
network to remove mixed Poisson-Gaussian-Speckle noise
such that the network consistently performs within a uniform
bound of specialized bias-free DnCNN baselines [4], [6]. Our
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key contribution is a novel, polynomial approximation of the
specification-loss landscape. This approximation allows us to
tractably apply (using over 50x fewer training examples than
it would otherwise require) the adaptive-sampling strategy
developed in [5], wherein training a denoiser is framed as a
constrained optimization problem. We validate our technique
with both simulated and experimentally captured data.

II. RELATED WORK

Overcoming the specialization-generalization trade-off has
been the focus of intense research efforts over the last 5 years.

A. Adaptive Denoising

One approach to improve generalization is to provide the
network information about the current problem specifica-
tions 6 at test time. For example, [7] demonstrated one
could provide a constant standard-deviation map as an extra
channel to a denoising network so that it could adapt to
ii.d. Gaussian noise. [8] extends this idea by adding a
general standard-deviation map as an extra channel, to deal
with spatially-varying Gaussian noise. This idea was recently
extended to deal with correlated Gaussian noise [9]. The
same framework can be extended to more complex tasks like
compressive sensing, deblurring, and descattering as well [10],
[11]. These techniques are all non-blind and require an accu-
rate estimate of the specification parameters 6 to be effective.

B. Universal Denoising

Somewhat surprisingly, the aforementioned machinery may
be unnecessary if the goal is to simply remove additive
white Gaussian noise over a range of different standard devia-
tions: [6] recently demonstrated one can achieve significant
invariance to the noise level by simply removing biases
from the network architecture. Reference [12] also achieves
similar invariance to noise level by scaling the input images
to the denoiser to match the distribution it was trained on.
Alternatively, at a potentially large computational cost, one
can apply iterative “plug and play” or diffusion models that
allow one to denoise a signal contaminated with noise with
parameters 6’ using a denoiser/diffusion model trained for
minimum mean squared error additive white Gaussian noise
removal [13], [14], [15]. These plug and play methods are
non-blind and require knowledge of the likelihood p(y|x, 6")
at test time.

C. Training Strategies

Generalization can also be improved by modifying the
training set [16]. In the context of image restoration prob-
lems like denoising, [17] propose updating the training data
sampling distribution each epoch to sample the data that the
neural network performed worse on during the prior epoch
preferentially, in an ad-hoc way. In [5] the authors developed
a principled adaptive training strategy by framing training a
denoiser across many problem specifications as a minimax
optimization problem. This strategy will be described in detail
in Section IV.
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D. Relationship to Existing Works

We go beyond [5] by incorporating a polynomial approxi-
mation of the specification-loss landscape. This approximation
is the key to scaling the adaptive training methodology to
high-dimensional latent parameter spaces. It allows us to effi-
ciently train a blind image denoiser that can operate effectively
across a large range of noise conditions.

III. PROBLEM FORMULATION
A. Noise Model

This paper focuses on removing joint Poisson-Gaussian-
Speckle noise using a single blind image denoising network.
Such noise occurs whenever imaging scenes illuminated by
a coherent (e.g., laser) source. In this context, photon/shot
noise introduces Poisson noise, read noise introduces Gaussian
noise, and the constructive and destructive interference caused
by the coherent fields scattered off optically rough surfaces
causes speckle noise [18].

The overall forward model can be described by

1
yi = —Poisson(a(r o w;)) + n;, @)
o

where the additive noise n; follows a Gaussian distribution
N(0, 2I); the multiplicative noise w; follows a Gamma dis-
tribution with concentration parameter B/f and rate parameter
B/B, where B is the upper bound on §; and « is a scaling
parameter than controls the amount of Poisson noise. The
forward model is thus specified by the set of latent variables
0 = {o, a, B}.

A few example images generated according to this forward
model are illustrated in Figure 1. Variations in the problem
specifications results in drastically different forms of noise.

B. Specification-Loss Landscape

A specification is a set of n parameters that define a task.
In our setting, the specifications are the distribution parameters
describing the noise in an image. Each of these parameters is
bounded in an interval [/;, r;], for 1 <i < n. The specification
space © is the Cartesian product of these intervals: @ =
[[1,71] X -+ x [l,, ry]. Suppose we have a function f that
can solve a task (e.g., denoising) at any specification in O,
albeit with some error. Then the specification-loss landscape,
for a given f over O, is the function £, which maps points
0 from © to the corresponding error/loss (e.g., mean squared
error) that f achieves at that specification.

Now suppose that all functions f under consideration come
from some family of functions F. Let the ideal function
from F that solves a task at a particular specification 6 be
fi?ieal = argmin s L7(0). With this in mind, we define the
ideal specification-loss landscape as the function that maps
points 6 in ® to the loss that fizeal achieves on the task with
specification 0, and denote it Ligea].

C. The Uniform Gap Problem

Our goal is to find a single function f* € F that
achieves consistent performance across the specification space
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Varying the noise specifications. The first row shows images corrupted by gaussian noise, the second row shows images corrupted by poisson noise,

and the last row shows images corrupted by speckle noise. In each of the rows, the other noise parameters are held fixed at 0, 0.01, and 1.00, respectively.

©®, compared to the ideal function at each point 8 € O,
figea]. More precisely, we want to minimize the maximum
gap in performance between f* and fiﬁeal across all of ©®.
E.g., we want a universal denoiser f* that works almost as
well as specialized denoisers fizeal’ at all noise levels ©.
Following [5], we can frame this objective as the following

optimization problem

f* = argmin sup {£(0) — Ligeal (@)} . 3)
feF 0e0

which we call the uniform gap problem.

IV. PROPOSED METHOD
A. Adaptive Training

To solve the optimization problem given in (3), [5] proposes
rewriting it in its Lagrangian dual formulation and then
applying dual ascent, which yields the following iterations:

£+ = argmin [ ﬁf(e))\t(é‘)dQ] “)
feF 0e®
L
NFE(0) = N (0) + 7' ( e 1) )
Lideal
AHL@) = AT (8)/ /9 . AT (0)do), ©6)

where A\(0) represents a dual variable at specification 6 € ©,
and y is the dual ascent step size. One detail is we use PSNR
constraints instead of MSE constraints, which influences the
form of Equation 5. Intuitively, the reason is because PSNR is
the logarithm of the MSE loss, and a more uniform PSNR gap
means that the ratio of the losses is closer to 1, which is where

L 41 . . .
the "f;+1 — 1 term comes from. More details are discussed in
ideal . .
the supplement. We can interpret (4) as fitting a model f to the

training data, where A(@) is the probability of sampling a task
at specification 6 to draw training data from. Next, (5) updates
the sampling distribution A(6) based on the difference between
the current model f'*!’s performance across 6 € ® and the
ideal models’ performances. Lastly (6) ensures that A(0) is
a properly normalized probability distribution. We provide
the derivation of the dual ascent iterations from [5] in the
supplement.

While ® has been discussed thus far as a continuum,
in practice we sample © at discrete locations and compare
the model being fit to the ideal model performance at these
discrete locations only, so that the cardinality of ®, |®],
is finite. Computing Ligea1(#) for each 6 € O is extremely
computationally demanding if |®] is large; if f is a neural
network, it becomes necessary to train |®| neural networks.
Furthermore, while Ligea1(6) can be computed offline inde-
pendent of the dual ascent iterations, during the dual ascent
iterations, each update of A requires the evaluation of £+
for each 6 € ®, which is also time intensive if |®| is large.

The key insight underlying our work is that one can
approximate Ligeat and Ly in order to drastically accelerate
the training process.

B. Specification-Loss Landscape Approximations

Let Q be a class of functions (e.g., quadratics) which
we will use to approximate the specification-loss landscape.
Instead of computing Ligea1(6) for each 6 € ©, we propose
instead computing Ligea1(#) at a set of locations 6 € Ogparse,
where |Ogparse| < ||, and then using these values to form an
approximation Eideal of Ligea1(0), as

Ligear = argmin = >~ [1£©O) = Ligeq O3 (D)
LeQ 9€®sparsc
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We can similarly approximate £ ;1 with a polynomial Eme.
Then we can solve (3) using dual ascent as before, replacing
Lideal and L fr with Eideal and £ fr+l where appropriate,
resulting in a modification to (5):

Lo
AN+ =\ 4 yf( A 1). (8)

ideal

To justify our use of this approximation, we show that the
specification loss-landscapes of the linear subspace projection
“denoiser” and the soft-thresholding denoiser are linear and
polynomial with respect to their specifications, respectively,
and are thus both easy to approximate using polynomials.

First we define our noise model. Let y = ozPoisson(éxo) +
n with n ~ N(0,0°D. First note that if lx, is large
the distribution of «Poisson(x/«) can be approximated with
N (x, adiag(x)). Accordingly, y ~ x 4+ v where v ~
N(0, 01 + adiag(x)).

Example 1: Let C denote a k-dimensional subspace of R"
(k < n), and the denoiser be the projection of y onto subspace
C denoted by Pc(y) = Py. Then, assuming éxo is large, for
every x, € C

E||Pc(y) — Xoll3 & ko? + atr(Pdiag(x,)P"),

where tr(-) denotes the trace. The loss landscape, L% a) =
E| Pc(y) — x(,||%, is linear with respect to o and a.

Proof: Since the projection onto a subspace is a linear
operator and since Pc(x,) = x, we have

E|l Pc(y) — Xoll3 & Ellx, + Pc(v) — %13 = E| Pc () |13

Let r = Pv. Note that r ~ N(0, ) with ¥ = o2PP! +
aPdiag(x,)P’. Accordingly,

EllPc(w)|3 = Elr|* = tr(2),
= o2tr (PP") 4 arr (Pdiag(x,)P'),
= ko? + atr (Pdiag(x,)P"),

where the last equality follows from the fact that PP’ = P and
the trace of a k-dimensional projection matrix is k. ]

Example 2: Let Ty denote the set of k-sparse vectors, k K
n. Let the family of soft-thresholding denoisers be defined as
N (y) = (|y| — 1) +sign(y), for T > 0. Assume that the ground
truth signal is bounded, or ||x,||c0 < ¢, for some ¢ € RT.
Then, assuming _ x, is large, for every x, € 'y

Elln:(y) — %13 < k(02 + ca + 72)

+2(01— k) ((a2 + )0 (—(17) —to¢ (;)) ,

where ¢(-) denotes the Gaussian density function and P (-)
denotes the Gaussian distribution function. The loss landscape,
L(0?, a) =E|n:(y) —xo||%, can be upper bounded closely by
a polynomial with respect to o and o, because ¢ and ® are
smooth functions with convergent Taylor series.

Proof: We have

k
El[n: (%o + v) = %13 = D B (%o + i) = X0.1)°

i=1

+ (n — BE®n(vy; 7))2
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Fig. 2. Loss landscape visualizations. PSNR, which we use as our metric for
error, versus denoising task specifications. The specification-loss landscapes
(which represent the PSNRs a specialized denoiser can achieve at each
specification) are smooth and amenable to approximation.

Em: (x0,i +vi) —)c(),,-)2 is an increasing function of x, ;, so we
can bound its value from above by taking the limit as

E(e (o 4+ i) — %0.)> < Hm B (Ko + i) — Xo.0)?
x{,_,-—>oo
= 02 + co + tz.

Switching the limit and expectation is justified by the domi-

nated convergence theorem. To calculate the second term, first

note that since the ground truth is O here there is only Gaussian
T

noise and no Poisson noise. Then, with g = =5, we have

E(n: (v)* = 2P (v < —T)EQ] | vy < —7)

+ 2E(v; | vy < —T)T +77)

o (1153 )

—2 ((02 + ) (—g) —T0¢ (?))

where we rewrite the expectations in terms of expressions
for the first and second moments of the one-sided truncated
Gaussian distribution. Combining the results of these two
calculations gives us our desired conclusion. (|

The specification-loss landscapes of high-performance
image denoisers is highly regular as well. We show the
achievable PSNR (peak signal-to-noise ratio) versus noise
parameter plots for denoising Gaussian-speckle noise with
the DnCNN denoiser [4] in Figure 2. Analogues figures for
Poisson-Gaussian and Poisson-speckle noise can be found in
the supplement. These landscapes are highly regular and can
accurately approximated with quadratic polynomials. (Details
on how we validated these quadratic approximations using
cross-validation can be found in the supplement.)

Because we’re more interested in ensuring a uniform PSNR
gap than a more uniform MSE gap, we approximate the
ideal PSNRs rather than the ideal mean squared errors. Then,
following [5], we convert the ideal PSNRs to mean squared
errors with the mapping £(0) = 107PSNRO)/10 for yse in the
dual ascent iterations.
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C. Exponential Savings in Training-Time

The key distinction between our adaptive training proce-
dure and the adaptive procedure from [5] is that [5] relies
upon a dense sampling of the specification-loss landscape
whereas our method requires only a sparse sampling of the
specification-loss landscape. Because “sampling” points on the
specification-loss landscape requires training a CNN, sampling
fewer points can result in substantial savings in time and cost.

As one increases the number of specifications, n, needed to
describe this landscape (n = 1 for Gaussian noise, n = 2 for
Poisson-Gaussian noise, n = 3 for Poisson-Gaussian-Speckle
noise, ...), the number points needed to densely sample the
landscape grows exponentially. Fortunately, the number of
samples needed to fit a quadratic to this landscape only grows
quadratically with n: The number of possible nonzero coeffi-
cients, i.e., unknowns, of a quadratic of n variables is (”;2) =
@D+ and thus one can uniquely specify this function
from w + 1 non-degenerate samples. Accordingly,
our method has the potential to offer training-time savings
that are exponential with respect to the problem specification
dimensions. In the next section, we demonstrate our method
reduces training-time over 50x for n = 3.

V. SYNTHETIC RESULTS

In this section we compare the performance of univer-
sal denoising algorithms that are trained (1) by uniformly
sampling the noise specifications during training (“uniform”);
(2) using the adaptive training strategy from [5] (“dense”),
which adaptively trains based on a densely sampled estimate
of the loss-specification landscape, and (3) using our proposed
adaptive training strategy (“sparse”), which adaptively trains
based on a sparsely sampled approximation of the loss-
specification landscape. We do not compare against the simple
noise level sampling rules such as the 80-20 rule mentioned
in [5] which oversamples lower noise levels because it is more
difficult to define what region of the space of possible noise
levels is considered high versus low noise when there are
multiple noise types.

A. Setup

1) Implementation Details: We use a 20-layer DnCNN
architecture [4] for all our denoisers. Following [6], we remove
all biases from the network layers. We train all of our
networks for 50 epochs, with 3000 mini-batches per epoch
and 128 image patches per batch, for a total of 384,000 image
patches total. We use the Adam optimizer [19] to optimize
the weights with a learning rate of 1 x 107#, with an L2 loss.
During adaptive training, we update the noise level sampling
distribution every 10 epochs.

2) Data: To train our denoising models, we curate a
high-quality image dataset that combines multiple high resolu-
tion image datasets: the Berkeley Segmentation Dataset [20],
the Waterloo Exploration Database [21], the DIV2K
dataset [22], and the Flick2K dataset [23], which is the same
as the dataset used in [24], but different from the one used
in [5]. The choice of dataset is not critical to our method,
so we use the dataset recommended by the later work, [24].

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

To test our denoising models, we use the validation dataset
from the DIV2K dataset. We use a patch size of 40 pixels by
40 pixels, and patches are randomly cropped from the training
images with flipping and rotation augmentations, to generate a
total of 384000 patches. All images are grayscale and scaled
to the range [0, 1]. We use the BSD68 dataset [25] as our
testing dataset.

3) Noise Parameters: We consider four types of mixed
noise distributions: Poisson-Gaussian, Speckle-Poisson,
Speckle-Gaussian, and Speckle-Poisson-Gaussian noise.
In each mixed noise type, o € [0.02,0.66], « € [0.1,41],
and B8 € [1,1024], and we discretize each range into
10 bins. Note that B = 1024 for speckle noise, following the
parameterization in Section III-A. These ranges were chosen
as they correspond to input PSNRs of roughly 5 to 30 dB.
When training the networks with uniform sampling, a new
noise specification is first sampled, and then an instance of
the noise is sampled from that distribution. The number of
training instances is the same as for sparse training, but the
proportion of noise distributions seen is different (given by
the noise distribution parameter sampling distribution).

4) Sampling the Specification-Loss Landscape: Both our
adaptive universal denoiser training strategy (‘“sparse”) and
Gnanasambandam and Chan’s adaptive universal universal
denoiser training strategy (“dense”) require sampling the loss-
specification landscapes, Lidea1(6), before training. That is,
each requires training a collection of denoisers specialized for
specific noise parameters 6 € ©.

For the loss-specifications landscapes with two dimensions
(Poisson-Gaussian, Speckle-Poisson, and Speckle-Gaussian
noise), we densely sampling the landscape (i.e., train net-
works) on a 10 x 10 grid for the “dense” training. For
the “sparse” training (our method) we sample the landscape
at 10 random specifications as well as at the specification
support’s endpoints, for a total of 14 samples for Poisson-
Gaussian, Speckle-Poisson, and Speckle-Gaussian noise.

For the loss-specifications landscape with three dimen-
sions (Speckle-Poisson-Gaussian), sampling densely would
take nearly a year of GPU hours, so we restrict ourselves
to sparsely sampling at only 18 specifications: 10 random
locations plus the 8 corners of the specification cube.

5) Training Setup: For each Poisson-Gaussian, Speckle-
Poisson, and Speckle-Gaussian noises separately, we (1) use
approximations ﬁideal and £ f to adaptively train a denoiser
fs’;arse, (2) use densely sampled landscapes Ligeat and Ly to
adaptively train a denoiser f .. and (3) sample specifications
uniformly to train a denoiser f.. . For Speckle-Poisson-
Gaussian noise, the set of possible specifications is too large
to train an ideal denoiser for each specification (i.e., compute
*

Lideal) and so we only provide results for fs’;arse and f..o .

B. Quantitative Results

Tables I, II, III, and IV compare the performance of
networks trained with our adaptive training method, which
uses sparse samples to approximate of the specification-loss
landscape; “ideal” non-blind baselines, which are trained for
specific noise parameters; networks trained using the adaptive

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 20,2025 at 16:53:35 UTC from IEEE Xplore. Restrictions apply.



ZHANG et al.: SCALABLE TRAINING STRATEGY FOR BLIND MULTI-DISTRIBUTION NOISE REMOVAL

6221

gg —— Uniform 51— Uniform 51 —— Uniform
g 4 Dense Dense Dense
2 —— Sparse 41 —— Sparse 4 Sparse
453
=y 3 3
32
2 2 2
=

1
E |1 1
8
2o — 0 0o ==

10 15 20 25 5 10 15 20 25 30 10 15 20 25 30

Input PSNR, dB
Poisson, Gauss

Fig. 3.

Input PSNR, dB
Speckle, Poisson

Input PSNR, dB
Speckle, Gauss

Adaptive vs uniform training, 2D specification space. Adaptive training with sparse sampling and the polynomial approximation works effectively

in the 2D problem space and produces a network whose performance is consistently close to the ideal. By contrast, a network trained by uniformly sampling
from the space performs far worse than the specialized networks in certain contexts. The error bars represent one standard-deviation. Lower is better.
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Fig. 4. Adaptive vs uniform training, 3D specification space. Adaptive
sampling with the polynomial approximation works effectively in the 3D
problem space and produces a network whose performance is consistently
close to the ideal. By contrast, a network trained by uniformly sampling from
the space performs far worse than the specialized networks in certain contexts.
The error bars represent one standard-deviation. Lower is better.

TABLE 1

QUANTITATIVE COMPARISON OF METHODS ON POISSON-GAUSSIAN
NOISE SAMPLED AT VARIOUS LEVELS, USING PSNR (DB)

Poisson | Gaussian Ideal | Uniform | Dense | Sparse
0.1 0.02 353 31.4 34.5 34.6
0.1 0.66 22.0 22.0 21.9 219
41 0.02 229 229 229 229
41 0.66 21.4 21.3 21.3 21.3
2.0 0.11 27.1 26.6 27.0 27.0

TABLE II

QUANTITATIVE COMPARISON OF METHODS ON SPECKLE-GAUSSIAN
NOISE SAMPLED AT VARIOUS LEVELS, USING PSNR (DB)

Speckle | Gaussian Ideal | Uniform | Dense | Sparse
1.0 0.02 36.6 32.0 354 35.1
1.0 0.66 22.0 21.9 21.7 21.6

1024 0.02 23.1 23.1 22.6 22.4
1024 0.66 21.5 21.4 20.8 20.7
32 0.11 27.4 27.0 27.2 27.2

training procedure from [5], which requires training spe-
cialized ideal baselines at all noise specifications (densely)
beforehand; and networks trained by uniformly sampling
the specification-space. Both adaptive strategies approach the
performance of the specialized networks and dramatically
outperform the uniformly trained networks at certain problem
specifications.

TABLE III

QUANTITATIVE COMPARISON OF METHODS ON SPECKLE-POISSON NOISE
SAMPLED AT VARIOUS LEVELS, USING PSNR (DB)

Speckle | Poisson Ideal | Uniform | Dense | Sparse
1.0 0.1 36.1 315 353 353
1.0 41 23.0 229 229 229

1024 0.1 23.0 23.1 23.0 229

1024 41 22.0 21.8 21.6 21.6

32 2.0 27.8 273 27.6 27.7
TABLE IV

QUANTITATIVE COMPARISON OF METHODS ON SPECKLE-POISSON-
GAUSSIAN NOISE SAMPLED AT VARIOUS LEVELS, USING PSNR (DB)

Speckle | Poisson | Gaussian Ideal | Uniform | Sparse
1 0.1 0.02 347 29.3 334
1 0.1 0.66 22.0 219 21.5
1 41 0.02 23.0 229 227
1 41 0.66 21.4 21.3 20.8
1024 0.1 0.02 232 232 22.6
1024 0.1 0.66 21.5 21.4 20.7
1024 41 0.02 22.0 219 21.2
1024 41 0.66 21.0 20.8 20.0
64 2.3 0.54 25.8 25.5 25.5

These results are further illustrated in Figures 3 and 4, which
report how much the various universal denoisers underper-
form specialized denoisers across various noise parameters.
As hoped, both adaptive training strategies (“dense” and
“sparse”) produce denoisers which consistently perform nearly
as well as the specialized denoisers.! In contrast, the uniformly
trained denoisers underperform the specialized denoisers in
some contexts. Additional quantitative results can be found in
the Supplement.

C. Qualitative Results

Figure 5 illustrates the denoisers trained with the different
strategies (ideal, uniform, adaptive) on an example corrupted
with a low amount of noise and an example corrupted with a
high amount of noise. Notice that in the low-noise regime the
uniform trained denoiser oversmooths the image so achieves
worse performance than the adaptive trained denoiser, whereas

ITo form these figures we train specialized networks at an additional
100 specifications. These networks were not used for training the universal
denoisers.
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Fig. 5. Qualitative comparisons, simulated data. Comparison between the performance of the ideal, uniform-trained, and adaptive distribution, sparse

sampling-trained denoisers on a sample image corrupted with a low amount of noise and corrupted with a high amount of noise. Our adaptive distribution sparse
approximation based blind training strategy performs only marginally worse than an ideal, non-blind baseline when applied to “easy” problem specifications,
and significantly better than the uniform baseline, while also being only marginally worse than an ideal baseline and uniform baseline under “hard” problem

specifications.

TABLE V
COMPARING THE OVERALL TRAINING TIMES (IN GPU HOURS)
BETWEEN THE VARIOUS UNIVERSAL DENOISER TRAINING

STRATEGIES. SPARSELY SAMPLING AND APPROXIMATING THE
SPECIFICATION-LOSS RESULTS IN ORDERS OF MAGNITUDE
SAVINGS IN TRAINING TIME AND COST

Uniform Dense Sparse
Poisson-Gauss 6.5 891.6 95.2
Speckle-Gauss 7.8 747.8 78.8
Speckle-Poisson 8.0 655.9 70.8
Speckle-Poisson-Gauss 7.5 >7000 (predicted) 138.6

in the high noise regime the uniform trained denoiser out-
performs the adaptive trained denoiser. Additional qualitative
results can be found in the supplement.

D. Time and Cost Savings

Recall our adaptive training strategy requires pretraining
significantly fewer specialized denoisers than the method
developed in [5]: 14 vs 100 networks with 2D noise spec-
ifications and 18 vs 1000 networks with 3D specifications.
We trained the DnCNN denoisers on Nvidia GTX 1080Ti
GPUs, which took 6-8 hours to train each network. Overall
training times associated with each of the universal denoising
algorithms are presented in Table V. In the 3D case, our
technique saves over 9 months in GPU compute hours.

Fig. 6. Optical system. We capture images of paper with images on them,
illuminated by a laser, using a DSLR camera. The laser beam passes through
a diffuser which results in a speckle noise pattern on the image. We rotate
the diffuser with a rotation mount connected to a motor controller to gather
different independent realizations of speckle.

VI. EXPERIMENTAL VALIDATION

To validate the performance of our method, we experimen-
tally captured a small dataset consisting of 5 scenes with
varying amounts of Poisson, Gaussian, and speckled-speckle
noise.

A. Optical Setup

Our optical setup consists of a bench-top setup and a DSLR
camera mounted on a tripod, pictured in 6. A red laser is
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TABLE VI
TWEAKING THE LOSS LANDSCAPE: WE TWEAK THE LOSS LANDSCAPES
AS IN THE SETTINGS DESCRIBED IN THE R1QA RESPONSE AND
COMPARE OUR ADAPTIVE METHOD WITH TWEAKED LOSS LANDSCAPES
TO UNIFORM TRAINING. THE NUMBERS REPORTED ARE THE
DIFFERENCE IN PSNR BETWEEN THE IDEAL PSNR AND THE ACHIEVED
PSNR; LOWER IS BETTER. OUR METHOD PERFORMERS BETTER INSIDE
THE REGIONS WHERE WE BIASED THE SAMPLING, BUT WORSE
OUTSIDE THE REGIONS, COMPARED TO UNIFORM SAMPLING

Setting Uniform Adaptive
Inside | Outside Inside | Outside
Correlated 3.23 0.22 2.97 0.30
Low 3.13 0.26 3.04 0.50
High 341 0.16 3.25 0.43
400
’g —— Finetuned
=] From Scratch
£ 300
E
g 200
B
= 100
‘©
=
0
0.10 0.06 0.16 0.41

Poisson Parameter

Fig. 7. Training time of ideal denoisers Here we compare the time it takes
to train a denoiser on one noise configuration from scratch versus finetuned
from a general denoiser. In general, we see time savings of 2—4x.

shined through a rotating diffuser to illuminate an image
printed on paper. The diffuser is controlled by an external
motor controller, which allows us to capture a distinct speckle
realization for each image. The resulting signal is captured by
the DSLR camera. The pattern on the rotating diffuser causes a
speckle noise pattern in the signal. Note, however, that because
the paper being imaged is rough with respect to the wavelength
of red light, an additional speckle pattern is introduced to the
signal—we’re capturing speckled-speckle. This optical setup
allows us to capture images with varying levels of Gaussian,
Poisson, and (speckled) speckle noise. The Gaussian noise can
be varied by simply increasing or decreasing the ISO on the
camera. Similarly, decreasing exposure time will produce more
Poisson noise. Lastly, speckle noise can be varied by changing
the number of recorded realizations that are averaged together;
as the number of realizations increases, the corruption caused
by speckle noise decreases. For each noisy capture, we keep
the aperture size fixed at F/11.

B. Data Collection

Using the previously described optical setup, we collected
noisy and ground truth images for five different targets.
To compute our ground truth image, we capture 16 images
with a shutter speed of 0.4 seconds, ISO 100, and F/4
and average them together. To gather the noisy images, for
each of the 5 scenes we consider, we capture 16 images
at 4 different shutterspeed/ISO pairs, at a fixed aperture of
F/11: 1/15 seconds/ISO 160, 1/60 seconds/ISO 640, 1/250
seconds/ISO 2500, and 1/1000 seconds/ISO 10000, for a total
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of 320 pictures captured. We choose these pairs such that the
product of the two settings is approximately the same across
settings and thus dynamic range is approximately the same
across samples. Additionally, we capture dark frames for each
exposure setting and subtract them from the corresponding
images gathered. The noisy images were scaled to match the
exposure settings of the ground truth image.

C. Performance

1) Quantitative Results: To compare our adaptive sparse
training method to the uniform baseline on the real experi-
mental data, we compare the SSIM of the noisy input to the
networks with the SSIM of the output, both with respect to
the computed ground truth [26]. In this comparison, we use
the networks that were trained on the images corrupted with
Speckle-Poisson-Gaussian noise. We choose to focus SSIM
in this case because it has better perceptual qualities than
PSNR, but also include a similar plot using PSNR instead
in the supplemental material. We plot the input SSIM minus
the output SSIM vs the input SSIM in Figure 10 (lower is
better). Even though our adaptive distribution trained networks
perform worse than the uniform trained networks in the higher
noise regime, the adaptive distribution networks perform better
in the low noise regime. Note that for all samples the adaptive
trained network improves the image quality, whereas for some
lower noise images the uniform trained network actually
lowers the image quality. This is because the uniform trained
network is oversmoothing the images due to the higher noise
images having a large impact on its training loss.

2) Qualitative Results: A qualitative evaluation on real
world data collected in our lab suggests that our method
effectively extends passed simulation. Close inspection of the
samples in 11 show that our method is more consistent at
preserving information after denoising at low noise levels.
Notably, the uniform denoiser smooths the image, losing high
frequency details. Even on highly corrupted samples, the our
sparse sampling approach is able to achieve performance close
to that of the uniformly trained denoiser. Again, our method
retains details that the uniform denoiser smooths out of the
image. The drop in performance for our method at high noise
levels compared to the uniform sampling strategy is further
evidence that the uniform strategy is liable to over-correct for
high noise samples.

Additional qualitative results on the experimental data can
be found in the supplement.

VII. FURTHER ANALYSIS

We also analyze some possible extensions of our method
such as modifying training to address non-uniform distribu-
tion of noise specifications, reducing training time by using
finetuning, and visualize noise level sampling distributions and
PSNR landscapes of networks during training to empirically
justify our choice of approximation.

A. Non-Uniform Distribution of Noise Specifications

In practice, some noise specifications/distributions are more
likely to occur than others. For instance, [27] demonstrates that
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Sampling distributions of noise configurations fit by our method We show the sampling distributions fit by our method for the poisson-gaussian,

poisson-speckle, and speckle-gaussian settings. Note that in these sampling distributions, the lower noise configurations have higher probability mass and are

preferentially sampled.

32.5
30.0
27.5

25.0

32.5 32.5
30.0 30.0
27.5 27.5
25.0 25.0

Fig. 9. PSNR landscape of £ i+l We show the PSNR landscape of £ FrHl at iterations 10, 30, and 50, three iterations where we update the noise level

sampling distribution. They are all smooth.

0.1
—— Uniform
Sparse

0.0
2
7

»—0.1
=]
=
=]

O -0.2
%]
3
=

s -0.3
-
=]
)

g -04

-0.5

02 03 04 05 06 07 08
Input SSIM
Fig. 10. Adaptive vs uniform training, experimental data. Adaptive

training with the polynomial approximation from sparse samples works effec-
tively with real data. Our adaptive training strategy consistently outperforms a
uniformly trained baseline at lower noise levels while not being significantly
worse at higher noise levels (lower input SSIM). Lower is better.

camera auto-exposure settings often operate such that there is
a positive correlation between shot and read noise parameters.

If one knows the expected distribution of the noise specifi-
cations, i.e., how likely different noise distributions are to be
encountered in practice, our universal denoiser strategy can be
easily modified to weight the training loss according to each
specification’s likelihood. Essentially, in order to encourage
preferential sampling (and thus improved performance) for
certain noise configurations, we can increase the target PSNR
in the ideal loss landscape by a constant amount over the

configurations we care most about (or are most likely to
encounter). This has the effect of prioritizing sampling noise
levels from those configurations. To validate this idea, for
the case of Poisson-Gaussian noise, we consider three cases
where we have prior knowledge about the distribution of noise
configurations: 1) Poisson and Gaussian noise are correlated,
2) we are more likely to encounter lower noise levels, and
3) we are more likely to encounter higher noise levels. Specif-
ically, assuming the parameter for Poisson noise is « and for
Gaussian noise it is o, for 1) we add 3 dB to the 10 («, o) pairs
which are linearly between the extreme points (0.1, 0.02) and
(41, 0.66) (preferentially sample correlated noise), for 2) we
add 3dB to the 25 pairs where 0.1 < o <20.5and 0.06 <o <
0.33 (preferentially sample weak noise), and for 3) we add 3dB
to the 25 pairs where 20.5 < « < 41 and 0.33 < 0 < 0.66
(preferentially sample strong noise). The results are reported
in Table VI. As expected, our method performs better inside
the regions where we biased the sampling, but worse outside
the regions, compared to uniform sampling.

B. Finetuning

Fine-tuning is a complementary acceleration strategy which
allows one to save a constant factor on the time it takes to
calculate Ligea; by finetuning a general denoiser at each of
the noise configurations considered instead of training from
scratch. We demonstrate this by considering the 1D version of
our problem, where we vary the Poisson noise parameter from
0.1 to 41. The training time for finetuning was determined
by stopping when the validation loss matched that of training
from scratch for the full amount of time. As can be seen in
Figure 7, finetuning saves 2—4x on time compared to training
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Qualitative comparisons, experimental data. Comparison between the performance of the ideal, uniform-trained, and adaptive distribution, sparse

sampling-trained denoisers on a sample image corrupted with a low amount of noise and corrupted with a high amount of noise, as determined by the
parameters of our experimental setup. From the closeups it is apparent that the uniform trained denoiser has a tendency to oversmooth its inputs compared
to the adaptive distribution trained denoiser. This leads to better performance for the uniform trained at higher noise levels but worse performance at lower

noise levels.

from scratch—it is equally applicable to our method and our
relative acceleration factor stays the same.

C. Noise Level Sampling Distribution

For the three settings, Speckle-Poisson, Speckle-Gaussian,
and Poisson-Gaussian noise, we show the sampling distribu-
tion of the noise configurations optimized by our method in
Figure 8. Note that our training strategy learns to preferentially
sample configurations with lower noise, similar to the 1D case
in [5].

D. PSNR Landscapes of Networks During Training

The loss landscapes of L 4+ are shown in Figure 9 from
which it is apparent that the ideal PSNR landscape of L 4141
is smooth can be well-approximated by a polynomial.

VIII. CONCLUSION

In this work, we demonstrate that we can leverage a polyno-
mial approximation of the specification-loss landscape to train

a denoiser to achieve performance which is uniformly bounded
away from the ideal across a variety of problem specifications.
Our results extend to high-dimensional problem specifications
(e.g., Poisson-Gaussian-Speckle noise) and in this regime our
approach offers 50x reductions in training costs compared
to alternative adaptive sampling strategies. We experimen-
tally demonstrate our method extends to real-world noise as
well. More broadly, the polynomial approximations of the
specification-loss landscape developed in this work may pro-
vide a useful tool for efficiently training networks to perform
a range of imaging and computer visions tasks.
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