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Abstract
Electrohydrodynamic (EHD) printing has been used in various applications (e.g., sensors, batteries, photonic crystals). 
Currently, research on studying the relationships between EHD jetting behaviors, material properties, and processing con-
ditions is still challenging due to a large number of parameters, cost, time, and the complex nature of experiments. In this 
research, we investigated EHD printing behavior using a machine learning (ML)-guided approach to overcome limitations 
in the experiments. Specifically, we investigated two jetting modes and the size of printed material with a broader range of 
material properties and processing parameters. We used samples from both literature and our own experiment results with 
different type of materials. Different ML models have been developed and applied to the data. Our results have shown that 
ML can navigate a vast parameter search space to predict printing behavior with an accuracy of higher than 95% during EHD 
printing. Moreover, the results showed that ML models can be used to predict the printing behavior and feather size for new 
materials. The ML models can guide the investigation of EHD printing and helped us understand the printing behavior in a 
systematic manner with reduced time, cost, and required experiments.
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1  Introduction

Additive manufacturing (AM) has revolutionized the way 
of production as it is capable of direct fabrication of highly 
complex structures, which can be challenging or impossible 
with traditional manufacturing approaches [1, 2]. Different 
types of AM processes have been developed (e.g., stereo-
lithography, powder bed fusion, directed energy deposi-
tion) for a range of applications [3, 4], such as aerospace, 
automative, and healthcare. Among all the AM processes, 

high-resolution additive manufacturing processes are critical 
for many applications [1, 5, 6]. Inadequate manufacturing 
accuracy and surface finish in many current AM methods 
significantly limits their application in producing high-preci-
sion components. For example, printing of transparent elec-
tronics requires a feature resolution of less than 10 μm [7, 
8]; AM of optical devices also requires high precision [9]. 
A printing process capable of achieving micro-scale resolu-
tion can not only reduce fabrication time and cost, but also 
simplify post-processing as well.

Electrohydrodynamic (EHD) printing is an emerg-
ing printing technique capable of producing micro- or 
nano-resolution products using a range of materials [10]. 
Compared with other high-resolution manufacturing tech-
niques, such as laser-based process [11], photolithography 
[12], high-resolution material jetting [13, 14], and two-
photon polymerization [15], EHD printing is an inexpen-
sive, versatile, and highly customizable alternative for cre-
ating precision components with sub-micron resolutions. 
Polymer solutions, metals, nanomaterials, biomaterials, 
and phase-change materials have been used in EHD print-
ing for applications such as micro 3D structures, flexible 
electronics, and scaffolds [10]. In EHD printing, ink is 
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subjected to an electric field (Fig. 1a) to form a Taylor-
cone, and a droplet or jet is generated at the tip of the cone 
(Fig. 1b). Various EHD printing modes (dripping mode, 
microdripping mode, spindle mode, multispindle mode, 
cone-jet mode, oscillating-jet mode, precession mode, 
ramified jet, etc.) have been identified based on forms and 
dynamics of the meniscus/jet and forms of liquid emitted. 
Two printing modes, microdripping mode and cone-jet 
mode, stand out in particular for being able to produce 
stable fabrications with high precision. In microdripping 
mode (Fig. 2a), fine droplets can be printed and precisely 
deposited on a substrate, while cone-jet mode (Fig. 2b) 
is capable of producing a single fine stable filament [16].

Understanding the mechanisms and interactions 
between the EHD printing process and material properties 
can provide good insights that can help improve the print-
ing process, optimize feature resolution, and identify new 
materials. Extensive research has been conducted in order 
to understand the EHD printing process and its relation-
ship with different material properties. A vast number of 
experimental tests have been conducted to study relations 

between process parameters, printing behavior, and fea-
ture dimensions for various materials [17–19]. However, 
this process requires tremendous amounts of time and cost 
due to the intricate multiphysics involved in EHD print-
ing. Therefore, both theoretical and simulation models 
have been developed to study mechanisms of EHD print-
ing, as well as accelerated determination of processing-
property linkage. For example, Lee’s group created phase 
diagrams and jetting maps to qualitatively show the rela-
tionship between printing modes and two critical print-
ing parameters, voltage and flow rate [20]. Some groups 
have utilized the scaling law to study the relation between 
printing process parameters (i.e., minimum flow rate, elec-
tric fields, surface charge density) and printed features 
under pulsating mode and cone-jet conditions [21–26]. 
Several groups have also applied numerical methods to 
study droplet size and charge in EHD printing, and they 
found that droplet size and charge is affected by ink con-
ductivity and several scaling regimes [27–30]. Droplet-
substrate interaction has also been studied using numeri-
cal methods. Pannier’s group utilized the spherical cap 

Fig. 1   High-resolution EHD 
printing: a schematic illustra-
tion of an EHD printing system. 
b Typical nozzle and substrate 
configuration for EHD printing 
[10]

Fig. 2   Schematic of printing 
modes: a microdripping mode; 
b cone-jet mode
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volume conservation law and molecular kinetics to study 
droplet spreading substrates [31]. The mentioned models 
have provided valuable insights into how the EHD printing 
process interacts with different material properties, and 
several dimensionless numbers have been created for pre-
dicting the printing mode. However, those models primar-
ily focus on creating dimensionless numbers to describe 
the interaction of printing process and material proper-
ties. As a result, those models are not able to provide a 
good prediction of feature dimensions. Some groups have 
developed different simulation models to predict droplet 
or jetting size. For instance, Du’s group developed a finite 
element approach (FEA) model to study droplet breakup 
at cone tips, as well as droplet size and mass by integrating 
voltage, charged species, and two-phase flow [32]. Dong’s 
group developed an FEA and computational fluid dynam-
ics (CFD) model for studying EHD microdripping mode 
printing, and their developed models were able to predict 
droplet inflight velocity, droplet size, and final footprint 
[33, 34]. Zeshan and Yanqiao’s groups developed FEA 
models to simulate the EHD cone-jet and microdripping 
mode printing process using different design parameters, 
which was later validated by experiments [35, 36]. Never-
theless, these models usually possess limitations, in that 
they are typically tailored towards one specific material or 
one particular printing behavior, which is difficult to adopt 
in unknown scenarios. Consequently, they can only pro-
vide limited insights into the realm of EHD printing, and 
offer limited guidance in the field of future parameters and 
material selection. Currently, a model that can accurately 
describe and predict EHD printing which can be general-
ized for a wide range of materials has not been established.

To develop such a model, we propose a more recent 
approach based on machine learning (ML) in this study, 
which can contribute a novel perspective in the field of 
EHD printing. ML is a data-driven method that studies 
the wealth in existing data, and can potentially lead to 
a paradigm shift in the way traditional research is con-
ducted. Using data and information from existing samples, 
ML models can be trained to further explore the nature 
of research targets, which may not be possible to extract 
using conventional research methods. ML can also assist 
in predicting research targets, which offers opportunities 
to operate research in a more economical direction with 
high fidelity.

ML has been applied to study EHD printing in previous 
research. For example, some studies utilize supervised ML 
methods to establish the relations between printing process 
parameters and product dimension and performance, which 
can improve manufacturing efficiency [37, 38]. Supervised 
ML methods have also been applied with images in order 
to investigate the relation between process parameters and 
printing modes [39, 40]. Athanasios’ group developed an 

end-to-end physics-informed machine learning framework 
to study the mechanism of the EHD jetting process with 
reduced experiment cost [41]. All of those studies utilized 
data from their experiments with limited materials and pro-
cess conditions. However, all processing parameters must 
be studied comprehensively in order to determine their 
combined effects on printing product quality. Furthermore, 
such models have not been subjected to external valida-
tion through experiments conducted by other researchers. 
Sachin’s group has collected data from relevant publications 
and used it for training ML models [42]. The developed 
models can determine the importance of different param-
eters that affect the printing results. However, it’s worth not-
ing that this research relied on an extensive external data-
set to increase model accuracy, and the applicability of the 
developed model for new materials has not been validated. 
Here, we perform a ML-based research on the relationship 
between a comprehensive combination of parameters and 
printing behavior using data from both internal and external 
sources for a vast number of materials. By evaluating param-
eter importance and building models for predicting printing 
behavior, we investigate each parameter related to printing 
behavior in a more systematic manner and the mechanism of 
EHD printing process is studied more thoroughly compared 
to previous research. Moreover, by validating the developed 
ML model for new materials, which was not explored in pre-
ceding work, the stress related to the cost, time consumed, 
and experiments required in conventional EHD printing 
research is relieved effectively.

In this work, we have applied the ML tools to study the 
interaction between EHD printing parameters and material 
properties, and how those parameters affect the jetting mode 
and the diameter of printed material. With these created ML 
models, important parameters that play a vital role in EHD 
printing have been identified. The generated models have 
exhibited the ability to accurately predict printing behavior 
and printed feature resolutions, which has been validated by 
our dataset with reduced time cost by a factor of 8 compared 
with FEA simulation. Furthermore, we have demonstrated 
the capacity of our developed model for the precise predic-
tion of the jetting mode and diameter of printed product 
materials not included in the training dataset. These results 
underscore the potential of utilizing such developed models 
for predicting printing performance with new materials, and 
minimizing the need for actual experimentation.

2 � Methods

2.1 � Data collection

The data used in this work comes from two distinct sources: 
data generated from our own experiments and experimental 



	 The International Journal of Advanced Manufacturing Technology

data extracted from external publications. More than 100 
previously reported articles regarding droplets and filaments 
during EHD printing were consulted. To characterize print-
ing behavior, two factors were considered in this work: 
jetting mode (forms of printed material) and diameter of 
printed materials. To maintain consistency among the data-
set, we excluded publications which did not include one or 
more printing parameters and material properties such as 
electric field (V/μm), pressure (Psi), printing speed (mm/s), 
viscosity (mm2/s), surface tension (mN/m), density (g/cm3), 
printing temperature (°F), and nozzle size (μm) as well as 
the jetting mode and printed feature diameter (μm). The 
publications used in this project are listed in the reference 
[43–53]. Only average values of the printing parameters col-
lected from the above references are used in this study. For 
our experimental data, the printing behaviors and dimen-
sions were directly captured and measured from a high-res-
olution camera and optical microscope, and average values 
from our data are used in this study. The viscosity, surface 
tension, and density of the materials were obtained using a 
rotational viscometer, tensiometer with pendant drop meth-
ods, and a high-precision scale. To comprehensively encom-
pass the pertinent materials associated with EHD printing, 
we meticulously selected four distinct material categories: 
phase change ink (wax and PCL), nanomaterials ink (silver 
nanowire ink (AgNW) and silver nanoparticle ink (AgNP)), 
and molten metal (Field’s metal) and polymer solutions 
(poly(3,4-ethylenedioxythiophene):polystyrene sulfonate 
(PEDOT:PSS), polystyrene (PS), poly(methyl methacrylate) 
(PMMA), glycerin, and mixture of glycerin, as well as water 
and sodium chloride (NaCl)). Table 1 presents a detailed 
breakdown of these materials and their material properties, 
printing parameters, jetting mode, and diameter of printed 
materials, all of which were applied in this research. It is 
important to note that only data produced with DC volt-
age is included in this study, and all features are printed 
in the perpendicular direction. Besides the physical proper-
ties discussed in this paper, the conductivity of the material 

also has a significant impact on printing behavior [54, 55]. 
However, only a few papers include all the selected features 
(parameters which may affect the target in ML) and mate-
rial conductivity. To ensure that the number of samples was 
sufficient for ML work, electrical properties were not incor-
porated in the ML models. Substrate surface wettability also 
plays a role in determining feature size. All substrates used 
in this work have a hydrophilic surface, but the exact sur-
face energy or substrate material is not specified in several 
references. In this work, the substrate is not considered as a 
feature in developing the ML model. The datasets include 
two parts: the input features (x : x1, x2, x3, …. xn) and one out-
put target (y), which depends upon said input features. The 
input features, output target and sample size for each data-
set is presented in Table 2. The diameter of printed droplet 
(Fig. 2a) or filament (Fig. 2b) on the substrate after printing 
represents the diameter of printed material in this work.

2.2 � Data processing and machine learning model 
development

2.2.1 � Dataset training

To train ML models for predicting the jetting mode and 
diameter of printed materials, the entire collected dataset is 
split into a training set and a test set in an 80:20 ratio. The 
training set is applied to optimize the model by minimizing 

Table 1   A detailed breakdown for materials in the dataset

Materials Materials properties (X) Printing parameters (X) Jetting mode (Y) Diameter of the printed materials 
(Y)

AgNP [43]
AgNW [44, 45]
Field’s metal [46–48]
Glycerin
Mixtures of glycerine, water 

and NaCl
Wax [46]
PCL [49]
PEDOT:PSS [50–52]
PMMA [53]
PS [53]

Surface tension (X1)
Viscosity (X2)
Density (X3)

Electric field (X4)
Pressure (X5)
Nozzle size (X6)
Printing temperature (X7)
Printing speed (X8; only for 

filament)

Filament
Droplet (Y1)

Diameter of filament (Y2)
Diameter of droplet (Y3)

Table 2   The input features, output target and sample size in each 
dataset

Dataset no. Input features (X) Output 
target (Y)

Sample size

1 X1, X2, X3, X4, X5, X6, X7 Y1 109
2 X1, X2, X3, X4, X5, X6, X7, X8 Y2 73
3 X1, X2, X3, X4, X5, X6, X7 Y3 54
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the loss function, while the test set is for evaluating the 
model performance.

In addition to the train-test split discussed above, we also 
investigated the potential of applying ML models in predict-
ing the printing behavior and feature size for new material. 
For each ML model, all of the samples belonged to one or 
two selected printed materials were kept as the test set, while 
the rest of the samples were regarded as the training set.

2.2.2 � Data scaling

The training set collected from the publications and experi-
ments contains various units and ranges, which will prevent 
the ML model from learning the relationship between fea-
tures and targets. Therefore, data scaling is applied to reduce 
the bias of feature units and ranges on model training. In 
this research, the training set was scaled by standardization.

The formula of the standard scaler is as follows:

xnew: the data after scaling
x: original data
μ: mean value within the feature
σ: standard deviation within the feature
Since the test set is predicted by ML model as an 

unknown space, the mean value (μ) and standard deviation 
(σ) for scaling the test set are inherited from the training set.

2.2.3 � Random forest (RF)

Feature importance analysis studies the effects of features 
on predicting a target. It scores the relationship between the 
features and the target to determine which features which 
show a robust relationship with the target, and reject the 
features that exhibit a weak relationship with the target. By 
this analysis, material properties and printing parameters 
in Table 1 that play a significant role in EHD printing can 
be identified as important features, which affects the jetting 
mode and the diameter of printed material.

In this research, random forest [56–58] is applied to the 
collected dataset as the feature importance analysis tool. 
Compared to other common feature importance analysis 
tools (F-value, mutual information, Pearson’s correlation 
coefficient, bi-directional elimination), random forest is bet-
ter suited to probe nonlinear relationships between features, 
analyzing features numerically, as well as minimizing the 
overfitting issue.

Random forest is composed of hundreds of decision trees 
(Fig. 3b). A decision tree is a non-parametric supervised 
learning technique that can be applied to both categorical 
and numerical targets. Random forest constructs a tree-like 

(1)xnew =
x − �

�

structure, created by splitting data based on decisions under 
different conditions.

A decision tree is composed of the following: (a) a root 
node where dataset enters the decision tree; (b) a decision 
node to divide the income data into its sub-nodes; and (c), a 
leaf node as the final node to export data that arrives at this 
node (Fig. 3a).

The workflow of a decision tree contains four steps:

Step 1: Input the data into the decision tree at the root 
node.
Step 2: Split the data into sub-nodes (decision node or 
leaf node) according to the criterion made by attribute 
measure techniques.
Step 3: If the sub-node is a decision node, repeat step 
2. Otherwise, output the data that reaches the leaf node.
Step 4: Once all data is output at the leaf nodes, end the 
algorithm of the decision tree.

In step 2, several popular techniques can be utilized in 
deciding the best attribute for the root node and decision 
node when it comes to splitting the data. In this research, 
regression (numerical target) mean square error (MSE) is 
used, while Ginni index (GI) is applied for classification 
(categorical target). The two techniques are explained math-
ematically in Eqs. (2) and (3) [58].

where n is the total number of observations, ŷi is the ith 
predicted target, and yi is the ith true target.

where pi is the proportion of the samples in class c for a 
particular node.

In random forest, each decision tree is built by both a 
random extraction of observations, and a random extrac-
tion of features from the dataset. This random extraction 
guarantees that the trees are de-correlated, and avoids the 
overfitting problem.

In each decision tree within the random forest, feature 
importance is calculated based on node importance:

Fjk = the importance of node k for feature j
Wk = weighted number of samples reaching node k
Ck = the impurity value of node k (calculated by MSE in 

regression and GI in classification)
left(k) = child node from left split on node k
right(k) = child node from right split on node k

(2)MSE =
1

n

n∑

i=1

(
ŷi − yi

)2
,

(3)GI = 1 −

c∑

i=1

p2
i
,

(4)Fjk = WkCk −Wleft(k)Cleft(k) −Wright(k)Cright(k)
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Fig. 3   Schematic explanation of ML models applied in this work. a Components in decision tree (DT); b random forest (RF); c support vector 
machine (SVM) with two features
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For feature importance in each decision tree:

Fj = the importance of feature j
Fjk = the importance of node k for feature j
Fjh = the importance of node h for feature j
The final feature importance for each decision tree is nor-

malized by dividing by the sum of all feature importances. In 
random forest, feature importance is the average value over 
all decision trees. Higher feature importance represents a 
stronger link between the feature and the target.

Another feature importance analysis technique using 
decision trees is extra trees. In extra trees, the whole dataset 
is applied to each decision tree. However, in random for-
est, it subsamples the input data with bootstrap. In addi-
tion, random forest selects the optimal node to split, whereas 
extra trees chooses the split randomly. Thus, extra tree is 
worse than random forest when the dataset contains noisy 
features. For this research, due to the uncertainty of feature 
importance within domain knowledge, random forest was 
determined as the most useful feature importance analysis 
method for this study.

In this research, three random forests were trained to ana-
lyze the importance of features controlling the jetting mode, 
diameter of filament and diameter of droplet, respectively. 
Hyperparameters of random forest (number of decision 
trees, minimum number of samples at the leaf node) were 
tuned by grid search.

2.2.4 � Support vector machine (SVM)

Support vector machines (SVM), based on the Vapnik-
Chervonenkis (VC) theory, was initially introduced by 
Boser (1992) and Vapnik (1995) as a binary classification 
technique [59, 60], and it has thrived in the ML-assisted 
engineering and science area in the past few years [61–63]. 
We employed SVM in this work for its efficient performance 
in high dimensional space. Additionally, a clear margin is 
exploited in SVM to help the model generalize more effec-
tively than other frequently used classifiers (such as logistic 
regression, k-nearest neighbors (KNN), and decision trees).

In SVM, a decision boundary separates two classes using 
a hyperplane in the feature space. Margin, defined as the 
distance between the hyperplane and the observations clos-
est to it, is vital in SVM. The mathematics of support vector 
machine learning allows the classification to not only clas-
sify data, but to find the optimal separator. It searches for a 
separator that maximizes the distance between the nearest 
data point of each group (Fig. 3c).

In this paper, the jetting mode can be either a droplet or 
filament, which defines the prediction of the jetting mode as 

(5)Fj =

∑
k∶node k splits on feature j Fjk

∑
h∈all nodes Fjh

a binary classification. In an SVM classifier for binary clas-
sification, a hyperplane is developed to separate the samples 
into the two classes. The dataset is defined as {xi, yi}, where 
i=1, 2, …, n. xi is the feature vector for ith sample and yi is 
its true class [64]. Later, the hyperplane can be mathemati-
cally described as follows:

where w is the weight vector that is perpendicular to the 
hyperplane and b is a constant offset from the origin.

While several hyperplanes can split the data into two 
classes, SVM classifiers investigate the hyperplane which 
handles the trade-off between minimizing classification 
errors and maximizing the margin that separates the two 
classes. Two normalizations clarify a hyperplane where the 
closest points are distributed on opposite sides of the hyper-
plane (Eq. (7) and Eq. (8)).

and

The distance between Eq. (7) and Eq. (8) is calculated 
as follows:

To maximize the margin, SVM classifier minimizes g(w), 
defined as follows:

In reality, classification is often interrupted by outliers. 
To improve the flexibility of SVM in classification with 
noise or outlier issues, ξ, the slack variable, is added to the 
algorithm to tolerate misclassifications caused by such noise 
or outliers. Thus, Eq. (10) can be rewritten as follows:

where C is the regularization parameter that controls the 
training loss of misclassified data.

Then:

The solution to the hyperplane is generated by Lagrange 
duality and quadratic optimization [64]. In some ML cases 
using SVM, linearly separable patterns are ineffective for 
classification. Therefore, in these cases, the original data 
is mapped to a higher feature space for accurate separation 

(6)wTx + b = 0

(7)wTx+ + b = 1

(8)wTx− + b = −1

(9)d =
�
x+ + x−

�
∙

w

‖w‖
=

2

‖w‖

(10)g(w) =
1

2
‖w‖2

(11)g(w, �) =
1

2
‖w‖2 + C

n�

i=1

�i

(12)y
(
wTxi + b

)
≥ 1 − �i, �i ≥ 0
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of data via kernel functions based on dot products of two 
feature vectors. In SVM, many kernels can be utilized for 
nonlinear cases (polynomial kernel, radial basis function 
(rbf) kernel, etc.).

In this paper, the SVM classifier is applied to predict 
the jetting mode (filament vs. droplet). Dataset 1 described 
in Table 2 is the input into the SVM classifier. The hyper-
parameters of SVM (regularization parameter, kernel func-
tion, degree of kernel function, etc.) were tuned using grid 
search and cross-validation.

2.2.5 � Kernel ridge regression (KRR)

Kernel ridge regression is one of the most popular ML 
techniques for regression. As a combination of ridge 
regression and kernel function, the nonlinear function to 
elaborate the link between features and the numerical tar-
get is distinctly explored in a higher dimensional space 
compared to the original space and KRR has been success-
fully applied for many engineering applications [65–67]. 
Besides the popularity of KRR in the field of engineer-
ing, a neat closed-form solution as well as a high work 
efficiency are also notable benefits of the application of 
KRR in this paper.

In KRR [68, 69], the dataset is set up as: {xi, yi}, where 
i = 1, 2, …, n; xi is the feature vector for ith sample and 
yi is its true numerical target. The prediction function of 
KRR is as follows:

where ŷj is the jth predicted target, wi are the weights to be 
optimized, and K(xi, xj) is the kernel function which clari-
fies a set of pairwise similarity comparisons between the 
training samples. Linear relationships are one of the easiest 
functions to understand. However, in practice, for certain 
cases a purely linear function is not a precise formulation. 
Therefore, we used kernel function to better trace the behav-
ior of the data points in a higher dimensional space. Like 
SVM, several kernel functions are popular in KRR (poly-
nomial kernel, radial basis function (rbf) kernel, sigmoid 
kernel, etc.). The loss function of KRR to develop the model 
is expressed as follows:

where ŷi is the ith predicted target, yi is the ith true target, 
and λ is a hyperparameter to describe the regularization 
strength. The first term in Eq. (14) is to evaluate the errors 
between the true target and the prediction from KRR, while 

(13)ŷj =

n∑

i=1

wiK
(
xi, xj

)

(14)Loss =

n�

i=1

�
ŷi − yi

�2
+ 𝜆‖w‖

the second term represents the penalty of a large wi, which 
may cause overfitting. In KRR model training, Eq. (13) is 
minimized to explore the optimal wi. Combining the mini-
mization and kernel function effects, w can be expressed as 
follows:

where K is the kernel matrix, and I is the identity matrix.
We used KRR models for predicting the diameter of printed 

materials in this work. Datasets 2 and 3 in Table 2 were used to 
train the model. Cross-validation was applied during the grid 
search for hyperparameters in the KRR models (regularization 
parameter, kernels, etc.).

2.3 � Evaluation metrics

The performance of each classification model was rated by 
accuracy, and each regression model was scored by coefficient 
of determination (R2), mean absolute error (MAE), and root 
mean square error (RMSE). Accuracy is defined as the ratio 
of the number of all correct predictions to the total number of 
predictions. R2 is determined by the difference between the 
true value and the predicted value, as well as the difference 
between the true value and the mean value. Therefore, it can 
represent how strong the data fits the model. MAE represents 
the average of the absolute differences between true and pre-
dicted values, and also the average of the residuals. RMSE was 
used to calculate the rooted average of the squared difference 
between the true value and predicted values, which describes 
the variance of the residuals.

The formula for each evaluation metric is listed below:

where n is total number of observations, yi is the mean value 
of the target, ŷi is the predicted target, and yi is the true tar-
get. All these models utilized in our machine learning work 
were implemented in Scikit-learn packages.

(15)w = (K + �I)−1y

(16)Accuracy =
Number of correct predictions

Number of all predictions
,

(17)R2 = 1 −

∑n

i=1

�
yi−ŷi

�2

∑n

i=1

�
yi−yi

�2 ,

(18)MAE =
1

n

n∑

i=1

||ŷi − yi
||,

(19)RMSE =

√√√√1

n

n∑

i=1

(
ŷi − yi

)2
,
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3 � Results

3.1 � Feature importance analysis

In this section, we outline the importance of individual fea-
tures as well as the capability of the ML-based model in 
predicting printing behavior. The predictive target is com-
posed of both the jetting mode and the diameter of printed 
material. In this work, the features (xi) used in the ML to 
determine the printing behavior (y) are printing parameters 
(electric field strength, printing temperature, pressure, and 
nozzle size) and properties of materials (viscosity, surface 
tension, and density). The same features were also selected 
for predicting the diameter of the droplet. To predict the 
diameter of the filament, one additional feature, printing 
speed, was applied to the ML work, as the diameter of the 
filament is directly related to printing speed. A higher print-
ing speed will result in a thinner filament, while a slower 
speed will produce a thicker filament.

The feature importance analysis was able to extract 
important feature that had notable effects on the printing 
behavior, which provides insight into the mechanisms of the 
EHD printing process and simplifies the model to describe 
printing behavior. The random forest models applied to the 
feature importance analysis are summarized in Supp. Table 1 
in the supplemental information section. The relative impor-
tance of feature in determining the jetting mode (droplet 
or filament) is evaluated by random forest as presented by 
Fig. 4a. A feature with a higher importance value represents 
a stronger link between the feature and the jetting mode, 
indicating that the feature plays a more vital role in jetting 
mode determination. From the results, viscosity is ranked as 
the highest among the analyzed features in determining jet-
ting mode. The viscosity of a fluid is measured by its resist-
ance to gradual deformation, and more external influence 
will be needed to deform or alter the shape/movement of a 
fluid with a higher viscosity. In EHD printing, the length of 
the jet is directly proportional to its viscosity. When the vis-
cosity is sufficiently high (>100 cP), the molecular attraction 
between the ink molecules is strong, resulting in more stable 
jets during EHD printing. In contrast, for low-viscosity flu-
ids (<100 cP), the weaker attraction between the surfactants 
leads to the formation of microdrops. Thus, a continuous 
jet or filament will tend to form with highly viscous fluid 
instead of droplets during the printing process [69]. In EHD 
printing, a fine jet or drop is collected from the tip of the 
Taylor cone once the electrostatic force overcomes the sur-
face tension and the viscous force of the printed material. 
If the surface tension is too low, the ink will form satellite 
droplets before a stable jet can be created, due to a longer 
pinch-off time (the time it takes for a droplet to detach from 
the jet). Studies also indicate that if the surface tension is 

too high, the applied electrostatic force will be insufficient 
to initiate jetting, leading to only meniscus pulsing and no 
printing [18, 70]. Therefore, the electric field (which gener-
ates the electrostatic force) and the surface tension of the 
material also play significant roles in determining jetting 
mode (Fig. 4a). Another important feature determined by 
this feature importance analysis is material density, as it is 
closely related to surface tension. Moreover, higher molecu-
lar weight for polymeric materials tends to create a higher 
viscosity, and higher molecular weight generally results in 
higher density [71, 72]. Compared to the features discussed 
above, printing temperature, pressure, and nozzle size do 
not exert significant influence in determining jetting mode 
compared to viscosity, surface tension, density, and electric 
field. This is because printing temperature, pressure, and 
nozzle size are processing conditions, while viscosity, sur-
face tension, and density are material properties. Generally, 
material properties are known to determine jetting behavior 
more than processing conditions.

The feature importance in predicting the diameter of 
droplets is ranked from high to low in Fig. 4b. Both nozzle 
size and pressure play very important roles in controlling 
droplet diameter. Surface tension and electric field are also 
critical in determining droplet diameter. However, compared 
with the result from Fig. 4a, the importance of the electric 
field and surface tension is relatively diminished. This indi-
cates that pressure is more a important feature than the elec-
tric field, which is consistent with Wang’s work which finds 
pressure to be more critical than electric field in determining 
droplet diameter [73]. An interesting finding is that printing 
temperature ranks as the second most crucial feature in this 
analysis. This may be attributed to the limited number of 
droplet data points at different printing temperatures. Most 
of the droplets have diameters larger than 30 μm, and are 
printed around room temperature. But, only one material, 
wax, is printed at very high temperature (230°F) with small 
diameters (less than 30 μm), which makes the temperature 
variance among the droplets large. We hypothesize that this 
causes the machine to identify temperature as an important 
feature.

Figure 4c presents the relationship between each feature 
and the diameter of filament. In contrast to the droplet diam-
eter, density and electric field affect the filament diameter 
much more than other features, while nozzle size and pres-
sure are among the least important features for determin-
ing filament diameter. The distinct results from Fig. 4b and 
c originate from the difference in material properties that 
determine the formation of the droplet or filament. Gen-
erally, filaments are easily generated with materials with 
higher viscosities. Thus, viscous force plays a more critical 
role than surface tension, which is directly correlated with 
nozzle size. Furthermore, the flow rate of high viscosity 
materials is also less sensitive to pressure changes; hence, 
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filament diameter is less sensitive to variations in nozzle 
size and pressure. In EHD printing, the flow rate, which 
directly determines the size of the filament, also depends on 
the applied electric field, as the electrostatic force applied 
on the meniscus will generate a suction effect [74]. Ahn’s 
group performed a dimensionless analysis of mapped EHD 
jetting modes [20]. One of the findings from that research 
is that the critical flow of the jet is inversely proportional 

to only one parameter: material density, and that material 
density can also affect jetting diameter. Our results further 
supported their findings that density is a critical feature in 
determining filament diameter.

By the feature importance analysis, it was demonstrated 
that the ML model approach advances our understanding 
of the physical mechanisms behind EHD printing behavior 
under different jetting modes. Traditionally, it is believed 

Fig. 4   Feature importance 
analysis. a Classification (drop-
let or filament); b regression 
(diameter of droplet); c regres-
sion (diameter of filament)
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that jetting modes are primarily determined by three factors: 
viscosity, surface tension, and electric field. However, our 
results indicate that other factors are also important. For 
instance, density plays a crucial role in determining the jet-
ting mode and influencing the filament diameter.

3.2 � ML for classification and regression

In the EHD printing process, controlling the parameters for 
targeted printing behavior is based on trial and error, which 
is quite costly and time-consuming. Thus, ML is an excel-
lent solution to this issue. The result of predicting the jetting 
mode (droplet vs. filament) via an SVM model is depicted 
as a confusion matrix in Fig. 5a. The hyperparameters used 
in this SVM model are presented in Table 2 in the Supple-
mental Information of this paper, and all hyperparameters 
in our models were determined by minimizing RMSE. In 
the dataset, the input features (xi) are listed in Fig. 4a, and 
the output target (y) represents the printing behavior. In 
Fig. 5a, the jetting modes of 28 samples from the test set 
were predicted by the SVM model trained by the training 
set. Jetting modes were predicted correctly in 27 samples, 
while one sample was misclassified. The misclassified data 
is from the AgNW sample, which has only one data point in 
the entire sample set for classification. Moreover, one fea-
ture (printing speed, 8 mm/s) value of the AgNW data falls 
outside the range (1–6 mm/s) within the training set, which 
makes AgNW more challenging for the ML to predict. The 
accuracy of this SVM model is 96.43%, which shows that 
the developed ML model can provide a high accuracy when 
predicting the jetting mode. Moreover, the robust model per-
formance further strengthens the comprehensive relationship 
between the input features and the jetting mode. In order to 
eliminate any bias in the random nature of our test samples, 
we repeat the experiment in Fig. 5a, with six separate sets 
of random train-test splits to validate the SVM model. Our 
results show an accuracy ranging from 96.43 to 100% (see 
Supp. Fig. 1 in Supplemental Information). These results 
demonstrate that the high accuracy of our SVM model is 
not an artifact of our choice of test samples. Time required 
for each prediction using the SVM model is approximately 
30 min, which is a significant reduction compared to 4–6 h 
of time needed for a typical FEA simulation as observed in 
one of our previous works [33]. Hence, besides lowering the 
experimental cost in study EHD printing behavior, this ML 
approach accelerates EHD printing predictions.

In EHD printing, the product quality is closely related 
to the resolution of the printer, which can be determined by 
the diameter of the printed material. The predicted droplet 
diameter using the KRR model is presented in the form of 
a scatterplot in Fig. 5b. In this figure, the x-axis is the true 
diameter from the experiments, while y-axis is the predicted 
diameters by ML. The dashed parity line is the equation 

where y = x, representing perfect model performance. R2, 
RMSE, and MAE are generated to evaluate the model per-
formance. In Fig. 5b, all samples are scattered around the 
parity line with an R2 as high as 0.9739. Additionally, the 
result has no outliers, which highlights the efficiency of 
the KRR model in predicting droplet diameter. The perfor-
mance of the KRR model for predicting filament diameter 

Fig. 5   ML predictions using random train and test split. a Classifica-
tion (droplet or filament); b regression (diameter of droplet); c regres-
sion (diameter of filament)
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is presented in Fig. 5c. All test samples fit the parity line 
well with a R2 of 0.9961. The R2 is positively related to 
the model prediction capability, which illustrates a greater 
model performance in the filament case compared to the 
droplet case. Additionally, RMSE (4.5986 μm) and MAE 
(2.9069 μm) of the KRR model in Fig. 5c are smaller than 
the RMSE (8.9462 μm) and MAE (6.7935 μm) in Fig. 5b, 
which similarly depicts better model performance in fila-
ment diameter prediction than droplet diameter prediction. 
The differing model performances likely originate from the 
distribution of data in the original dataset. There were 73 
filament samples generated in our sample set, while only 54 
droplet samples were gathered in the droplet sample set. The 
ML tool is known to be crucially influenced by dataset size. 
Increased sample size provides more information during 
the ML training process, and increases prediction accuracy. 
Lack of information may have influenced the droplet case, 
as the total number of droplet samples is 26.03% less than 
the number of filament samples.

To further validate the prediction capability of KRR mod-
els for predicting the diameter of printed materials, six other 
random train-test splits were performed in both droplet and 
filament samples (see Supp. Fig. 2 and 3 in Supplemental 
Information). All results demonstrated a consistently high 
accuracy (R2 in droplet case = 0.9220–0.9862, and R2 in fila-
ment case = 0.9614–0.9868) when predicting the diameter 
of printed materials using the KRR model. It is interesting 
to observe that although the data points for droplet and fila-
ment diameter were obtained for a range of materials from 
a wide range of sources (literature vs. our own experimental 
data), the accuracy in predicting the diameter is greater than 
97%, indicating the robust nature of the KRR model. Further 
details on the KRR models used to predict the diameter of 
printed materials can be found in Supp. Table 3 of the Sup-
plemental Information.

3.3 � ML for predicting printing behavior of new 
materials

Different materials exhibit various printing behaviors. But, 
not all of these behaviors are desirable for every applica-
tion. For example, the printing of filament is better suited for 
fabricating scaffolds or conductors, while droplet printing is 
preferable for creating complex 2D and 3D patterns. Accu-
rately predicting how specific materials react to printing con-
ditions enables us to select suitable materials and reduces the 
necessary time and cost for experiments. Moreover, it can 
also further the development of novel functional materials 
using fewer experiments. To predict the printing behavior 
of new materials, PMMA (droplets) and AgNP (filaments) 
are selected as representative novel materials. Among them, 
both PMMA and AgNP samples are obtained from reported 
literature. We ensured that the values of each feature for 

the samples from the two materials within the test samples 
fall within the range of values of the features in the train-
ing set, as the training set should cover enough information 
to predict the test set. Thus, PMMA and AgNP are ideal 
test set candidates, considering the representation of data 
sources, jetting modes, and the reasonability of the feature 
space. The predicted jetting modes in the test set are exhib-
ited in Fig. 6a. It’s noted that the predicted test set in Fig. 5 
includes varying materials and processing parameters, while 
material properties are kept fixed in Fig. 6, and only the 
process conditions vary in test samples. For a test set of 20 
samples, only one misclassified sample, which was from the 
PMMA sample with the lowest electric field (3.33 V/μm), 
was observed. This misclassification may be due to the pres-
ence of PEDOT:PSS sample. According to Fig. 4a, viscosity, 
surface tension, density, and electric field are the four most 
important parameters in deciding the jetting modes. There 
is only one PEDOT:PSS sample (viscosity: 46.88 mm2/s; 
surface tension: 41.8 mN/m; density: 1.011 g/cm3; electric 
field: 2.5 V/μm), and it shares similar orders of magnitude in 
viscosity, surface tension, and density as the PMMA (viscos-
ity: 22 mm2/s; surface tension: 30.5 mN/m; density: 0.879 
g/cm3) sample. For all other samples, their orders of mag-
nitude in viscosity, surface tension, and density are notably 
different from PMMA. For example, PCL has viscosity of 
181,000 mm2/s, surface tension of 30.8 mN/m, and density 
of 1.145 g/cm3. Moreover, the lowest electric field among 
the PMMA samples (3.33 V/μm) is very close to that applied 
to the PEDOT:PSS sample. The model may have labeled the 
PMMA sample with the lowest electric field as PEDOT:PSS, 
which forms the filament during the printing. Nonetheless, 
the accuracy of this model is 95.24%, which implies that 
the model is capable of predicting the jetting mode of new 
materials. This SVM model for predicting the jetting mode 
of new materials is described in Supp. Table 2 in Supple-
mental Information.

The prediction of the printed PMMA diameter serves as 
an example of diameter prediction using a KRR model for 
new materials in the droplet case (Fig. 6b). All five samples 
are positioned along the parity line with a R2 of 0.9684. The 
outstanding model performance indicates its capability in 
exploring the diameter of printed product in new materials, 
which can vastly reduce the time and cost of experiments. 
The hyperparameters of this KRR model can be investigated 
in Supp. Table 3 in Supplemental Information. For the fila-
ment case, AgNW, field’s metal, PEDOT:PSS, and AgNP 
were all investigated by ML as new material, but none of 
the models presented a prominent performance (R2 > 0.9). 
This may arise from limitations in ML, as each material has 
one or more features beyond the range of corresponding fea-
tures in the training set (see Supp. Table 4 in Supplemental 
Information). For example, in the case of field’s metal, the 
surface tension is 417 dyn/cm which is outside the range 
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of surface tension (30.8–50.8 dyn/mm) within the training 
set. Similarly, AgNW, PEDOT:PSS, and AgNP, all include 
features which are outside the range within the training set. 
Hence, a part of the feature space of the new material has 
not been explored by the trained model, which drastically 
deteriorates the model’s performance. Figure 6c lists R2 

values for these materials. AgNW only has one parameter, 
printing speed, which is beyond the range of printing speed 
in the training set. Referred to Fig. 4c, printing speed is 
not a significant parameter that affects filament diameter. 
As a result, it has a higher R2 and better model performance 
compared to the other three materials. The R2 for AgNW is 
still less than 0.6, with only one feature outside the training 
set’s range, which was ranked high in feature importance. 
This observation originates from the clustering of samples 
from the training set in the feature space. In the case of the 
electric field, which is the most significant feature in control-
ling filament diameter, the samples are distributed at 2.5 V/
μm, in 4.85–5.44 V/μm, 14.45–18.18 V/μm, and 30–60 V/
μm. However, the electric filed of the AgNW sample is 20 
V/μm, which directs the test samples in a local feature space 
without data distribution. ML model accuracy depends on 
the features’ input to the model, as well as the data distribu-
tion in the feature space. The uneven distribution of samples 
in the feature space leads to a notable uncertainty when pre-
dicting new materials [75]. In the future, the model may be 
improved by collecting additional samples from literature, 
as well as experiments. This result highlights the substantial 
challenge of predicting jetting mode and diameter of printed 
materials with ML, when the ML model has never encoun-
tered such information before. The accuracy of the predic-
tion in diameter decreases as the total number of important 
features outside the training range increases.

4 � Conclusion

In this research, ML models were developed to study the 
EHD printing process and the interaction between printing 
and material parameters when determining printing behav-
ior and feature size. By leveraging the ML approach, the 
importance of process parameters and material properties 
in determining printing behavior and feature size have been 
identified with less time and effort using trained random 
forest models. Besides the factors determined by conven-
tional experiments (viscosity, surface tension, and electric 
field), the feature importance analysis also demonstrated 
additional factors (materials’ density, etc.) play a significant 
role in controlling EHD printing behavior. This observation 
enhances our understanding of the EHD printing mecha-
nisms. Moreover, the developed ML models are capable of 
predicting jetting mode and feature diameters with good per-
formance in both random train/test split as well as predicting 
the printing behavior of new materials. The jetting mode was 
predicted by SVM models with high accuracy and the diam-
eters of printed materials were estimated by KRR models 
with precision. These findings demonstrate ML’s capability 
for accelerating process design and reducing the number of 
experiments needed for new materials during EHD printing. 

Fig. 6   ML predictions for new material. a Classification prediction 
for PMMA and AgNP (droplet or filament); b regression prediction 
for PMMA (diameter of droplet); c R2 in regression prediction for 
diameter of filament
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This work provides a new perspective on the research on 
printing behavior in EHD printing: in need of a subset of 
empirical samples that varies in material properties and 
printing parameters, ML can guide research in a more time- 
and cost-effective direction, without undertaking extensive 
trial-and-error approach-based experimentation.

These models exhibit high accuracy in predicting the 
jetting behavior and feature size, but limitations still exist. 
As for future work, more droplet samples can be generated 
or added to the model, in order to provide more informa-
tion and enhance the model’s predictive performance for 
droplets. Second, the prediction of filament diameter in new 
materials faces challenges when no material candidate in 
the test case has features that entirely fit within the training 
set, resulting in an inaccurate prediction. In the future, a 
physics-informed ML model can be developed by adding 
fundamental science into the standard ML model to over-
come this limitation. Lastly, with the future integration of 
physics-based models and camera images, ML approaches 
can better assess the printability of new materials and opti-
mize printing results with fewer defects.
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