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Growing evidence highlights the predictive power of cross-notationmagnitude comparison (e.g., 2/5 vs. 0.25) for
math outcomes, but whether these relations persist into adulthood and the underlying mechanisms remain
unknown. Across two studies during the 2021–2022 academic year, we investigated undergraduates’ cross-nota-
tion and within-notation comparison skills given equivalent fractions, decimals, and percentages (Study 1, N=
220 and Study 2, N= 183). We found participants did not perceive equivalent rational numbers equivalently.
Cluster analyses revealed that approximately one-quarter of undergraduates exhibited a bias to select percentages
as larger in cross-notation comparisons. Compared with the other cluster of undergraduates who showed little-to-
no bias, the percentages-are-larger bias cluster performed worse on fraction number line estimation and fraction
arithmetic (exact and approximate), as well as reporting lower Scholastic Aptitude Test/American College Test
(SAT/ACT) scores. Hierarchical linear regression analyses demonstrated that cross-notation comparison accu-
racy accounted for variance in SAT/ACT beyond within-notation accuracy. Mediation analyses were consistent
with a potential mechanism: Stronger cross-notation knowledge equips individuals to evaluate the reasonable-
ness of fraction arithmetic solutions. Together, these results suggest the importance of an integrated understand-
ing of rational number notations, which may not be fully assessed by within-notation measures alone.

Public Significance Statement
Our analyses showed that cross-notation understanding (e.g., fraction-to-decimal comparison) is an impor-
tant predictor of self-reported Scholastic Aptitude Test/American College Test (SAT/ACT) scores beyond
within-notation understanding (e.g., fraction-to-fraction comparison). In fact, in cross-notation comparisons,
undergraduate students showed that they did not perceive equivalent fractions, decimals, and percentages as
being equivalent; many students perceived percentages as larger. Further, the cluster of undergraduate stu-
dents who exhibited this percentages-are-larger bias performedworse on a variety of math measures, as well
as reporting lower SAT/ACT scores, when compared with the high-performing cluster of students.
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Daily decisions, such as deciding whether a package of 1.05 lbs. of
ground beef is sufficient for a recipe that calls for 1½ lbs. of meat,
require rational number understanding. Such decision-making
engages cross-notation number sense, the ability to compare across
different notations such as determining the larger number (e.g., 2/5
vs. 0.25). This kind of number sense differs from within-notation
number sense, the ability to compare within notations to determine
the larger value (e.g., 2/5 vs. 1/4). Both research and curricula largely
focus on within-notation knowledge, leaving open the question of the
role that cross-notation knowledge plays in informal daily decisions
and more formal school-based mathematics. Recent research has sug-
gested that cross-notation knowledge is essential for success inmiddle
school, even beyond within-notation knowledge (Schiller & Siegler,
2023). In the present research, we examined whether this relation
between cross-notation number-sense and mathematical achievement
persists to the end of K–12 education, as measured by self-reported
SAT/ACT scores. Further, we employ person-centered cluster analy-
ses to uncover distinct profiles of students’ cross-notation performance
by drawing upon recent work that has uncovered distinct profiles of
student misconceptions with fractions (Abreu-Mendoza et al., 2023;
Gómez & Dartnell, 2019; Reinhold et al., 2020, 2023). Finally, we
test a theory about a possible underlying mechanism for the impor-
tance of cross- over within-notation knowledge in mathematical
achievement. Specifically, we theorize that cross-notation knowledge
helps individuals estimate solutions to fraction arithmetic problems,
which helps improve fraction arithmetic calculation accuracy, a neces-
sary skill for math achievement.

Within-Notation Understanding

Rational numbers are a persistent and pervasive challenge for both
children and adults. Children frequently make mistakes with fractions,
such as indicating that 12/13+ 7/8 is approximately 1, 19, or 21, rather
than 2 (Carpenter et al., 1980). These issues extend to decimals and per-
centages. For example, In Hiebert and Wearne (1985), close to half of
fifth-grade students aligned the right most digits and hence added 6+
0.32= 0.38. Even understanding of percentages is limited. For exam-
ple, in Gay andAichele (1997), less than half of middle school students
correctly answered that 87% of 10 is less than 10. Difficulty with ratio-
nal numbers is problematic given their importance for success in
advanced math courses, such as algebra (Booth & Newton, 2012;
Siegler et al., 2012), overall math achievement (Siegler et al., 2011),
and in everyday life, such as in the workplace (Handel, 2016).
To address these difficulties, researchers have primarily focused on

children’s within-notation understanding of fractions, decimals, and,
to a lesser extent, percentages (e.g., Durkin & Rittle-Johnson, 2012;
Gay & Aichele, 1997; Stafylidou & Vosniadou, 2004). Whole num-
ber bias, also termed natural number bias, is thought to be at the root of
many of the difficulties individuals experience with rational numbers
(Alibali & Sidney, 2015; Ni & Zhou, 2005).Whole number bias is the
tendency to inappropriately apply principles of whole numbers to frac-
tions, decimals, and percentages.
Within-notation knowledge of fractions is especially difficult (e.g.,

Behr et al., 1980; Fyfe&Brown, 2018; Iuculano&Butterworth, 2011;
Knuth et al., 2005; Matthews et al., 2012) and whole number bias
likely contributes to such difficulties (Alibali & Sidney, 2015; Ni &
Zhou, 2005). When comparing fractions (e.g., 3/7 vs. 2/3), individuals
may be focused on the magnitudes of the numerators (e.g., 3. 2) and
the denominators (e.g., 7. 3) leading them to incorrectly select the

smaller fraction as the larger number (Meert et al., 2010; Reinhold
et al., 2020). Relatedly, solution times may be affected such that indi-
viduals are slower comparing fractions incongruent with whole num-
ber thinking (e.g., 3/7 vs. 2/3) than comparisons that are congruent
with whole number thinking (e.g., faster at correctly comparing 3/8
vs. 5/9 because 3. 5 and 8. 9) (Obersteiner et al., 2013;
Vamvakoussi et al., 2012; Van Hoof et al., 2013). There is also evi-
dence that individuals deploy other biased responding patterns with
fractions (Gómez & Dartnell, 2019) and recent work has suggested
that understanding profiles of individuals’ misconceptions with frac-
tions could improve math outcomes by targeting the specific miscon-
ceptions (Reinhold et al., 2023).

Individuals are also likely to fall prey to whole number bias with
understanding of decimals (Durkin & Rittle-Johnson, 2015;
Moloney & Stacey, 1997). In whole numbers, a longer-string length
indicates a larger magnitude (e.g., 25. 9) but this is not always the
case for decimals (e.g., 0.25 is not greater than 0.9). Indeed, chil-
dren exhibit such a whole number misconception, as well as two
other related misconceptions: role of zero and fraction misconcep-
tions (Durkin & Rittle-Johnson, 2015; Moloney & Stacey, 1997).
In regards to the role of zero misconception, there is evidence that
children disregard the role of zero in decimals (e.g., 0.07= 0.7
because 07 is the same as 7 in whole numbers) and indicate that
affixing a zero to the end of a decimal makes it larger because
this is the case with whole numbers (e.g., 320. 32 but 0.80 is
not greater than 0.8). Finally, in regard to the fraction misconception
with decimals, there is evidence that when children start to under-
stand more about fractions and decimals, they inappropriately
apply understanding of smaller fractional parts to decimals (e.g.,
0.723 is smaller than 0.2 because thousandths are smaller than
tenths). Together, these misconceptions could lead to issues in dec-
imal comparison (e.g., incorrectly stating 0.9. 0.23) and even
underestimation of decimals (Coulanges et al., 2021; Desmet et
al., 2010; Durkin & Rittle-Johnson, 2015; Huber et al., 2014;
Roell et al., 2017, 2019; Schiller et al., 2023; Varma & Karl,
2013). For example, undergraduate students often estimate 0.80
as larger than 0.8 on the number line (Schiller et al., 2023), likely
because the zero in the hundredths place in 0.80 makes it appear
more similar to the whole number 80, and 0.8 appears more similar
to the whole number 8. That being said, directly comparing nota-
tions reveals that relative to each other, within-notation knowledge
of decimals is typically better than that of fractions (Binzak &
Hubbard, 2020; Mock et al., 2018, 2019).

While a good amount is known about within-notation understand-
ing of fractions and decimals, less is known about understanding of
percentages. We would expect performance with percentages to be
the highest, given how children estimate them on number lines sim-
ilarly to whole numbers (Schiller, Abreu-Mendoza, Thompson, &
Rosenberg-Lee, 2024). Only one study has compared children’s
within-notation magnitude representations for the three rational
number notations through magnitude comparison (Schiller &
Siegler, 2023). They found that middle school students performed
best on percentage magnitude comparisons, then decimal magnitude
comparisons, and worst on fraction magnitude comparisons.
However, it is unclear whether this pattern of results would also
hold for undergraduate students, who are far removed from rational
number instruction. Thus, the first aim of the current work was to
assess undergraduate students’ within-notation magnitude compari-
son accuracy for fractions, decimals, and percentages.
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Cross-Notation Understanding

Thoughwhole number bias is thought to be at the root of difficulties
for within-notation understanding, less is known about the nature of
difficulties that individuals experience with cross-notation under-
standing. Typically, cross-notation knowledge is measured with
tasks that involve more than one notation, such as magnitude compar-
ison (e.g., select the larger value: 0.22 vs. 3/5, Hurst & Cordes, 2016,
2018a, 2018b) or ordering tasks (e.g., rank order from smallest to larg-
est: 0.6, 10/10, 20/100, 0.002; Mazzocco & Devlin, 2008). Similar to
within-notation magnitude comparison, both children and adults rep-
resent magnitudes along an integrated continuum, such as showing
evidence of distance effects when comparing fractions, decimals,
and whole numbers (Binzak & Hubbard, 2020; Ganor-Stern, 2013;
Hurst & Cordes, 2016, 2018a, 2018b; Mazzocco & Devlin, 2008).
Recent work has suggested that cross-notation understanding warrants
more careful attention. Specifically, children’s cross-notation under-
standing (i.e., comparing fractions vs. decimals) predicted fraction
and decimal arithmetic (Braithwaite et al., 2022) and math achieve-
ment (Schiller & Siegler, 2023) beyond within-notation under-
standing. That being said, it is unclear whether cross-notation
knowledge is always weaker than within-notation knowledge or
the reverse. For example, adults’ fraction–decimal magnitude com-
parison accuracy was worse than their decimal–decimal comparison
but better than their fraction–fraction comparison accuracy (Binzak &
Hubbard, 2020; Hurst & Cordes, 2016).
Further, while whole number bias seems to impact within-notation

processing of rational numbers, the difficulties involved in adults’ cross-
notation number processing are not clear. A percentages-are-larger bias
was apparent in an investigationwithmiddle school children (Schiller,
2020; Schiller & Siegler, 2023). In other words, middle school stu-
dents were more accurate on cross-notation comparison trials where
the percentage was the larger value (e.g., 40% vs. ¼) than when it
was not the larger value (e.g., 2/5 vs. 25%), despite the numerical
magnitudes for the compared values being the same (Schiller &
Siegler, 2023). It is not clear whether such biases extend into adult-
hood. Thus, the second goal of this study was to examine undergrad-
uates’ cross-notation comparison accuracy to determinewhether there
are performance differences depending on whether the larger magni-
tude is expressed as a percentage, decimal, or fraction.
A third goal was to determine what proportion of undergraduates

exhibit the percentages-are-larger bias and whether there are differ-
ences in math skills among students who do versus do not exhibit
the bias. Recent work involving person-centered cluster analyses
has revealed distinct profiles of students’ fraction misconceptions
(Abreu-Mendoza et al., 2023; Gómez & Dartnell, 2019; Reinhold
et al., 2020, 2023). Further, these recent studies suggest that charac-
terizing such profiles could allow targeted instruction to address the
specific fractionmisconception rather than a one-size-fits-all approach.
Employing a similar methodology could characterize distinct profiles
of misconceptions in cross-notation understanding, which could have
implications for instruction. Thus, we employed such person-centered
analyses to describe the profiles of undergraduates who exhibit or do
not exhibit biases based on notational format. Specifically, we compare
Scholastic Aptitude Test/American College Test (SAT/ACT) scores
(Study 1 and 2) and other rational number skills (i.e., number line esti-
mation accuracy and confidence, and fraction arithmetic estimation
and calculation in Study 2) between biased and high performing
profiles.

Integrated Numerical Development

Finally, as a fourth goal, we seek to uncover a potential mechanism
for previously reported relations between cross-notation knowledge
and math achievement, relative to within-notation knowledge. For
the purposes of the present work, when discussing cross- and within-
notation knowledge, we are referring to magnitude comparison accu-
racy, whichwe operationalize as percent accuracy on the cross-notation
or within-notation comparison tasks but, as noted earlier, such under-
standings could be assessed through other measures such as numerical
magnitude ordering. Magnitude comparison accuracy is often thought
to assess the precision of individuals’ magnitude representations, the
degree to which individuals represent numbers on a mental number
line (Dehaene et al., 1993; Moyer & Landauer, 1967; Siegler et al.,
2011). We argue that building a fully integrated number line for frac-
tions, decimals, and percentages is not as straightforward for children
to construct as one for whole numbers. Many individuals seem to have
difficulty representing the same quantity in multiple ways. If individ-
uals understood that every location on the number line has infinite
ways to describe the same location, then they should estimate the mag-
nitudes for equivalent fractions at the same position on the number
line. However, even about one-third of eighth grade students estimate
the magnitude of fractions with larger numerator and denominator
components as being larger than equivalent fractions with smaller
components (e.g., placing 8/10 further to the right on the number
line than 4/5; Braithwaite & Siegler, 2018). And, as noted earlier, col-
lege students underestimate single digit decimals (e.g., 0.8) more than
their double-digit equivalents (e.g., 0.80) (Schiller et al., 2023).
Beyond these within-notation misconceptions, individuals do not
seem to conceive of fractions, decimals, and percentages as being
on the same number line. For example, even high school students
often claim that only fractions exist between fractions, and only deci-
mals exist between decimals (Vamvakoussi & Vosniadou, 2010).
Together, these results suggest that many individuals have not internal-
ized a mental model of numbers that includes fractions and decimals
(and likely not percentages) on the same mental number line.

Integrated number sense—understanding of the relations among all
rational number notations—has been proposed as a desired end state
for numerical development (Schiller & Siegler, 2023; see Figure 1). In
the current context, we define integrated number sense as involving a
mental number line, which incorporates both within and cross-
notation magnitude representation, such that an individual can both
identify any location on the number line and abstract that the position
can be represented in infinite ways (e.g., 4/5= 8/10= 80%= 0.8=
0.80, etc.).

Our definition encompasses the strong view that individuals should
be secure in their knowledge of rational numbers as magnitudes on the
number line, regardless of notational format. In essence, integrated
number sense could be instantiated such that all different notational
formats are organized on a mental number line. The number line
becomes the organizing mental structure where all notations are rep-
resented in the same space. Further, integrated number sense does
not have to involve exact translations and therefore, strategies like
benchmarking (e.g., determining whether a number is greater or less
than 1/2, 1/4, 2/3, etc.) contribute to this organizing structure.
Integrated number sense obliviates whole number bias such that indi-
viduals should be able to get a ballpark approximation of numerical
magnitudes, without being swayed by whole number components
of the numbers. For example, in comparing 3/7 and 2/3, individuals
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might be influenced by the individual whole number components to
incorrectly select the larger number (i.e., 3. 2 and 7. 3, suggesting
incorrectly that 3/7. 2/3). Integrated number sense enables an indi-
vidual to flexibly use whatever within- or cross-notation means for
approximating these numbers, such as approximately translating to
another notation (e.g., 3/7! 40% and 2/3! 60%) (Fitzsimmons
et al., 2020; Sidney et al., 2021; Siegler et al., 2011; Siegler &
Thompson, 2014) and using those approximations to organize numer-
ical magnitudes on their mental number line. In line with Overlapping
Waves Theory (Siegler, 1996), people have at their disposal a variety
of skills to use depending on the context. In this situation, individuals
can approximately translate rational numbers into another notation at
any given time and will likely be more accurate and quicker. That
being said, even expert mathematicians fall prey to whole number
bias (Obersteiner et al., 2013). So, integrated number sense may not
totally obliviate whole number bias.
Even still, if integrated number sense is the desired end state of

numerical development, then both cross-notation and within-notation
number sense should be an important part of mathematical success.
However, most educational practices and research focuses on within-
notation magnitude representation. This focus on within-notation
magnitude representation is not unreasonable, as individual differences
for each distinct notation are related to success in mathematics.
Specifically, magnitude comparison for children’s and adults’ non-
symbolic quantities, whole numbers, fractions, and decimals are all
related to math achievement (Coulanges et al., 2021; Fazio et al.,
2014; Schneider et al., 2009, 2017, 2018; Siegler et al., 2011;
Torbeyns et al., 2015). Yet, recent research has suggested that cross-
notationmeasuresmight capture important aspects of individual differ-
ences that are not indexed by within-notation measures. Specifically,
individual differences comparing across fraction and decimal notations
was predictive of children’s fraction and decimal arithmetic skill
(Braithwaite et al., 2022), algebra ability (Hurst & Cordes, 2018a,
2018b), and was used as a classroom diagnostic tool to identify
those at risk for failure (Mazzocco & Devlin, 2008). Further, middle
school students’ cross-notation magnitude understanding accounted
for variance in math achievement and other math outcomes beyond

that accounted for by their within-notation understanding (Schiller &
Siegler, 2023).

Ideally, students should possess integrated number sense by the
end of their formal mathematics education. Thus, those who have
achieved this end state of numerical development, by completing
K–12 education, should have stronger mathematical skills. We test
this hypothesis by investigating whether undergraduates’ cross-
notation abilities are predictive of achievement on college admis-
sions exams such as SAT/ACT, which are designed to assess overall
math readiness for college (see ACT College and Career Readiness
Standards, 2022; Allen & Radunzel, 2017; Clough & Montgomery,
2015;Westrick et al., 2020). Though rational numbers may appear in
problems on the SAT/ACT, there is likely much less emphasis on
understanding of basic concepts (e.g., magnitude comparison)
than is apparent on measures of math achievement for middle school
students, who more recently encountered this material. Therefore,
the fourth goal of the study was to investigate the contribution of
undergraduates’ within- and cross-notation comparison accuracy
on their self-reported college admissions exam performance.

Moreover, we theorize about a potential mechanism underlying
why cross-notation number sense better predicts math outcomes
than within-notation measures. Specifically, we argue that cross-
notation measures might better assess individuals’ integrated num-
ber sense and that integrated number sense may play a role in helping
individuals estimate solutions to fraction arithmetic problems, which
in turn helps improve fraction arithmetic calculation accuracy. From
a very early age (i.e., preschool/kindergarten), mapping between dif-
ferent number formats (e.g., spoken words, nonsymbolic quantities,
symbols, etc.), together with number relations (e.g., magnitude com-
parison), and number operations (e.g., verbal arithmetic) become
intertwined as they support success in mathematics (Jordan et al.,
2022). Relatedly, it has been proposed that stronger fraction number
sense supports arithmetic accuracy because magnitude knowledge
enables one to estimate reasonable solutions and thus select an arith-
metic strategy that does not yield implausible results (Braithwaite &
Siegler, 2021; Siegler et al., 2011, 2020). Here, we suggest that frac-
tion knowledge alone does not incorporate mapping between

Figure 1
Theorized Integrated Mental Number Line

Note. Individuals who possess an integrated mental number line can abstract that every location on the num-
ber line can be represented in infinite ways. Adapted from “Integrated Knowledge of Rational Number
Notations Predicts Children’s Math Achievement and Understanding of Numerical Magnitudes,” by
L. K. Schiller and R. S. Siegler, 2023, Cognitive Development, 68, Article 101380 (https://doi.org/10.1016/
j.cogdev.2023.101380). Copyright 2023 by Elsevier.

LACK OF INTEGRATED NUMBER SENSE 73

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1016/j.cogdev.2023.101380
https://doi.org/10.1016/j.cogdev.2023.101380
https://doi.org/10.1016/j.cogdev.2023.101380
https://doi.org/10.1016/j.cogdev.2023.101380
https://doi.org/10.1016/j.cogdev.2023.101380
https://doi.org/10.1016/j.cogdev.2023.101380
https://doi.org/10.1016/j.cogdev.2023.101380
https://doi.org/10.1016/j.cogdev.2023.101380


notational formats. Cross-notation skill in mapping between rational
number formats (e.g., 4/16=¼= 0.25= 25%), whether exact or
approximate mapping, is likely to support skill in number relations
(e.g., 2/5 vs. 25%) and also number operations (e.g., is 1/2+ 1/4
closer to 2/6, 2/8, or 8/10?). Harnessing these interwoven skills, indi-
viduals can estimate reasonable solutions to arithmetic problems by
making approximate translations to organize numerical magnitudes
on their mental number lines and use this knowledge to select appro-
priate calculation strategies.
To see whether this might be the case, consider a fraction addition

problem: 2/5+ 1/7. The incorrect strategy of adding numerators and
denominators separately would yield the answer 3/12, which might
not seem unreasonable to many students. However, approximately
translating 2/5 to 0.40, 1/7 to 0.10, and 3/12 to 0.25 would make
it more obvious that the estimated sum of the decimal equivalents,
0.50, was greater than the proposed answer, 0.25. That realization
could motivate such students to try a different strategy that produced
a more plausible answer. If this hypothesis is correct, then the rela-
tion between within-notation comparison accuracy and fraction
arithmetic skill should be mediated by cross-notation comparison
accuracy and arithmetic estimation ability. Indeed, to preview our
results, within-notation comparison accuracy was no longer a signif-
icant predictor when cross-notation comparison accuracy was added
to a model predicting SAT scores in Study 1, suggesting that cross-
notation comparison accuracy mediates the relation between within-
notation comparison accuracy and mathematical success. Thus, in
Study 2, we collected fraction arithmetic estimation and calculation
performance accuracy in order to conduct a mediation analysis to test
the hypothesis that cross-notation skills (i.e., cross-notation compar-
ison accuracy) support fraction arithmetic estimation, which contrib-
utes to fraction arithmetic skill.

The Present Study

The present study tested the premise that if undergraduates possess
integrated number sense, there should be no differences in performance
whether numbers are expressed as fractions, decimals, or percentages.
Therefore, deviations from this result suggest lack of integrated number
sense in undergraduates. We examined this premise across four goals.
Our first goal was to investigate undergraduates’ within-notation mag-
nitude representation for matched fractions, decimals, and percentages.
That is, does accuracy differ whether comparisons are presented as frac-
tions, decimals, or percentages? We hypothesized that undergraduates’
within-notation comparison accuracywould be lowest for fractions, fol-
lowed by decimals, and finally percentages.
Our second goal was to investigate undergraduates’ cross-notation

understanding to determine whether there are any biases based on
whether magnitudes are expressed as a fraction, decimal, or percent-
age. Prior work has shown that middle school students demonstrate
a bias toward selecting the percentage as the larger magnitude in
percent–fraction and percent–decimal comparisons but no such bias
exists in fraction–decimal comparisons (Schiller & Siegler, 2023).
Theoretically, if undergraduates have attained integrated number
sense, the end state of numerical development, there should be no dif-
ference in accuracy for magnitude comparison whether the numbers
are expressed as fractions, decimals, or percentages. However, based
on the similarity of percentages to whole numbers, we hypothesized
that undergraduates would also exhibit this percentages-are-larger
bias, but no bias would be present in fraction–decimal comparisons.

The third goal was to determine whether undergraduates
could be categorized as students who do or do not exhibit the
percentages-are-larger bias. Specifically, first, we performed data-
driven, person-oriented analyses (i.e., cluster analyses) to uncover
the underlying strategy profiles for comparing percentages and frac-
tions, as it is where children showed the largest bias (Schiller &
Siegler, 2023). We hypothesized that similar to children, a proportion
of undergraduate students would show a percentages-are-larger bias
profile. Then, we examined how this profile, as well as the others
found by the cluster analyses, performed in the other types of cross-
notation comparisons, as well as the within-notation comparisons.
Finally, we investigated whether this profile differed from the under-
graduates who do not exhibit the bias, on a range ofmathematical skills.
Study 1 was our initial foray into this investigation, and as such, we
only collected self-reported SAT/ACT scores. Recognizing the limita-
tions of self-reported scores (Cole &Gonyea, 2010; Sticca et al., 2017),
in hindsight, it would have been useful to collect scores directly from
the relevant institution in our follow-up study. However, in Study 2,
we wanted to determine whether we could replicate findings with self-
reported SAT/ACT scores and also extend our findings with other
directly assessedmath outcomemeasures: number line estimation accu-
racy and confidence, and fraction arithmetic estimation and calculation.

Our fourth goal was to investigate the relations among within- and
cross-notation number sense, together with self-reported college
admissions exam scores and fraction arithmetic calculation/estima-
tion accuracy. Specifically, we examined individual differences in
cross-notation magnitude comparison and whether these differences
explained variance in mathematical success on college admission
exams (i.e., SAT/ACT). Further, we conducted a mediation analysis
to test the hypothesis that cross-notation skills support fraction arith-
metic estimation, which contributes to fraction arithmetic skill.
Together, these analyses characterize undergraduate students’
cross- and within-notation comparison abilities and their relation
to a wide range of mathematical skills, thus specifying the extent
of their integrated number sense and its role in mathematical success.

Study 1

Method

Transparency and Openness Statement

In accordance with the journal’s Transparency and Openness
Promotion, we have made available all analyses in an html version
of a R-markdown file (https://osf.io/8z9mt/?view_only=fbe0a894e
c444b3fb9064e362bf742a8). This file is a dynamic document based
on our R code used for analyses, including the code, results, rendered
output, and a brief description of analyses.

Participants

We recruited 220 undergraduate students from Rutgers University-
Newark (Mage= 20.50 year, SD= 4.14, 73.18% female, 24.45%
male, 1.36% other; 65% Latino/Hispanic, 38% Black/African
American, 30% Asian, 26% Middle Eastern/North African, 20%
White, 19% South Asian/Indian, 6% multiracial, 1% Native
Hawaiian/Pacific Islander, 1% American Indian/Alaska Native, 2%
another identity, and 4% declined to answer) from a Northeastern uni-
versity’s psychology department subject pool. Specific demographic
information about undergraduate major appears in Table 1 in the
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online supplemental materials. Sixteen additional participants were
removed because they did not complete the entire assessment. Prior
to data collection, participants provided informed consent and after
completing the tasks, they received course credit for their participation
in the experiment. All protocols were in accordance with the Rutgers
University-Newark Institutional Review Board.
Data were collected online, and we used the end of the academic

term as a stopping rule. According to a sensitivity power analysis,
the sample size of Study 1 (N= 220) allows the detection of small
effect sizes for dependent-sample differences (Cohen’s d. 0.19),
with a power of 80% and an alpha level of .05. As the smallest sig-
nificant cross-notation difference reported in Schiller and Siegler
(2023) was 0.42 (percent vs. decimal comparisons), our current sam-
ple size was sufficiently powered to detect these effects. Regarding
the cluster analyses, our sample size allows us to test up to a
10-cluster solution, assuming participants were distributed equally
across clusters, as the recommended minimum number of observa-
tions per cluster is between 20 and 30 (Dalmaijer et al., 2022).

Design and Procedure

Participants completed an assessment in a 1-hr online data collec-
tion session on the survey platform Qualtrics (mean completion
time: 63 min, SD= 164) in an unsupervised testing condition.

Measures

Data from the present study were collected as part of a larger pro-
ject on undergraduate students’ understanding of rational numbers.
The primary task of interest in this study was magnitude comparison.
Participants were also assessed on a set of math measures, which are
not considered here. Specifically, after participants completed the
magnitude comparison task, they completed tasks in the following
order: rational number questions (adapted from Van Hoof et al.,
2018), approximate fraction–decimal translation questions strategy
reports, exact fraction–decimal translation questions, and decile
number line estimation. Problems were randomized within tasks.
Participants were told not to use a calculator.
Participants provided demographic information, including their gen-

der, race, math background/major, and ACT/SAT scores. Specifically,
participants were asked to sharewhether they took the ACTor SAT and
if they remember their exact or approximate score for each subset (i.e.,
math, reading, writing). Most participants (n= 121 provided SAT
scores and the remainder (n= 99) did not provide any score).
Within-Notation Magnitude Comparison. On this task, par-

ticipants selected the larger of two magnitudes presented in the same
notation; all magnitudes were between 0 and 1. The same values
(i.e., 0.40 vs. 0.25, 0.35 vs. 0.60, and 0.38 vs. 0.08) were presented
for all three notations (e.g., 3/5 vs. 7/20, 0.6 vs. 0.35, and 60% vs.
35%). There were three such values, resulting in nine within-notation
comparisons; each comparison appeared twice, so that the correct
answer appeared once on the left and once on the right resulting in
18 trials (see TableA1 for full set of stimuli). The stimuli were selected
to have small, medium, and large numerical distances between the
compared values (i.e., 0.15, 0.25, 0.30). We operationalized perfor-
mance as percent correct across all within-notation trials.
Cross-NotationMagnitude Comparison. Participants selected

the larger of twomagnitudes that were presented in different notations.
The same three pairs of values used for within-notation comparison

were used for cross-notation comparison. These valueswere presented
as fraction, decimal, and percentages to be compared where there was
an instance in which fraction. decimal (e.g., 3/5 vs. 0.35), decimal
. fraction (e.g., 0.6 vs. 7/20), fraction. percent (e.g., 3/5 vs. 35%),
percent. fraction (e.g., 60% vs. 7/20), decimal. percent (e.g., 0.6
vs. 35%), and percent. decimal (e.g., 60% vs. 0.35). Each compar-
ison appeared twice: once with the correct value appearing on the left,
and once with the correct value appearing on the right. Values were
chosen such that whenever possible, the compared values shared dig-
its (e.g., 3/5 vs. 0.35). Since wewere controlling for magnitude, it was
not always possible to have the same digits in comparisons (e.g., 60%
vs. 7/20). Also, the number of decimal digits was varied as much as
possible, between one and two digits, given the constraint for control-
ling for magnitude. There were 36 cross-notation comparison trials
(see Table A2 for full set of stimuli). We operationalized performance
as percent correct across all cross-notation trials.

Data Analyses

We conducted analyses using R 4.2.0 (R Core Team, 2022). First,
we conducted a repeated-measures analysis of variance (ANOVA)
and planned pairwise comparisons to determine whether there were
differences in magnitude comparison by notation. Then, we con-
ducted cluster analyses to examine the different comparison profiles
for fraction–percentage problems. These clusters were based on par-
ticipants’ accuracy on items where the fraction was greater than the
percentage and where the percentage was greater than the fraction
in cross-notation comparisons. We selected these comparisons
because they were most problematic with children and wewere partic-
ularly interested in whether any of these profiles resembled the
percentages-are-larger bias shown by children. The cluster analyses
were conducted using the kmeans function from the stats package
(R Core Team, 2022). We determined the optimal number of clusters
with a consensus method using the n_clusters function from the
parameters package (Ludecke et al., 2020). This function performs
several methods to determine the optimal number of clusters (e.g.,
Elbow, Gap, Silhouette, indices included in Nbclust package,
among others). Then, it selects as the optimal number of clusters
the one suggested by the majority of the methods. As the recom-
mended minimum number of observations per cluster is between 20
and 30 (Dalmaijer et al., 2022), we tested for a maximum of 10 clus-
ters, the default number used by this function. We also reported the
percentage of explained variance (R2) and the Akaike information cri-
terion (AIC) for each of the cluster solutions. We used the fraction–
percent magnitude comparison accuracy to generate the clusters, as
these comparisons were most problematic for children (Schiller &
Siegler, 2023), but we also sought to examine how the clusters dif-
fered in performance on other tasks purported to tapmagnitude under-
standing (e.g., percent–decimal magnitude comparison, fraction
number line estimation, fraction arithmetic, etc.). Third, we conducted
hierarchical linear regressions to determine whether cross-notation
comparison accuracy explained variance in SAT scores beyond that
explained by within-notation accuracy for the subset of participants
who provided SAT math scores. We used average cross- and within-
notation magnitude comparison accuracy scores as respective com-
posite scores for analyses involving SAT scores.

All analyses include the full sample of participants (N= 220),
except for analyses involving SAT scores, which only include those
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who provided SAT Scores (n= 125). Descriptive statistics for all
tasks appear in Tables 3, 4, and 6 in the online supplemental materials.

Results

Contrasting Performance on Within and Cross-Notation
Comparison

On average, participants were less accurate on cross-notation
comparisons (M= 84.48%, SD= 17.00) than within-notation com-
parisons (M= 87.22%, SD= 17.00), t(219)= 4.00, p, .001,
Cohen’s d= 0.267.
Within-NotationMagnitudeComparison. A repeated-measures

ANOVAs comparing accuracy for fraction–fraction, decimal–decimal,
and percent–percent magnitude comparison showed a main effect of
notation, F(2, 438)= 50.12, p, .001, ηg

2= .084. Comparisons of
percentages were more accurate (M= 96.44%, SD= 12.18) than
comparisons of decimals (M= 84.02%, SD= 25.94), t(219)= 7.44,
p, .001, Cohen’s d= 0.50, and fractions (M= 81.21%, SD=
24.89), t(219)= 9.122, p, .001, Cohen’s d= 0.61. Accuracy of com-
parisons of decimals was slightly higher than that of fraction compar-
isons, t(219)= 1.85, p= .07, Cohen’s d= 0.13.
Cross-Notation Magnitude Comparison. Consistent with prior

research with middle-school students (Schiller & Siegler, 2023),
undergraduates exhibited a bias to select percentages as larger than
both fractions and decimals (Figure 2). Comparison accuracy was
higher when the percentage was larger than the fraction (M=
90.91%, SD= 17.61) relative to when the fraction was larger than
the percentage (M= 73.39%, SD= 29.85), t(219)= 8.40, p, .001,
Cohen’s d= 0.57. Comparison accuracy alsowas higher when the per-
centage was larger than the decimal (M= 93.64%, SD= 15.44) than
when the decimal was larger than the percentage (M= 81.44%,

SD= 25.74), t(219)= 6.69, p, .001, Cohen’s d= 0.45. Accuracy
was similar when the decimal was larger than the fraction (M=
84.17%, SD= 23.58) and when the fraction was larger than the deci-
mal (M= 82.35%, SD= 24.78), t(219)= 0.98, p= .327, Cohen’s
d= 0.07.

Cluster Analyses

Cross-Notation Comparison Profiles. The bias toward per-
ceiving percentages as larger than fractions and decimals was not
exhibited by all students. Some individuals performed similarly on
all types of comparisons and others showed the percentages-are-larger
bias. To test this interpretation, we used a k-means clustering algo-
rithm with a two-dimensional space, where each participant was rep-
resented by two data-points: the averaged performance on percent.
fraction versus fraction. percent trials. This unsupervised, data-
driven algorithm classifies data into k groups or clusters. We focused
on percent–fraction comparisons (rather than ones involving deci-
mals) as they showed the strongest bias in children (Schiller &
Siegler, 2023).

Table 2 in the online supplemental materials shows the percentage
of explained variance (R2), the AIC, and the number of methods that
suggested k clusters for the 1-to-10 cluster solutions. A four-cluster
solution was the number of clusters that was suggested by most
methods was seven of 28 (25.00%). This solution explained .809
of the variance (R2) and had an AIC of 20.95.

Figure 3 shows the accuracy in the different types of cross-
notation comparisons for the four clusters. The most common cluster
was composed of undergraduates who performed almost at ceiling
on all comparisons with no bias or minimal bias based on notation
of compared numbers (“high performing” cluster, n= 126 [57%
of the sample]). The second and third most prevalent clusters were

Figure 2
Percent Correct for Cross-Notation Magnitude Comparison

Note. (A) Percent versus fraction comparisons (e.g., 2/5 vs. 25%), (B) percent versus decimal comparisons
(e.g., 40% vs. 0.25), and (C) decimal versus fraction comparisons (e.g., 0.40 vs. 1/4). Participants exhibited a
bias to select the percentages as larger than fractions and decimals; however, there was no bias among the
fraction vs. decimal comparisons. Gray lines represent individual participants’ average scores in each of the
conditions. Thicker gray lines indicate more participants with the same scores. Error bars represent+ 1 SE.
See the online article for the color version of this figure.
*** p, .001.
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composed of undergraduates who performed better on tasks where
the percentage was larger but differed in the strength of this bias
(“strong percentage bias” cluster, n= 37 [17% of the sample] and
“moderate percentage bias” cluster, n= 35 [16% of the sample]).
Finally, a fourth group of students were more accurate when the frac-
tion was larger than the percentage (“fraction bias,” n= 22 [10% of
the sample]). See Figure 1 in the online supplemental materials for
accuracy with the different types of within-notation comparisons
for the four clusters.

Of note, this cluster analysis process does not merely differentiate
high-achieving versus low-achieving participants. Specifically,
when we conducted an analysis using a median split, we found
that 30 of the 126 participants identified as high-performing (i.e.,
possessing integrated number sense) would have been identified as
low-achieving based on the median split for overall performance.
In actuality, these 30 participants are not biased in cross-notation
comparison, they just have slightly lower magnitude processing abil-
ities. Further, two of the 35 participants identified as moderate

Figure 3
Cross-Notation Comparison Accuracy

Note. (A) Percent versus fraction comparisons, (B) percent versus decimal comparisons, and (C) decimal
versus fraction comparisons, based on the four-cluster model: high performing profile (n= 126), strong per-
centage bias profile (n= 37), moderate percentage bias profile (n= 35), and fraction bias profile (n= 22).
Gray lines represent individual participants’ average scores in each of the conditions. Thicker gray lines indi-
cate more participants with the same scores. Error bars represent+ 1 SE. See the online article for the color
version of this figure.
* p, .05. ** p, .01. *** p, .001.
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percentage bias (i.e., lacking integrated number sense) would have
been identified as high-achieving based on the median split for over-
all performance. In actuality, these participants are actually more
biased in their responding to cross-notation comparisons than
other high performing participants. Thus, the cluster analysis exam-
ines the degree to which clusters of participants are influenced by a
percentage bias, in a more sophisticated process than simply divid-
ing participants based on high- and low-achieving groups.
Finally, to determinewhether therewere differences within the high

performing and biased participants (strong and moderate percentage
bias and fraction bias clusters) in their within- and cross-notation com-
parison skills, we performed a mixed repeated-measures ANOVA
with cluster (high performing and biased profiles) as between-subject
factor and type of comparison (within and cross) as a within-subject
factor and accuracy as the dependent variable. This analysis yielded
main effects of cluster, F(1, 218)= 212.09, p, .001, ηg

2= .451, and
type of comparison, F(1, 218)= 17.33, p, .001, ηg

2= .012, which
were qualified by an interaction between them, F(1, 218)=
23.61, p, .001, ηg

2= .016. Notably, high-performing participants
did not show differences between their within (M= 95.57%, SD=
6.16) and cross-notation performance (M= 95.55%, SD= 8.89),
t(125)= 0.036, p= .971, Cohen’s d= 0.003, suggesting that
these students had integrated number sense. In contrast, biased stu-
dents had stronger within comparison skills (M= 76.06%, SD=
18.77) than cross-comparison ones (M= 69.62%, SD= 14.69),
t(93)= 4.92, p, .001, Cohen’s d= 0.507, indicating that they
had yet to develop an integrated number sense.
Math Achievement Differences Between Cross-Notation

Profiles. Slightly more than half of participants (125 of 220,
56.81%) reported their SAT scores. The percent who reported their
scores varied greatly across profiles (high performing= 84 of 126
[66%], strong percentage bias= 17 of 37 [46%], moderate percentage
bias= 20 of 35 [57%], fraction bias= 4 of 22 [18%]). Therefore, we
combined the three groups of biased students to analyze whether their
SAT scores differed from those of the high performing students.
Figure 5A shows that students in the high performing cluster (M=
575.06, SD= 85.39) had higher SAT scores than students in the
biased cluster (M= 516.92, SD= 114.25), t(123)= 3.19, p= .002,
Cohen’s d= 0.61.
While these results trend in the direction suggesting best perfor-

mance for high performing, followed by the percentage bias profiles,
and finally the fraction bias group on SAT scores, these results are
likely underestimated because participants with lower SAT scores
are less likely to self-report their SAT scores (Trice, 1990; Flake &
Goldman, 1991).

Individual Differences in Cross- and Within-Notation
Accuracy and Their Relation to Math Achievement

The differences in SAT performance among the different profiles
suggest that integrated cross-notation ability might be an important
aspect of general math achievement. However, it is unclear whether
these cross-notation abilities are important beyondwithin-notation abil-
ities. To address this question, we conducted hierarchical linear regres-
sion analyses.
As evidenced by Table 4 in the online supplemental materials,

within-notation and cross-notation magnitude comparison accuracy
were correlated with SAT and ACT scores. Hierarchical regression
analyses were used to determine whether cross-notation accuracy

accounted for variance in SAT scores beyond that explained by
within-notation accuracy. Within-notation magnitude comparison
was added to the model first to account for general rational number
magnitude representation; it predicted 5% of the variance in perfor-
mance (Step 1, p= .005). Cross-notation magnitude comparison
was entered next; it added 4% additional variance (p= .015), and
within-notation was no longer a significant predictor. Table 1 displays
results from the hierarchical regression.

One possibility for the lack of significance for within-notation
comparison accuracy in Model 2 but significance in Model 1
could be multicollinearity. However, tests to see if the data met
the assumption of collinearity indicated that multicollinearity was
not a concern (within-notation, tolerance= .35, variance inflation
factor [VIF]= 2.82; cross-notation, tolerance= .35, VIF= 2.82).

Discussion

The present findings suggested that nearly half of undergraduates
do not have well-integrated number sense. On within-notation magni-
tude comparisons, participants performed better on comparisons
involving percentages than on fraction and decimal comparisons.
Moreover, undergraduates were less accurate on cross-notation mag-
nitude comparisons than on within-notation comparisons for the
samemagnitudes. They also perceived percentages as larger than frac-
tions and decimals. Cluster analyses revealed that a third of undergrad-
uates (33%) displayed a percentages-are-larger bias (with 17%
displaying a strong percentage bias and 16% displaying a moderate
percentage bias), as demonstrated by higher accuracy when the per-
centage stimulus was the larger number than when it was the smaller
number in cross-notation comparisons. A smaller proportion (10%) of
undergraduates demonstrated a fractions-are-larger bias, as demon-
strated by higher accuracy when the fraction stimulus was the larger
number than when it was the smaller number in cross-notation com-
parison. This fractions-are-larger bias has not been documented previ-
ously in the literature. Together, these biases suggest that nearly half
of undergraduate students did not fluidly switch between notations to
judge values in cross-notation comparisons and instead are respond-
ing systematically based on heuristic thinking that either percentages
or fractions are larger in cross-notation comparisons. Interestingly, the
participants in the fractions-are-larger bias cluster reported lower SAT
scores than the percentages-are-larger bias cluster. Third, there was a
significant association between SAT scores and the profiles based on

Table 1
Cross-Notation Comparison Accuracy Explains Variance in
Self-Reported SAT Scores Beyond Within-Notation Magnitude
Comparison Accuracy

Independent variables b (unstandardized) SE b β (standardized)

Step 1
Constant 409.02 52.53
Within-notation 162.89 57.43 .248**

Step 2
Constant 372.63 53.55
Within-notation −24.47 94.56 −.037
Cross-notation 232.28 94.21 .355*

Note. R2= .054 for Step 1**; ΔR2= .0375 for Step 2*. SAT= Scholastic
Aptitude Test.
* p, .05. ** p, .01.
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rational number magnitude comparisons: Undergraduate students
who exhibited a bias also performed worse on the SAT relative to
the high performing cluster, who exhibited no bias or minimal bias.
Fourth, individual differences in cross-notation accuracy were predic-
tive of self-reported SAT scores beyond within-notation accuracy. In
fact, within-notation comparison accuracy was no longer a significant
predictor of SAT scores when the model controlled for cross-notation
comparison accuracy. These findings suggest undergraduates’ cross-
notation understandings could play an important role in overall
math achievement, though the results are correlational in nature.
Together, these results motivate further investigation to determine
whether they replicate in another sample and alsowhether they extend
to other directly assessed rational number outcomes. Furthermore, we
sought to test a specific hypothesis that cross-notation skills support
fraction arithmetic estimation, which contributes to fraction arithmetic
skill.

Study 2

Method

In Study 2, we examined whether the percentages-are-larger bias
observed in Study 1 replicated with new measures of rational number
knowledge and a new sample of undergraduate students. Specifically,
we tested whether the clustering results based on biases in magnitude
comparison extend to fraction arithmetic estimation, fraction arithmetic,
and number line estimation accuracy and confidence. Further, we
extended our investigation to examine the mechanism for the relations
among cross- and within-notation knowledge and math outcomes.
Specifically, we argue that cross-notation measures might better assess
individuals’ integrated number sense and that integrated number sense
may play a role in helping individuals estimate solutions to fraction
arithmetic problems, which in turn helps improve fraction arithmetic
calculation accuracy. Using both cross- and within-notation magnitude
comparison accuracy as measures of magnitude representation, we
tested a specific hypothesis that stronger magnitude knowledge may
be related to higher arithmetic accuracy because magnitude knowledge
enables one to estimate reasonable solutions and thus select an arith-
metic strategy that does not yield implausible results (Braithwaite &
Siegler, 2021; Siegler et al., 2011, 2020). Thus, we examined whether
the relation between within-notation knowledge and fraction arithmetic
skill was serially mediated by cross-notation knowledge and the ability
to estimate fraction arithmetic solutions. This data set is drawn from a
larger study examining the effects of two number line interventions
on fraction arithmetic estimation and calculation performance. The
larger intervention study was preregistered (https://osf.io/wh8eg/?
view_only=ba0f7d589aa34ae890bcb8ac8cd80b35), and one second-
ary analysis will be examined here using pretest data only: “Using
hierarchical linear regression analyses, we will examine whether
cross-notation magnitude comparison at pretest predicts ACT/SAT
beyond within-notation magnitude comparison.”

Participants

There were 185 participants recruited from Kent State University
in the United States. Two participants failed to answer two of three
attention check questions and thus were excluding, leaving a final
sample of 183 participants (74% female, 20% male, 3% other; 3%
preferred not to respond; 76% White, 9% Black/African American,
3% American Indian/Alaskan Native, 3% Hispanic/Latino, 7%

mixed, ,2% other/preferred not to report). Participants received
course credit for participating. Two participants were excluded
because they missed two of three attention checks, for a final sam-
ple of 183 students. For Study 2, we powered for the intervention
study as described in the preregistration (https://osf.io/wh8eg/?
view_only=ba0f7d589aa34ae890bcb8ac8cd80b35) and conducted
the preregistered secondary analysis with this sample. Prior to
data collection, participants provided informed consent and after
completing the tasks, they received course credit for their participa-
tion in the experiment. All protocols were in accordance with the
Kent State University Institutional Review Board.

Design and Procedure

Participants completed a pretest-training-posttest design in a 1-hr
online data collection session on the survey platform Qualtrics
(mean completion time: 62 min, SD= 120 min) in an unsupervised
testing condition. The program randomly assigned participants to
one of two training conditions, which were designed to last about
20 min. The findings reported here consist of pretest data involving
planned secondary analyses from the preregistration.

Measures

The measures included magnitude comparison (within- and cross-
notation), fraction arithmetic estimation and calculation, number line
estimation accuracy and confidence judgments, and a math anxiety
questionnaire. For the purposes of the secondary analyses reported
here, we exclude the results from the math anxiety questionnaire,
because the topic is beyond the scope of this article. Participants com-
pleted tasks in the order in which they are listed below, and problems
were randomized within tasks. Calculator use was not allowed. The
fraction arithmetic calculation task was the only one on which partic-
ipants were allowed to use paper and pencil. Participants provided
demographic information, including gender, race, math background/
major, and ACT/SAT information (116 of the 193 participants,
63% provided ACT scores; the remainder did not provide any score).

Cross-Notation and Within-Notation Magnitude
Comparison

The magnitude comparison stimuli and procedures were the same
as in Study 1.

Fraction Arithmetic Estimation

Participants were presented 12 fraction addition estimation prob-
lems, each with three multiple-choice alternatives. None of the
choices were the exact sum, but one option was very close. Half of
the trials had one “lure,” involving independent whole number calcu-
lation errors—for example, 5/6+ 2/4 had (a) 7/10, (b) 1/3, and (c) 1¼
as answer choices, where 7/10 was considered a “lure” because it
involved adding the numerators and denominators separately. The
measure was percent correct.

Number Line Estimation and Confidence

Participants completed a number line estimation task that was
adapted from Siegler and Pyke (2013), with the same fractions being
presented (1/5, 7/8, 11/7, 9/5, 13/6, 7/3, 13/4, 10/3, 9/2, and 19/4).

LACK OF INTEGRATED NUMBER SENSE 79

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://osf.io/wh8eg/?view_only=ba0f7d589aa34ae890bcb8ac8cd80b35
https://osf.io/wh8eg/?view_only=ba0f7d589aa34ae890bcb8ac8cd80b35
https://osf.io/wh8eg/?view_only=ba0f7d589aa34ae890bcb8ac8cd80b35
https://osf.io/wh8eg/?view_only=ba0f7d589aa34ae890bcb8ac8cd80b35
https://osf.io/wh8eg/?view_only=ba0f7d589aa34ae890bcb8ac8cd80b35
https://osf.io/wh8eg/?view_only=ba0f7d589aa34ae890bcb8ac8cd80b35
https://osf.io/wh8eg/?view_only=ba0f7d589aa34ae890bcb8ac8cd80b35
https://osf.io/wh8eg/?view_only=ba0f7d589aa34ae890bcb8ac8cd80b35


Each number line had a 0 at the left end, 5 at the right end, and the
to-be-estimated fraction above the center of the line. Immediately
after providing an estimate for the fraction’s location on the number
line, participants rated their confidence in their placement from 0%
to 100% (i.e., “I am not confident at all” to “I am totally confident”).
The participant could not see their previous number line estimate nor
change their response when providing confidence judgments.

Fraction Arithmetic Calculation

Participants were asked to solve four fraction arithmetic problems,
one each of addition, subtraction, multiplication, and division, con-
sisting of various combinations of 3/5, 1/4, and 2/3. Specifically, the
problems participants solved were 3/5+ 1/4, 2/3–3/5, 3/5 ÷ 1/4,
2/3× 3/5. We operationalized performance as percent correct.

Analytic Plan

As in prior work (e.g., Siegler et al., 2011), estimation accuracy
was measured by percent absolute error [PAE]), calculated as
PAE= (|participant’s answer – correct answer|)/numerical range.
Statistical analyses were performed using R 3.5.3 (R Core Team,

2022) and Statistical Package for the Social Sciences Version 28
(IBM Corp, 2021). Repeated-measures ANOVAs and planned pair-
wise comparisons were conducted to determine whether magnitude
comparison accuracy differed by notation. Hierarchical linear regres-
sions were conducted to determine the variance accounted for by
cross-notation and within-notation comparisons to ACT scores. As
in Study 1, cross- and within-notation magnitude comparison accu-
racy scores were used as composite scores for these analyses. All
analyses include the full sample of participants (N= 183), except
for analyses involving ACT scores, which only include the 116 par-
ticipants who provided ACT Scores. Cluster analyses were con-
ducted according to the methods described in Study 1. Finally, we
conducted a serial mediation model in Statistical Package for the
Social Sciences using the PROCESS macro (Hayes, 2017). We
tested the indirect path from within-notation accuracy to cross-
notation accuracy, cross-notation accuracy to fraction arithmetic esti-
mation, and fraction arithmetic estimation to fraction arithmetic
calculation. We considered the indirect effect significant if the
95% confidence interval for the indirect effect did not contain zero.

Results

Contrasting Performance on Within and Cross-Notation
Comparison

Similar to Study 1, accuracy was lower on cross-notation compari-
sons (M= 87%, SD= 14.72) than on within-notation comparisons
(M= 91%, SD= 13.14), t(182)= 5.733, p, .001, Cohen’s d= 0.42.

Within-Notation Performance

A repeated-measures ANOVA comparing accuracy on fraction–
fraction, decimal–decimal, and percent–percent magnitude compar-
isons yielded a main effect of notation, F(1, 364)= 35.56, p, .001,
ηg
2= .088. As in Study 1, percent–percent comparison accuracy
(M= 99%, SD= 6.51) was higher than decimal–decimal accuracy
(M= 88%, SD= 21.77), t(182)= 6.37, p, .001, Cohen’s d=
0.47, and fraction–fraction accuracy (M= 85%, SD= 22.53),

t(182)= 7.89, p, .001, Cohen’s d= 0.58. Accuracy of decimal–
decimal comparisons tended to exceed that of fraction–fraction com-
parisons, t(182)= 1.85, p= .066, Cohen’s d= 0.14.

Cross-Notation Performance

As in Study 1, participants exhibited a bias to select percentages
as larger than fractions and decimals (Figure 2 in the online supple-
mental materials).

As in Study 1,magnitude comparison accuracywas higher when the
percentage was larger than the fraction than when the fraction was
larger than the percentage, 94% (SD= 13) versus 75% (SD= 30),
t(182)= 9.23, p, .001, Cohen’s d= 0.68. Similarly, accuracy was
higher when the percentagewas larger than the decimal than the oppo-
site, 97% (SD= 9) versus 85% (SD= 23), t(182)= 7.00, p, .001,
Cohen’s d= 0.52. Unlike in Study 1, magnitude comparison accuracy
was also higher when the decimal was larger than the fraction than
when the fraction was larger than the decimal, 87% (SD= 21) versus
82% (SD= 24), t(182)= 2.90, p= .004, Cohen’s d= 0.21.

Cluster Analyses

Cross-Notation Comparison Profiles. In Study 1, we identified
a subset of students who departed from the overall bias toward percent-
ages being larger than equivalent decimals and fractions. Of note, we
determined that this cluster analysis process did not merely differentiate
high- versus low-achieving students but rather revealed the degree to
which clusters of participants are influenced by a bias. For example,
23% of participants that would have been identified as low-achieving
based on median split were identified as high-performing in regards
to the bias based on our cluster analysis process. Further, 6% of partic-
ipants that would have been identified as high-achieving based on
median split were identified as moderate percentage bias based on
our cluster analysis process. Thus, to investigate whether these profiles
of misconceptions are present in this sample as well, we conducted
cluster analyses based on accuracy on percent–fraction cross-notation
comparisons, as we did in Study 1. Unlike Study 1 where the greatest
number of clusteringmethods suggested a four-cluster model, for Study
2 most clustering methods indicated a two-cluster model, six methods
of 30 (20%). This solution explained 64.36%of the variance and had an
AIC of 14.91 (see Table 5 in the online supplemental materials).

The most prevalent profile is the “high-performing” cluster (n=
140), composed of undergraduates who perform almost at ceiling
with no bias or only a minimal percentages-are-larger bias. The other
cluster is the “percentages-are-larger bias” cluster (n= 43), composed
of undergraduates who perform better on tasks where the percentage is
larger than the compared number, suggesting a percentages-are-larger
bias. Unlike Study 1, therewas no “fraction bias” cluster in the Study 2
sample (Figure 4). Further, results consistently point to a
percentages-are-larger bias whether we incorporate into the cluster
analysis only fraction–percent comparison trials or include all six
trial types (see Figures 2 and 5 in the online supplemental materials).

In Study 1, we found a difference in math achievement (i.e., self-
reported SAT scores) between high performing and biased profiles.
In Study 2, we investigated whether this difference replicated, and if
any such differences extended to number line estimation accuracy
(PAE), confidence judgments 0%–100%), fraction arithmetic estima-
tion, and fraction arithmetic calculation accuracy (% accuracy). As
shown in Figure 5, fraction arithmetic estimation and calculation
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were more accurate among students in the “high performing” profile
than among those in the “percentage bias” profile. Moreover, PAE
was lower (i.e., more accurate) for the “high performing” profile,
and they also rated their confidence higher (i.e., 100 being “totally
confident”). Finally, college admission scores (i.e., SAT in Study 1
and ACT in Study 2) were higher in the “high performing” profile
than the biased profiles. Figure 3 in the online supplemental materials
shows the accuracy in the different types of within-notation compar-
isons of the two clusters.
Similar to Study 1, we performed a mixed repeated-measures

ANOVAwith cluster (high performing and percentage bias profiles)
as between-subject factor and type of comparison (within and cross)
as within-subject factors and accuracy as the dependent variable. This
analysis yielded main effects of Cluster, F(1, 181)= 127.47, p
, .001, ηg

2= .37, and type of comparison, F(1, 181)= 38.97,
p, .001, ηg

2= .033, and an interaction between them, F(1, 181)=
34.81, p, .001, ηg

2= .03. High performing participants showed
small differences in their within (M= 94.32%, SD= 9.73) and cross-
notation performance (M= 92.38%, SD= 10.04), t(139)= 2.986,
p= .003, Cohen’s d= 0.252. In contrast, percentage biased students

were more accurate on within-notation (M= 79.07%, SD= 15.89)
than cross-notation comparisons (M= 68.02%, SD= 11.88),
t(93)= 6.102, p, .001, Cohen’s d= 0.930.

Math Achievement Differences Between Cross-Notation
Profiles. To investigate whether ACT scores differed between stu-
dents who fit the different profiles, we performed an independent
sample t-test with ACT scores from the 116 students who reported
their scores (high performing, n= 91; percentage bias, n= 25).
The high performing students reported higher ACT scores (M=
22.75, SD= 5.55) than peers in the percentage bias cluster (M=
18.92, SD= 3.83), t(114)= 3.24, p= .002, Cohen’s d= 0.73.

Individual Differences in Cross- and Within-Notation
Accuracy and Their Relation to Math Achievement and
Fraction Arithmetic Calculation/Estimation

Hierarchical linear regression analyses were used to determine
whether cross-notation magnitude comparison predicts college
admission exams above and beyond within-notation comparison
accuracy, as it did in Study 1. However, undergraduate students in

Figure 4
Percent Correct

Note. (A) Percent versus fraction comparisons, (B) percent versus decimal comparisons, and (C) decimal
versus fraction cross-notation comparison based on a two-cluster model: “percentages bias” cluster (n= 43)
and “high performing” cluster (n= 140). Most participants exhibit a bias to select the percentages as larger
than fractions and decimals, with the percentage-bias profile exhibiting a more drastic difference in perfor-
mance than the high performing profile. The percentage-bias cluster also demonstrated a bias to select the
decimal as larger than fractions. However, therewas no bias among the fraction–decimal comparisons for the
high performing cluster. Gray lines represent individual participants’ average scores in each of the condi-
tions. Thicker gray lines indicate more participants with the same scores. Error bars represent +1 SE.
See the online article for the color version of this figure.
*** p, .001.

LACK OF INTEGRATED NUMBER SENSE 81

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1037/xhp0001268.supp


Study 2 provided ACT scores, as opposed to SAT scores, which were
reported in Study 1. Table 4 in the online supplemental materials dis-
plays the mean, standard deviation, and correlations among these
variables and other measures in Study 2.
Within-notation magnitude comparison was added to the model first

to account for general magnitude representation; it predicted 17%of the
variance in self-reported ACT scores (Step 1, p, .001). Cross-notation
magnitude comparison was entered next; it added 7% additional vari-
ance (p, .001), and within-notation was no longer a significant pre-
dictor (Table 7 in the online supplemental materials). These findings
replicated the result of fraction magnitude representation in explaining
math achievement (Siegler et al., 2011) and extend the findings to sug-
gest cross-notation also predicts mathematics achievement as measured
by college admission exams, consistent with recent findings with mid-
dle school students (Schiller & Siegler, 2023).
One possibility for the lack of significance for within-notation

comparison accuracy in Model 2 but significance in Model 1

could be multicollinearity. However, multicollinearity proved
not to be a concern (within-notation, tolerance= .47, VIF=
2.14; cross-notation, tolerance= .467, VIF= 2.14). Another pos-
sibility for this finding is that the within-notation composite
score might be inflated because it includes percent–percent com-
parisons (e.g., 35% vs. 60%). This may relegate the task to that
of a whole-number comparison task, since participants could use
knowledge of numbers between 0 and 100 for the percentage com-
parisons. As such, we reran the analyses above but removed the
percent versus percent comparisons from the within-notation com-
posite. The pattern of results for the final model was unchanged.
Further, the pattern was unchanged even when comparison accu-
racy for fraction versus fraction or decimal versus decimal are
added as the initial predictor. Together, these results indicate that
cross-notation understanding accounts for variance in math
achievement beyond that which can be explained by within-
notation understanding.

Figure 5
Descriptive Statistics

Note. (A) Self-reported SAT scores collected in Study 1 only and measures (B–F) collected in Study 2 only, by cluster: percentage bias (or biased) and high
performing. For the SAT scores from Study 1, the “biased” cluster depicted here includes the three biased clusters from Study 1 with dots in red (strong per-
centage bias), yellow (moderate percentage bias), and blue (fraction bias). Error bars represent+1 SE. Dashed line in Part C represents chance performance for
that task. Exact test statistics appear in the online supplemental materials. SAT= Scholastic Aptitude Test; ACT=American College Test; PAE= percent abso-
lute error. See the online article for the color version of this figure but for interpretation in grayscale: dots in medium gray (strong percentage bias), light-gray
(moderate percentage bias), and dark gray (fraction bias).
* p, .05. ** p, .01. *** p, .001.
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Mediation Analysis

In the hierarchical linear regression, within-notation magnitude
comparison accuracy accounted for variance in self-reported ACT
scores when it was added first to the model, suggesting as expected,
that within-notation understanding is important for math achievement.
However, within-notation magnitude comparison accuracy was non-
significant in the model with cross-notation magnitude comparison
accuracy. Why might this be?
Here, we tested the hypothesis that greater cross-notation rather than

within-notation knowledge, as measured by magnitude comparison
accuracy, indicates stronger magnitude representation organized on
their mental number line. In other words, those who flexibly switch
between notations for equivalent rational-number magnitudes (e.g.,
4/16=¼= 0.25= 25%=…) may be more likely to evaluate the rea-
sonableness of solutions on fraction arithmetic problems because they
can approximate numerical magnitudes in whatever notational format
that helps organize their mental number line.We tested this contention
by examiningwhether the relation betweenwithin-notation knowledge
and fraction arithmetic is serially mediated by cross-notation knowl-
edge and fraction arithmetic estimation ability (Figure 6).
Indeed, the indirect effects path from within-notation to cross-

notation to fraction arithmetic estimation to fraction arithmetic was
b= 0.12, 95% confidence interval [.025, .259]. Further, controlling
for cross-notation accuracy and fraction arithmetic estimation ability,
the direct effect of within-notation accuracy was not a significant pre-
dictor of fraction arithmetic accuracy, b= 0.04, t(183)= 0.1276,
p= .899. Hence, cross-notation accuracy and fraction arithmetic esti-
mation ability are mediators of within-notation accuracy on fraction
arithmetic (Figure 6).

Discussion

The present findings suggested that many undergraduates do not
have strongly integrated number sense. Replicating Study 1, for the

within-notation comparisons, undergraduate students performed
better on percentage comparisons relative to fraction and decimal
comparisons, and there was also a marginally significant difference
between fraction and decimal within-notation comparisons.
Second, replicating Study 1, undergraduates performed worse on
cross-notation magnitude comparison than within-notation com-
parison for the same magnitudes and demonstrated biases based
on notational form. Specifically, there was a bias for perceiving
percentages as larger than fractions or decimals. Unlike in Study
1, there was also a bias for perceiving decimals as larger than frac-
tions in fraction–decimal comparisons. Third, as in Study 1, cluster
analyses revealed that a sizable portion of undergraduates (23% in
Study 2) demonstrated a “percentages-are-larger bias,” with the
remaining students in the high performing group demonstrating
“no bias” or only a slight bias. These cluster analyses also revealed
striking differences between those who did or did not have a
percentages-are-larger bias. Specifically, biased students performed
worse on a measure of math achievement (self-reported ACT scores)
and on a wide range of rational number tasks requiring magnitude
understanding: number line estimation accuracy and confidence, frac-
tion arithmetic estimation and calculation. That being said, unlike
Study 1, there was no cluster that exhibited a fractions-are-larger
bias in Study 2. In Study 1, participants with the fractions-are-
larger bias reported substantially lower SAT scores than the
percentages-are-larger bias. It is possible that the reason for a lack
of replication of the fractions-are-larger bias had to dowith the overall
math achievement of the sample in Study 2 being somewhat higher
than that of Study 1. Future research should examine whether the
fractions-are-larger bias exists in lower achieving samples. Fourth,
hierarchical linear regression analyses revealed that individual differ-
ences in cross-notation accuracy were predictive of self-reported ACT
scores above and beyond within-notation accuracy, mirroring the SAT
results in Study 1. In fact, within-notation comparison accuracy was
no longer a significant predictor of these math outcomes when the
model controlled for cross-notation comparison accuracy. These find-
ings converge with conclusions from Study 1 that suggest undergrad-
uates’ who have better cross-notation understanding tend to have
higher math achievement. Finally, mediation analyses allowed us to
uncover a possible mechanism for the result of lesser importance of
within-notation understanding than cross-notation understanding in
predicting mathematical outcomes. Specifically, the relation between
individual differences in within-notation magnitude representation
and in fraction arithmetic skill was mediated by cross-notation magni-
tude representation and fraction arithmetic estimation ability, lending
support to the hypothesis that greater magnitude knowledge enables
individuals to reject implausible solutions and select correct calcula-
tion strategies (e.g., Siegler et al., 2011). Ultimately, flexibly thinking
about numbers across notations may better equip individuals to eval-
uate the reasonableness of solutions, supporting their arithmetic
performance.

General Discussion

We examined undergraduates’ integrated number sense across
multiple tasks with multiple analysis techniques. Undergraduates’
within-notation magnitude representation for equivalent rational
numbers differed with whether comparisons were presented as frac-
tions, decimals, or percentages. Specifically, percent–percent com-
parison accuracy was greater than either fraction–fraction or

Figure 6
Unstandardized Estimated Coefficients for the Hypothesized
Model Pathway From Within-Notion to Cross-Notation Magnitude
Comparison Accuracy to Fraction Arithmetic Estimation Ability to
Fraction Arithmetic Accuracy

Note. Total effect refers to the effect of within-notation to fraction arith-
metic through all possible paths (direct and all mediational effects). It
does not control for the other variables in the model. Direct effect refers
to the effect of within-notation to fraction arithmetic controlling for the
mediational variables. CI= confidence interval.
* p, .05. ** p, .01. *** p, .001.
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decimal–decimal comparisons. Moreover, undergraduate students
were more accurate at within-notation than cross-notation compari-
son, with their cross-notation magnitude comparison being biased
by notational format. In particular, a subset of undergraduates exhib-
ited a percentages-are-larger bias, such that they were more likely to
select the percentage as the larger number even when it was not.
Through cluster analysis methods, we determined that a sizable pro-
portion of undergraduate students demonstrated a lack of integrated
number sense; approximately 23%–33% of undergraduate students
in our samples exhibited the percentages-are-larger bias, and an
additional 10% exhibited a fractions-are-larger bias (Study 1
only). This outcome suggests that a rather large portion of under-
graduate students persist in displaying biases based on notational
format, consistent with the percentages-are-larger bias that was
found in middle-school students (Schiller & Siegler, 2023).
Importantly, there were striking differences in a wide range of out-
come measures between the cluster of undergraduates exhibiting a
bias and the high performing cluster, who displayed a slight bias.
Specifically, across the two studies, those exhibiting a bias reported
lower college admissions test scores (SAT or ACT) and, in Study 2,
they performed worse on number line estimation, with lower confi-
dence in their estimates, and lower accuracy estimating and calculat-
ing answers for fraction arithmetic problems. These cluster analyses
underscored the importance of cross-notation understanding but did
not empirically test whether cross-notation understanding accounts
for variance in math achievement beyond within-notation
understanding.
Indeed, integrated number sense, what we have operationalized as

cross-notation magnitude comparison accuracy, accounted for vari-
ance in self-reported college admission scores (i.e., SAT/ACT scores)
above and beyond within-notation magnitude comparison accuracy.
The integrated theory of numerical development (Siegler et al.,
2011) defines successful numerical development as a gradual broad-
ening of understanding of number to incorporate all types of rational
numbers. Here, we proposed and found evidence in support of a new
dimension: It is not simply enough to understand different types of
numbers in isolation, successful numerical development involves
understanding the notations in relation to one another.Mediation anal-
ysis was consistent with a potential mechanism for this result:
Within-notation understanding supports cross-notation understand-
ing, which in turn enables one to estimate reasonable solutions for
arithmetic problems, leading to greater overall arithmetic accuracy.
In fact, we found no relation between within-notation understanding
and arithmetic accuracy when controlling for the mediators of cross-
notation understanding and arithmetic estimation ability. These results
support the conclusion that many undergraduates have not achieved
the desired end state for numerical development, which consists of
having a mental number line that integrates within- and cross-notation
understanding.

Within-Notation Comparison Accuracy Differs by
Notation

Although our primary focus was on cross-notation understanding,
within notation performance bears on the concept of integrated num-
ber sense: If one has maximally achieved this state, there should be no
differences between accuracy with different notational formats.
Instead, we found that percentage–percentage comparisons were
more accurate than fraction–fraction and decimal–decimal

comparisons. Decimal–decimal comparisons were also marginally
better than fraction–fraction comparisons in both samples, consistent
with prior work (DeWolf et al., 2014; Ganor-Stern, 2013; Hurst &
Cordes, 2016). However, not all studies find this decimals advantage
(see for a review Tian & Siegler, 2018), suggesting this may not be a
robust effect. Rather than speculate on potential reasons for the mar-
ginal difference observed here between fraction and decimal compar-
isons, we focus on the novelty revealed by including percentage–
percentage comparisons in our measures of within-notation
understanding.

This is the first study to directly compare undergraduate
students’ within-notation comparison accuracy with matched frac-
tions, decimals, and percentages. Most studies exclude percentage–
percentage comparisons, presenting only matched fraction–frac-
tion and decimal–decimal comparisons, perhaps reasoning that
within-notation percentage comparisons are too easy. Indeed, accu-
racy in percent–percent comparisons (e.g., 40% vs. 25%) was near-
perfect (99% accuracy). However, had we not included percent-
age–percentage comparisons, we would not have evidence that
even the lowest performing profile (fraction bias) had relatively
high accuracy in percentage–percentage comparisons (84.09%
accuracy). Likely, whole-number knowledge played a role in the
overall high accuracy for percentage–percentage comparisons, as
it should be fairly easy for adults to compare whole numbers
(e.g., 40 vs. 25). These results suggest that among the rational num-
ber notations, percentages may be easiest to represent and perhaps
the reason for the success of interventions that introduce rational
concepts first through percentages, connecting them to fractions
and decimals (Kalchman et al., 2001; Moss, 2005; Moss & Case,
1999). A potential explanation for the better performance with per-
centages could have to do with some decimal comparison trials
including differing number of digits (i.e., it is difficult to compare
0.6 vs. 0.35 because people often activate whole number components
6, 35 (Ren & Gunderson, 2019) but 0.6. 0.35, whereas percent-
ages have a fixed implicit denominator of 100 and, thus, can be treated
similarly to whole numbers without issue (e.g., 60%. 35% because
60. 35). However, percentages are not immune to the difficulties that
individuals experience with rational numbers (Tian, 2018; Siegler &
Tian, 2022). For example, more than half of middle school students
judged 87% of 10 to be more than 10 (Gay & Aichele, 1997). In
this example, individuals may not be treating percentages as propor-
tions but as whole numbers (i.e., 87. 10). This strategy serves indi-
viduals well when comparing percentages within-notation (e.g.,
comparing battery charge levels). However, this type of reasoning is
problematic when percentages are represented in relation to other
types of numbers, as evident in the cross-notation results, which we
discuss next.

Percentages-Are-Larger Bias in Cross-Notation
Comparison

Across two studies, we found that undergraduates exhibited a
percentages-are-larger bias in cross-notation comparisons. For
example, comparing 25% and 2/5, undergraduate students were
more likely to select 25% as the larger number, resulting in
lower accuracy than when the equivalent numbers were expressed
as 1/4 and 40%. As noted, comparing 25% and 40% was not a dif-
ficult task, even for the lowest performing students. However, even
the highest performing students were slightly biased to select the
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percentage as the larger number in these cross-notation
comparisons.
The percentages-are-larger bias was shown to differentiate

undergraduates on a host of rational number skills and more gene-
ral measures of math achievement. With the integrated theory of
numerical development, Siegler et al. (2011) theorize about the
importance of a gradual broadening of knowledge of numbers to
include fractions, decimals, and percentages in numerical develop-
ment. They provide evidence for within-notation knowledge of
fractions predicting math achievement and suggest that cross-
notation knowledge of decimals and percentages could potentially
be important. We verify this suggestion by demonstrating that
cross-notation understanding of fractions, decimals, and percent-
ages has important implications for rational number skill and
math achievement, in general.
From a cognitive development standpoint, this design is analo-

gous to tasks measuring conservation of quantity (Piaget, 1952).
Children must conserve quantity if a row of objects is elongated
or liquid is poured into a taller glass. Similarly, children must
come to understand that a number’s magnitude (e.g., 1/4) is con-
served when it is translated (e.g., 0.25, 25%, 2/8, 0.250, etc.).
Here, we showed that many undergraduates, like middle school
children (Schiller & Siegler, 2023), do not conserve magnitude
across notations.

Cluster Analyses Revealed Differences in Math Outcomes
Based on Biased or High Performing Profiles

Cluster analysis has been gaining popularity in rational number
cognition (Abreu-Mendoza et al., 2023; Gómez & Dartnell, 2019;
Reinhold et al., 2020) based on its utility for identifying distinct per-
formance/strategy profiles. While we find a percentages-are-larger
bias exists in two large samples of undergraduate students, not all
students followed this general trend (see gray lines in Figure 2).
Person-centered cluster analyses thus allowed us to uncover distinct
profiles of students’ cross-notation performance. Across two studies,
we identified high performing and percentage bias groups (as well as a
less common fraction bias profile, in Study 1). We found that partic-
ipants’ profiles were associated with performance on a host of math
outcomes, including math achievement, as measured by self-reported
SAT/ACT scores, fraction number line estimation and confidence, and
fraction arithmetic estimation and calculation accuracy. In essence,
thosewhowere more biased in cross-notation comparisons performed
worse than the high-performing group. Interestingly, even among this
high-performing profile, there was a slight bias overall, suggesting the
intractability of this bias, even among students with stronger math
skills.
The cluster analysis helped us identify distinct profiles of student

cross-notation misconceptions, which might make it possible to tai-
lor instruction to target students’ specific needs. For example, stu-
dents with a stronger percentage bias may need instruction that
links all three rational number notations on the number line.
Students with a fraction bias (which was found in Study 1 only)
may require further clarification about the specifics of the fraction
notation. For example, secondary math educators were trained to
diagnose specific misconceptions in algebra and tailor their instruc-
tion explicitly to address those misconceptions (Holmes et al.,
2013). Such targeted instruction based on misconceptions could
have beneficial effects on students’ learning (Booth et al., 2014).

The current study also converges with other work (Mazzocco &
Devlin, 2008), which suggests the potential benefit of including
cross-notation measures in the classroom as a diagnostic tool.

Integrated Number Sense

Our work demonstrated that at least a quarter of undergraduate stu-
dents lacked a strong integrated number sense. In theory, individuals
who possess “perfect” integrated number sense should perform
equally well on within-notation and cross-notation comparisons,
and there should be no bias based on notational format of the numbers
being presented. However, as demonstrated here, cross-notation per-
formance was worse than within-notation performance, even among
the high performing students in Study 2 only, and there were differ-
ences based on notation for both within- and cross-notation perfor-
mance across studies.

This relatively weak integrated number sense found in under-
graduates is problematic, given the role that integrated number
sense potentially plays in many math outcomes. We demonstrated
for the first time that cross-notation magnitude comparison accuracy
accounts for variance in self-reported SAT/ACT scores, above
and beyond within-notation magnitude comparison accuracy.
Additionally, this lack of integrated number sense in at least approx-
imately a quarter of undergraduate students is problematic given the
role of integrated number sense in math achievement and other math
outcomes. In other words, those with percentages-are-larger biased
responding exhibited lower performance on fraction number line
estimation, fraction arithmetic estimation/calculation accuracy,
and lower confidence in estimating fraction magnitudes. These
results are parallel to results found with children in one study exam-
ining within- and cross-notation comparison accuracy and other
math outcomes in children (Schiller & Siegler, 2023). Future inves-
tigations across multiple age groups with the same outcome mea-
sures are needed to establish whether this pattern holds across
development.

Our findings with fractions, decimals, and percentages are consis-
tent with prior work that has suggested that cross-notation understand-
ing (i.e., fraction–decimal) is important for rational number arithmetic
(Braithwaite et al., 2022) but add to the literature by demonstrating the
importance of including percentages in a measure of cross-notation
knowledge for undergraduate students and extend this relation to
math achievement. Prior work with children (Schiller & Siegler,
2023) called for including percentages in a measure of cross-notation
knowledge, but it was not known whether differences in percentage
cross-notation understandingwould be relevant for undergraduate stu-
dents. Indeed, the current study revealed differences based on the
degree to which participants exhibited a percentages-are-larger bias
on a number of measures (i.e., SAT/ACT, number line estimation
accuracy and confidence, fraction arithmetic estimation and
calculation).

In addition to replicating results in an undergraduate population,
these results build upon prior work with children (Schiller &
Siegler, 2023) by offering a potential mechanism for the importance
of cross-notation understanding in math outcomes. Specifically, we
argue that cross-notation measures might better assess individuals’
integrated number sense and that integrated number sense may play
a role in helping individuals estimate solutions to fraction arithmetic
problems, which in turn helps improve fraction arithmetic calculation
accuracy. We reasoned that those who flexibly switch between
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notations for equivalent rational-number magnitudes (e.g., 4/
16=¼= 0.25= 25%=…) may bemore likely to evaluate the plau-
sibility of solutions on fraction arithmetic problems, because they can
translate to easier-to-process numbers. Indeed, we found that within-
notation understanding supported cross-notation understanding,
which in turn supported estimation accuracy for answers to fraction
arithmetic problems, contributing to better fraction arithmetic calcula-
tion skill. These results support the hypothesis that greater magnitude
knowledge enables individuals to reject implausible solutions and
select calculation strategies that yield plausible solutions (e.g.,
Siegler et al., 2011). An open question is whether training in cross-
notation understanding could have an effect on fraction arithmetic
estimation and calculation accuracy.

Instructional Implications, Limitations, and Future
Directions

The current work highlights the importance of integrated number
sense, incorporating both within- and cross-notation magnitude rep-
resentation into one’s mental number line. Moss and Case (1999)
provided evidence toward this ideawith their successful intervention
highlighting connections among notations. Though that experiment
has been replicated with similar results (Kalchman et al., 2001), it
was not clear whether highlighting relations among notations was
the key to the intervention’s success. Success could stem from the
constructivist nature of instruction with beakers of water or from
introducing percentages first, especially since a more recent study
(Malone et al., 2019) did not show benefits with fraction/decimal
cross-notation training over fractions-only training when they were
not related to percentages. Here, we provide initial evidence of cross-
notation’s importance for math outcomes. However, the findings
reported here are correlational. Future research examining the effects
of cross-notation interventions are needed to establish the mechanis-
tic relationships between these constructs and provide insights for
classroom instruction. For example, there may be value in helping
students notice the relationships between notations by vertically
aligning the magnitudes on the number line (Thompson & Opfer,
2010; Yu et al., 2022) or directly practicing comparison of magni-
tudes expressed in different notations.
Furthermore, we found that fraction arithmetic estimation accuracy

predicted fraction arithmetic calculation accuracy. However, we did
not directly test whether it would be possible to improve one’s fraction
arithmetic estimation ability, and if so, whether that would result in
higher fraction arithmetic calculation accuracy. Indeed, Braithwaite
and Siegler (2021) demonstrated that number line training could
improve fraction arithmetic estimation accuracy when estimation
accuracy for sums was assessed using number lines. Braithwaite
and Siegler (2021) did not test whether such improvements in fraction
arithmetic estimation might transfer to symbolic sum estimation (e.g.,
which is the best estimate for 12/13+ 7/8: 1, 2, 19, or 21), nor did they
test whether improved fraction sum estimation accuracy resulted in
improved fraction calculation accuracy. Recent work with a “stop
and think” intervention (Wilkinson et al., 2020) has shown that train-
ing students on exerting inhibitory control in the math and science
domain is beneficial for learning outcomes. Perhaps, a similar “stop
and think” intervention aimed at evaluating the plausibility of fraction
arithmetic sums could have a positive impact on improving fraction
arithmetic calculation accuracy. Thus, future studies might try to
improve fraction arithmetic estimation accuracy by providing number

line and inhibitory control type training (i.e., a focus on executive
function combined with math) and determine whether it results in
improvements in symbolic sum estimation accuracy and also calcula-
tion accuracy.

Although it is important to note a limitation of the present work is
that it includes self-reported SAT/ACT scores as a measure of math
achievement and previous studies have highlighted the unreliability
of self-reported scores/grades (Cole & Gonyea, 2010; Sticca et al.,
2017). That being said, the present findings with undergraduate stu-
dents’ self-reported achievement data is consistent with similar find-
ings with middle school children, using achievement data collected
directly from the school district (Schiller & Siegler, 2023). Future
work should consider directly collecting ACT/SAT scores from the
relevant institution and/or triangulating with other directly assessed
measures of math achievement, rather than self-report. Relatedly,
another limitation of the current work is that it involves an online
rather than laboratory-based research experiment, which may explain
the relatively lengthy and varied task completion duration. Future
work should also consider a supervised laboratory-based environment
for task completion.

Furthermore, an open question is whether the percentages-are-larger
bias observed here differs from the well-establish phenomenon of
whole number bias. Whole number bias involves the misapplication
of whole number principles to tasks involving rational numbers,
such as magnitude comparison, number line estimation, and arithmetic
(Christou, 2015; Fitzsimmons et al., 2020; McMullen & Van Hoof,
2020; Ni & Zhou, 2005; Obersteiner et al., 2013; Vamvakoussi &
Vosniadou, 2010; Van Hoof et al., 2015). Perhaps, undergraduates
are selecting the percentage as larger in cross-notation comparisons
because it appears more similar to whole numbers. If this is the case,
perhaps what we are detecting is individuals who are heavily swayed
by whole number bias and viewing fractions as an entity smaller
than one (Kallai & Tzelgov, 2009). Our limited stimulus set does
not enable us to check for typical manifestations of whole number
bias, such as selecting the fraction with the larger numerals (e.g., 3/8
vs. 2/3, where the fraction with smaller numerals has the larger magni-
tude) or the decimal with more digits (e.g., 0.8 vs. 0.27, where the
number with the shorter digit train has the larger magnitude). The
percentages-are-larger bias might also be a reflection of participants’
preferences: Adults report that they like percentages more than
fractions (Mielicki et al., 2022; Sidney et al., 2021). If adults show
a preference toward percentages, they might be inclined to select per-
centages more frequently in cross-notation comparisons. Thus, future
research might seek to determine if the percentages-are-larger bias
observed in this study is a distinct phenomenon, or a newly identified
instantiation of whole number bias, and asses the role notational pref-
erence plays in these findings.

Future investigations might longitudinally follow children as they
develop understanding of fractions, decimals, and percentages to
determine what other factors might influence integration of these con-
cepts. Furthermore, we only collected data at one time point.
Addressing reliability of these cross-notation measures could be an
avenue for future research. Alternatively, future work might seek to
experimentally manipulate integrated number sense by improving
cross-notation knowledge (Schiller, Abreu-Mendoza, Siegler, et al.,
2024) to determine whether improvements might transfer to other
areas of mathematics. Consistent with Mazzocco and Devlin (2008)
who advocate for measures of cross-notation knowledge to be used
as a diagnostic tool, we suggest that measures of cross-notation
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knowledge such as these percent–fraction/decimal comparisons could
provide useful information to classroom teachers about students who
may or may not struggle in rational number concepts and math, in
general. Future research might examine the practicality of using
such an assessment in the classroom.

Conclusion

Current instructional practices focus sequentially on fractions, dec-
imals, and percentageswith little emphasis on their relations (Common
Core State Standards Initiative, 2010; Moss, 2005; Siegler &
Oppenzato, 2021). The present findings suggest that cross-notation
understanding is a key aspect of numerical development, beyond
within-notation understanding. Critically, we found that approximately
a quarter of undergraduate students at two selective universities have
only weakly integrated number sense. This is concerning, given that
undergraduate students have recently completed K–12 formal school-
ing in mathematics; thus, it seems K–12 mathematics education has
not helped a sizeable population of students to establish an understand-
ing of the relations among fractions, decimals, and percentages.
Together, these results provide a comprehensive assessment of college
students’ cross-notation understanding and indicate that fully inte-
grated number sense still remains a goal for many students.
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Appendix

Experimental Stimuli

Table A1
Within-Notation Comparison Problems

F vs. F D vs. D P vs. P

2/5 vs. 1/4 0.25 vs. 0.4 40% vs. 25%
7/20 vs. 3/5 0.6 vs. 0.35 35% vs. 60%
3/8 vs. 8/100 0.08 vs. 0.38 38% vs. 8%
1/4 vs. 2/5 0.4 vs. 0.25 25% vs. 40%
3/5 vs. 7/20 0.35 vs. 0.6 60% vs. 35%
8/100 vs. 3/8 0.38 vs. 0.08 8% vs. 38%

Note. F= fraction; D= decimal; P= percentage.

Table A2
Cross-Notation Comparison Problems

F.D D. F F. P P. F D. P P.D

2/5 vs. 0.25 ¼ vs. 0.40 2/5 vs. 25% 40% vs. ¼ 0.40 vs. 25% 40% vs. 0.25
0.35 vs. 3/5 0.6 vs. 7/20 35% vs. 3/5 7/20 vs. 60% 35% vs. 0.6 0.35 vs. 60%
3/8 vs. 0.08 8/100 vs. 0.38 3/8 vs. 8% 38% vs. 8/100 0.38 vs. 8% 0.08 vs. 38%
0.25 vs. 2/5 0.40 vs. 1/4 25% vs. 2/5 1/4 vs. 40% 25% vs. 0.40 0.25 vs. 40%
3/5 vs. 0.35 7/20 vs. 0.6 3/5 vs. 35% 60% vs. 7/20 0.6 vs. 35% 60% vs. 0.35
0.08 vs. 3/8 0.38 vs. 8/100 8% vs. 3/8 8/100 vs. 38% 8% vs. 0.38 38% vs. 0.08

Note. F= fraction; D= decimal; P= percentage.

(Appendix continues)
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Experiment 2 Only

Fraction Arithmetic Estimation

Directions: select the best estimate for the following problems

0–5 Number Line Estimation

Trials: 7/8, 13/4, 11/7, 19/4, 10/3, 9/5, 9/2, 7/3, 1/5, 13/6,
Number line confidence: After each number line estimate, partic-

ipants were shown where they placed their estimate, and then, partic-
ipants were asked to estimate their confidence (without being able to
change their original answer):

How sure are you that you estimated X at close to the correct spot
on the number line from 0%= I am not confident at all to 100% I am
totally confident? (Participants then entered their confidence level as
a number in an open response text box.)

Fraction Arithmetic Calculation

3/5+ 1/4
2/3− 3/5
3/5 ÷ 1/4
2/3× 3/5

Received September 4, 2023
Revision received October 1, 2024

Accepted October 5, 2024 ▪

Problem Answer choices

Lure: fraction across answer choices
5
6 +

2
4

7
10

1
3 1 1

4
3
4 +

1
10

4
14 1 1

4
9
10

1
5 +

1
2

2
7

1
3

3
4

Lure: fraction hybrid across answer choices
3
5 +

8
9

11
45 2 1 1

2
2
9 +

3
5

5
45

4
18

4
5

3
4 +

2
10

5
40 1 1

2 1

No lure: fraction answer choices
3
5 +

2
3

1
4

7
10 1 1

4
5
9 +

1
3

1
2 1 1

2 1
3
8 +

1
3

1
10

2
5

3
4

4
5 +

2
3

1
2 2 1 1

2
2
10 +

2
4

1
5

1
3

2
3

3
7 +

5
9

3
4 1 1 1
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