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ABSTRACT

Recent language models have demonstrated proficiency in summa-
rizing source code. However, as in many other domains of machine
learning, language models of code lack sufficient explainability —
informally, we lack a formulaic or intuitive understanding of what
and how models learn from code. Explainability of language models
can be partially provided if, as the models learn to produce higher-
quality code summaries, they also align in deeming the same code
parts important as those identified by human programmers. In this
paper, we report negative results from our investigation of explain-
ability of language models in code summarization through the lens
of human comprehension. We measure human focus on code using
eye-tracking metrics such as fixation counts and duration in code
summarization tasks. To approximate language model focus, we
employ a state-of-the-art model-agnostic, black-box, perturbation-
based approach, SHAP (SHapley Additive exPlanations), to identify
which code tokens influence that generation of summaries. Using
these settings, we find no statistically significant relationship be-
tween language models’ focus and human programmers’ attention.
Furthermore, alignment between model and human foci in this
setting does not seem to dictate the quality of the LLM-generated
summaries. Our study highlights an inability to align human focus
with SHAP-based model focus measures. This result calls for future
investigation of multiple open questions for explainable language
models for code summarization and software engineering tasks in
general, including the training mechanisms of language models for
code, whether there is an alignment between human and model
attention on code, whether human attention can improve the devel-
opment of language models, and what other model focus measures
are appropriate for improving explainability.
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1 INTRODUCTION

Recent language models for code have shown promising perfor-
mance on several code-related tasks [31]. Among these tasks is
neural code summarization, where a language model generates a
short natural language summary describing a given code snippet.
This is often an indicative task demonstrating a model’s ability
to comprehend code. Currently, the majority of assessments for
how well a language model understands code directly measures the
quality of code summaries generated by the models, and compares
them with human-written summaries [31]. Comparatively little is
known about why and how the language models reason about code
to generate such summaries. Similar to many other downstream
domains of machine learning in software engineering, understand-
ing and explaining how and why language models for code work
(or fail) is critical to improving model architecture, reducing bias,
and preventing undesirable model behavior.

Human programmers typically achieve a strong understanding
of code. Thus, proficient language models might be explained if
they focus on the same parts of code that humans would [21]. Eye-
tracking studies have been conducted to analyze programmers’
visual patterns while reading code [2, 22]. Specifically, the duration
and frequency of a programmer’s eye gaze on a part of code in a
spatially-stable manner, referred to as fixation duration and fixation
count respectively, are indicative of cognitive load [24]. Thus, these
measures of eye-tracking can indicate the parts of code on which
human programmers focus. In contrast, there is a lack of consensus
on how to measure a language model’s reasoning about code (see
Section 2.2). Most existing works extract the self-attention layers in
language models for code to measure the model attention [21, 20, 9].


http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643916.3644434&domain=pdf&date_stamp=2024-06-13

ICPC *24, April 15-16, 2024, Lisbon, Portugal

Such methods require direct access to the internal layers of a lan-
guage model, limiting the possibility to investigate interpretability
of many state-of-the-art proprietary models (e.g., ChatGPT).

In this paper, to investigate how proprietary language models
reason about code, we employ a state-of-the-art perturbation-based
method, SHAP [15] (SHapley Additive exPlanations), that treats
each language model as a black-box function. With SHAP, we an-
alyze the feature attribution (i.e., which parts of code are deemed
important by the model) in six different state-of-the-art language
models for code. We use a set of Java methods to task both the
language models and human programmers with writing code sum-
maries. The feature attribution in the language models, measured
by SHAP, is then compared with human developers’ focus, col-
lected from eye-tracking. We hypothesize that sufficiently large
models may learn to focus on parts of code similarly to humans. If
validated, language model behavior can thus be described in terms
of human behavior, ultimately helping to explain and improve
language models. However, we find that explainability cannot be
provided through this lens and find no statistically significant evi-
dence suggesting the hypothesized alignment. Furthermore, we did
not find that language models’ focus exhibits a statistically signifi-
cant correlation with human focus in general. For future research
that aims to explore the explainability of language models for code
summarization, especially for those leveraging human attention,
our findings might suggest the following: (1) though widely used
in AI, SHAP may not be an optimal method to investigate where
language models focus during code summarization, or alternatively,
(2) a misalignment between language models and human develop-
ers in reasoning about code may provide insights for improving Al
models for code summarization.

2 BACKGROUND AND RELATED WORK
2.1 Neural Models for Code Summarization

Advancements in deep learning have enabled machine learning
models to generate summaries for source code. Among the state-
of-the-art models, NeuralCodeSum (NCS) first introduced the use
of Transformers in neural code summarization [3]. With the rise
of large language models (LLMs), ServiceNow and HuggingFace
released a 15.5B parameter LLM for code, StarCoder [13], and Meta
released a 7B parameter LLM, Code LLama [23], both of which can
serve to summarize code. Although not inherently an LLM for code,
GPT3.5 [18] and GPT4 [19] are also capable of code summarization.
In this paper, we investigate how all the aforementioned models
reason about code when tasked to generate code summaries.

2.2 Interpretability of Language Models

Existing works on interpretable language models generally seek to
investigate the relative importance of each input token for model
performance [29, 8, 16]. Such works can be commonly categorized
into two types: white-box vs. black-box. White-box approaches
require access to a language model’s internal layers [25, 28], often
directly investigating the self-attention scores in Transformer-based
models [7, 33, 32]. However, Transformer-based models’ inherent
complexity has led to a lack of consensus on how to aggregate
attention weights [30, 35, 33]. For the general research community,
white-box approaches preclude proprietary models (e.g., ChatGPT).
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In contrast, state-of-the-art black-box approaches like SHAP [15]
(SHapley Additive exPlanations) apply game-theoretic principles
to assess the impact of input variations on a model’s output. SHAP
evaluates the effects of different combinations of input features
— such as tokens in a text sequence — by observing how their
presence or absence (simulated by token masking) alters the model’s
prediction from an expected result. This process helps to ascertain
the relative contribution of each feature to the output, allowing for
an analysis of the model without requiring access to its internal
architecture [14, 11]. In this paper, to investigate proprietary models,
we employ SHAP to measure where language models focus on code.

2.3 Comparing Human vs. Machine Attention

Previous papers have examined the alignment between human
and model attention in code comprehension tasks. Paltenghi et
al. [20] found that CodeGen’s [17] self-attention layers attend to
similar parts of code compared to human programmers’ visual
fixations when answering comprehension questions about code.
Similarly, Huber et al. [9] discovered overlaps in attention patterns
between neural models and humans when repairing buggy pro-
grams. Notably, Paltenghi and Prasdel [21] compared language
models’ self-attention weights and humans’ visual attention during
code summarization. They found that model attention, measured
by self-attention weights, does not align well with human attention.
However, this work is limited by investigating only small CNN and
transformer models. Most importantly, all aforementioned studies
used white-box approaches towards interpretability of open-source
models, limiting applicability to state-of-the-art proprietary models.

Recently, Kou et al. [11] utilized both white-box and black-box
perturbation-based approaches to measure LLMs’ focus in code
generation tasks, and discovered a consistent misalignment with
humans’ attention. In general, these works have demonstrated that
whether human and machine attention align depends heavily on
the methods employed to approximate machine focus, as well as
the specific code comprehension task examined. In this paper, we
build upon former works by examining whether human attention
correlates with feature attribution in language models, measured by
a black-box perturbation-based approach, in code summarization.

3 EXPERIMENTAL DESIGN
3.1

We used eye-tracking data measuring human attention from a con-
trolled human study with 27 programmers. The study obtained
IRB approval, and asked participants to read Java methods and
write accompanying summaries [4]. Each participant summarized
24-25 Java methods from the FunCom dataset [12], yielding 671
trials of eye-tracking data in total. Considering data quality, two
authors with five and eight years of Java experience cooperatively
removed participant data associated with five summaries that did
not demonstrate an understanding of the Java code.

In this work, we sought to measure where humans and language
models focus on code as they summarize it. We first used the srcML
parser to convert each Java method into its corresponding Abstract
Syntax Tree (AST) representation [6]. The AST provides structural
context for each token literal (i.e., ‘Hello World’ — String Literal).
With the gaze coordinates collected from the eye-tracker [1], we
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measured humans’ focus on each AST token. Typically, researchers
use fixations to quantify human visual focus [24]. A fixation is de-
fined as a spatially stable eye-movement lasting 100-300ms. Most
cognitive processing occurs during fixations [24], so researchers
consider their frequency and duration in making inferences about
human cognition. In our analyses, we computed the average count
and duration of programmers’ fixations on each AST token. Conse-
quently, for each Java method, we obtained two visual focus vectors
with lengths equal to the number of AST tokens, respectively, which
represent fixation counts and durations on each token!.

3.2 Measuring Model Focus

As mentioned in Section 2.2, we choose SHAP’s official, default
implementation of the TeacherForcing method to measure feature
attribution in language models, treating each as a black-box func-
tion. For each language model, we pass in each of the 68 Java
methods (also read by human programmers) as input, along with
necessary prompting for the model to output summaries of source
code. For each Java method passed into each language model, we
let i denote an input token (in code) and o denote an output token
(in summary). For each (i, o) pair, SHAP produces an importance
score, denoted v(; ), signifying how much i’s presence or absence
alters the presence of 0. Then, the importance score of each input
token?, v;, is calculated such that v; = 3, [0(5,0) |- Note that now v;
is associated with a language model token, and each AST token may
consist of several language model tokens. Thus, for each AST token,
we calculate its score % Z?zl vj, where vy, - - - , vy, are scores of lan-
guage model tokens constituting the AST token. Consequently, for
each language model on each Java method, we obtain a focus vector
(with a length equal to the number of AST tokens) representing
how influential each AST token is to the model.

In total, we investigated the model focus of six different models:
GPT4, GPT-few-shot, GPT3.5, StarCoder, Code Llama, and NCS.
Here, GPT-few-shot is a GPT3.5 model, but in an attempt for the
model to produce code summaries more similar to those of humans,
we used few-shot prompting to instruct the model to provide sum-
maries similar to two randomly selected human-written summaries.
The other five state-of-the-art LLMs are introduced in Section 2.1
and implemented with their default parameters.

3.3 Comparing Human and Model Foci

For brevity, we refer to two human visual focus measurements
(i.e., fixation duration and count) and six language models as eight
"focus sources." For each source, we obtained 68 focus vectors, each
corresponding to a Java method. These vectors were normalized
to sum to 1, and reflect how important each AST token is for the
human/model. We answer these research questions:
e RQ1: Is there a general correlation between human and ma-
chine focus patterns for code summarization?
e RQ2: Do the code summaries increase in quality when ma-
chine focus becomes more aligned with that of humans?

3.3.1 RQI. We assess the correlation between human and machine
foci across the 68 Java methods. Specifically, for each pair of focus

10ur analyses do not include brackets or semi-colons, or other such syntactic elements.
2We use the absolute value by choice, without which experiments show similar results.
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sources, we iterate through each Java method and calculate the
Spearman’s rank coefficient (p) [27] between the two sources’ vec-
tors for that method. Then, for each pair of focus sources, we report:
(1) The mean and standard deviation of Spearman’s p across all Java
methods where correlation is statistically significant (p < 0.05),
and (2) the proportion of Java methods demonstrating a statistically
significant correlation (p < 0.05).

In addition, we group all AST tokens into 18 semantic categories
(e.g., method call, operator, etc.) and investigate how much hu-
mans> and language models focus on each semantic category. The
focus score assigned to each semantic category is the sum of the
focus scores assigned to each AST token belonging to that seman-
tic category. To counter biases where certain semantic categories
contain more AST tokens or appear more frequently, we report
the relative difference between machine and human foci for each
semantic category. That is, we average the six language models’

focmachine = fOChuman I

focus scores per category and report | Focr
uman

3.3.2 RQ2. Here, a human expert provides quality ratings for sum-
maries generated by each language model for every Java method
using four criteria: accuracy, completeness, conciseness, and read-
ability. Next, we calculate the Spearman’s p between each language
model’s focus vector and the human fixation duration vector across
all Java methods where correlation is significant (p < 0.05). We
then append all such statistically significant p’s to form a vector, de-
noted vcor, to represent the degrees of alignment between machine
and human foci across the Java methods investigated?.
Subsequently, we determine whether this alignment is correlated
with the rated quality of summaries. Specifically, we construct four
other vectors, {vgcc, Vcoms Ucons Urea }» containing the accuracy, com-
pleteness, conciseness, and readability scores respectively. At each
index i, {vcor [i], vace (i1, 0com[i], vcon[il vrea[i]} are respectively
the Spearman’s p, summary accuracy, completeness, conciseness,
and readability of the same language model applied on the same
Java method. We then measure and report the Spearman’s rank
correlation between vcor and v;, where v; € {vgcc, Vcoms Vcons Urea}-

4 RESULTS
4.1 RQ1: General Correlation

As shown in Table 1, there is a general lack of correlation between
human and machine foci. We highlight that the means and standard
deviations in Table 1 are only calculated from Java methods where
the Spearman’s p is statistically significant (with p < 0.05). In
practice, between any pair of human-LLM focus sources, at most
22% of the 68 Java methods yield a Spearman’s p with p < 0.05.
As a baseline, the Spearman’s p has p < 0.05 for all Java methods
between human duration and fixation focus vectors, and for 85% of
Java methods between any two language model’s focus vectors. This
implies that any existing correlation between human and machine
foci is not widespread across the Java methods studied.
Furthermore, among those Java methods where the correlation is
statistically significant, the mean Spearman’s p is small with a large

3We use fixation durations to represent human focus. We empirically verify that using
fixation count yields similar results.

“Note that 0.0, contains Spearman’s p’s obtained from all six language models. We
empirically verify that conducting the analogous analysis for each language model
separately yields a similar result.
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Table 1: Pair-wise correlation among focus sources; “Dura-
tion” and “Count” are human visual focus. Each cell shows
the means and standard deviations of Spearman’s p for all
Java methods showing significant correlation (p < 0.05).

|Duration  Count GPT4 GPT-few GPT3.5 StarCoder CodeLlama NCS

Duration  |1.00£0.00 0.88+0.06 -0.11£0.41 -0.13£0.42 -0.09+£0.52 -0.18£0.48 -0.18+0.42 -0.24+0.40

Count = 1.00+0.00 0.01+0.45-0.24+0.33 -0.10+0.48 -0.31+0.29 -0.13+0.43-0.33+0.33
GPT4 - - 1.00£0.00 0.68+0.12 0.76+0.12 0.67+0.14 0.67%0.14 0.55+0.13
GPT-few - - - 1.00£0.00 0.72+0.12 0.62%+0.15 0.64+0.15 0.55%0.13
GPT3.5 - - - - 1.00£0.00 0.65+0.16 0.67+0.15 0.58+0.13
StarCoder - — - - - 1.00+0.00 0.66+0.15 0.59+0.11
Code Llama - — — - - — 1.00£0.00 0.56+0.14
NCs — — — — — — — 1.00£0.00

Relative Difference in Machine vs. Human Focus on Semantic Categories
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Figure 1: How much more/less do language models focus on
each semantic category compared to humans?

standard deviation. In fact, for most such methods where a model
and human show significant correlation in focus, the Spearman’s
p is often either around 0.5 or —0.5, but rarely in between. This
suggests the relationship between human and machine foci varies
significantly depending on the specific Java method.

Interestingly, although few-shot-alignment in GPT-few-shot ren-
ders the model’s generated summaries more similar to those of
humans, this does not lead to higher correlations between model
and human foci. In addition, feature attribution in all language
models is moderately or strongly positively correlated with each
other on a majority of Java methods, which intuitively makes sense
since all six models are based on the Transformer architecture.

We also investigate how language models’ focus on each seman-
tic category differs from that of humans. As shown in Figure 1,
language models’ generation of code summaries seems to be more
reliant on comments, return values, and specific statements such
as literals and assignments, and less reliant on method calls and
variables/methods not defined explicitly within the Java method.
Discussion Point 1: We find no evidence that feature attribution
in language models is correlated with programmers’ visual focus.
Several possible interpretations can be inferred: (1) Alternative
methods may be needed to assess feature influence in black-box
language models for code summarization, aiming for better align-
ment with human attention. (2) Access to the internal workings of
proprietary models might become critical if white-box models offer
more human-aligned insights into explainable language models
for code [20]. (3) It is possible that language models and humans
reason about code differently when summarizing source code.

Table 2: Correlation between human-machine focus align-
ment and summary quality (assessed by four metrics).

Accuracy Completeness Conciseness Readability
Spearman’s p -0.1279 0.1309 0.0194 -0.0717
p-value 0.3862 0.3753 0.8960 0.6280
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Ratings of Language Models on a Scale from 1-4

= Accuracy
Completeness

mmm Conciseness
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GPT4 GPT-few-shot GPT3.5 StarCoder

Language Models

Figure 2: Average ratings of model-generated summaries.

4.2 RQ2: Summary Qualities

There is also a lack of correlation between the quality of summaries
generated by language models and how well their focus on code
aligns with humans’. The large p-values in Table 1 suggest that,
regardless of which metric is used to assess summary quality, there
is a lack of statistically significant correlation between the quality
of a model-generated summary on a Java method and how well
the model’s focus aligns with that of humans on that Java method.
Furthermore, Figure 2 shows that NCS produces worse summaries
than the other five models. Although Table 1 seems to suggest that
NCS’s focus is more negatively aligned with human attention, we
find no statistically significant metrics supporting such a claim,
partially due to the small sample size of Java methods yielding
statistically significant Spearman’s p.

In general, Table 1 suggests that feature attribution in NCS is still
moderately positively aligned with that in other language models
on a majority of Java methods. This indicates the likelihood that
aspects other than feature attribution are more indicative of and
critical to a language model’s performance in code summarization.
Discussion Point 2: With a substantial body of work in NLP
showing that aligning neural models with human visual patterns
can lead to performance improvement [26, 34, 10, 5], we contain
our conclusion to the SHAP measure of feature attribution and the
human attention as measured in an eye-tracking experiment. The
link between human attention and feature attribution to machine
models is a subject of intense scientific investigation. We contribute
to the debate with this finding that SHAP did not correlate with
human eye attention in the measures or models we studied.

Code Llama NCS

5 CONCLUSION

In this paper, we use a state-of-the-art, black-box, perturbation-
based method to assess feature attribution in language models on
code summarization tasks. We then compare the model-determined
important AST tokens with those identified by human visual focus,
as measured through eye-tracking. The results suggest that using
SHAP to measure feature attribution does not provide explainabil-
ity of language models through establishing correlations between
machine and human foci. Generally, our work can be interpreted
in two ways. First, feature attribution measured by SHAP may not
be the best way to interpret a language model’s focus during code
summarization as it fails to establish similarities with human focus.
Alternatively, it may be the case that machines reason about code
differently from humans when tasked to summarize source code.
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