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Abstract. We present FlipDyn-G, a dynamic game model extending
the FlipDyn framework to a graph-based setting, where each node repre-
sents a dynamical system. This model captures the interactions between
a defender and an adversary who strategically take over nodes in a graph
to minimize (resp. maximize) a finite horizon additive cost. At any time,
the FlipDyn state is represented as the current node, and each player can
transition the FlipDyn state to a node based on the connectivity from the
current node. Such transitions are driven by the node dynamics, state,
and node-dependent costs. This model results in a hybrid dynamical
system where the discrete state (FlipDyn state) governs the continuous
state evolution and the corresponding state cost. Our objective is to
compute the Nash equilibrium of this finite horizon zero-sum game on a
graph. Our contributions are two-fold. First, we model and characterize
the FlipDyn-G game for general dynamical systems, along with the cor-
responding Nash equilibrium (NE) takeover strategies. Second, for scalar
linear discrete-time dynamical systems with quadratic costs, we derive
the NE takeover strategies and saddle-point values independent of the
continuous state of the system. Additionally, for a finite state birth-death
Markov chain (represented as a graph) under scalar linear dynamical sys-
tems, we derive analytical expressions for the NE takeover strategies and
saddle-point values. We illustrate our findings through numerical studies
involving epidemic models and linear dynamical systems with adversarial
interactions.

Keywords: Game Theory · Graphs · Dynamical Systems

1 Introduction

Cyber-Physical Systems (CPS) are essential for integrating computational
elements with physical processes, enabling advanced functionalities in vari-
ous domains. Examples include smart grids for efficient energy distribution,
autonomous vehicles for navigation and safety, and industrial automation sys-
tems for enhanced productivity through precise control and sensor feedback [1,2].
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In the context of CPS, each node in a graph can be represented as a dynamical
process, such as the generation and consumption of electricity in smart grids, the
motion dynamics of autonomous vehicles, or the operational processes in indus-
trial automation. These dynamical processes are interconnected through edges
that represent the interactions and dependencies between them. For instance,
in a smart grid, nodes may represent dynamic processes of energy generation
and consumption at different substations, while edges denote the power flow
between these substations [3]. Similarly, in autonomous vehicle networks, nodes
could represent the dynamic driving processes of individual vehicles, with edges
capturing the communication and coordination required for safe and efficient
traffic flow [4–6].

The use of graphs in modeling CPS is crucial for understanding the sys-
tem’s overall behavior and ensuring its robust operation. Graphs facilitate the
visualization and analysis of how individual dynamic processes interconnect to
form a larger, cohesive system. This interconnection highlights the importance
of securing these nodes and their interactions to prevent disruptions that could
compromise the entire system [7,8].

Securing CPS critically involves mitigating the risks of stealthy takeovers,
where an adversary covertly gains control of system components. The FlipIT

game [9] provides a framework for analyzing such scenarios, where both the
attacker and defender can stealthily control a static resource without the other
party’s immediate knowledge. This model captures the continuous and covert
nature of security threats in CPS, highlighting the need for persistent vigilance
and strategic defense mechanisms.

The FlipIT framework was extended to dynamical systems in FlipDyn [10],
where a defender and adversary aim to take over a common resource modeled
as a discrete-time dynamical system over a finite horizon. Building on FlipDyn,
this paper focuses on resource takeovers in graphs, where each node represents
a resource with its own dynamics, and nodes are connected by edges reflecting
CPS interactions. Two players, a defender and an adversary, seek to repeatedly
take over the graph’s resources. This setup captures strategic interactions in a
dynamic, interconnected environment, generalizing the FlipDyn framework to
multiple states.

Analyzing takeover games involves understanding optimal strategies for both
the adversary and defender, considering various graph topologies and CPS char-
acteristics. By leveraging game-theoretic models and topology structures, this
paper proposes robust defense mechanisms to enhance CPS resilience against
takeover attacks. This approach is crucial for ensuring the continued reliability
and safety of essential infrastructures amidst emerging cyber threats.

1.1 Related Works

The seminal FlipIT [9] analyzes a two-player zero-sum game between a defender
and an adversary attempting to take over a static resource, such as a com-
puting device, virtual machine, or cloud service [11]. The work of FlipIT was
generalized to the games of timing [12], where the actions of each player are
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dependent on the available exploitable vulnerability, and extended to include
time-based exponential discounting [13]. FlipThem [14] expanded the game to
multiple resources with AND/OR models. The work in FlipThem was extended
to i) a threshold-based version [15], which considered a finite number (thresh-
old) of resources beyond which there exists no incentives to takeover, ii) multi-
ple resource with constraints on the frequency of takeover actions [16], and ii)
heterogeneous resource costs and a learning-based method to determine player
strategies [17]. Similar extensions include, Cheat-FlipIt model [18], in which
the opponent agent may feint to flip the resources first, and then control the
resources after a finite delay. Such takeover strategies have also impacted the
blockchain system [19], where arbitrage bots in decentralized exchanges engage
in priority gas auctions to exploit against ordinary users. Beyond the domain of
cybersecurity, the FlipIT model has been introduced in supervisory control and
data acquisition (SCADA) to evaluate the impact of cyberattacks with insider
assistance. The model of FlipIT has been extensively applied in system secu-
rity [11]. These works primarily focused on resource takeovers within a static
system, lacking consideration for the dynamic evolution of physical systems. In
contrast, our work incorporates the dynamics of a physical system in the game
of resource takeovers between an adversary and a defender, addressing the need
for strategies that account for the continuous and evolving nature of CPS.

A finite-horizon zero-sum stochastic game has been used to analyze proba-
bilistic reachable sets for discrete-time stochastic hybrid systems [20], where both
players act simultaneously. Conversely, controllers have been synthesized [21] for
intermittent switching between a defender and an adversary in discrete-time sys-
tems with multi-dimensional control inputs and constraints [22]. Such takeovers
correspond to covert misappropriation of a plant [23], where an attacker controls
the plant while remaining hidden from the supervisory system, extending these
attacks to load frequency control (LFC) systems [24]. Unlike previous research,
our paper provides a feedback signal to infer control and allows taking control
of the plant at any instant, balancing operational cost and performance.

The FlipNet model [25] extends FlipIT to a graph, representing a networked
system of multiple resources, where each player can take over nodes. Network
security in graphs is also viewed as advanced persistent threats (APT), modeled
as a zero-sum repeated game with states as compromised edges [26]. Similarly,
APTs are modeled as multi-stage zero-sum network hardening games, where the
adversary finds the shortest path and the defender allocates resources to block
it. Recently, dynamic information flow tracking has been proposed to detect
APTs via a multistage game [27]. A similar APT model is explored in Cut-
the-Rope [28], where the defender cuts the backdoor access of an adversary,
demonstrating efficacy on attack graphs in the robotics domain [29]. FlipIT has
also been used to study malware diffusion in epidemic models [30]. This paper
addresses FlipIT in a graph-based setting, where the defender and adversary
repeatedly aim to take over nodes. Unlike previous works, this zero-sum game
is played over a finite horizon with a discrete-time dynamical process on each
node and time-varying costs.
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Our prior work which extends the FlipIT model to incorporate dynamical
systems, termed FlipDyn [10]. The model of FlipDyn was extended to jointly
solve the takeover and control policy [31]. In this paper, we extend the FlipDyn

model to a finite horizon zero-sum game over a graph, where each node represents
a dynamical system and the edges correspond to the interaction between these
systems. The contributions of this work are two-fold:

1. Takeover strategies over a graph with discrete-time dynamical sys-
tem on nodes: We formulate a two-player zero-sum takeover game involving
a defender and an adversary seeking to takeover the nodes of a graph, repre-
senting a discrete-time dynamical systems. The costs incurred by each player
are contingent on the current node of the graph. Assuming knowledge of
the discrete-time dynamics, we establish the Nash equilibrium (NE) takeover
strategies and saddle-point values.

2. State-independent takeover strategies and saddle-point values for
scalar/1− dimensional systems: For a linear discrete-time scalar dynami-
cal system with quadratic takeover and state costs, we determine NE takeover
policies independent of the continuous state of both players. Furthermore, for
a topology representing a finite state birth-death process, termed dual deter
model, we derive analytical expression of the NE takeover policies and saddle-
point values.

We illustrate our results on an epidemic model with no node dynamics and
on an example from finance.

This paper is structured as follows. Section 2 formally defines the FlipDyn

problem in a graph setting with continuous state and node dependent costs. In
Sect. 3, we outline a solution methodology applicable to general discrete-time
dynamical systems on nodes. Section 4 presents a solution for takeover policies
for linear scalar discrete-time dynamical systems featuring quadratic costs, along
with a topology dependent analytical solution and numerical examples in Sect. 5.
The paper concludes with a discussion on future directions in Sect. 6.

2 Problem Formulation

Consider a directed multigraph G := {V,E, φ}, where V is the set of nodes with
|V | ∈ N

+, E is the set of edges (paired nodes), and φ : E → {{α, β}|α, β ∈ V 2} is
the incidence function mapping every edge to an ordered pair of nodes, defining
the connectivity of the graph. The term eα,β ∈ E represents the edges connecting
the node α ∈ V with the node β ∈ V , such that when α = β, it represents a self-
loop. We consider a single adversary, originating from any node of the graph G.
The adversary’s goal is to reach nodes within the graph which induces maximum
cost, while a defender’s mission is to hinder the adversary’s advances.

We model the actions of the players and state evolution in discrete-time,
with the variable k denoting the current time step, which takes on values from
the set K := {1, 2, . . . , L, L + 1}. We represent the current node at time k using
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1 2 3

Fig. 1. A directed multigraph consisting of 3 nodes. At time k = 1, the FlipDyn state
is α1 = 1. The actions of both players are {1, 2, 3}.

a variable αk ∈ V , referred to as the FlipDyn state. The adversary’s action is
denoted by the variable πa

k ∈ ε(αk), where the set ε(αk) is defined as:

ε(αk) := {j ∈ V |eαk,j ∈ E}.

Here, ε(αk) represents the nodes the adversary can potentially target from the
current node αk at time k, with j = αk indicating the choice to remain idle or
stay in the same node. Similarly, the defender’s action is denoted by πd

k ∈ ε(αk).
Notice that the defender’s action set is identical to that of the adversary’s, to
deter or prevent further escalation. The FlipDyn state update is based on both
the action of the defender and adversary, given by:

αk+1 =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

πd
k, if πd

k = πa
k,

πd
k , else if πd

k ∈ {ε(αk)|πa
k = αk},

πa
k, else if πa

k ∈ {ε(αk)|πd
k = αk},

αk, otherwise.

(1)

The FlipDyn update (1) states that if the actions of both the defender and
adversary are identical, then the FlipDyn state remains unchanged. However, if
the defender opts to choose any node while the adversary remains idle, then the
FlipDyn state transitions into the chosen node. Similarly, if the defender remains
idle while the adversary chooses any node, then the FlipDyn transitions to the
chosen node. The FlipDyn state transition can be compactly written as:

αk+1 = −αk1αk
(πa

k)1αk
(πd

k) + 1αk
(πa

k)πd
k + 1αk

(πd
k)πa

k + 1̄αk
(πa

k)1̄αk
(πd

k)πd
k,

(2)

where 1αk
: ε(αk) → {0, 1} is the indicator function, which maps to one if

πd
k = αk or πa

k = αk, and maps to zero, otherwise. The term 1̄αk
is the one’s

complement of 1αk
. For illustrative purpose, consider the graph shown in Fig. 1

with the FlipDyn state at time k = 1 as α1 = 1. The FlipDyn state can transition
to the node 2, 3 or remain in node 1 based on the update equation (1).

In addition to the described graph environment, there is an underlying
dynamical system whose continuous state at time k is indicated by xk ∈ X ⊆ R

n,
where X denotes the Euclidean state space. The state transition is dependent
on the node αk+1 given by:

xk+1 = F
αk+1

k (xk), (3)
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where F
αk+1

k : X → X is the transition function for each k ∈ K and αk+1 ∈ V .
Our objective is to compute a strategy for both the players to transition the

FlipDyn state to different nodes of the graph based on the dynamics (2), (3),
takeover, and state costs. Given the initial state x1 and node α1, we pose the
node takeover problem as a zero-sum dynamic game governed by the FlipDyn

update (2) and state dynamics (3), over a finite-time L, where the defender aims
to minimize an additive cost given by:

J(α1, x1, {πa
L
}, {πd

L
}) = g

αL+1

L+1 (xL+1) +
L∑

t=1

gαt

t (xt) + 1̄αt
(πd

t )d
πd

t

t (xt)

− 1̄αt
(πa

t )a
πa

t

t (xt),

(4)

where gαt

t (xt) : X → R represents the cost for every FlipDyn state αt ∈ V , con-
tinuous state xt at time t ∈ K, with g

αL+1

L+1 (xL+1) : X → R representing the ter-

minal cost for each αL+1 ∈ V . The terms d
πd

t

t (xt) : X → R and a
πa

t

t (xt) : X → R

represent the instantaneous takeover costs of the defender and adversary, respec-
tively, for each t ∈ K and action πd

t , πa
t ∈ ε(αt). The defender and adversary

actions over the finite-horizon L is given by the notations {πa
L
} := {πa

1 , . . . , πa
L},

and {πd
L
} := {πd

1 , . . . , πd
L}, respectively. In contrast, the adversary aims to maxi-

mize the cost function (4) leading to a zero-sum dynamic game. This formulation
characterizes the strategic interaction between the two players in the context of
a node takeover problem in a graph environment, termed as FlipDyn-G game.

We seek to find Nash Equilibrium (NE) solutions of the game (4). To guaran-
tee the existence of a pure or mixed NE takeover strategy, we expand the set of
player policies to behavioral strategies – probability distributions over the space
of discrete actions at each discrete time [32]. Specifically, let

y
αk

k := {yαk

k,j |j ∈ ε(αk)},
∑

j∈ε(αk)

yαk

k,j = 1, yαk

k,j ≥ 0, and (5)

zαk

k := {zαk

k,j |j ∈ ε(αk)},
∑

j∈ε(αk)

zαk

k,j = 1, zαk

k,j ≥ 0 (6)

be the behavioral strategies for the defender and adversary, respectively, at time
instant k for the FlipDyn state αk. The takeover actions are

πd
k ∼ y

αk

k , πa
k ∼ z

αk

k ,

for the defender and adversary at any time k are sampled from the corresponding
behavioral strategy. The behavioral strategies are yαk

k , zαk

k ∈ Δ|ε(αk)|, where
Δ|ε(αk)| is the probability simplex in |ε(αk)| dimensions. Over the finite horizon
L, let yL := {yα1

1 ,yα2
2 , . . . ,yαL

L } ∈ Δ|ε(α1)| × Δ|ε(α2)| × · · · × Δ|ε(αL)| and zL :=
{zα1

1 , zα2
2 , . . . , zαL

L } ∈ ΔL
|ε(α1)|

×ΔL
|ε(α2)|

×· · ·×ΔL
|ε(αL)| be the sequence of defender

and adversary behavioral strategies. Thus, the expected outcome of the zero-sum
game (4) is given by:

JE(x1, α1, yL, zL) := E[J(x1, α1, {πa
L}, {πd

L})], (7)
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where the expectation is computed with respect to the distributions yL and zL.
Specifically, we seek a saddle-point solution (y∗

L
, z∗

L
) in the space of behavioral

strategies such that for any non-zero initial state x1 ∈ X , α1 ∈ V , we have:

JE(x1, α1, y
∗
L
, zL) ≤ JE(x1, α1, y

∗
L
, z∗

L
) ≤ JE(x1, α1, yL.z∗

L
).

The FlipDyn game over a graph is completely defined by the expected cost (7)
and the space of player takeover strategies subject to the dynamics in (2) and
(3). In the next section, we derive the outcome of the FlipDyn game for each
node in the graph for general systems.

3 FlipDyn-G for General Problem

3.1 Saddle-Point Value of Any Node

At time instant k ∈ K, given a FlipDyn state αk, the saddle-point value com-
prises the instantaneous state cost and an additive cost-to-go based on the
players takeover actions. The cost-to-go is determined via a cost-to-go matrix
in each of the FlipDyn state αk, represented by Ξαk

k+1 ∈ R
|ε(αk)|×|ε(αk)|. Let

V αk

k (x,Ξαk

k+1) be the saddle-point value at time instant k with the continuous
state x and cost-to-go matrix, corresponding to the FlipDyn state of αk. Let us
define a set of nodes connected to αk as, {αk, j2, j3, . . . , jm(αk)} ∈ ε(αk), where
m(αk) = |ε(αk)|. Such a set of nodes will help us define the cost-to-go matrix.
The entries of the cost-to-go matrix Ξαk

k+1 corresponding to each pair of takeover
actions are:

αk j2 . . . jm(αk)

αk

j2

. . .

jm(αk)

⎡

⎢
⎢
⎢
⎣

vαk

k+1(αk, αk) . . . . . . v
jm(αk)

k+1 (αk, jm(αk))

v
j2
k+1(j2, αk) v

j2
k+1(j2, j2) . . . vαk

k+1(j2, jm(αk))
. . . . . . . . . . . .

v
jm(αk)

k+1 (jm(αk), αk) vαk

k+1(jm(αk), j2) . . . v
jm(αk)

k+1 (jm(αk), jm(αk))

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

Ξ
αk

k+1

, (8)

where v
αk+1

k+1 (πd
k , πa

k) corresponds to the cost-to-go value of a FlipDyn state
αk+1 ∈ V , defined as:

v
αk+1

k+1 (πd
k , πa

k) := V
αk+1

k+1 (F
αk+1

k (x), Ξ
αk+2

k+2 ) + 1̄αk
(πd

k)d
πd

k

k (xk) − 1̄αk
(πa

k)a
πa

k

k (xk).

The diagonal terms in (8) correspond to the saddle-point value of the FlipDyn

states under identical defender and adversary actions. Notice, only under the
action of πd

k = πa
k = αk the takeover costs for both players are zero. The first

row of Ξαk

k+1 corresponds to the saddle-point values of FlipDyn states chosen by
the adversary, when the defender remains idle. Similarly, the first column corre-
sponds to the saddle-point value of the FlipDyn states chosen by the defender
under an idle adversary action. The remaining entries of Ξαk

k+1 correspond to
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the saddle-point value of the FlipDyn state αk with the corresponding takeover
costs. The entries of the cost-to-go matrix are constructed using the FlipDyn

dynamics (2) and continuous state dynamics (3). Thus, at time k for a given
state x and αk, the saddle-point value satisfies

V αk

k (x,Ξαk

k+1) = gαk

k (x) + Val(Ξαk

k+1), (9)

where Val(Xαk

k+1) := miny
αk

k

maxz
αk

k

yαk
T

k Xk+1z
αk

k , represents the (mixed)

saddle-point value of the zero-sum matrix Xk+1 for the FlipDyn state αk, and
Ξαk

k+1 ∈ R
|ε(αk)|×|ε(αk)| is the cost-to-go zero-sum matrix. The defender’s and

adversary’s action results in either an entry within Ξαk

k+1 (if the matrix has a
saddle point in pure strategies) or in the expected sense, resulting in a cost-to-go
from state x at time k.

With the saddle-point values established in each of the FlipDyn states αk ∈
V , next, we will characterize the NE takeover strategies and the saddle-point
values for the entire time horizon L.

3.2 NE Takeover Strategies of the FlipDyn-G game

To characterize the saddle-point value of the game, we restrict the state and
takeover costs to a particular domain, stated in the following mild assumption.

Assumption 1. [Non-negative costs] For any time instant k ∈ K, the state and
takeover costs gα

k (x), dα
k (x), aα

k (x), for all x ∈ X , and α ∈ V are non-negative
(R≥0).

Assumption 1 enables us to compare the entries of the cost-to-go matrix
without changes in the sign of the costs, thereby, characterizing the strategies
of the players (pure or mixed strategies). Under Assumption 1, we derive the
following result to compute a recursive saddle-point value for the horizon length
L and the corresponding NE takeover strategies for both the players in every
node of the graph environment.

Lemma 1. Under Assumption 1, the saddle-point value of the FlipDyn-G

game (7) at any time k ∈ K, subject to the FlipDyn dynamics (2) and con-
tinuous state dynamics (3) is given by:

V αk∗
k (x,Ξαk

k+1) = gαk

k + yαk∗T

k Ξαk

k+1z
αk∗
k , (10)

where yαk∗
k and zαk∗

k correspond to NE takeover policies obtained upon solving
the zero-sum matrix defined by Ξαk

k+1 (cost-constructed backward in time using
the saddle-point values at k+1) as a linear program [32]. The boundary condition
of the saddle-point value recursion (10) at k = L is given by:

Ξ
αL+1

L+2 := 0m(αL+1)×m(αL+1),∀αL+1 ∈ V. (11)
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We skip the proof of the Lemma 1 as it involves simple substitutions and
the use of recursive optimality. For a finite cardinality of the state space X ,
FlipDyn states V , and a finite horizon L, Lemma 1 yields an exact (behavioral)
saddle-point value of the FlipDyn-G game (7). However, the computational and
storage complexities scale undesirably with the cardinality of X , especially in
continuous state spaces. For this purpose, in the next section, we will provide a
parametric form of the saddle-point value especially in the case of scalar linear
dynamics with quadratic costs.

4 FlipDyn-G for scalar LQ Problems

To render a tractable solution for continuous state of the FlipDyn-G game, we
restrict ourselves to scalar linear discrete-time dynamical system with quadratic
costs (LQ problem). The discrete-time dynamics of a linear system at time
instant k ∈ K in the FlipDyn state αk+1 is given by:

xk+1 = F
αk+1

k (xk) := f
αk+1

k xk, (12)

where f
αk+1

k ∈ R denotes the state transition scalar coefficient. The stage and
takeover costs are assumed to be quadratic for each player and given by:

gαk

k (x) = x2g
αk

k , dαk

k (x) = x2d
αk

k , aαk

k (x) = x2a
αk

k , (13)

where g
αk

k ∈ R,aαk

k ∈ R,dαk

k ∈ R are non-negative (R≥0) under Assumption 1.
Under Assumption 1 for scalar dynamical systems of the form (12), we pos-

tulate a parametric form for the saddle-point value for each FlipDyn state α ∈ V

of the form:

V αk

k (x,Ξαk

k+1) ⇒ V αk

k (x) := pαk

k x2, ∀αk ∈ V, k ∈ K, (14)

where p
αk

k ∈ R≥0 corresponds to a non-negative coefficient for each of
the FlipDyn states. Under the scalar linear dynamical system (12), takeover
costs (13) and the parameteric form (14), the cost-to-go matrix Ξ̂αk

k+1 can be
re-expressed as:

αk j2 . . . jm(αk)

αk

j2

. . .

jm(αk)

⎡

⎢
⎢
⎢
⎣

v
αk

k+1(αk, αk) . . . . . . v
jm(αk)

k+1 (αk, jm(αk))

v
j2
k+1(j2, αk) v

j2
k+1(j2, j2) . . . v

αk

k+1(j2, jm(αk))
. . . . . . . . . . . .

v
jm(αk)

k+1 (jm(αk), αk) vαk

k+1(jm(αk), j2) . . . v
jm(αk)

k+1 (jm(αk), jm(αk))

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

Ξ̂
αk

k+1

, (15)

where v
αk

k+1(u,w) corresponds to the cost-to-go term of a FlipDyn state inde-
pendent of the term x2, defined as:

v
αk+1

k+1 (πd
k , πa

k) := (f
αk+1

k )2p
αk+1

k+1 + 1̄αk
(πd

k)d
πd

k

k − 1̄αk
(πa

k)a
πa

k

k .
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Fig. 2. A graph consisting of N nodes .

Notice the cost-to-go entries consists of the system transition coefficients and
takeover costs, while factoring out the term x2. Building on Lemma 1, we present
the following result, which provides the NE takeover policies of both players, and
outlines the saddle-point value update of p

αk

k for any FlipDyn state.

Lemma 2. Under Assumption 1, at any time k ∈ K, the saddle-point value
parameter of the FlipDyn-G game (7) for quadratic state and takeover costs (13),
subject to the FlipDyn dynamics (2) and scalar state dynamics (12), is given by:

pαk∗
k = gαk

k + yαk∗T

k Ξ̂αk

k+1z
αk∗
k , (16)

where yαk∗
k and zαk∗

k correspond to NE takeover policies obtained upon solving

the zero-sum matrix Ξ̂αk

k+1 as a linear program [32]. The boundary condition of
the saddle-point value recursion (10) at k = L is given by:

Ξ̂
αL+1

L+2 := 0m(αL+1)×m(αL+1),∀αL+1 ∈ V. (17)

Substituting the scalar state dynamics (12) along with state and takeover
costs (13) yields the NE strategies and saddle-point value parameters (16). We
skip the proof of Lemma 2 for brevity. Lemma 2 presents a complete solution for
the FlipDyn-G (7) game with NE takeover strategies independent of state of the
scalar dynamical system. In the following subsection, we will derive closed-form
expressions of the FlipDyn-G game for a special graph structure and show how
the structure represents the original FlipDyn game [10].

4.1 Dual Deter FlipDyn-G game

We examine a special case of the graph environment, termed the dual deter
model, which consists of a start and end node each connecting to only one other
node, while the remaining nodes connect to two different nodes. This model can
be viewed as a finite state Markov chain birth-death process [33]. We assume
the dual deter model has an ordered set of nodes from node 0 to N , resulting in
a total of |V | = N + 1 nodes, as illustrated in Fig. 2.

A key difference compared to the general graph model lies in the action space
of the defender and adversary. At any node αk ∈ {1, 2, . . . , N − 1}, the action
space of the adversary is πa

k := {αk, α}, α ∈ {V |α > αk}, and of the defender
is πd

k := {αk, α}, α ∈ {V |α < αk}. The action space of both the defender and
adversary in the start and end node αk = {0, N} are given as πd

k := {αk, τ} and
πa

k := {αk, τ}, where τ represents a takeover action in the node αk, preventing
transition to other nodes. Such an action space and model represents the defender
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deterring an adversary from escalating through the graph. The FlipDyn state
updates in such a dual deter model as follows:

αk+1 =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αk, if πd
k = πa

k|αk = {0, N},

1, else if πa
k = τ |πd

k = 0, αk = 0,

N − 1, else if πd
k = τ |πa

k = N,αk = N,

πd
k, else if πd

k = πa
k,

α, else if πd
k = α|πa

k = αk,

α, else ifπa
k = α|πd

k = αk},

αk, otherwise.

(18)

We characterize the NE strategies and saddle-point values of the dual deter
model under the assumption of a scalar linear dynamical system (12) and
quadratic costs (13) with a parameterized saddle-point value (14). Such an action
space leads to a reduced dimension of the cost-to-go matrix independent of the
state term x2 at any node αk ∈ {1, 2, . . . , N − 1}, given by:

αk α

αk

α

[

(fαk

k )
2
p

αk

k+1

(
fα

k

)2
pα

k+1 − a
αk

k
(
f

α

k

)2
p

α

k+1 + d
αk

k (fαk

k )
2
p

αk

k+1 + d
αk

k − a
αk

k

]

. (19)

Similarly, the cost-to-go matrix for the start node αk = 0 independent of the
state term x2 is given by:

0 τ

0

τ

[ (
f0

k

)2
p0

k+1

(
f1

k

)2
p1

k+1 − a0
k

(
f0

k

)2
p0

k+1 + d0
k

(
f0

k

)2
p0

k+1 + d0
k − a0

k

]

, (20)

whereas for the end node αk = N , we have:

N τ

N

τ

[ (
fN

k

)2
pN

k+1

(
fN

k

)2
pN

k+1 − aN
k

(
fN−1

k

)2
pN−1

k+1 + dN
k

(
fN

k

)2
pN

k+1 + dN
k − aN

k

]

. (21)

The transition of the nodes in (19) follows from the FlipDyn dynamics (2).
Next, we present the NE takeover in both pure and mixed strategies of both the
players along with the saddle-point value parameter p

αk

k for every node in the
dual deter model.

Theorem 1. The unique NE takeover strategies of the FlipDyn-G game (7)
at any time k ∈ K for quadratic state and takeover costs (13), subject to the
FlipDyn dynamics (18) and scalar state dynamics (12) are given by:
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Case i) - αk = 0

y0∗
k =

⎧

⎪⎪⎨

⎪⎪⎩

[
a0

k

p̂k+1
1 −

a0
k

p̂k+1

]T

, if p̂k+1 > a0
k, p̂k+1 > d0

k,

[

1 0
]T

, otherwise,

(22)

z0∗
k =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[

1 −
d0

k

p̂k+1

d0
k

p̂k+1

]T

, if p̂k+1 > a0
k, p̂k+1 > d0

k,

[

0 1
]T

, if p̂k+1 > a0
k, p̂k+1 ≤ d0

k,

[

1 0
]T

, otherwise,

(23)

and the saddle-point value parameter satisfies:

p0
k =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g0
k+(f0

k )2p0
k+1 + d0

k −
a0

kd
0
k

p̂k+1
, if p̂k+1 > a0

k, p̂k+1 > d0
k,

g0
k+(f1

k )2p1
k+1 − a0

k, if p̂k+1 > a0
k, p̂k+1 ≤ d0

k,

g0
k + (f0

k )2p0
k+1, otherwise,

(24)

where p̂k+1 := (f1
k )2p1

k+1 − (f0
k )2p0

k+1.
Case ii) - αk = {1, 2, . . . , N − 1}

yαk∗
k =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

1 0
]T

, if p̃
αk

k+1 < d
αk

k ,−p̌
αk

k+1 < d
αk

k ,

[

0 1
]T

, else if p̃αk

k+1 > dαk

k ,−p̌αk

k+1 > dαk

k ,

[
p̃

αk

k+1 − a
αk

k

p̃
αk

k+1 + p̌
αk

k+1

p̌
αk

k+1 + a
αk

k

p̃
αk

k+1 + p̌
αk

k+1

]T

, otherwise

(25)

z0∗
k =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

1 0
]T

, if − p̃αk

k+1 < aαk

k , p̌αk

k+1 < aαk

k ,

[

0 1
]T

, if − p̃
αk

k+1 > a
αk

k , p̌αk

k+1 > a
αk

k ,

[
p̃

αk

k+1 + d
αk

k+1

p̃αk

k+1 + p̌αk

k+1

p̌
αk

k+1 − d
αk

k+1

p̃αk

k+1 + p̌αk

k+1

]T

, otherwise,

(26)



232 S. Banik et al.

and the saddle-point value parameter satisfies:

p
αk

k =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gαk

k +(fαk

k )2pαK

k+1, if
− p̃

αk

k+1 < a
αk

k , p̌αk

k+1 < a
αk

k+1,

p̌
αk

k+1 < d
αk

k+1,

g
αk

k + (f
α

k )2p
α

k+1 + d
αk

k+1, if
− p̃

αk

k+1 < a
αk

k , p̌αk

k+1 < a
αk

k+1,

p̌
αk

k+1 > d
αk

k+1,

g
αk

k + (fα
k )2pα

k+1 − a
αk

k+1, if
− p̃

αk

k+1 > a
αk

k , p̌αk

k+1 > a
αk

k+1,

− p̃
αk

k+1 < d
αk

k+1,

gαk

k + (fαk

k )2pαk

k+1 − aαk

k+1 + dαk

k+1, if
− p̃αk

k+1 > aαk

k , p̌αk

k+1 > aαk

k+1,

− p̃
αk

k+1 > d
αk

k+1,

g0
k +

(fαk

k )4(pαk

k+1)
2 + a

αk

k d
αk

k

p̃αk

k+1 + p̌αk

k+1

+
p̃αk

k+1d
αk

k − p̌αk

k+1a
αk

k

p̃
αk

k+1 + p̌
αk

k+1

−
(f

α

k )2p
α

k+1(f
α
k )2pα

k+1

p̃
αk

k+1 + p̌
αk

k+1

,

otherwise,

(27)

where

p̃
αk

k+1 := (fαk

k )2pαk

k+1 − (f
α

k )2p
α

k+1, p̌
αk

k+1 := (fαk

k )2pαk

k+1 − (fα
k )2pα

k+1.

Case iii) - αk = N

yN∗
k =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[

1 −
aN

k

p̄k+1

aN
k

p̄k+1

]T

, if p̄k+1 > aN
k , p̄k+1 > dN

k ,

[

0 1
]T

, if p̄k+1 ≤ aN
k , p̄k+1 > dN

k ,

[

1 0
]T

, otherwise,

(28)

zN∗
k =

⎧

⎪⎪⎨

⎪⎪⎩

[
dN

k

p̄k+1
1 −

dN
k

p̄k+1

]T

, if p̂k+1 > aN
k , p̂k+1 > dN

k ,

[

1 0
]T

, otherwise,

(29)

and the saddle-point value parameter is given by:

pN
k =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

gN
k +(fN

k )2pN
k+1 − dN

k +
a0

kd
0
k

p̂k+1
, if p̂k+1 > aN

k , p̂k+1 > dN
k ,

gN
k +(fN−1

k )2pN−1
k+1 + dN

k , if p̂k+1 > aN
k , p̂k+1 ≤ dN

k ,

gN
k + (fN

k )2pN
k+1, otherwise,

(30)
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where p̄k+1 := (fN
k )2pN

k+1 − (fN−1
k )2pN−1

k+1 .
The boundary condition of the saddle-point value recursion (24), (27), (30)

at k = L + 1 is given by:

p
αL+1

L+1 := g
αL+1

L+1 ,∀αL+1 ∈ V. (31)

�

The derivation of the NE takeover policies and saddle-point value parameters
in Theorem 1 closely follows the procedure outlined in [31]. Therefore, we omit
the proofs for the sake of brevity. Theorem 1 presents a closed-form solution for
the FlipDyn-G (7) game with NE takeover strategies independent of state for
scalar linear dynamical systems. The dual deter model captures a specific struc-
ture of the general FlipDyn-G game. This structure enables us to complete the
NE strategies and saddle-point value of the game in closed-form. The following
remark indicates when the dual deter model maps to the FlipDyn model [10].

Remark 1. When the dual deter model consists of only two nodes, α = {0, 1},
the FlipDyn-G game reduces to a FlipDyn [10] model with a full state feed-
back control, with NE strategy and saddle-point value parameter as described
in (22), (23), (24), (28), (29), and (30).

Next, we illustrate the results of Lemma 2 through two numerical examples.

5 Numerical Examples

5.1 Numerical Example I

We evaluate the NE takeover strategy and saddle-point value of the FlipDyn-G

game on an epidemic dynamic model, which is a discrete-time linear model
capturing the dynamics of infection. This model can be mapped to a graph envi-
ronment with four nodes: susceptible, infected, recovered, and deceased, termed
as the SIRD model. The adversary is assumed to be the source of infection
causing transitions between nodes, while a government organization represents
the defender preventing transitions that can lead to significant losses. Typically,
epidemic models have fixed transition probabilities between nodes; however, in
this setup, transitions are governed by NE takeover policies. The SIRD model is
shown in Fig. 3a, with four FlipDyn states: susceptible (S), infected (I), recov-
ered (R), and deceased (D). Therefore, the FlipDyn state can take on the value
αk ∈ {S, I,R,D} for all k ∈ K.

This example presents only a FlipDyn dynamics, as the nodes do not have
an underlying continuous state dynamics. In this example, we will consider the
costs to be time-invariant, i.e., gα

k = gα,dα
k = dα, and aα

k = aα,∀k ∈ K and
α ∈ {S,I,R,D}. The state costs follow the order given by:

gD > gI > gS > gR. (32)
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Fig. 3. (a) An epidemic model represented as a graph with four nodes. The FlipDyn

states of the graph are susceptible (S), Infected (I), Recovered (R), and Deceased (D).
(b) Saddle-point parameters for each node α = {S,I,R,D}, over time k, with horizon
length L = 20.

The state costs (32) imply that the FlipDyn state of death (α = D) has the
highest cost, while the least is for the recovered (α = R). Similarly, the defender
and adversary takeover costs follow the order given by:

dR > dS > dI > dD, aD > aI > aS > aR. (33)

The costs used in this numerical example are:

gS = 1.5, gI = 2.2, gR = 1.0, gD = 2.5,

dS = 0.7, dI = 0.5, dR = 0.8, dD = 0.2,

aS = 0.5, aI = 0.7, aR = 0.1, aD = 0.9.

We solve for the NE takeover strategies and saddle-point value using Lemma 2.
Figure 3b shows the saddle-point value parameters pα

k , α = {S,I,R,D} for a hori-
zon length of L = 20. The saddle-point values corresponding to each of the nodes
follow the order described in (32) indicating the cost in transitioning to the state
α = D is the highest. We also observe that the value of the node α = I remains
close to the other node states α = {R,D} reflective of the defender policy to
prevent transition to α = D.

The defender and adversary policies for the state α = I are shown in Figs. 4a
and 4b. The state α = D is a sink state, meaning once you transition to it,
you cannot transition to other states. We illustrate the policy for the state α =
I as it allows both players to transition to any state. The defender’s policy
involves transitioning only to the susceptible and recovered states, avoiding the
death state or remaining in the infected state. In contrast, the adversary has
a high probability of transitioning to the death state and a low probability of
transitioning to the recovered state, with zero probability of transitioning to the
susceptible and infected states.
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Fig. 4. For the node α = I, the NE policy of the (a) defender and (b) adversary, where
yI

k(α), zI

k(α), α = {S,I,R,D} corresponds to the probability of selecting the takeover
node α, given αk = I.

5.2 Numerical Example II

We evaluate the NE takeover strategy and saddle-point value of the FlipDyn-G

game on a stock market Markov chain [34], with node dynamics. This model
consists of three nodes: bull market, bear market, and stagnant market. An
investor is represented as an adversary attempting to capitalize on the market,
while the defender represents the rest of the players in the market. A bull,
bear, and stagnant market represent an increase, decrease, and steady market
growth, respectively. A graphical representation of this stock market model is
shown in Fig. 5a, with three FlipDyn states: bull (Bu), bear (Br), and stagnant
(St). Therefore, the FlipDyn state can take on the value αk ∈ {Bu,Br,St}
for all k ∈ K. For this example, we will assume the costs and dynamics are
time-invariant, i.e., gα

k = gα,dα
k = dα, and aα

k = aα, fαk

k = fαk ,∀k ∈ K and
α ∈ {Bu,Br,St}. The state costs and node dynamics follow the order given by:

gBu > gBr > gSt, fBu > fBr > fSt. (34)

The state costs and dynamics (34) indicate the FlipDyn state of the bull
market (α = Bu) has the highest value with the least being the stagnant market
(α = St). Similarly, the defender and adversary takeover costs follow the order:

dBu > dSt > dBr, aBr > aSt > aBu. (35)

The dynamics and takeover costs used in this numerical example are:

fBu = 1.1, fBr = 0.95, gSt = 1.0,

dBu = aBr = 0.90, dBr = aBu = 0.50, dSt = aSt = 0.75.

The FlipDyn state costs are time-varying and indicate in Fig. 5b. We solve for the
NE takeover strategies and saddle-point value using Lemma 2. Figure 5c shows
the saddle-point value parameters pα

k , α = {Bu,Br,St} for a horizon length of
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Fig. 5. (a) A stock market Markov chain model represented as a graph with three
nodes. The FlipDyn states of the graph are Bull (Bu), Bear (Br), and Stagnant (St).
(b) The state costs g

α

k , α ∈ {Bu, Br, St}. (c) Saddle-point parameters for each node
α = {Bu, Br, St}, over time k, with horizon length L = 20.

Fig. 6. For the node α = Br, the NE policy of the (c) defender and (d) adversary,
where yBu

k (α), zBu

k (α), α = {Bu, Br, St} corresponds to the probability of selecting the
takeover node α, given αk = Bu.

L = 20. At the start of the horizon, the difference between the saddle-point
values follows the order (34). However, as the horizon increases, the differences
between saddle-point values of the FlipDyn states become indistinguishable.

We only illustrate the defender and adversary policy for the state α = Bu
shown in Figs. 6a and 6b, respectively. The policy trends of both players are
quite similar, with a high probability of being in the bull market, followed by the
stagnant market and bear market. The investor (adversary) indicates a higher
probability of being in the bull market and maintains this probability throughout
the time horizon. In contrast, the defender exhibits a relatively lower probability
of being in the bull state, with the highest probability gradually shifting to
transitioning to the stagnant state over time.

This numerical example illustrates the use of the FlipDyn model in graphs
to determine node takeover strategies for each player. It provides insights into
system behavior and stability, which are useful for designing costs that impact
takeover policies.
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6 Conclusion

In this paper, we have introduced the FlipDyn-G framework, extending the
FlipDyn model to a graph-based setting where each node represents a dynamical
system. Our model captures the strategic interactions between a defender and an
adversary who aim to control node state in a graph to minimize and maximize
a finite horizon sum cost, respectively.

Our contributions include modeling and characterizing the FlipDyn-G game
for general dynamical systems and deriving the corresponding Nash Equilibrium
(NE) takeover strategies. Additionally, for scalar linear discrete-time dynamical
systems with quadratic costs, we derived NE takeover strategies and saddle-point
values that are independent of the continuous state of the system. For a finite
state birth-death Markov chain, we derived analytical expressions for these NE
strategies and values. Through numerical studies involving epidemic models and
linear dynamical systems with adversarial interactions, we have illustrated the
applicability and effectiveness of our proposed methods. The results demonstrate
that our approach can robustly determine optimal strategies for both players,
enhancing the resilience and security of cyber-physical systems (CPS).

Future work will focus on extending this framework to more complex topolo-
gies and multi-agent systems.
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