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ABSTRACT

Speckle noise is inherent to coherent imaging systems such as synthetic aperture radar (SAR), optical coherence
tomography (OCT), and ultrasound imaging. However, its multiplicative nature makes it especially challeng-
ing to remove. Today the most effective speckle denoising methods average multiple identically distributed
measurements—however, these approaches fail to reconstruct dynamic scenes. In this work we leverage implicit
neural representations (INRs) to perform unsupervised speckle denoising of time-varying sequences. We optimize
a maximum likelihood-based loss function to produce high-fidelity, speckle-free reconstructions. Our approach
significantly outperforms existing techniques, achieving up to a 4 dB improvement in peak signal-to-noise ratio
(PSNR) for dynamic scenes with simulated speckle.
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Figure 1. Denoising Dynamic Scenes. Illustration of our denoising framework, featuring a multi-layer perceptron
(MLP)-based INR optimizing our negative log likelihood loss given a time-varying sequence of speckled measurements.

1. INTRODUCTION

Speckle noise is inherent to coherent imaging systems such as synthetic aperture radar (SAR), optical coherence
tomography (OCT), and ultrasound imaging, where coherent light or sound waves interact with rough surfaces or
heterogeneous media.1 In these domains, speckle noise manifests as granular interference patterns that spatially
vary in intensity depending on the reflectivity of the scene. Due to its multiplicative nature, speckle can be
more challenging than more traditional noise models like Gaussian or Poisson, and this challenge increases with
smaller aperture sizes that increase the spatial correlation of the noise.2

In dynamic scenes, where either the sensor or the target is in motion, speckle noise becomes even more prob-
lematic. Traditional speckle denoising techniques often rely on static or quasi-static assumptions and typically
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require multiple identical measurements of a static scene.2 We address this gap by proposing a novel approach
leveraging implicit neural representations to denoise speckle from time-varying sequences, as depicted in Figure 1.

Implicit neural representations (INRs),3–10 which model images as continuous functions rather than discrete
pixel arrays, have recently gained traction for their ability to capture fine details and complex structures in data.
By embedding these representations within a maximum likelihood framework, our method optimizes the INR to
produce high-fidelity, speckle-free reconstructions of noisy sequences. The core of our approach is a loss function
designed to predict a denoised sequence that maximizes the likelihood of observing the noisy measurements,
thereby denoising the temporal scene even in the presence of motion.

Our approach significantly outperforms alternative denoising techniques for dynamic scenes with simulated
speckle. Specifically, our method achieves a peak signal-to-noise ratio (PSNR) improvement of up to 4 dB when
compared to alternative methods even under extreme speckle with dynamic objects. These results underscore
the potential of implicit neural representations for enhancing image quality in challenging dynamic imaging
scenarios.

2. PROBLEM FORMULATION

Coherent imaging systems measure the complex back-scattered field, ỹ ∈ CN , from an illuminated scene. For T
temporal measurements, we model this as

ỹti = Ati(r
1/2
ti ◦ gti) + nti for i = 1, . . . , T, (1)

where rti ∈ RN is the time-dependent scene reflectance, gti ∼ CN(0, I) is a circular Gaussian random variable
representing the speckle noise, and nti ∼ CN

(
0, σ2I

)
is a circular Gaussian random variable representing additive

white Gaussian noise.11,12 The measurement operator, Ati ∈ CN×N , represents the physical measurement system
being used. Here, we define it as

Ati = DHD(a)D(ejϕti )D, (2)

where D(·) is the diagonalization operator, a ∈ RN is the entrance-pupil transmission function, and ϕti ∈ RN

is the phase error. D ∈ CN×N is the two dimensional discrete Fourier transform matrix scaled such that
DHD = I.1,12 In this work, we explore denoising under a zero-turbulence assumption, setting ϕti = 0.

3. METHODOLOGY

3.1 Maximum Likelihood-Based Loss

In order to denoise the temporal speckle noise sequence, we define a loss function for an implicit neural represen-
tation (INR) such that it approximates the scene reflectance to maximize the likelihood of the associated noisy
measurements. We model the measured field ỹ as a multivariate Gaussian distribution

p(ỹti | rti) ∼ CN
(
0, AtiD(rti)A

H
ti + σ2I

)
, (3)

with a corresponding probability density function (PDF)

p(ỹti | rti) =
1

πk det(Σti)
exp

(
−ỹHti Σ

−1
ti ỹti

)
, (4)

where k is the dimension of the complex Gaussian vector ỹti , and det(Σti) is the determinant of the covariance
matrix Σti = AtiD(rti)A

H
ti + σ2I.12 Given this, the negative log-likelihood over all T temporal measurements is

− ln p (ỹt1 , ỹt2 , . . . ỹtT | rti) =
T∑

i=1

ln (det(Σti)) + ỹHti Σ
−1
ti ỹti . (5)

We parameterize Eq. (5) such that rti is represented by an INR over space and time. We optimize that INR to
minimize the negative log-likelihood, effectively learning to output the sequence of denoised measurements.



3.2 Implicit Neural Representation

We represent the time-dependent scene reflectance rti using a multi-layer perceptron13 (MLP)-based implicit
neural representation (INR). The MLP is an eight-layer, densely connected neural network with a hidden dimen-
sion of 64, rectified linear unit (ReLU) activations, and a final sigmoid activation. The final network has 29.4K
trainable parameters and is implemented using PyTorch.14

This INR predicts a scene reflectance pixel given unflattened spatial and temporal coordinate inputs (u, v, ti).
By evaluating the INR over all spatial and temporal coordinates of the sequence, it produces a reconstruction
of the full time-dependent scene reflectance rti . We optimize this INR using Eq. (5) to denoise the speckled
temporal measurements. An illustration of this framework can be seen in Fig. 1.

4. RESULTS

We demonstrate denoising with two 32-frame sequences, one simple and the other more challenging. The first
sequence is simulated motion of the Cameraman image by continuously translating a cropped portion of the
image over time. This sequence simulates rigid motion (sensor moving and static scene), and it has less detail
than the second sequence as well as high-contrast scene elements. The second sequence is a 30 fps video from
the Need For Speed15 dataset featuring a car drifting on a track. This sequence captures deformable motion
(one object moving in otherwise static scene), with significantly more scene detail and less contrast. We simulate
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Figure 2. Fully Resolved Speckle Denoising Performance. Comparison of our denoising method (bottom) applied
to a 64×64 resolution moving speckled sequence collected with an aperture diameter 80% the size of the sensor plane.
Also shown are frame-by-frame denoising methods: A) BM3D, B) 4-Frame Averaging, C) DIP, D) DIP with our NLL
loss, and E) supervised CNN speckle denoiser. Every seventh frame of the sequence is shown.
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Figure 3. Small Aperture Speckle Denoising Performance. Comparison of our denoising method (bottom) applied
to a 64×64 resolution moving speckled sequence collected with an aperture diameter 40% the size of the sensor plane
(which results in blurred speckle). Also shown are frame-by-frame denoising methods: A) BM3D, B) Frame Averaging,
C) DIP, D) DIP with our NLL loss, and E) supervised CNN speckle denoiser. Every seventh frame of the sequence is
shown.

speckle in these sequences with variable aperture sizes. For all aperture sizes, we normalize the gain such that
an equal amount of light is collected by our sensor. All sequences are resized to resolutions of 64×64 pixels.

We compare our method to five alternative denoising frameworks, all of which are applied frame-by-frame to
the sequence. These include Block-Matching and 3D Filtering (BM3D),16 frame averaging (over four neighboring
frames), Deep Image Prior (DIP),17 DIP utilizing our negative log likelilood loss function, and a supervised CNN
speckle denoiser similar to Pellizzari et al.18,19 The CNN-based denoiser is a 31M parameter model trained on a
dataset of augmented images from the DIV2K20 dataset using our forward model to simulate speckle noise. We
train a new model for each aperture size tested.

With larger aperture sizes, we demonstrate an average 3.6 and 3.4 dB PSNR improvement on the Cameraman
and car sequences, respectively, when compared to the supervised CNN denoiser (the best baseline). Our method
retains significantly more detail and temporal consistency than the baselines, as shown in Fig. 2. For smaller
apertures, the speckle noise grows more spatially correlated which makes the problem more challenging. Our
method achieves an average 3.6 and 4.1 dB PSNR improvement on both sequences. Though less detail is
captured—especially in the car sequence—our method is still able to emphasize major elements of the scene and
accurately reproduce motion, shown in Fig. 3. Notably, our method significantly outperforms DIP modified to
use our loss function, indicating that the INR framework is essential for improved performance.

Our method’s primary weakness is its computational cost, which stems from the costly matrix inversion em-
bedded within our loss function. As an unsupervised method, our approach must be fit to each video sequence
independently. Accordingly, to reconstruct a 64×64 resolution 32 frame sequence, our unoptimized implementa-



tion requires requires 82 minutes for optimal convergence on an NVIDIA RTX 4080. For comparison, the CNN
denoiser must be trained for each aperture size for 216 minutes, but can then rapidly perform inference in near
real-time.

5. CONCLUSION

In this paper, we introduce a novel approach for speckle denoising in dynamic scenes using time-varying implicit
neural representations (INRs). Our unsupervised method leverages the continuous modeling capabilities of INRs
within a maximum likelihood framework to achieve high-fidelity reconstructions of noisy temporal sequences. We
demonstrate our method on temporal sequences featuring rigid and deformable motion with simulated speckle.
Our method outperformed alternative denoising techniques, achieving up to a 4 dB improvement in peak signal-
to-noise ratio (PSNR). However, our method is computationally expensive—its unsupervised nature does not
scale as well as a supervised alternative for long temporal sequences.
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