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Abstract

Electrohydrodynamic (EHD) printing has been used in various applications (e.g., sensors, batteries, photonic crystals).
Currently, research on studying the relationships between EHD jetting behaviors, material properties, and processing con-
ditions is still challenging due to a large number of parameters, cost, time, and the complex nature of experiments. In this
research, we investigated EHD printing behavior using a machine learning (ML)-guided approach to overcome limitations
in the experiments. Specifically, we investigated two jetting modes and the size of printed material with a broader range of
material properties and processing parameters. We used samples from both literature and our own experiment results with
different type of materials. Different ML models have been developed and applied to the data. Our results have shown that
ML can navigate a vast parameter search space to predict printing behavior with an accuracy of higher than 95% during EHD
printing. Moreover, the results showed that ML models can be used to predict the printing behavior and feather size for new
materials. The ML models can guide the investigation of EHD printing and helped us understand the printing behavior in a

systematic manner with reduced time, cost, and required experiments.
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1 Introduction

Additive manufacturing (AM) has revolutionized the way
of production as it is capable of direct fabrication of highly
complex structures, which can be challenging or impossible
with traditional manufacturing approaches [1, 2]. Different
types of AM processes have been developed (e.g., stereo-
lithography, powder bed fusion, directed energy deposi-
tion) for a range of applications [3, 4], such as aerospace,
automative, and healthcare. Among all the AM processes,
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high-resolution additive manufacturing processes are critical
for many applications [1, 5, 6]. Inadequate manufacturing
accuracy and surface finish in many current AM methods
significantly limits their application in producing high-preci-
sion components. For example, printing of transparent elec-
tronics requires a feature resolution of less than 10 pm [7,
8]; AM of optical devices also requires high precision [9].
A printing process capable of achieving micro-scale resolu-
tion can not only reduce fabrication time and cost, but also
simplify post-processing as well.

Electrohydrodynamic (EHD) printing is an emerg-
ing printing technique capable of producing micro- or
nano-resolution products using a range of materials [10].
Compared with other high-resolution manufacturing tech-
niques, such as laser-based process [11], photolithography
[12], high-resolution material jetting [13, 14], and two-
photon polymerization [15], EHD printing is an inexpen-
sive, versatile, and highly customizable alternative for cre-
ating precision components with sub-micron resolutions.
Polymer solutions, metals, nanomaterials, biomaterials,
and phase-change materials have been used in EHD print-
ing for applications such as micro 3D structures, flexible
electronics, and scaffolds [10]. In EHD printing, ink is
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subjected to an electric field (Fig. 1a) to form a Taylor-
cone, and a droplet or jet is generated at the tip of the cone
(Fig. 1b). Various EHD printing modes (dripping mode,
microdripping mode, spindle mode, multispindle mode,
cone-jet mode, oscillating-jet mode, precession mode,
ramified jet, etc.) have been identified based on forms and
dynamics of the meniscus/jet and forms of liquid emitted.
Two printing modes, microdripping mode and cone-jet
mode, stand out in particular for being able to produce
stable fabrications with high precision. In microdripping
mode (Fig. 2a), fine droplets can be printed and precisely
deposited on a substrate, while cone-jet mode (Fig. 2b)
is capable of producing a single fine stable filament [16].

Understanding the mechanisms and interactions
between the EHD printing process and material properties
can provide good insights that can help improve the print-
ing process, optimize feature resolution, and identify new
materials. Extensive research has been conducted in order
to understand the EHD printing process and its relation-
ship with different material properties. A vast number of
experimental tests have been conducted to study relations

Fig.1 High-resolution EHD

printing: a schematic illustra- (a)
tion of an EHD printing system.

b Typical nozzle and substrate

configuration for EHD printing
[10] nozze
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between process parameters, printing behavior, and fea-
ture dimensions for various materials [17-19]. However,
this process requires tremendous amounts of time and cost
due to the intricate multiphysics involved in EHD print-
ing. Therefore, both theoretical and simulation models
have been developed to study mechanisms of EHD print-
ing, as well as accelerated determination of processing-
property linkage. For example, Lee’s group created phase
diagrams and jetting maps to qualitatively show the rela-
tionship between printing modes and two critical print-
ing parameters, voltage and flow rate [20]. Some groups
have utilized the scaling law to study the relation between
printing process parameters (i.e., minimum flow rate, elec-
tric fields, surface charge density) and printed features
under pulsating mode and cone-jet conditions [21-26].
Several groups have also applied numerical methods to
study droplet size and charge in EHD printing, and they
found that droplet size and charge is affected by ink con-
ductivity and several scaling regimes [27-30]. Droplet-
substrate interaction has also been studied using numeri-
cal methods. Pannier’s group utilized the spherical cap
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volume conservation law and molecular kinetics to study
droplet spreading substrates [31]. The mentioned models
have provided valuable insights into how the EHD printing
process interacts with different material properties, and
several dimensionless numbers have been created for pre-
dicting the printing mode. However, those models primar-
ily focus on creating dimensionless numbers to describe
the interaction of printing process and material proper-
ties. As a result, those models are not able to provide a
good prediction of feature dimensions. Some groups have
developed different simulation models to predict droplet
or jetting size. For instance, Du’s group developed a finite
element approach (FEA) model to study droplet breakup
at cone tips, as well as droplet size and mass by integrating
voltage, charged species, and two-phase flow [32]. Dong’s
group developed an FEA and computational fluid dynam-
ics (CFD) model for studying EHD microdripping mode
printing, and their developed models were able to predict
droplet inflight velocity, droplet size, and final footprint
[33, 34]. Zeshan and Yanqiao’s groups developed FEA
models to simulate the EHD cone-jet and microdripping
mode printing process using different design parameters,
which was later validated by experiments [35, 36]. Never-
theless, these models usually possess limitations, in that
they are typically tailored towards one specific material or
one particular printing behavior, which is difficult to adopt
in unknown scenarios. Consequently, they can only pro-
vide limited insights into the realm of EHD printing, and
offer limited guidance in the field of future parameters and
material selection. Currently, a model that can accurately
describe and predict EHD printing which can be general-
ized for a wide range of materials has not been established.

To develop such a model, we propose a more recent
approach based on machine learning (ML) in this study,
which can contribute a novel perspective in the field of
EHD printing. ML is a data-driven method that studies
the wealth in existing data, and can potentially lead to
a paradigm shift in the way traditional research is con-
ducted. Using data and information from existing samples,
ML models can be trained to further explore the nature
of research targets, which may not be possible to extract
using conventional research methods. ML can also assist
in predicting research targets, which offers opportunities
to operate research in a more economical direction with
high fidelity.

ML has been applied to study EHD printing in previous
research. For example, some studies utilize supervised ML
methods to establish the relations between printing process
parameters and product dimension and performance, which
can improve manufacturing efficiency [37, 38]. Supervised
ML methods have also been applied with images in order
to investigate the relation between process parameters and
printing modes [39, 40]. Athanasios’ group developed an

end-to-end physics-informed machine learning framework
to study the mechanism of the EHD jetting process with
reduced experiment cost [41]. All of those studies utilized
data from their experiments with limited materials and pro-
cess conditions. However, all processing parameters must
be studied comprehensively in order to determine their
combined effects on printing product quality. Furthermore,
such models have not been subjected to external valida-
tion through experiments conducted by other researchers.
Sachin’s group has collected data from relevant publications
and used it for training ML models [42]. The developed
models can determine the importance of different param-
eters that affect the printing results. However, it’s worth not-
ing that this research relied on an extensive external data-
set to increase model accuracy, and the applicability of the
developed model for new materials has not been validated.
Here, we perform a ML-based research on the relationship
between a comprehensive combination of parameters and
printing behavior using data from both internal and external
sources for a vast number of materials. By evaluating param-
eter importance and building models for predicting printing
behavior, we investigate each parameter related to printing
behavior in a more systematic manner and the mechanism of
EHD printing process is studied more thoroughly compared
to previous research. Moreover, by validating the developed
ML model for new materials, which was not explored in pre-
ceding work, the stress related to the cost, time consumed,
and experiments required in conventional EHD printing
research is relieved effectively.

In this work, we have applied the ML tools to study the
interaction between EHD printing parameters and material
properties, and how those parameters affect the jetting mode
and the diameter of printed material. With these created ML
models, important parameters that play a vital role in EHD
printing have been identified. The generated models have
exhibited the ability to accurately predict printing behavior
and printed feature resolutions, which has been validated by
our dataset with reduced time cost by a factor of 8 compared
with FEA simulation. Furthermore, we have demonstrated
the capacity of our developed model for the precise predic-
tion of the jetting mode and diameter of printed product
materials not included in the training dataset. These results
underscore the potential of utilizing such developed models
for predicting printing performance with new materials, and
minimizing the need for actual experimentation.

2 Methods
2.1 Data collection

The data used in this work comes from two distinct sources:
data generated from our own experiments and experimental
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data extracted from external publications. More than 100
previously reported articles regarding droplets and filaments
during EHD printing were consulted. To characterize print-
ing behavior, two factors were considered in this work:
jetting mode (forms of printed material) and diameter of
printed materials. To maintain consistency among the data-
set, we excluded publications which did not include one or
more printing parameters and material properties such as
electric field (V/pm), pressure (Psi), printing speed (mm/s),
viscosity (mm?/s), surface tension (mN/m), density (g/cmS),
printing temperature (°F), and nozzle size (pm) as well as
the jetting mode and printed feature diameter (pm). The
publications used in this project are listed in the reference
[43-53]. Only average values of the printing parameters col-
lected from the above references are used in this study. For
our experimental data, the printing behaviors and dimen-
sions were directly captured and measured from a high-res-
olution camera and optical microscope, and average values
from our data are used in this study. The viscosity, surface
tension, and density of the materials were obtained using a
rotational viscometer, tensiometer with pendant drop meth-
ods, and a high-precision scale. To comprehensively encom-
pass the pertinent materials associated with EHD printing,
we meticulously selected four distinct material categories:
phase change ink (wax and PCL), nanomaterials ink (silver
nanowire ink (AgNW) and silver nanoparticle ink (AgNP)),
and molten metal (Field’s metal) and polymer solutions
(poly(3,4-ethylenedioxythiophene):polystyrene sulfonate
(PEDOT:PSS), polystyrene (PS), poly(methyl methacrylate)
(PMMA), glycerin, and mixture of glycerin, as well as water
and sodium chloride (NaCl)). Table 1 presents a detailed
breakdown of these materials and their material properties,
printing parameters, jetting mode, and diameter of printed
materials, all of which were applied in this research. It is
important to note that only data produced with DC volt-
age is included in this study, and all features are printed
in the perpendicular direction. Besides the physical proper-
ties discussed in this paper, the conductivity of the material

Table 1 A detailed breakdown for materials in the dataset

also has a significant impact on printing behavior [54, 55].
However, only a few papers include all the selected features
(parameters which may affect the target in ML) and mate-
rial conductivity. To ensure that the number of samples was
sufficient for ML work, electrical properties were not incor-
porated in the ML models. Substrate surface wettability also
plays a role in determining feature size. All substrates used
in this work have a hydrophilic surface, but the exact sur-
face energy or substrate material is not specified in several
references. In this work, the substrate is not considered as a
feature in developing the ML model. The datasets include
two parts: the input features (x:x, x,, X3, .... x,,) and one out-
put target (v), which depends upon said input features. The
input features, output target and sample size for each data-
set is presented in Table 2. The diameter of printed droplet
(Fig. 2a) or filament (Fig. 2b) on the substrate after printing
represents the diameter of printed material in this work.

2.2 Data processing and machine learning model
development

2.2.1 Dataset training

To train ML models for predicting the jetting mode and
diameter of printed materials, the entire collected dataset is
split into a training set and a test set in an 80:20 ratio. The
training set is applied to optimize the model by minimizing

Table2 The input features, output target and sample size in each
dataset

Dataset no.  Input features (X) Output Sample size
target (Y)
X Xo X5 Xy X5, X X5 Y, 109
X, X0, X5 Xy X5, X X X Y 73
X, X5 X5 Xy X5, X X5 Y; 54

Materials Materials properties (X) Printing parameters (X) Jetting mode (¥Y) Diameter of the printed materials
09)

AgNP [43] Surface tension (X;) Electric field (X,) Filament Diameter of filament (Y,)

AgNW [44, 45] Viscosity (X,) Pressure (X5) Droplet (Y;) Diameter of droplet (Y3)

Field’s metal [46-48]

Glycerin

Mixtures of glycerine, water
and NaCl

Wax [46]

PCL [49]

PEDOT:PSS [50-52]

PMMA [53]

PS [53]

Density (X;)

filament)

Nozzle size (X4)
Printing temperature (X)
Printing speed (Xg; only for
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the loss function, while the test set is for evaluating the
model performance.

In addition to the train-test split discussed above, we also
investigated the potential of applying ML models in predict-
ing the printing behavior and feature size for new material.
For each ML model, all of the samples belonged to one or
two selected printed materials were kept as the test set, while
the rest of the samples were regarded as the training set.

2.2.2 Data scaling

The training set collected from the publications and experi-
ments contains various units and ranges, which will prevent
the ML model from learning the relationship between fea-
tures and targets. Therefore, data scaling is applied to reduce
the bias of feature units and ranges on model training. In
this research, the training set was scaled by standardization.
The formula of the standard scaler is as follows:
xX—H

xnew = o (1 )

X,ew: the data after scaling

x: original data

u: mean value within the feature

o: standard deviation within the feature

Since the test set is predicted by ML model as an
unknown space, the mean value () and standard deviation
(o) for scaling the test set are inherited from the training set.

2.2.3 Random forest (RF)

Feature importance analysis studies the effects of features
on predicting a target. It scores the relationship between the
features and the target to determine which features which
show a robust relationship with the target, and reject the
features that exhibit a weak relationship with the target. By
this analysis, material properties and printing parameters
in Table 1 that play a significant role in EHD printing can
be identified as important features, which affects the jetting
mode and the diameter of printed material.

In this research, random forest [S6—58] is applied to the
collected dataset as the feature importance analysis tool.
Compared to other common feature importance analysis
tools (F-value, mutual information, Pearson’s correlation
coefficient, bi-directional elimination), random forest is bet-
ter suited to probe nonlinear relationships between features,
analyzing features numerically, as well as minimizing the
overfitting issue.

Random forest is composed of hundreds of decision trees
(Fig. 3b). A decision tree is a non-parametric supervised
learning technique that can be applied to both categorical
and numerical targets. Random forest constructs a tree-like

structure, created by splitting data based on decisions under
different conditions.

A decision tree is composed of the following: (a) a root
node where dataset enters the decision tree; (b) a decision
node to divide the income data into its sub-nodes; and (c¢), a
leaf node as the final node to export data that arrives at this
node (Fig. 3a).

The workflow of a decision tree contains four steps:

Step 1: Input the data into the decision tree at the root
node.

Step 2: Split the data into sub-nodes (decision node or
leaf node) according to the criterion made by attribute
measure techniques.

Step 3: If the sub-node is a decision node, repeat step
2. Otherwise, output the data that reaches the leaf node.
Step 4: Once all data is output at the leaf nodes, end the
algorithm of the decision tree.

In step 2, several popular techniques can be utilized in
deciding the best attribute for the root node and decision
node when it comes to splitting the data. In this research,
regression (numerical target) mean square error (MSE) is
used, while Ginni index (GI) is applied for classification
(categorical target). The two techniques are explained math-
ematically in Egs. (2) and (3) [58].

n

S N
MSE= 3 (3i=¥)" ©)

i=1

where 7 is the total number of observations, J; is the ith
predicted target, and y; is the ith true target.

c
Gl=1-3pi. 3)
i=1

where p; is the proportion of the samples in class ¢ for a
particular node.

In random forest, each decision tree is built by both a
random extraction of observations, and a random extrac-
tion of features from the dataset. This random extraction
guarantees that the trees are de-correlated, and avoids the
overfitting problem.

In each decision tree within the random forest, feature
importance is calculated based on node importance:

ij =W, G, - Wleft(k) Cleft(k) - Wrighl(k) Cright(k) (@]

Fj = the importance of node k for feature j
W, = weighted number of samples reaching node &
C, = the impurity value of node k (calculated by MSE in
regression and GI in classification)
left(k) = child node from left split on node

right(k) = child node from right split on node k
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Fig.3 Schematic explanation of ML models applied in this work. a Components in decision tree (DT); b random forest (RF); ¢ support vector
machine (SVM) with two features
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For feature importance in each decision tree:

Zk:node k splits on feature j ij
Fj =

®)

Zheall nodes th

F; = the importance of feature j
Fj = the importance of node k for feature j
F;;, = the importance of node A for feature j

TJhe final feature importance for each decision tree is nor-
malized by dividing by the sum of all feature importances. In
random forest, feature importance is the average value over
all decision trees. Higher feature importance represents a
stronger link between the feature and the target.

Another feature importance analysis technique using
decision trees is extra trees. In extra trees, the whole dataset
is applied to each decision tree. However, in random for-
est, it subsamples the input data with bootstrap. In addi-
tion, random forest selects the optimal node to split, whereas
extra trees chooses the split randomly. Thus, extra tree is
worse than random forest when the dataset contains noisy
features. For this research, due to the uncertainty of feature
importance within domain knowledge, random forest was
determined as the most useful feature importance analysis
method for this study.

In this research, three random forests were trained to ana-
lyze the importance of features controlling the jetting mode,
diameter of filament and diameter of droplet, respectively.
Hyperparameters of random forest (number of decision
trees, minimum number of samples at the leaf node) were
tuned by grid search.

2.2.4 Support vector machine (SVM)

Support vector machines (SVM), based on the Vapnik-
Chervonenkis (VC) theory, was initially introduced by
Boser (1992) and Vapnik (1995) as a binary classification
technique [59, 60], and it has thrived in the ML-assisted
engineering and science area in the past few years [61-63].
We employed SVM in this work for its efficient performance
in high dimensional space. Additionally, a clear margin is
exploited in SVM to help the model generalize more effec-
tively than other frequently used classifiers (such as logistic
regression, k-nearest neighbors (KNN), and decision trees).

In SVM, a decision boundary separates two classes using
a hyperplane in the feature space. Margin, defined as the
distance between the hyperplane and the observations clos-
est to it, is vital in SVM. The mathematics of support vector
machine learning allows the classification to not only clas-
sify data, but to find the optimal separator. It searches for a
separator that maximizes the distance between the nearest
data point of each group (Fig. 3c).

In this paper, the jetting mode can be either a droplet or
filament, which defines the prediction of the jetting mode as

a binary classification. In an SVM classifier for binary clas-
sification, a hyperplane is developed to separate the samples
into the two classes. The dataset is defined as {x;, y;}, where
i=1, 2, ..., n. x; is the feature vector for ith sample and y; is
its true class [64]. Later, the hyperplane can be mathemati-
cally described as follows:

wix+b=0 ©6)

where w is the weight vector that is perpendicular to the
hyperplane and b is a constant offset from the origin.

While several hyperplanes can split the data into two
classes, SVM classifiers investigate the hyperplane which
handles the trade-off between minimizing classification
errors and maximizing the margin that separates the two
classes. Two normalizations clarify a hyperplane where the
closest points are distributed on opposite sides of the hyper-
plane (Eq. (7) and Eq. (8)).

wix, +b=1 (7)
and
wix_+b=-1 8)

The distance between Eq. (7) and Eq. (8) is calculated
as follows:

).W :i 9
=) Twll = Twll ©)

d=(x, +x

To maximize the margin, SVM classifier minimizes g(w),
defined as follows:

800 = 21wl (10)

In reality, classification is often interrupted by outliers.
To improve the flexibility of SVM in classification with
noise or outlier issues, &, the slack variable, is added to the
algorithm to tolerate misclassifications caused by such noise
or outliers. Thus, Eq. (10) can be rewritten as follows:

1 n
gw@=5wW+C;é (11)

where C is the regularization parameter that controls the
training loss of misclassified data.
Then:
y(whe, +b) > 1-¢&, £20 (12)
The solution to the hyperplane is generated by Lagrange
duality and quadratic optimization [64]. In some ML cases
using SVM, linearly separable patterns are ineffective for
classification. Therefore, in these cases, the original data
is mapped to a higher feature space for accurate separation
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of data via kernel functions based on dot products of two
feature vectors. In SVM, many kernels can be utilized for
nonlinear cases (polynomial kernel, radial basis function
(rbf) kernel, etc.).

In this paper, the SVM classifier is applied to predict
the jetting mode (filament vs. droplet). Dataset 1 described
in Table 2 is the input into the SVM classifier. The hyper-
parameters of SVM (regularization parameter, kernel func-
tion, degree of kernel function, etc.) were tuned using grid
search and cross-validation.

2.2.5 Kernel ridge regression (KRR)

Kernel ridge regression is one of the most popular ML
techniques for regression. As a combination of ridge
regression and kernel function, the nonlinear function to
elaborate the link between features and the numerical tar-
get is distinctly explored in a higher dimensional space
compared to the original space and KRR has been success-
fully applied for many engineering applications [65-67].
Besides the popularity of KRR in the field of engineer-
ing, a neat closed-form solution as well as a high work
efficiency are also notable benefits of the application of
KRR in this paper.

In KRR [68, 69], the dataset is set up as: {x;, y;}, where
i=1,2, ..., n;x;is the feature vector for ith sample and
y; s its true numerical target. The prediction function of
KRR is as follows:

9= wK(x,x) (13)
i=1

where J; is the jth predicted target, w; are the weights to be
optimized, and K(x,-,xj) is the kernel function which clari-
fies a set of pairwise similarity comparisons between the
training samples. Linear relationships are one of the easiest
functions to understand. However, in practice, for certain
cases a purely linear function is not a precise formulation.
Therefore, we used kernel function to better trace the behav-
ior of the data points in a higher dimensional space. Like
SVM, several kernel functions are popular in KRR (poly-
nomial kernel, radial basis function (rbf) kernel, sigmoid
kernel, etc.). The loss function of KRR to develop the model
is expressed as follows:

n

Loss = Y (3, —,)" + Allwll (14)

i=1

where J; is the ith predicted target, y; is the ith true target,
and A is a hyperparameter to describe the regularization
strength. The first term in Eq. (14) is to evaluate the errors
between the true target and the prediction from KRR, while
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the second term represents the penalty of a large w;, which
may cause overfitting. In KRR model training, Eq. (13) is
minimized to explore the optimal w;. Combining the mini-
mization and kernel function effects, w can be expressed as
follows:

w=(K+ D)y (15)

where K is the kernel matrix, and [ is the identity matrix.

We used KRR models for predicting the diameter of printed
materials in this work. Datasets 2 and 3 in Table 2 were used to
train the model. Cross-validation was applied during the grid
search for hyperparameters in the KRR models (regularization
parameter, kernels, etc.).

2.3 Evaluation metrics

The performance of each classification model was rated by
accuracy, and each regression model was scored by coefficient
of determination (R?), mean absolute error (MAE), and root
mean square error (RMSE). Accuracy is defined as the ratio
of the number of all correct predictions to the total number of
predictions. R? is determined by the difference between the
true value and the predicted value, as well as the difference
between the true value and the mean value. Therefore, it can
represent how strong the data fits the model. MAE represents
the average of the absolute differences between true and pre-
dicted values, and also the average of the residuals. RMSE was
used to calculate the rooted average of the squared difference
between the true value and predicted values, which describes
the variance of the residuals.
The formula for each evaluation metric is listed below:
Number of correct predictions

A = ’
ccuracy Number of all predictions 10

a7

(18)

19)

where 7 is total number of observations, y; is the mean value
of the target, y; is the predicted target, and y; is the true tar-
get. All these models utilized in our machine learning work
were implemented in Scikit-learn packages.
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3 Results
3.1 Feature importance analysis

In this section, we outline the importance of individual fea-
tures as well as the capability of the ML-based model in
predicting printing behavior. The predictive target is com-
posed of both the jetting mode and the diameter of printed
material. In this work, the features (x;) used in the ML to
determine the printing behavior (y) are printing parameters
(electric field strength, printing temperature, pressure, and
nozzle size) and properties of materials (viscosity, surface
tension, and density). The same features were also selected
for predicting the diameter of the droplet. To predict the
diameter of the filament, one additional feature, printing
speed, was applied to the ML work, as the diameter of the
filament is directly related to printing speed. A higher print-
ing speed will result in a thinner filament, while a slower
speed will produce a thicker filament.

The feature importance analysis was able to extract
important feature that had notable effects on the printing
behavior, which provides insight into the mechanisms of the
EHD printing process and simplifies the model to describe
printing behavior. The random forest models applied to the
feature importance analysis are summarized in Supp. Table 1
in the supplemental information section. The relative impor-
tance of feature in determining the jetting mode (droplet
or filament) is evaluated by random forest as presented by
Fig. 4a. A feature with a higher importance value represents
a stronger link between the feature and the jetting mode,
indicating that the feature plays a more vital role in jetting
mode determination. From the results, viscosity is ranked as
the highest among the analyzed features in determining jet-
ting mode. The viscosity of a fluid is measured by its resist-
ance to gradual deformation, and more external influence
will be needed to deform or alter the shape/movement of a
fluid with a higher viscosity. In EHD printing, the length of
the jet is directly proportional to its viscosity. When the vis-
cosity is sufficiently high (>100 cP), the molecular attraction
between the ink molecules is strong, resulting in more stable
jets during EHD printing. In contrast, for low-viscosity flu-
ids (<100 cP), the weaker attraction between the surfactants
leads to the formation of microdrops. Thus, a continuous
jet or filament will tend to form with highly viscous fluid
instead of droplets during the printing process [69]. In EHD
printing, a fine jet or drop is collected from the tip of the
Taylor cone once the electrostatic force overcomes the sur-
face tension and the viscous force of the printed material.
If the surface tension is too low, the ink will form satellite
droplets before a stable jet can be created, due to a longer
pinch-off time (the time it takes for a droplet to detach from
the jet). Studies also indicate that if the surface tension is

too high, the applied electrostatic force will be insufficient
to initiate jetting, leading to only meniscus pulsing and no
printing [18, 70]. Therefore, the electric field (which gener-
ates the electrostatic force) and the surface tension of the
material also play significant roles in determining jetting
mode (Fig. 4a). Another important feature determined by
this feature importance analysis is material density, as it is
closely related to surface tension. Moreover, higher molecu-
lar weight for polymeric materials tends to create a higher
viscosity, and higher molecular weight generally results in
higher density [71, 72]. Compared to the features discussed
above, printing temperature, pressure, and nozzle size do
not exert significant influence in determining jetting mode
compared to viscosity, surface tension, density, and electric
field. This is because printing temperature, pressure, and
nozzle size are processing conditions, while viscosity, sur-
face tension, and density are material properties. Generally,
material properties are known to determine jetting behavior
more than processing conditions.

The feature importance in predicting the diameter of
droplets is ranked from high to low in Fig. 4b. Both nozzle
size and pressure play very important roles in controlling
droplet diameter. Surface tension and electric field are also
critical in determining droplet diameter. However, compared
with the result from Fig. 4a, the importance of the electric
field and surface tension is relatively diminished. This indi-
cates that pressure is more a important feature than the elec-
tric field, which is consistent with Wang’s work which finds
pressure to be more critical than electric field in determining
droplet diameter [73]. An interesting finding is that printing
temperature ranks as the second most crucial feature in this
analysis. This may be attributed to the limited number of
droplet data points at different printing temperatures. Most
of the droplets have diameters larger than 30 pm, and are
printed around room temperature. But, only one material,
wax, is printed at very high temperature (230°F) with small
diameters (less than 30 pm), which makes the temperature
variance among the droplets large. We hypothesize that this
causes the machine to identify temperature as an important
feature.

Figure 4c presents the relationship between each feature
and the diameter of filament. In contrast to the droplet diam-
eter, density and electric field affect the filament diameter
much more than other features, while nozzle size and pres-
sure are among the least important features for determin-
ing filament diameter. The distinct results from Fig. 4b and
c originate from the difference in material properties that
determine the formation of the droplet or filament. Gen-
erally, filaments are easily generated with materials with
higher viscosities. Thus, viscous force plays a more critical
role than surface tension, which is directly correlated with
nozzle size. Furthermore, the flow rate of high viscosity
materials is also less sensitive to pressure changes; hence,
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Fig.4 Feature importance
analysis. a Classification (drop-
let or filament); b regression
(diameter of droplet); ¢ regres-
sion (diameter of filament)
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filament diameter is less sensitive to variations in nozzle
size and pressure. In EHD printing, the flow rate, which
directly determines the size of the filament, also depends on
the applied electric field, as the electrostatic force applied
on the meniscus will generate a suction effect [74]. Ahn’s
group performed a dimensionless analysis of mapped EHD
jetting modes [20]. One of the findings from that research
is that the critical flow of the jet is inversely proportional

@ Springer

.00

00 0.05 0.10 0.15 0.20 0.25 0.30

Feature importance

()

0.05 0.10 0.15 0.25

Feature importance

(b)

0.20

.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Feature importance

(©)

to only one parameter: material density, and that material
density can also affect jetting diameter. Our results further
supported their findings that density is a critical feature in
determining filament diameter.

By the feature importance analysis, it was demonstrated
that the ML model approach advances our understanding
of the physical mechanisms behind EHD printing behavior
under different jetting modes. Traditionally, it is believed
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that jetting modes are primarily determined by three factors:
viscosity, surface tension, and electric field. However, our
results indicate that other factors are also important. For
instance, density plays a crucial role in determining the jet-
ting mode and influencing the filament diameter.

3.2 ML for classification and regression

In the EHD printing process, controlling the parameters for
targeted printing behavior is based on trial and error, which
is quite costly and time-consuming. Thus, ML is an excel-
lent solution to this issue. The result of predicting the jetting
mode (droplet vs. filament) via an SVM model is depicted
as a confusion matrix in Fig. 5a. The hyperparameters used
in this SVM model are presented in Table 2 in the Supple-
mental Information of this paper, and all hyperparameters
in our models were determined by minimizing RMSE. In
the dataset, the input features (x;) are listed in Fig. 4a, and
the output target (y) represents the printing behavior. In
Fig. 5a, the jetting modes of 28 samples from the test set
were predicted by the SVM model trained by the training
set. Jetting modes were predicted correctly in 27 samples,
while one sample was misclassified. The misclassified data
is from the AgNW sample, which has only one data point in
the entire sample set for classification. Moreover, one fea-
ture (printing speed, 8 mm/s) value of the AgNW data falls
outside the range (1-6 mm/s) within the training set, which
makes AgNW more challenging for the ML to predict. The
accuracy of this SVM model is 96.43%, which shows that
the developed ML model can provide a high accuracy when
predicting the jetting mode. Moreover, the robust model per-
formance further strengthens the comprehensive relationship
between the input features and the jetting mode. In order to
eliminate any bias in the random nature of our test samples,
we repeat the experiment in Fig. 5a, with six separate sets
of random train-test splits to validate the SVM model. Our
results show an accuracy ranging from 96.43 to 100% (see
Supp. Fig. 1 in Supplemental Information). These results
demonstrate that the high accuracy of our SVM model is
not an artifact of our choice of test samples. Time required
for each prediction using the SVM model is approximately
30 min, which is a significant reduction compared to 4-6 h
of time needed for a typical FEA simulation as observed in
one of our previous works [33]. Hence, besides lowering the
experimental cost in study EHD printing behavior, this ML
approach accelerates EHD printing predictions.

In EHD printing, the product quality is closely related
to the resolution of the printer, which can be determined by
the diameter of the printed material. The predicted droplet
diameter using the KRR model is presented in the form of
a scatterplot in Fig. 5b. In this figure, the x-axis is the true
diameter from the experiments, while y-axis is the predicted
diameters by ML. The dashed parity line is the equation
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Fig.5 ML predictions using random train and test split. a Classifica-
tion (droplet or filament); b regression (diameter of droplet); ¢ regres-
sion (diameter of filament)

where y = x, representing perfect model performance. R2,
RMSE, and MAE are generated to evaluate the model per-
formance. In Fig. 5b, all samples are scattered around the
parity line with an R? as high as 0.9739. Additionally, the
result has no outliers, which highlights the efficiency of
the KRR model in predicting droplet diameter. The perfor-
mance of the KRR model for predicting filament diameter
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is presented in Fig. Sc. All test samples fit the parity line
well with a R? of 0.9961. The R? is positively related to
the model prediction capability, which illustrates a greater
model performance in the filament case compared to the
droplet case. Additionally, RMSE (4.5986 pm) and MAE
(2.9069 pm) of the KRR model in Fig. 5c¢ are smaller than
the RMSE (8.9462 pm) and MAE (6.7935 pm) in Fig. 5b,
which similarly depicts better model performance in fila-
ment diameter prediction than droplet diameter prediction.
The differing model performances likely originate from the
distribution of data in the original dataset. There were 73
filament samples generated in our sample set, while only 54
droplet samples were gathered in the droplet sample set. The
ML tool is known to be crucially influenced by dataset size.
Increased sample size provides more information during
the ML training process, and increases prediction accuracy.
Lack of information may have influenced the droplet case,
as the total number of droplet samples is 26.03% less than
the number of filament samples.

To further validate the prediction capability of KRR mod-
els for predicting the diameter of printed materials, six other
random train-test splits were performed in both droplet and
filament samples (see Supp. Fig. 2 and 3 in Supplemental
Information). All results demonstrated a consistently high
accuracy (R? in droplet case = 0.9220-0.9862, and R? in fila-
ment case = 0.9614-0.9868) when predicting the diameter
of printed materials using the KRR model. It is interesting
to observe that although the data points for droplet and fila-
ment diameter were obtained for a range of materials from
a wide range of sources (literature vs. our own experimental
data), the accuracy in predicting the diameter is greater than
97%, indicating the robust nature of the KRR model. Further
details on the KRR models used to predict the diameter of
printed materials can be found in Supp. Table 3 of the Sup-
plemental Information.

3.3 ML for predicting printing behavior of new
materials

Different materials exhibit various printing behaviors. But,
not all of these behaviors are desirable for every applica-
tion. For example, the printing of filament is better suited for
fabricating scaffolds or conductors, while droplet printing is
preferable for creating complex 2D and 3D patterns. Accu-
rately predicting how specific materials react to printing con-
ditions enables us to select suitable materials and reduces the
necessary time and cost for experiments. Moreover, it can
also further the development of novel functional materials
using fewer experiments. To predict the printing behavior
of new materials, PMMA (droplets) and AgNP (filaments)
are selected as representative novel materials. Among them,
both PMMA and AgNP samples are obtained from reported
literature. We ensured that the values of each feature for
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the samples from the two materials within the test samples
fall within the range of values of the features in the train-
ing set, as the training set should cover enough information
to predict the test set. Thus, PMMA and AgNP are ideal
test set candidates, considering the representation of data
sources, jetting modes, and the reasonability of the feature
space. The predicted jetting modes in the test set are exhib-
ited in Fig. 6a. It’s noted that the predicted test set in Fig. 5
includes varying materials and processing parameters, while
material properties are kept fixed in Fig. 6, and only the
process conditions vary in test samples. For a test set of 20
samples, only one misclassified sample, which was from the
PMMA sample with the lowest electric field (3.33 V/um),
was observed. This misclassification may be due to the pres-
ence of PEDOT:PSS sample. According to Fig. 4a, viscosity,
surface tension, density, and electric field are the four most
important parameters in deciding the jetting modes. There
is only one PEDOT:PSS sample (viscosity: 46.88 mm?/s;
surface tension: 41.8 mN/m; density: 1.011 g/cm3; electric
field: 2.5 V/pm), and it shares similar orders of magnitude in
viscosity, surface tension, and density as the PMMA (viscos-
ity: 22 mm?/s; surface tension: 30.5 mN/m; density: 0.879
g/cm?) sample. For all other samples, their orders of mag-
nitude in viscosity, surface tension, and density are notably
different from PMMA. For example, PCL has viscosity of
181,000 mm?/s, surface tension of 30.8 mN/m, and density
of 1.145 g/cm3. Moreover, the lowest electric field among
the PMMA samples (3.33 V/pm) is very close to that applied
to the PEDOT:PSS sample. The model may have labeled the
PMMA sample with the lowest electric field as PEDOT:PSS,
which forms the filament during the printing. Nonetheless,
the accuracy of this model is 95.24%, which implies that
the model is capable of predicting the jetting mode of new
materials. This SVM model for predicting the jetting mode
of new materials is described in Supp. Table 2 in Supple-
mental Information.

The prediction of the printed PMMA diameter serves as
an example of diameter prediction using a KRR model for
new materials in the droplet case (Fig. 6b). All five samples
are positioned along the parity line with a R? of 0.9684. The
outstanding model performance indicates its capability in
exploring the diameter of printed product in new materials,
which can vastly reduce the time and cost of experiments.
The hyperparameters of this KRR model can be investigated
in Supp. Table 3 in Supplemental Information. For the fila-
ment case, AgNW, field’s metal, PEDOT:PSS, and AgNP
were all investigated by ML as new material, but none of
the models presented a prominent performance (R > 0.9).
This may arise from limitations in ML, as each material has
one or more features beyond the range of corresponding fea-
tures in the training set (see Supp. Table 4 in Supplemental
Information). For example, in the case of field’s metal, the
surface tension is 417 dyn/cm which is outside the range
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Fig.6 ML predictions for new material. a Classification prediction
for PMMA and AgNP (droplet or filament); b regression prediction
for PMMA (diameter of droplet); ¢ R? in regression prediction for
diameter of filament

of surface tension (30.8-50.8 dyn/mm) within the training
set. Similarly, AgNW, PEDOT:PSS, and AgNP, all include
features which are outside the range within the training set.
Hence, a part of the feature space of the new material has
not been explored by the trained model, which drastically
deteriorates the model’s performance. Figure 6¢ lists R

values for these materials. AgNW only has one parameter,
printing speed, which is beyond the range of printing speed
in the training set. Referred to Fig. 4c, printing speed is
not a significant parameter that affects filament diameter.
As aresult, it has a higher R and better model performance
compared to the other three materials. The R? for AgNW is
still less than 0.6, with only one feature outside the training
set’s range, which was ranked high in feature importance.
This observation originates from the clustering of samples
from the training set in the feature space. In the case of the
electric field, which is the most significant feature in control-
ling filament diameter, the samples are distributed at 2.5 V/
pm, in 4.85-5.44 V/um, 14.45-18.18 V/pm, and 30-60 V/
pm. However, the electric filed of the AgNW sample is 20
V/pm, which directs the test samples in a local feature space
without data distribution. ML model accuracy depends on
the features’ input to the model, as well as the data distribu-
tion in the feature space. The uneven distribution of samples
in the feature space leads to a notable uncertainty when pre-
dicting new materials [75]. In the future, the model may be
improved by collecting additional samples from literature,
as well as experiments. This result highlights the substantial
challenge of predicting jetting mode and diameter of printed
materials with ML, when the ML model has never encoun-
tered such information before. The accuracy of the predic-
tion in diameter decreases as the total number of important
features outside the training range increases.

4 Conclusion

In this research, ML models were developed to study the
EHD printing process and the interaction between printing
and material parameters when determining printing behav-
ior and feature size. By leveraging the ML approach, the
importance of process parameters and material properties
in determining printing behavior and feature size have been
identified with less time and effort using trained random
forest models. Besides the factors determined by conven-
tional experiments (viscosity, surface tension, and electric
field), the feature importance analysis also demonstrated
additional factors (materials’ density, etc.) play a significant
role in controlling EHD printing behavior. This observation
enhances our understanding of the EHD printing mecha-
nisms. Moreover, the developed ML models are capable of
predicting jetting mode and feature diameters with good per-
formance in both random train/test split as well as predicting
the printing behavior of new materials. The jetting mode was
predicted by SVM models with high accuracy and the diam-
eters of printed materials were estimated by KRR models
with precision. These findings demonstrate ML’s capability
for accelerating process design and reducing the number of
experiments needed for new materials during EHD printing.
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This work provides a new perspective on the research on
printing behavior in EHD printing: in need of a subset of
empirical samples that varies in material properties and
printing parameters, ML can guide research in a more time-
and cost-effective direction, without undertaking extensive
trial-and-error approach-based experimentation.

These models exhibit high accuracy in predicting the
jetting behavior and feature size, but limitations still exist.
As for future work, more droplet samples can be generated
or added to the model, in order to provide more informa-
tion and enhance the model’s predictive performance for
droplets. Second, the prediction of filament diameter in new
materials faces challenges when no material candidate in
the test case has features that entirely fit within the training
set, resulting in an inaccurate prediction. In the future, a
physics-informed ML model can be developed by adding
fundamental science into the standard ML model to over-
come this limitation. Lastly, with the future integration of
physics-based models and camera images, ML approaches
can better assess the printability of new materials and opti-
mize printing results with fewer defects.
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