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an efficient low-complexity EEG compression algorithm is

required at the edge gateway to eliminate redundant data,

reducing the latency, data transfer costs and bandwidth.

EEG signal compression techniques are generally divided

into three main categories: traditional signal processing meth-

ods, neural network-based methods, and transform-based

learning techniques [11].

Traditional signal processing methods, such as discrete co-

sine transform (DCT) and discrete wavelet transform (DWT),

have been extensively employed in EEG data compression.

These compression techniques can be categorized into single-

channel and multi-channel schemes. In the single-channel

methods, each EEG channel was processed independently

using compression techniques, e.g., the fast DCT [12],

DWT [13]. In contrast, multi-channel compression algorithms

perform simultaneous compression of EEG signals across all

channels by exploiting inter-channel correlations. For instance,

Hejrati et al. utilized the K-means algorithm to cluster EEG

channels [14]. Similar channels were then grouped to eliminate

inter-channel dependencies, thereby reducing the data size.

However, the maximum compression ratio achieved in [14]

was smaller than 3, indicating a low compression efficiency.

Recently, neural networks have been increasingly utilized

for data compression due to their capacity to learn complex

data representations, such as the underlying patterns in EEG

signals. Among these methods, autoencoders are the most

frequently employed for compression tasks. For instance, the

convolutional autoencoder (CAE) [15] and variational autoen-

coder [16] have demonstrated their efficacy in EEG data com-

pression by applying convolutional layers, max-pooling layers,

and evidence lower bound (ELBO) to optimize their models.

Furthermore, Lerogeron et. al proposed a neural network-

based approximation of dynamic time warping (DTW) as a

reconstruction loss function, enhancing the ability of convolu-

tional autoencoders to compress EEG signals while preserving

essential information [17]. Nevertheless, these autoencoder-

based models capture effective latent representations of EEG

signals by incorporating numerous convolutional layers or

linear layers, leading to increased computational complexity

and higher hardware costs.

Over the past few decades, transform-based learning meth-

ods have gained considerable attention in EEG data compres-

sion for their ability to reduce data size while maintaining

critical signal information. The authors in [18] proposed a

learning-based adaptive transform method, which combines

the DCT with an artificial neural network (ANN) to achieve

near-lossless compression. The DCT is utilized to compress

the original data, and then the MLP further compresses the pri-

mary DCT coefficients. Additionally, an asymmetrical sparse

autoencoder [11] was designed for compressing EEG sensor

signals. This model integrates a low-complexity DCT layer

within the encoder module to eliminate redundant coefficients

and generate the latent representation. In contrast, the decoder

module is equipped with additional linear layers to improve the

quality of signal reconstruction. Nonetheless, These models

function as single-channel approaches, where EEG signals

are compressed and reconstructed on a per-channel basis, ne-

glecting the correlations that exist among multi-channel EEG

signals. As a result, the reconstruction accuracy is limited.

To address the aforementioned issues, this paper proposes a

novel multi-channel asymmetrical variational discrete cosine

transform network (AVDCT-Net) to compress EEG signals

across all channels simultaneously within the edge-fog com-

puting framework. At the edge gateway, each channel is

processed through a linear layer, followed by a low-complexity

DCT compression unit (DCU) in the encoder module. In

this unit, parallel hard-thresholding nonlinearities eliminate

redundant data, while multiple scaling operators serve as an

approximate filter bank within the DCT domain. The entire

compression process is guided by an ELBO-based cost func-

tion, enforcing a regularization constraint on the latent space

coefficients to ensure a more structured and efficient represen-

tation. At the fog gateway, the decoder module reconstructs the

EEG signal from compressed data utilizing an adaptive filter

bank, inverse DCT (IDCT) reconstructed multi-head attention

(IRMHA), and linear layers. The key contributions of this

paper are summarized as follows:

1) We propose a novel edge-fog computing-enabled multi-

channel AVDCT-Net model to perform EEG data com-

pression. By introducing the DCU to the encoder and

employing the newly derived ELBO as an objective loss

function, the AVDCT-Net achieves the trade-off between

compression efficiency and reconstruction fidelity. Ad-

ditionally, the encoder module exhibits low complexity,

making it well-suited for deployment on edge gateways

with limited computational resources.

2) An adaptive filter bank is implemented to promote the

incorporation of important features from neighboring chan-

nels into each individual channel by leveraging the inter-

channel correlations. This adaptive integration enhances

reconstruction accuracy by compensating for any potential

information loss that may occur during compression.

3) We design a new IRMHA based on the multi-head attention

(MHA), hard-thresholding operator, and IDCT. The MHA

mechanism strengthens the decoder’s feature extraction by

capturing both local and global dependencies, while the

IDCT aids in accurately reconstructing the original data.

4) Evaluation results demonstrate that the proposed method

surpasses other state-of-art compression models in terms

of compression efficiency and reconstruction accuracy on

two EEG datasets: the BCI2 dataset [19] and the BCI3

dataset [20]. Moreover, it is experimentally shown that the

proposed method achieves effective EEG signal compres-

sion without compromising any important information for

the BCI detection system.

II. PRELIMINARIES

A. The Discrete Cosine Transform (DCT)

The discrete cosine transform (DCT) [21] is extensively

employed in data compression, particularly within established

standards such as JPEG [22] for image compression and

MPEG [23] for video compression. Similar to the discrete

Fourier transform, the DCT transforms a signal from the time

domain to the frequency domain, allowing the data to be

represented as a sum of cosine functions oscillating at various
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frequencies. Given a sequence x of length L, the orthogonal

type DCT-III is computed as follows:
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The DCT is effective at concentrating the majority of signal

energy into a limited number of low-frequency components.

This capability allows for the preservation of critical informa-

tion while enabling the elimination of less significant high-

frequency data.

B. The Variational Autoencoder (VAE)

A variational autoencoder (VAE) [24] is a generative model

that integrates principles from deep learning and Bayesian

inference. Its application spans a wide range of tasks, including

image synthesis, noise reduction and feature classification. In

the VAE formulation, the observed data x are presumed to be

generated by an underlying stochastic process, which involves

an unobserved latent variable z and is parameterized by ϑ. Its

marginal log-likelihood can be expressed as:

log pϑ(x) = log

∫

pϑ(x, z) dz. (3)

Direct computation of this integral is often intractable due

to the complexity of the joint distribution pϑ(x, z). To solve

this problem, an approximate posterior distribution qφ(z|x) is

introduced to serve as the encoder, where φ represents the

weights. After that, Eq. (3) is rewritten as:

log pϑ(x) = log

∫

qφ(z|x)
pϑ(x, z)

qφ(z|x)
dz. (4)

Next, applying Jensen inequality to Eq. (4) yields the

Evidence Lower Bound (ELBO) L(x):

log pϑ(x) ≥ Eqφ(z|x)

[

log
pϑ(x, z)

qφ(z|x)

]

= L(x). (5)

Given that pϑ(x, z) = pϑ(x|z)pϑ(z), the ELBO can be

further decomposed as:

L(x) = Eqφ(z|x) [log pϑ(x|z)]+Eqφ(z|x)

[

log
pϑ(z)

qφ(z|x)

]

, (6)

where pϑ(x|z) models the reconstruction decoder and its

expected log-likelihood quantifies the reconstruction loss. Ad-

ditionally, the second right-hand side term corresponds to the

negative Kullback-Leibler divergence −DKL(qφ(z|x)∥pϑ(z)).
It promotes a well-regularized latent space by penalizing

deviations of the approximate posterior qφ(z|x) from the prior

distribution pϑ(z). Therefore, Eq. (6) can rewritten as:

L(x) = Eqφ(z|x) [log pϑ(x|z)]−DKL(qφ(z|x)∥pϑ(z)). (7)

It is noticed that Eq. (7) is tractable and can be optimized ef-

ficiently. Hence, ELBO is a surrogate objective function when

directly maximizing log pϑ(x) is computationally prohibitive.

Moreover, maximizing the ELBO involves two key objectives:

improving data reconstruction accuracy via the expected log-

likelihood term and regularizing the latent space through the

KL divergence term.

III. METHODOLOGY

This section presents the proposed multi-channel asymmet-

rical variational discrete cosine transform network (AVDCT-

Net) for EEG data compression. The network employs an

encoder with low computational complexity, making it suitable

for deployment on a resource-constrained edge gateway. In

contrast, the decoder is designed with a more intricate structure

to improve the accuracy of data reconstruction. This asymme-

try is feasible because the decoder runs on a more capable fog

gateway, allowing for more intensive computational processes

than the edge gateway [10].

A. Asymmetrical Variational Discrete Cosine Transform Net-

work (AVDCT-Net)

In EEG systems, signals from all channels are captured

simultaneously via scalp electrodes within the EEG headset.

To maintain synchronization and minimize delays or data

backlogs, AVDCT-Net leverages a multi-channel framework

as shown in Fig. 2, enabling the concurrent compression of

signals across all channels. In this study, we employ 64-

channel EEG signals due to their widespread use in BCI

experiments for classification and detection tasks [19], [20],

[25]. Additionally, the collected signal from each channel is

segmented into short-time blocks of length L.

1) Encoder module of the AVDCT-Net at the edge gateway:

As shown in Fig. 2, the input block xc ∈ R
L is initially

processed by the c-th linear layer to extract the features,

producing the filtered output x̄c ∈ R
L, where 0 ≤ c ≤ C − 1.

Here, C = 64 denotes the total number of channels. Next, a

multi-channel DCT compression block is designed to perform

EEG data compression, as shown in Fig. 3. For each unit in

the block, the DCT is employed to transform EEG signals

from the time domain to the frequency domain using Eq. (1).

The resulting transformed signal, x̂c ∈ R
L, is then passed

through N subbands. Each subband is equipped with a train-

able hard-thresholding operator and a scaling operator. The

hard-thresholding operator is applied to introduce nonlinearity

between the DCT and scaling operator. Additionally, it can

also eliminate small entries, which are typically redundant

information and noise in the DCT domain. It is defined as:

x̃c,n = Rc,n (x̂c) + tc,n · sign (Rc,n (x̂c)) , (8)

where

Rc,n (x̂c) = sign (x̂c) · (|x̂c| − tc,n)+ (9)

is the soft-thresholding operator [26]. tc,n represents the

threshold for 0 ≤ n ≤ N − 1, which is trained using the

back-propagation algorithm. (·)+ stands for the rectified linear

unit (ReLU) function. While the soft-thresholding operator can

be employed to denoise data, it may diminish the energy of
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integers is employed to optimize memory storage and enhance

transmission rates. The conversion process is executed as

follows:

ȳc = Round(10τ × ỹc/ω), (27)

where τ is an integer, and ω is the scaling parameter utilized

to adjust the compression ratio. Round(·) stands for the integer

rounding function. By utilizing RLE and LZMA compression

techniques, the EEG signal is encoded into a bitstream, which

is then prepared for wireless transmission. The entire process

begins with RLE, which efficiently removes sequential zero re-

dundancies in the latent space. Subsequently, LZMA is applied

to the RLE-processed data to achieve further compression.

Upon decoding, this compressed bitstream is reverted to its

original integer form, after which the AVDCT-Net decoder

reconstructs the signal on the fog gateway.

IV. EXPERIMENTAL RESULTS

A. Performance Metrics

In this section, to evaluate the compression performances

of different data compression algorithms, we analyze metrics

such as compression ratio (CR), percent root mean square

difference (PRD), normalized percent root mean square differ-

ence (PRDN), and quality score (QS) [30]. They are defined

as follows:

• CR is determined by dividing the original data size Qr by

the compressed data size Qc, providing a crucial metric

for evaluating the effectiveness of different algorithms in

reducing data size:

CR =
Qr

Qc

. (28)

A higher CR demonstrates that the model is more profi-

cient at minimizing data size.

• PRD evaluates the accuracy of data reconstruction in

compression algorithms. It measures the discrepancy be-

tween the original data eom and the reconstructed data erm,

expressed as a percentage:

PRD =

√

√

√

√

∑M
m=1 (e

o
m − erm)

2

∑M
m=1 (e

o
m)

2
× 100, (29)

where M represents the length of the data. A lower

PRD value indicates that the reconstructed data closely

matches the original data, signifying higher fidelity.

• PRDN represents the normalized form of PRD. It is

defined as:

PRDN =

√

√

√

√

∑M
m=1 (e

o
m − erm)

2

∑M
m=1 (e

o
m − ē)

2
× 100, (30)

where ē denotes the mean of the original signal. PRDN

provides a robust measure of similarity that is less sen-

sitive to mean shifts in the original signal than PRD. A

lower PRDN value signifies superior model performance.

• QS assesses the overall performance of data compression

algorithms. It integrates multiple performance aspects,

such as compression ratio and reconstruction accuracy:

QS =
CR

PRD
. (31)

A higher QS reflects that the algorithm excels in effec-

tively reducing data size while maintaining high fidelity.

B. Selected Dataset and Comparison Approaches

In this study, the performances of different compression

algorithms are evaluated on the BCI2 [19] and BCI3 [20]

datasets: 1) The BCI2 (Dataset-IIa) dataset provides the EEG

recordings for 10 30-minute sessions from 3 subjects (A/B/C).

They were collected from 64 electrodes (64-channel) placed on

the scalp with a sampling frequency of 160 Hz. To evaluate the

compression performances of different algorithms, we utilize

these 10 sessions from subject A, labeled sequentially from

“AA001” to “AA010”. 2) The BCI3 (Dataset-II) dataset was

recorded using Farwell and Donchin’s interface. It is composed

of 4 datasets: The recordings designated as “Subject A Train”

(ATr) and “Subject A Test” (ATe) were acquired from subject

A, whereas the recordings labeled “Subject B Train” (BTr)

and “Subject B Test” (BTe) were obtained from subject B.

The training and testing datasets comprise 85 and 100 64-

channel EEG recordings, respectively. Each recording com-

prises 15 rounds of repeated stimuli. In each round, the

intensification period was 100 milliseconds (ms), and the inter-

stimulus interval was 75 ms. Therefore the passing time for

one recording is calculated as (100+75)×12=2,100 ms. With

15 repetitions, the total time amounts to 31,500 ms. The

sampling frequency on the BCI3 dataset is 240 Hz. Hence,

each recording contains 7,560 data points for a single channel.

To verify the efficiency of the proposed data compression

algorithm, we conduct a comparison with the asymmetrical

sparse autoencoder with a DCT layer (ASAEDCT) [11], which

has demonstrated excellent compression performance. Besides,

a state-of-the-art EEG compression method based on an Edge-

Fog computing architecture is selected as a benchmark for

comparison [9]. It is developed using K-means clustering and

Huffman encoding (KCHE). To enhance the compression ratio,

we refine KCHE by converting floating-point numbers into

integers prior to transmission, as described in Eq. (27). In

addition, we utilize the DCT-Perceptron [36] and VAE [37]

for further comparison, given that they employ low-complexity

encoders.

C. Implementation Details

The proposed model is implemented in Python on a PC

equipped with an Intel Core i7-12700H CPU (4.7 GHz) and

16 GB of RAM. The AdamW optimizer [38] is applied to

train the model. To achieve a tradeoff between compression

ratio and reconstruction accuracy, λ and ρ are chosen as 1e-

5 and 0.6, respectively. In addition, the batch size and the

learning rate are set as 16 and 0.001, respectively. Moreover,

to reduce the trainable parameters and computation costs, we

select a small block size L = 64 and all channels use the same

training parameters by adopting parameter sharing [39].
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TABLE I: Compression experiment on the BCI2 dataset.

Sub
ASAEDCT [11] KCHE [9] DCT-Perceptron [36] VAE [37] AVDCT-Net (Proposed)

CR PRD PRDN QS CR PRD PRDN QS CR PRD PRDN QS CR PRD PRDN QS CR PRD PRDN QS

1 5.91 16.62 16.67 0.36 3.73 16.46 16.50 0.23 7.10 16.55 16.60 0.43 7.06 23.38 23.44 0.30 7.79 15.21 15.25 0.51

2 5.83 17.17 17.21 0.34 3.63 16.05 16.08 0.23 7.25 18.10 18.14 0.40 7.15 25.60 25.66 0.28 7.74 15.08 15.11 0.51

3 5.72 16.93 16.97 0.34 3.73 17.70 17.74 0.21 6.84 18.20 18.24 0.38 6.91 25.82 25.88 0.27 7.50 16.65 16.68 0.45

4 5.48 21.09 21.10 0.26 3.58 18.72 18.72 0.19 6.84 29.69 29.70 0.23 7.02 42.60 42.62 0.16 7.22 18.60 18.61 0.39

5 6.55 20.40 20.44 0.32 3.84 19.82 19.85 0.19 7.56 22.61 22.65 0.33 7.33 31.92 31.98 0.23 8.60 18.58 18.62 0.46

6 6.90 21.27 21.34 0.32 3.99 21.54 21.60 0.19 7.77 20.25 20.32 0.38 7.47 28.52 28.61 0.26 8.98 19.06 19.12 0.47

7 5.67 21.79 21.80 0.26 3.61 19.24 19.24 0.19 6.96 30.90 30.91 0.23 7.02 43.58 43.59 0.16 7.45 19.20 19.20 0.39

8 5.71 17.43 17.46 0.33 3.65 16.71 16.74 0.22 7.01 19.77 19.81 0.35 6.99 27.46 27.51 0.25 7.54 15.33 15.36 0.49

9 5.99 19.78 19.80 0.30 3.77 19.64 19.66 0.19 7.19 24.69 24.71 0.29 7.11 34.52 34.55 0.21 7.84 17.56 17.58 0.45

10 5.73 17.74 17.78 0.32 3.69 17.77 17.81 0.21 7.05 17.68 17.72 0.40 6.98 24.44 24.49 0.29 7.58 15.42 15.46 0.49

Ave 5.95 19.02 19.06 0.32 3.72 18.37 18.39 0.21 7.16 21.84 21.88 0.34 7.10 30.78 30.83 0.24 7.82 17.07 17.10 0.46

TABLE II: Transfer learning on the BCI3 dataset.

Sub
ASAEDCT [11] KCHE [9] DCT-Perceptron [36] VAE [37] AVDCT-Net(Proposed)

CR PRD PRDN QS CR PRD PRDN QS CR PRD PRDN QS CR PRD PRDN QS CR PRD PRDN QS

ATr 11.12 9.73 9.75 1.14 6.80 8.78 8.80 0.77 10.99 10.13 10.15 1.09 10.44 11.99 12.02 0.87 12.47 8.18 8.20 1.52

ATe 10.08 12.13 12.16 0.83 7.13 12.49 12.52 0.57 10.64 13.11 13.14 0.81 10.32 15.89 15.92 0.65 11.48 10.12 10.14 1.13

BTr 8.21 9.11 9.14 0.90 6.67 10.70 10.74 0.62 10.08 10.77 10.81 0.94 9.73 11.06 11.10 0.88 10.32 6.88 6.90 1.50

BTe 10.49 9.87 9.88 1.06 6.50 8.46 8.47 0.77 10.96 9.29 9.30 1.18 10.34 11.87 11.88 0.87 11.88 7.77 7.78 1.53

Ave 9.98 10.21 10.23 0.98 6.78 10.11 10.13 0.68 10.67 10.82 10.85 1.00 10.21 12.70 12.73 0.82 11.54 8.24 8.26 1.42

D. Data Compression Experiment

In the compression experiment on the BCI2 dataset, 70%

of the data from recording “AA010” was employed for model

training. The remaining 9 recordings (“AA001”–“AA009”)

along with 30% of recording “AA010” were utilized to test

the model. In summary, the training set is composed of 1,885

samples, while the testing set comprises 25,120 samples.

Besides, we choose τ = 2 and ω = 1.2 in Eq. (27).

Table I summarizes the compression results of various models

across the 10 subsets of the BCI2 dataset. In comparison to

ASAEDCT, AVDCT-Net achieves a lower PRD with a higher

CR, demonstrating its capacity to effectively balance compres-

sion efficiency with reconstruction accuracy. The reason is that

AVDCT-Net leverages a new ELBO as the loss function to

train the model. This ELBO restricts the sum of the latent

space coefficients to a relatively small, nonzero value instead

of penalizing each coefficient towards 0. Therefore, AVDCT-

Net can preserve the primary DCT coefficients while suppress-

ing small high-frequency components. Besides, AVDCT-Net

outperforms DCT-Perceptron because it applies linear layers

and muti-head attention to enhance the capability to compress

and restore the original signals. Moreover, compared to KCHE,

AVDCT-Net achieves a reduction in average PRD from 18.37

to 17.07 (a decrease of 7.08%) and in PRDN from 18.39 to

17.10 (a decrease of 7.01%). Furthermore, it enhances the CR

from 3.72 to 7.82 (a 2.10-fold increase) and improves the QS

from 0.21 to 0.46 (a 2.19-fold improvement). This is because

AVDCT-Net incorporates multiple trainable hard-thresholding

and scaling layers to the encoder, allowing it to eliminate

redundant data more effectively than KCHE. Additionally,

AVDCT-Net is superior to VAE in terms of CR and PRD.

While VAE integrates Gaussian processes to enhance feature

extraction, it continues to utilize a conventional autoencoder

structure. Its imperfect encoder and decoder result in higher

reconstruction errors than AVDCT-Net.

Table I presents the compression results of various models

initialized with a single random seed. To better assess model

stability, we extend our experiment by initializing compression

models with five different random seeds and computing the

mean and standard deviation of CR, PRD, PRDN, and QS

for each subset. The results are provided in Table I of the

supplementary material. For subset 3, the CR is reported as

7.48 ± 0.04. The PRD is 16.12 ± 0.31, while the PRDN

is 16.15 ± 0.31. Furthermore, the QS is measured at 0.46

± 0.01. These results exhibit low variability, implying that

AVDCT-Net has strong stability. The reason is that each

DCT compression unit utilizes a multi-channel architecture to

capture features across different hierarchical levels and scales,

facilitating a more comprehensive understanding of input

EEG signals. This design mitigates dependency on specific

initialization states and enhances the generalization capability.

Moreover, AVDCT-Net consistently outperforms ASAEDCT,

KCHE, DCT-Perceptron, and VAE, achieving the best CR,

PRD, PRDN, and QS across all 10 subsets, indicating its

superior compression performance.

E. Transfer Learning Experiment

To assess the generative capabilities of various models, we

perform a transfer learning experiment on the BCI3 dataset. In

this experiment, the model trained on datasets obtained from

Subject A is evaluated on datasets acquired from a different

subject, Subject B. Specifically, 70% of the data from Subject

A’s recording ATr was used for model training. The remaining

30% of ATr, together with the recordings ATe, BTr, and BTe,

were employed for model testing. In brief, the training set is
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made up of 7,246 samples, and the testing sets comprise 3,106,

12,179, 10,352, and 12,179 samples, respectively. Addition-

ally, we select τ = 4 and ω = 9.3 in Eq. (27). As tabulated

in Table II, AVDCT-Net demonstrates superior performance

compared to other state-of-the-art approaches across all four

subsets, with average CR improvements ranging from 8.15%

to 70.21%, and average PRD enhancements varying between

18.50% and 35.12%. The reason is that ASAEDCT, KCHE,

DCT-Perceptron, and VAE process each EEG channel indepen-

dently, neglecting the inter-channel correlations. AVDCT-Net

utilizes an adaptive filter bank, allowing each EEG channel to

extract and integrate relevant features from adjacent channels,

thereby mitigating the potential loss of critical information

inherent in the compression process. Therefore, AVDCT-Net

has a more robust generalization ability than other benchmark

methods.

F. Visual Assessment

To comprehensively evaluate the performance of the pro-

posed compression algorithm, we present a visual comparison

of the reconstructed EEG signals in both the time and fre-

quency domains, as illustrated in Fig. 6. In the time domain,

it is observed that the differences between reconstructed and

original signals are limited to a small range, indicating that

AVDCT-Net effectively preserves the temporal features of the

EEG data. In the frequency domain, the Fourier transform

of the signals is analyzed. Results show that the frequency

components of the reconstructed signal closely match those

of the original signal. It demonstrates AVDCT-Net effectively

preserves the primary components in the low-frequency bands

while also capturing key features in the high-frequency bands.

AVDCT-Net encoder utilizes a hard-thresholding layer to

eliminate small coefficients in the DCT domain, which pre-

dominantly correspond to high-frequency components. Al-

though this process leads to information loss in the high-

frequency band, the lost information consists of noise or redun-

dant details. Therefore, their impact on signal reconstruction

accuracy is minimal, as shown in Table I and Table II. Ad-

ditionally, the AVDCT-Net decoder employs an adaptive filter

bank to integrate salient features from adjacent channels into

each EEG channel. While this mechanism enhances feature

extraction, it introduces some errors in the low-frequency

band. However, as depicted in Fig. 6, these errors are limited

to a small range. Consequently, their impact on reconstruction

quality remains minimal. Besides, they do not compromise

the performance of subsequent classification tasks as shown

in Table VI.

G. Ablation Experiments

In this section, we perform ablation experiments to evaluate

the impact of the primary components of the proposed method,

including the scaling layer, MHA, adaptive filter bank, and

ELBO. Additionally, we also investigated the effect of subband

quantity on model compression performance. Moreover, CR,

PRD and PRDN are three critical metrics for evaluating

compression performance. Therefore, τ and ω in Eq. (27)

are fine-tuned to optimize CR, PRD, and PRDN for each

TABLE III: Ablation study.

Algorithm
Metrics

CR PRD PRDN QS

No scaling layer 7.64 17.28 17.31 0.44

No MHA 7.55 17.42 17.45 0.44

No adaptive filter bank 7.69 17.26 17.30 0.45

No ELBO 7.64 17.17 17.20 0.45

AVDCT-Net (Channel=1) 7.56 17.24 17.27 0.44

AVDCT-Net (Channel=2) 7.69 17.24 17.27 0.45

AVDCT-Net (Channel=3) 7.82 17.07 17.10 0.46

AVDCT-Net (Channel=4) 7.81 17.59 17.62 0.45

method, thereby demonstrating the effectiveness of the various

modules. The results of the ablation experiments on the BCI2

dataset are summarized in Table III.

1) Ablation study on scaling layer: Removing the scaling

layer from the AVDCT-Net leads to an increase in the PRD

from 17.07 to 17.28, representing a 1.23% rise, and a corre-

sponding decrease in the CR from 7.82 to 7.64, amounting to

a 2.30% reduction. This is due to the fact that the scaling layer

in the DCT domain can be converted into the convolutional

layer in the time domain. Consequently, it strengthens the

encoder’s ability to extract important features, leading to

improved reconstruction accuracy without compromising the

compression ratio.

2) Ablation study on MHA: In the absence of the MHA

module within the decoder, a noticeable degradation in perfor-

mance is observed, as reflected by a decreased CR, increased

PRD, and a lower QS. MHA enables the simultaneous ex-

traction of diverse features across different dimensions of the

latent space. Additionally, it captures both local and global

dependencies [40], promoting better generalization and scal-

ability in multi-channel EEG data reconstruction. Therefore,

the MHA is essential in optimizing reconstruction accuracy.

3) Ablation study on adaptive filter bank: When the adap-

tive filter bank is not present in the AVDCT-Net, the CR is

decreased from 7.82 to 7.69 (1.66%), and the PRD is increased

from 17.07 to 17.26 (1.11%). This is because an adaptive

filter bank allows each EEG channel to merge important

features from neighbouring channels. This helps restore critical

information that may be lost during the lossy compression

procedure. Thus, the adaptive filter bank plays a crucial role

in enhancing the accuracy of data reconstruction.

4) Ablation study on ELBO: Compared to AVDCT-Net

trained with the MSE loss function, AVDCT-Net optimized us-

ing the ELBO loss function exhibits an improved compression

quality score as shown in Table III. By balancing the trade-

off between the reconstruction loss and the KL divergence

term, ELBO inherently penalizes the model for introducing

unnecessary complexity in the latent space. If certain latent

variables do not contribute to improving the reconstruction

accuracy, the KL divergence term drives the model to eliminate

these variables by constraining their distribution to match

the predefined distribution. This process removes redundant

coefficients, enhancing the compression efficiency.

5) Ablation study on subband quantity: Compared to

AVDCT-Net with a single subband, AVDCT-Net with three
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TABLE IV: The comparison of the number of trainable

parameters and MACs.

Algorithm Input size
Trainable

MACs
parameters

ASAEDCT [11] 64×64 4,547 561,152

KCHE [9] 64×64 0 12,352

DCT-Perceptron [36] 64×64 129 274,432

VAE [37] 64×64 11,700 737,280

AVDCT-Net 64×64 4,547 561,152

TABLE V: The comparison of the power cost and runtime on

Raspberry Pi 400.

Algorithm Input size
Power cost Runtime

(Joule) (s)

ASAEDCT [11] 64×64 0.0510 0.0081

KCHE [9] 64×64 0.2904 0.0484

DCT-Perceptron [36] 64×64 0.0347 0.0055

VAE [37] 64×64 0.0617 0.0098

AVDCT-Net 64×64 0.0422 0.0067

consumption and inference latency on edge devices. For this

study, the Raspberry Pi 400 [41], [42] is chosen as the

edge computing platform. The Raspberry Pi 400 features a

Broadcom BCM2711 system-on-chip (SoC) with a quad-core

Cortex-A72 (ARM v8) 64-bit processor running at 1.8GHz.

It is equipped with 4GB of LPDDR4-3200 SDRAM, enabling

efficient multitasking and computing capabilities. Additionally,

the primary energy consumption on the Raspberry Pi 400

occurs during the data compression process. It is computed as

E = P × t, where P is the power in watts (W), measured

directly using a power meter, and t is the inference time

in seconds (s). As shown in Table V, AVDCT-Net demon-

strates a lower inference latency (0.0067s) and power cost

(0.0422W) compared to ASAEDCT and VAE. The reason is

that ASAEDCT employs an additional Tanh activation func-

tion compared to AVDCT-Net, while VAE utilizes more linear

layers than AVDCT-Net. Although KCHE requires no trainable

parameters and has fewer MACs per iteration, it exhibits

higher inference latency and power consumption than AVDCT-

Net. This is because KCHE demands numerous iterations to

achieve convergence. In contrast, AVDCT-Net requires only

a single forward pass during the inference stage. Further-

more, AVDCT-Net consumes 21.61% more energy and incurs

21.82% higher latency than DCTP. However, it improves com-

pression quality by 35.29%, as shown in Table I. This trade-

off highlights AVDCT-Net’s ability to balance compression

performance and power efficiency, making it well-suited for

deployment on edge devices.

I. P300 Detection Experiment

The EEG data compression model is developed for remote

BCI systems. Therefore, the P300 detection experiment is

conducted to validate the effectiveness of the compression

model. In the P300 detection experiment [20], the partici-

pants are shown a 6 × 6 matrix composed of 36 individual

A B C D E F

G H I J K L

M N O P Q I

S T U V W X

Y Z 1 2 3 4

5 6 7 8 9 _

WORLD (W)

Fig. 7: A 6x6 P300 speller. In this example, the user is required

to spell the word “WORLD” (one character at a time). For

each character, the application randomly intensifies columns

and rows several times (e.g., the fourth row in this instance)

alphanumeric characters as shown in Fig. 7. The task of

the participants is to sequentially focus their gaze on lighted

characters that are predetermined by the researcher. Each row

and column of the 6 × 6 matrix was randomly intensified,

yielding 12 distinct stimuli—6 corresponding to the rows and 6

to the columns. Among these intensifications, two specifically

highlighted the target character. In this process, the brain

activities of participants evoked by two stimuli with the target

character differ from those evoked by the stimuli without the

target character. Therefore, according to such differences, the

BCI system can predict the character that participants were

focusing on. The detailed experimental content is described

in [20]. In this section, we utilize the BCI3 dataset because

it provides a comprehensive record of P300 evoked potentials

captured using the BCI2000 software. The paradigm utilized

for these recordings is outlined in [13]. In the BCI3 datasets,

the training sets contain recordings of 85 distinct characters,

while the testing sets include recordings of 100 different

characters. Each character is labeled as either a target or non-

target. In addition, a single channel records 7,560 data points

for each character.

The experiment begins with the application of the pre-

trained AVDCT-Net encoder to compress the EEG data at

the edge node as shown in Fig. 8. The compressed data

is then converted into bitstreams for wireless transmission.

Subsequently, the pre-trained AVDCT-Net decoder is utilized

to restore the original EEG data at the fog node. After that, a

spatial-temporal neural network (STNN) [43] is employed for

P300 detection. The STNN has demonstrated superior perfor-

mance across diverse P300 detection tasks. It is composed of

a temporal unit and a spatial unit. The detailed structure of the

STNN is illustrated in the supplementary material. Given that

the authors in [43] also employed STNN for P300 detection on

the BCI3 dataset, we adhere to the same data preprocessing,

training, and testing procedures as described in their research.

Specifically, the original recordings ATr and BTr are utilized

as the training datasets, while the recordings ATe and BTe,

reconstructed through compression models, are employed as

the testing datasets.
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V. CONCLUSION

In this article, we proposed a novel AVDCT-Net model

for EEG data compression within an edge-fog computing

architecture. The model leveraged a multi-channel structure

to enable the concurrent compression of EEG signals across

all channels, reducing both compression time and transmission

latency. Specifically, a low-complexity encoder was deployed

at the edge level. By imposing parallel hard-thresholding

nonlinearities and scaling operators (filters) after the DCT,

the redundant coefficients were removed, thereby enhancing

the encoder’s data compression capabilities. Besides, a new

ELBO was derived to regularize the encoder output, promoting

a more structured and efficient representation. At the fog level,

an adaptive filter bank was adopted to merge relevant features

from adjacent channels into each separate channel, improv-

ing the robustness and generalization ability. Furthermore,

the IRMHA captured both local and global dependencies to

reconstruct the original signal. The proposed model exhibited

superior compression efficiency and reconstruction accuracy

compared to state-of-the-art methods on the BCI2 and BCI3

datasets. Furthermore, as validated by the P300 detection

experiment, AVDCT-Net preserved all critical features during

the compression and reconstruction process. Therefore, the

AVDCT-Net model was well-suited for implementation in an

edge-fog computing framework for EEG data compression.

In future work, AVDCT-Net will be deployed across a wider

range of edge devices, including low-power IoT devices (e.g.,

Raspberry Pi, Arduino), embedded systems (e.g., FPGAs,

DSPs), mobile devices (e.g., smartphones, tablets), and in-

dustrial/automotive edge computing platforms (e.g., NVIDIA

Jetson, Qualcomm Snapdragon).
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