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ABSTRACT
Recent language models have demonstrated proficiency in summa-

rizing source code. However, as in many other domains of machine

learning, language models of code lack sufficient explainability —

informally, we lack a formulaic or intuitive understanding of what

and howmodels learn from code. Explainability of language models

can be partially provided if, as the models learn to produce higher-

quality code summaries, they also align in deeming the same code

parts important as those identified by human programmers. In this

paper, we report negative results from our investigation of explain-

ability of language models in code summarization through the lens

of human comprehension. We measure human focus on code using

eye-tracking metrics such as fixation counts and duration in code

summarization tasks. To approximate language model focus, we

employ a state-of-the-art model-agnostic, black-box, perturbation-

based approach, SHAP (SHapley Additive exPlanations), to identify

which code tokens influence that generation of summaries. Using

these settings, we find no statistically significant relationship be-

tween language models’ focus and human programmers’ attention.

Furthermore, alignment between model and human foci in this

setting does not seem to dictate the quality of the LLM-generated

summaries. Our study highlights an inability to align human focus

with SHAP-based model focus measures. This result calls for future

investigation of multiple open questions for explainable language

models for code summarization and software engineering tasks in

general, including the training mechanisms of language models for

code, whether there is an alignment between human and model

attention on code, whether human attention can improve the devel-

opment of language models, and what other model focus measures

are appropriate for improving explainability.
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1 INTRODUCTION
Recent language models for code have shown promising perfor-

mance on several code-related tasks [31]. Among these tasks is

neural code summarization, where a language model generates a

short natural language summary describing a given code snippet.

This is often an indicative task demonstrating a model’s ability

to comprehend code. Currently, the majority of assessments for

how well a language model understands code directly measures the

quality of code summaries generated by the models, and compares

them with human-written summaries [31]. Comparatively little is

known about why and how the language models reason about code

to generate such summaries. Similar to many other downstream

domains of machine learning in software engineering, understand-

ing and explaining how and why language models for code work

(or fail) is critical to improving model architecture, reducing bias,

and preventing undesirable model behavior.

Human programmers typically achieve a strong understanding

of code. Thus, proficient language models might be explained if

they focus on the same parts of code that humans would [21]. Eye-

tracking studies have been conducted to analyze programmers’

visual patterns while reading code [2, 22]. Specifically, the duration

and frequency of a programmer’s eye gaze on a part of code in a

spatially-stable manner, referred to as fixation duration and fixation
count respectively, are indicative of cognitive load [24]. Thus, these
measures of eye-tracking can indicate the parts of code on which

human programmers focus. In contrast, there is a lack of consensus

on how to measure a language model’s reasoning about code (see

Section 2.2). Most existing works extract the self-attention layers in

language models for code to measure the model attention [21, 20, 9].
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Such methods require direct access to the internal layers of a lan-

guage model, limiting the possibility to investigate interpretability

of many state-of-the-art proprietary models (e.g., ChatGPT).

In this paper, to investigate how proprietary language models

reason about code, we employ a state-of-the-art perturbation-based

method, SHAP [15] (SHapley Additive exPlanations), that treats

each language model as a black-box function. With SHAP, we an-

alyze the feature attribution (i.e., which parts of code are deemed

important by the model) in six different state-of-the-art language

models for code. We use a set of Java methods to task both the

language models and human programmers with writing code sum-

maries. The feature attribution in the language models, measured

by SHAP, is then compared with human developers’ focus, col-

lected from eye-tracking. We hypothesize that sufficiently large

models may learn to focus on parts of code similarly to humans. If

validated, language model behavior can thus be described in terms

of human behavior, ultimately helping to explain and improve

language models. However, we find that explainability cannot be

provided through this lens and find no statistically significant evi-

dence suggesting the hypothesized alignment. Furthermore, we did

not find that language models’ focus exhibits a statistically signifi-

cant correlation with human focus in general. For future research

that aims to explore the explainability of language models for code

summarization, especially for those leveraging human attention,

our findings might suggest the following: (1) though widely used

in AI, SHAP may not be an optimal method to investigate where

language models focus during code summarization, or alternatively,

(2) a misalignment between language models and human develop-

ers in reasoning about code may provide insights for improving AI

models for code summarization.

2 BACKGROUND AND RELATED WORK
2.1 Neural Models for Code Summarization
Advancements in deep learning have enabled machine learning

models to generate summaries for source code. Among the state-

of-the-art models, NeuralCodeSum (NCS) first introduced the use

of Transformers in neural code summarization [3]. With the rise

of large language models (LLMs), ServiceNow and HuggingFace

released a 15.5B parameter LLM for code, StarCoder [13], and Meta

released a 7B parameter LLM, Code LLama [23], both of which can

serve to summarize code. Although not inherently an LLM for code,

GPT3.5 [18] and GPT4 [19] are also capable of code summarization.

In this paper, we investigate how all the aforementioned models

reason about code when tasked to generate code summaries.

2.2 Interpretability of Language Models
Existing works on interpretable language models generally seek to

investigate the relative importance of each input token for model

performance [29, 8, 16]. Such works can be commonly categorized

into two types: white-box vs. black-box. White-box approaches

require access to a language model’s internal layers [25, 28], often

directly investigating the self-attention scores in Transformer-based

models [7, 33, 32]. However, Transformer-based models’ inherent

complexity has led to a lack of consensus on how to aggregate

attention weights [30, 35, 33]. For the general research community,

white-box approaches preclude proprietary models (e.g., ChatGPT).

In contrast, state-of-the-art black-box approaches like SHAP [15]

(SHapley Additive exPlanations) apply game-theoretic principles

to assess the impact of input variations on a model’s output. SHAP

evaluates the effects of different combinations of input features

— such as tokens in a text sequence — by observing how their

presence or absence (simulated by tokenmasking) alters themodel’s

prediction from an expected result. This process helps to ascertain

the relative contribution of each feature to the output, allowing for

an analysis of the model without requiring access to its internal

architecture [14, 11]. In this paper, to investigate proprietarymodels,

we employ SHAP to measure where language models focus on code.

2.3 Comparing Human vs. Machine Attention
Previous papers have examined the alignment between human

and model attention in code comprehension tasks. Paltenghi et

al. [20] found that CodeGen’s [17] self-attention layers attend to

similar parts of code compared to human programmers’ visual

fixations when answering comprehension questions about code.

Similarly, Huber et al. [9] discovered overlaps in attention patterns

between neural models and humans when repairing buggy pro-

grams. Notably, Paltenghi and Prasdel [21] compared language

models’ self-attention weights and humans’ visual attention during

code summarization. They found that model attention, measured

by self-attention weights, does not align well with human attention.

However, this work is limited by investigating only small CNN and

transformer models. Most importantly, all aforementioned studies

used white-box approaches towards interpretability of open-source

models, limiting applicability to state-of-the-art proprietary models.

Recently, Kou et al. [11] utilized both white-box and black-box

perturbation-based approaches to measure LLMs’ focus in code

generation tasks, and discovered a consistent misalignment with

humans’ attention. In general, these works have demonstrated that

whether human and machine attention align depends heavily on

the methods employed to approximate machine focus, as well as

the specific code comprehension task examined. In this paper, we

build upon former works by examining whether human attention

correlates with feature attribution in language models, measured by

a black-box perturbation-based approach, in code summarization.

3 EXPERIMENTAL DESIGN
3.1 Measuring Human Visual Focus
We used eye-tracking data measuring human attention from a con-

trolled human study with 27 programmers. The study obtained

IRB approval, and asked participants to read Java methods and

write accompanying summaries [4]. Each participant summarized

24–25 Java methods from the FunCom dataset [12], yielding 671

trials of eye-tracking data in total. Considering data quality, two

authors with five and eight years of Java experience cooperatively

removed participant data associated with five summaries that did

not demonstrate an understanding of the Java code.

In this work, we sought to measure where humans and language

models focus on code as they summarize it. We first used the srcML
parser to convert each Java method into its corresponding Abstract

Syntax Tree (AST) representation [6]. The AST provides structural

context for each token literal (i.e., ‘Hello World’ −→ String Literal).

With the gaze coordinates collected from the eye-tracker [1], we
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measured humans’ focus on each AST token. Typically, researchers

use fixations to quantify human visual focus [24]. A fixation is de-

fined as a spatially stable eye-movement lasting 100–300ms. Most

cognitive processing occurs during fixations [24], so researchers

consider their frequency and duration in making inferences about

human cognition. In our analyses, we computed the average count

and duration of programmers’ fixations on each AST token. Conse-

quently, for each Java method, we obtained two visual focus vectors

with lengths equal to the number of AST tokens, respectively, which

represent fixation counts and durations on each token
1
.

3.2 Measuring Model Focus
As mentioned in Section 2.2, we choose SHAP’s official, default

implementation of the TeacherForcing method to measure feature

attribution in language models, treating each as a black-box func-

tion. For each language model, we pass in each of the 68 Java

methods (also read by human programmers) as input, along with

necessary prompting for the model to output summaries of source

code. For each Java method passed into each language model, we

let 𝑖 denote an input token (in code) and 𝑜 denote an output token

(in summary). For each (𝑖 , 𝑜) pair, SHAP produces an importance

score, denoted 𝑣 (𝑖,𝑜 ) , signifying how much 𝑖’s presence or absence

alters the presence of 𝑜 . Then, the importance score of each input

token
2
, 𝑣𝑖 , is calculated such that 𝑣𝑖 =

∑
𝑜 |𝑣 (𝑖,𝑜 ) |. Note that now 𝑣𝑖

is associated with a language model token, and each AST token may

consist of several language model tokens. Thus, for each AST token,

we calculate its score
1

𝑛

∑𝑛
𝑗=1 𝑣 𝑗 , where 𝑣1, · · · , 𝑣𝑛 are scores of lan-

guage model tokens constituting the AST token. Consequently, for

each language model on each Java method, we obtain a focus vector

(with a length equal to the number of AST tokens) representing

how influential each AST token is to the model.

In total, we investigated the model focus of six different models:

GPT4, GPT-few-shot, GPT3.5, StarCoder, Code Llama, and NCS.

Here, GPT-few-shot is a GPT3.5 model, but in an attempt for the

model to produce code summaries more similar to those of humans,

we used few-shot prompting to instruct the model to provide sum-

maries similar to two randomly selected human-written summaries.

The other five state-of-the-art LLMs are introduced in Section 2.1

and implemented with their default parameters.

3.3 Comparing Human and Model Foci
For brevity, we refer to two human visual focus measurements

(i.e., fixation duration and count) and six language models as eight

"focus sources." For each source, we obtained 68 focus vectors, each

corresponding to a Java method. These vectors were normalized

to sum to 1, and reflect how important each AST token is for the

human/model. We answer these research questions:

• RQ1: Is there a general correlation between human and ma-

chine focus patterns for code summarization?

• RQ2: Do the code summaries increase in quality when ma-

chine focus becomes more aligned with that of humans?

3.3.1 RQ1. We assess the correlation between human and machine

foci across the 68 Java methods. Specifically, for each pair of focus

1
Our analyses do not include brackets or semi-colons, or other such syntactic elements.

2
We use the absolute value by choice, without which experiments show similar results.

sources, we iterate through each Java method and calculate the

Spearman’s rank coefficient (𝜌) [27] between the two sources’ vec-

tors for that method. Then, for each pair of focus sources, we report:

(1) The mean and standard deviation of Spearman’s 𝜌 across all Java

methods where correlation is statistically significant (𝑝 ≤ 0.05),

and (2) the proportion of Java methods demonstrating a statistically

significant correlation (𝑝 ≤ 0.05).

In addition, we group all AST tokens into 18 semantic categories

(e.g., method call, operator, etc.) and investigate how much hu-

mans
3
and language models focus on each semantic category. The

focus score assigned to each semantic category is the sum of the

focus scores assigned to each AST token belonging to that seman-

tic category. To counter biases where certain semantic categories

contain more AST tokens or appear more frequently, we report

the relative difference between machine and human foci for each

semantic category. That is, we average the six language models’

focus scores per category and report | 𝑓 𝑜𝑐𝑚𝑎𝑐ℎ𝑖𝑛𝑒−𝑓 𝑜𝑐ℎ𝑢𝑚𝑎𝑛

𝑓 𝑜𝑐ℎ𝑢𝑚𝑎𝑛
|.

3.3.2 RQ2. Here, a human expert provides quality ratings for sum-

maries generated by each language model for every Java method

using four criteria: accuracy, completeness, conciseness, and read-

ability. Next, we calculate the Spearman’s 𝜌 between each language

model’s focus vector and the human fixation duration vector across

all Java methods where correlation is significant (𝑝 ≤ 0.05). We

then append all such statistically significant 𝜌’s to form a vector, de-

noted 𝑣𝑐𝑜𝑟 , to represent the degrees of alignment between machine

and human foci across the Java methods investigated
4
.

Subsequently, we determine whether this alignment is correlated

with the rated quality of summaries. Specifically, we construct four

other vectors, {𝑣𝑎𝑐𝑐 , 𝑣𝑐𝑜𝑚, 𝑣𝑐𝑜𝑛, 𝑣𝑟𝑒𝑎}, containing the accuracy, com-

pleteness, conciseness, and readability scores respectively. At each

index 𝑖 , {𝑣𝑐𝑜𝑟 [𝑖], 𝑣𝑎𝑐𝑐 [𝑖], 𝑣𝑐𝑜𝑚 [𝑖], 𝑣𝑐𝑜𝑛 [𝑖], 𝑣𝑟𝑒𝑎 [𝑖]} are respectively
the Spearman’s 𝜌 , summary accuracy, completeness, conciseness,

and readability of the same language model applied on the same

Java method. We then measure and report the Spearman’s rank

correlation between 𝑣𝑐𝑜𝑟 and 𝑣𝑖 , where 𝑣𝑖 ∈ {𝑣𝑎𝑐𝑐 , 𝑣𝑐𝑜𝑚, 𝑣𝑐𝑜𝑛, 𝑣𝑟𝑒𝑎}.

4 RESULTS
4.1 RQ1: General Correlation
As shown in Table 1, there is a general lack of correlation between

human and machine foci. We highlight that the means and standard

deviations in Table 1 are only calculated from Java methods where

the Spearman’s 𝜌 is statistically significant (with 𝑝 ≤ 0.05). In

practice, between any pair of human-LLM focus sources, at most

22% of the 68 Java methods yield a Spearman’s 𝜌 with 𝑝 ≤ 0.05.

As a baseline, the Spearman’s 𝜌 has 𝑝 ≤ 0.05 for all Java methods

between human duration and fixation focus vectors, and for 85% of

Javamethods between any two languagemodel’s focus vectors. This

implies that any existing correlation between human and machine

foci is not widespread across the Java methods studied.

Furthermore, among those Java methods where the correlation is

statistically significant, the mean Spearman’s 𝜌 is small with a large

3
We use fixation durations to represent human focus. We empirically verify that using

fixation count yields similar results.

4
Note that 𝑣𝑐𝑜𝑟 contains Spearman’s 𝜌’s obtained from all six language models. We

empirically verify that conducting the analogous analysis for each language model

separately yields a similar result.
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Table 1: Pair-wise correlation among focus sources; “Dura-
tion” and “Count” are human visual focus. Each cell shows
the means and standard deviations of Spearman’s 𝜌 for all
Java methods showing significant correlation (𝑝 ≤ 0.05).

Duration Count GPT4 GPT-few GPT3.5 StarCoder CodeLlama NCS

Duration 1.00±0.00 0.88±0.06 -0.11±0.41 -0.13±0.42 -0.09±0.52 -0.18±0.48 -0.18±0.42 -0.24±0.40
Count — 1.00±0.00 0.01±0.45 -0.24±0.33 -0.10±0.48 -0.31±0.29 -0.13±0.43 -0.33±0.33
GPT4 — — 1.00±0.00 0.68±0.12 0.76±0.12 0.67±0.14 0.67±0.14 0.55±0.13
GPT-few — — — 1.00±0.00 0.72±0.12 0.62±0.15 0.64±0.15 0.55±0.13
GPT3.5 — — — — 1.00±0.00 0.65±0.16 0.67±0.15 0.58±0.13
StarCoder — — — — — 1.00±0.00 0.66±0.15 0.59±0.11
Code Llama — — — — — — 1.00±0.00 0.56±0.14
NCS — — — — — — — 1.00±0.00
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Figure 1: How much more/less do language models focus on
each semantic category compared to humans?
standard deviation. In fact, for most such methods where a model

and human show significant correlation in focus, the Spearman’s

𝜌 is often either around 0.5 or −0.5, but rarely in between. This

suggests the relationship between human and machine foci varies

significantly depending on the specific Java method.

Interestingly, although few-shot-alignment in GPT-few-shot ren-

ders the model’s generated summaries more similar to those of

humans, this does not lead to higher correlations between model

and human foci. In addition, feature attribution in all language

models is moderately or strongly positively correlated with each

other on a majority of Java methods, which intuitively makes sense

since all six models are based on the Transformer architecture.

We also investigate how language models’ focus on each seman-

tic category differs from that of humans. As shown in Figure 1,

language models’ generation of code summaries seems to be more

reliant on comments, return values, and specific statements such

as literals and assignments, and less reliant on method calls and

variables/methods not defined explicitly within the Java method.

Discussion Point 1:We find no evidence that feature attribution

in language models is correlated with programmers’ visual focus.

Several possible interpretations can be inferred: (1) Alternative

methods may be needed to assess feature influence in black-box

language models for code summarization, aiming for better align-

ment with human attention. (2) Access to the internal workings of

proprietary models might become critical if white-box models offer

more human-aligned insights into explainable language models

for code [20]. (3) It is possible that language models and humans

reason about code differently when summarizing source code.

Table 2: Correlation between human-machine focus align-
ment and summary quality (assessed by four metrics).

Accuracy Completeness Conciseness Readability

Spearman’s 𝜌 -0.1279 0.1309 0.0194 -0.0717

𝑝-value 0.3862 0.3753 0.8960 0.6280

GPT4 GPT-few-shot GPT3.5 StarCoder Code Llama NCS
Language Models
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Accuracy
Completeness
Conciseness
Readability

Figure 2: Average ratings of model-generated summaries.

4.2 RQ2: Summary Qualities
There is also a lack of correlation between the quality of summaries

generated by language models and how well their focus on code

aligns with humans’. The large p-values in Table 1 suggest that,

regardless of which metric is used to assess summary quality, there

is a lack of statistically significant correlation between the quality

of a model-generated summary on a Java method and how well

the model’s focus aligns with that of humans on that Java method.

Furthermore, Figure 2 shows that NCS produces worse summaries

than the other five models. Although Table 1 seems to suggest that

NCS’s focus is more negatively aligned with human attention, we

find no statistically significant metrics supporting such a claim,

partially due to the small sample size of Java methods yielding

statistically significant Spearman’s 𝜌 .

In general, Table 1 suggests that feature attribution in NCS is still

moderately positively aligned with that in other language models

on a majority of Java methods. This indicates the likelihood that

aspects other than feature attribution are more indicative of and

critical to a language model’s performance in code summarization.

Discussion Point 2: With a substantial body of work in NLP

showing that aligning neural models with human visual patterns

can lead to performance improvement [26, 34, 10, 5], we contain

our conclusion to the SHAP measure of feature attribution and the

human attention as measured in an eye-tracking experiment. The

link between human attention and feature attribution to machine

models is a subject of intense scientific investigation. We contribute

to the debate with this finding that SHAP did not correlate with

human eye attention in the measures or models we studied.

5 CONCLUSION
In this paper, we use a state-of-the-art, black-box, perturbation-

based method to assess feature attribution in language models on

code summarization tasks. We then compare the model-determined

important AST tokens with those identified by human visual focus,

as measured through eye-tracking. The results suggest that using

SHAP to measure feature attribution does not provide explainabil-

ity of language models through establishing correlations between

machine and human foci. Generally, our work can be interpreted

in two ways. First, feature attribution measured by SHAP may not

be the best way to interpret a language model’s focus during code

summarization as it fails to establish similarities with human focus.

Alternatively, it may be the case that machines reason about code

differently from humans when tasked to summarize source code.
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