

1 Low-Pressure and Nascent Yields of Stabilized Criegee

2 Intermediates CH_2OO and CH_3CHOO in Ozonolysis of Propene

3 *Lei Yang, Mixtli Campos-Pineda,[§] Katia Hatem, and Jingsong Zhang^{*}*

4 Department of Chemistry

5 University of California, Riverside

6 Riverside, CA 92521

7 USA

8

9 [§] Present address: Centre for Research into Atmospheric Chemistry, University College Cork,
10 T12 YN60, Ireland.

11 * Corresponding author. Email: jingsong.zhang@ucr.edu; Tel +1 951 827 4197; Fax: +1 951 827
12 4713. Also at Air Pollution Research Center, University of California, Riverside, California
13 92521, United States.

14

15 **Keywords:** ozonolysis, propene, Criegee intermediate, cavity ringdown spectroscopy

16

1 **Abstract**

2 The yields of stabilized Criegee intermediates (sCIs), both CH_2OO and CH_3CHOO , produced from
3 ozonolysis of propene at low pressures (7-16 Torr) were measured indirectly using cavity
4 ringdown spectroscopy (CRDS) and chemical titration with an excess amount of sulfur dioxide
5 (SO_2). The method of monitoring the consumption of SO_2 as a scavenger and the production of
6 secondary formaldehyde (HCHO) allows characterization of the total sCI and the stabilized
7 CH_2OO yields at low pressure and in short residence time. Both the total sCI and the stabilized
8 CH_2OO yields in the propene ozonolysis were found to decrease with decreasing pressure. By
9 extrapolating the 7-16 Torr measurements to zero-pressure limit, the nascent yield of the total sCIs
10 was determined to be $25 \pm 2\%$. The ranges of nascent yields of stabilized CH_2OO and stabilized
11 CH_3CHOO were estimated to be 20-25% and 0-5%, respectively. The branching ratios of the
12 stabilized and high-energy CH_2OO^* and CH_3CHOO^* were also determined.

13

1 **Introduction**

2 As one of the major oxidation pathways of unsaturated volatile organic carbons (VOCs) in
3 Earth's troposphere, ozonolysis plays an critical role in the formation of hydroxyl radical (OH)
4 and the production of secondary organic aerosol (SOA).¹⁻⁴ The first step in the mechanism of
5 ozonolysis involves the addition of ozone (O₃) to the olefinic bond of alkene, which produces a
6 chemically activated five-membered ring called primary ozonide (POZ). POZ then undergoes a
7 prompt decomposition, through cleavage of an O–O and a C–C bond, into a carbonyl compound

8 and a carbonyl oxide known as Criegee intermediate (CI).⁵ A small fraction of POZ may isomerize
9 into ketohydroperoxide (KHP) and decompose into dialdehyde, OH radicals and other products.⁶

10 ⁹ With multiple resonance structures (zwitterion structures and biradical electronic configurations),
11 CI has a rich reactivity and is the least stable among all its isomers.^{10, 11} As ozonolysis reaction is

12 highly exothermic, CIs are produced with broad internal energy distributions.¹² High-energy CIs
13 born with enough internal energy to surmount the isomerization or dissociation barriers can
14 transform rapidly into dioxirane or vinyl hydroperoxide, and then decompose into OH radical,

15 organic radicals, and other products on nanosecond timescales.¹³ While stabilized Criegee
16 intermediates (sCIs) are born with less energy, and have a longer lifetime to get involved in
17 bimolecular reactions with atmospheric species or to undergo thermal decomposition.¹⁴ The
18 branching ratio of the high-energy CIs and sCIs depends both on the internal energy distributions
19 and the heights of the dissociation or isomerization energy barriers of the CIs.

20 CIs have transient lifetimes in the troposphere because the rate coefficients for ozonolysis are
21 small, while the unimolecular and bimolecular consumption reactions of CIs are rapid.¹¹ Owing to
22 the low steady-state concentrations of CIs produced from ozonolysis, decades' efforts have proven
23 the difficulty in detecting CIs directly in gas phase. In 2012, Welz and co-workers developed a

1 new method to synthesize high-concentration sCIs in gas phase by using photolysis of
2 diiodo-alkane in an excess amount of oxygen.¹⁵ Since then, direct laboratory measurements on the
3 unimolecular and bimolecular kinetics of sCIs have been reported.¹⁶⁻²² However, the yields of the
4 high-energy CIs and sCIs in ozonolysis of alkenes, which are related to the energy distributions of
5 CIs and the branching ratio of various pathways in the reaction network of CIs, can only be
6 measured in actual ozonolysis reactions. To measure the yield of sCIs in ozonolysis, chemical
7 titration methods have been developed by using a scavenger to selectively and effectively react
8 with all the sCIs produced from ozonolysis. Among the various molecules that have been studied
9 and utilized as the sCI scavenger previously (such as hexafluoroacetone (HFA), formic acid
10 (HCOOH), methanol (CH₃OH), formaldehyde (HCHO), water (H₂O) and carbon monoxide
11 (CO)),^{23, 24} sulfur dioxide (SO₂) is a commonly used scavenger in recent studies because of the
12 characterizable spectral features of SO₂ or the end products (sulfuric acid (H₂SO₄))²⁵⁻²⁸ or
13 carbonyls²⁹ as well as the rapid reaction between SO₂ and sCIs (for example, IUPAC
14 recommended k (SO₂ + CH₂OO) = 3.7×10^{-11} cm³ molecule⁻¹ s⁻¹),³⁰ which allows SO₂ to capture
15 all the sCIs before the thermal decomposition or other biomolecular reaction of sCIs. The total
16 amount of sCIs is then determined by measuring either the amount of end products or the
17 consumption of the scavenger ($\Delta[\text{SO}_2]$).³¹⁻³⁴

18 The production of sCIs can be from the direct dissociation of POZ, or from the collisional
19 stabilization of the high-energy CIs. For example, as shown in the reaction network of propene
20 ozonolysis in Scheme 1, the stabilized CH₂OO and CH₃CHOO (blue) come from the
21 decomposition reaction of POZ as well as the thermalization of high-energy CH₂OO* and
22 CH₃CHOO* after their deactivation collisions with other molecules (purple). As such, the yield of
23 sCIs in ozonolysis of acyclic alkenes are dependent on pressure. Measuring the nascent yield of

Scheme 1. Simplified reaction network of propene ozonolysis with an excess amount of SO_2 scavenger.

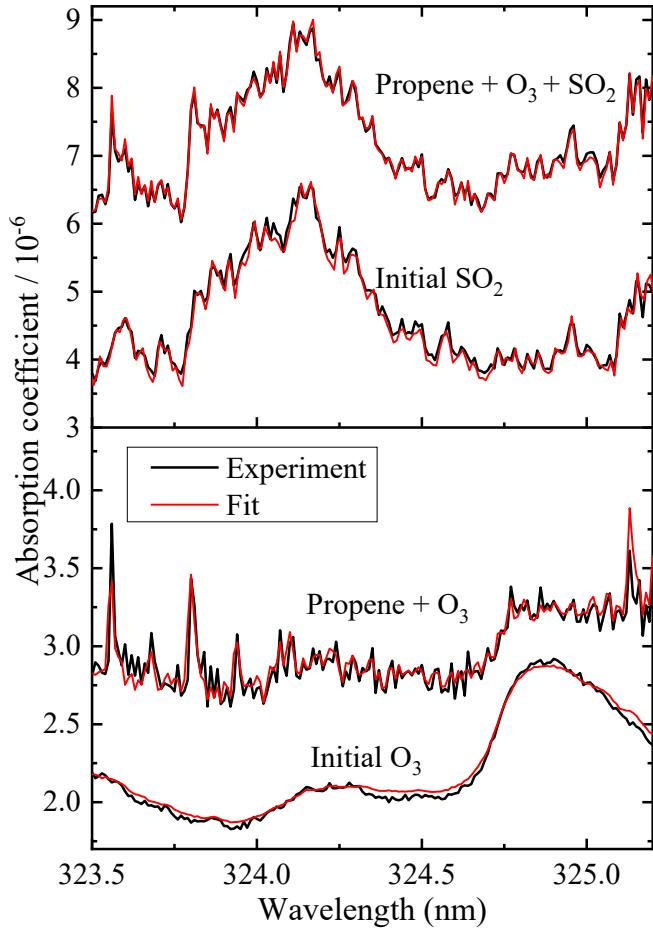
1 sCIs at zero-pressure limit is important for understanding the original energy profile of the
 2 ozonolysis of alkenes and the nascent energy distribution of CIs, which has attracted significant
 3 theoretical interest.^{6,35} However, even though the nascent yield of sCIs is an important benchmark
 4 for the reaction dynamics calculations and kinetics studies of CIs, most research on sCIs to date
 5 have focused on the atmospheric-pressure region,^{28, 29, 36} considering the difficulty and relatively
 6 larger uncertainty in determining sCI yields at low pressure. The sCI yields at the atmospheric
 7 pressure are attributed to a combination of factors, including the direct decomposition of POZ and
 8 the collisional stabilization of high-energy CIs. As a result, how the specific branching ratio of the
 9 different CIs evolve in this process remains a challenging topic.

10 In this work, we present a systematic study on the nascent and low-pressure yields of stabilized

1 CH₂OO and CH₃CHOO produced from the ozonolysis of propene. Cavity ringdown spectroscopy
2 (CRDS) in the near-UV region was used to quantify sCIs by monitoring the consumption of the
3 added titrant SO₂ and the production of secondary HCHO. Spectral features of SO₂, O₃, and HCHO
4 were fitted with their reference cross sections to obtain the number densities. The yields of sCIs in
5 the ozonolysis of propene were measured at different low pressures from 7-16 Torr, and then the
6 nascent yields of stabilized CH₂OO and CH₃CHOO were determined by extrapolation to the zero
7 pressure. The branching ratio of the stabilized and high-energy CH₂OO* and CH₃CHOO* were
8 also determined from the experiment.

9

10 **Experimental methods**


11 The average concentration of the targeted species was determined based on the following
12 equation (1).

$$13 \quad \alpha = \sum_i \sigma_i(\lambda) N_i + f(\lambda) = \frac{L}{cl_s} \left(\frac{1}{\tau} - \frac{1}{\tau_0} \right) \quad (1)$$

14 which involves the following parameters: the absorption coefficient (α), the absorption cross-
15 section of each species at different wavelengths ($\sigma_i(\lambda)$), the number density of each absorber (N_i),
16 the distance between the two mirrors ($L = 100$ cm), the speed of light (c), the sample length ($l_s =$
17 57 cm), the ringdown time when absorber species are in the cavity (τ), the ringdown time in empty
18 cavity (τ_0), and parameter $f(\lambda)$ which accounts for the unidentified broad extinction contribution
19 at different wavelengths. As shown in Figure S1 in Electronic Supplementary Information (ESI),
20 ozonolysis reactions were carried out in a cylindrical quartz flow cell with a sample length of 57
21 cm and diameter of 2.54 cm, which was used as a fast flow reactor. A mixture of propene and N₂
22 dilution gas was introduced into the reactor and combined with O₃ (~1% in O₂) generated by an

1 ozone generator. In cases where the confirmation of sCI identity or sCI yield measurements were
2 required, SO_2 (~4% in N_2) was mixed with propene prior to the introduction of O_3 to scavenge
3 sCIs. To generate 10 Hz laser pulses in the range of 647-651 nm, a Lambda-Physik dye laser using
4 DCM dye in methanol was pumped by a Continuum Surelite II Nd:YAG laser at 532 nm. The
5 second harmonic was produced by an Inrad Autotracker III in the range of 323.5-325.5 nm. A pair
6 of highly reflective mirrors centered at 330 nm (>99.9%, Layertec GmbH) was used to establish a
7 baseline ringdown time (τ_0) of approximately 5 μs . With the long effective optical path and high
8 sensitivity ($\alpha_{min} \sim 3 \times 10^{-8} \text{ cm}^{-1}$), CRDS was capable of measuring signals from low-concentration
9 species. The flow parameters of the reactor are listed in Table S1 in ESI, which shows that the
10 radial diffusion in the flow cell can be ignored under our experimental conditions and the flow
11 reactor can be reasonably modelled as a plug flow reactor (PFR) using the Kintecus software
12 package³⁷.

13 As shown in Figure 1 and Figure S2, the UV spectra (black lines) of the ozonolysis reaction
14 (propene + O_3) at 323.5-325.2 nm were analyzed by fitting the spectral features of O_3 and HCHO
15 (red lines) to determine the final concentration of O_3 ($[\text{O}_3]_f$) and the initial concentration of primary
16 HCHO ($[\text{HCHO}]_i$). While in the titration reaction (propene + O_3 + SO_2), the spectral signatures of
17 O_3 , HCHO , and SO_2 can also be isolated from some broad background contributions of secondary
18 reactions (Figure 1 and Figure S3), enabling the determination of the final concentrations of SO_2
19 and HCHO ($[\text{SO}_2]_f$ and $[\text{HCHO}]_f$ (from both primary and secondary HCHO), and the O_3
20 concentration ($[\text{O}_3]_f$) remained unchanged with or without SO_2). The initial O_3 and SO_2
21 concentrations ($[\text{O}_3]_i$ and $[\text{SO}_2]_i$) were measured by using nitrogen (N_2) to replace the
22 corresponding reactants (alkene or O_3) under the same flow conditions. To ensure the accuracy of
23 the measurement, reference cross sections of O_3 , SO_2 , and HCHO were carefully selected from the

Figure 1. Representative near-UV CRDS spectra (black) in ozonolysis of propene (propene + O₃) and the titration reaction with SO₂ (propene + O₃ + SO₂), along with the fitted spectra using the corresponding reference cross sections (red). Concentrations of the reactants and products in this example (unit: molecules cm⁻³): [O₃]_i = 1.59 × 10¹⁴, [propene]_i = 9.97 × 10¹⁶, [O₃]_f = 9.00 × 10¹³, [SO₂]_i = 3.66 × 10¹⁴, [SO₂]_f = 3.45 × 10¹⁴, [HCHO]_i (the sharp features in propene + O₃) = 4.2 × 10¹³, [HCHO]_f (in propene + O₃ + SO₂) = 5.7 × 10¹³. The total pressure was 10 Torr. The residence time inside the flow reactor was 0.92 s. All experiments were carried out at room temperature.

1 MPI Mainz UV/vis Spectral Atlas³⁸ based on the appropriate wavelength ranges and spectral
 2 resolution. These reference cross sections were then fitted to our experimental spectra, allowing
 3 for the creation of custom references that effectively minimized any differences in measurement
 4 sensitivities. This approach was particularly important for HCHO, as its rovibronic features could

1 be influenced by various energy distributions during ozonolysis reaction and potentially shifted in
2 the experimental spectra.

3 As the reaction rate coefficient k ($\text{OH} + \text{propene}$) ranges from $2.5\text{--}2.9 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$
4 at 7–760 Torr and 298K, the large excess amount of propene present in the reaction mixture
5 (approximately $1.0 \times 10^{17} \text{ molecules cm}^{-3}$) can rapidly react with the OH radicals produced by
6 ozonolysis and completely deplete them. In the meantime, sCIs were scavenged by SO_2 with fast
7 reaction rate coefficients, for example, $k(\text{CH}_2\text{OO} + \text{SO}_2) = 3.7 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, $k(\text{syn-CH}_3\text{CHOO} + \text{SO}_2) = 2.6 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ and $k(\text{anti-CH}_3\text{CHOO} + \text{SO}_2) = 1.4 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. When the amount of SO_2 present in the reaction mixture was in a large excess
8 compared to the total amount of sCIs (for example, in this work $[\text{SO}_2]_i \sim 3.5 \times 10^{14} \text{ molecules cm}^{-3}$), all sCIs produced in ozonolysis can be captured by SO_2 , and the amount of consumed SO_2 was
9 equal to the amount of sCIs. Therefore, the total yield of sCIs can be determined by the following
10 equation (2).

$$14 \quad 15 \quad \text{Yield of sCI} = \frac{\Delta[\text{SO}_2]}{\Delta[\text{O}_3]} \quad (2)$$

16 where the amount of consumed SO_2 is $\Delta[\text{SO}_2] = [\text{SO}_2]_i - [\text{SO}_2]_f$ and the amount of consumed O_3 is
17 $\Delta[\text{O}_3] = [\text{O}_3]_i - [\text{O}_3]_f$.

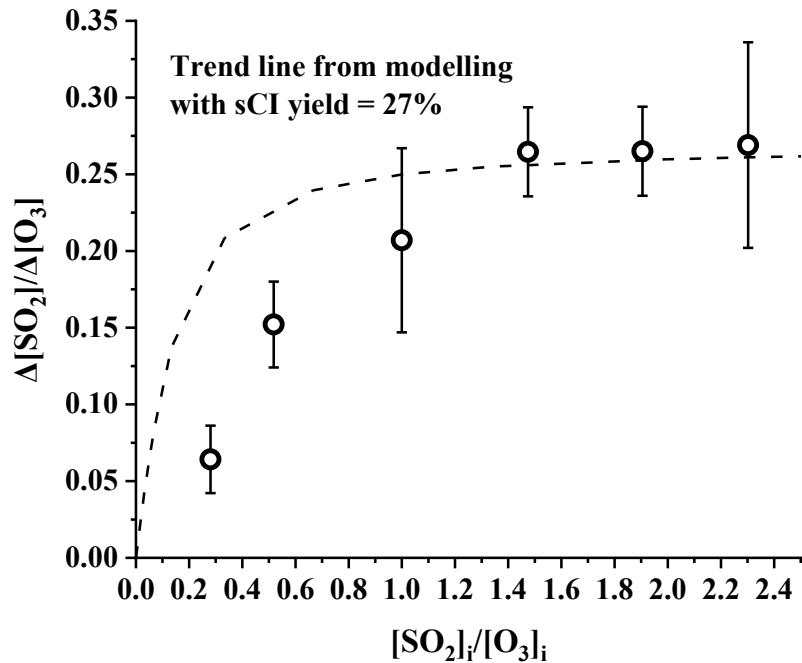
18 At the same time, HCHO and SO_3 were produced in the reaction between CH_2OO and SO_2 as
19 the major pathway, while the reaction between CH_3CHOO and SO_2 produced CH_3CHO and SO_3
20 after the decomposition of the chemically-activated secondary ozonide (SOZ) at low pressure.²¹,
21 ^{39–41} The amount of secondary HCHO produced after adding SO_2 , $\Delta[\text{HCHO}] = [\text{HCHO}]_f - [\text{HCHO}]_i$,
22 is thus related to the amount of stabilized CH_2OO . Therefore, the yield of stabilized CH_2OO can
23 be determined by the following equation (3), and the yield of stabilized CH_3CHOO is equal to the
24

1 difference of the total yield of sCIs and the yield of stabilized CH₂OO. Since bimolecular reactions
2 of CH₂OO might also produce HCHO before SO₂ was added, the $\Delta[\text{HCHO}]/\Delta[\text{O}_3]$ measured with
3 this method should be considered as a lower limit of the stabilized CH₂OO yield.

4

5 Yield of stabilized CH₂OO $\geq \frac{\Delta[\text{HCHO}]}{\Delta[\text{O}_3]}$ (3)

6


7 As shown in Scheme 1, the production of the total amount of CH₂OO and CH₃CHOO
8 intermediates from initial decomposition of POZ in propene ozonolysis are equal to that of the
9 corresponding primary carbonyl products, CH₃CHO and HCHO, respectively. Thus, the total yield
10 of CH₃CHOO (including *syn/anti*-conformers in the full internal energy profile) is equal to the
11 yield of the primary HCHO, and can be determined by calculating the ratio of the amount of HCHO
12 produced in ozonolysis ($[\text{HCHO}]_i$) and the consumed O₃ ($\Delta[\text{O}_3]$), as shown in equation (4). Note
13 that in propene ozonolysis at the atmospheric pressure, the total yields of carbonyls were measured
14 to be in the range of 100% to 110%,^{36,42} with CH₂OO, CH₃CHOO, or KHP possibly producing a
15 small amount of secondary HCHO; thus in this system, the measured $[\text{HCHO}]_i$ should be
16 considered as the upper limit for the primary HCHO. Our kinetic model estimates the extent of
17 this overestimation, as discussed in ESI (see Table S2-S5).

18 Yield of CH₃CHOO $\leq \frac{[\text{HCHO}]_i}{\Delta[\text{O}_3]}$ (4)

19 Theoretical calculations showed that 12% of POZ produced in ethene ozonolysis can isomerize
20 into KHP,⁶ yet there is no reported study on propene ozonolysis to date. Assuming the KHP
21 branching in propene ozonolysis also up to 12%, the total yield of CH₂OO (including both
22 stabilized CH₂OO and high-energy CH₂OO^{*}) can be obtained by subtracting the yield of primary
23 HCHO (the total yield of CH₃CHOO) from the total CI yield of 88-100%. Thus, using the

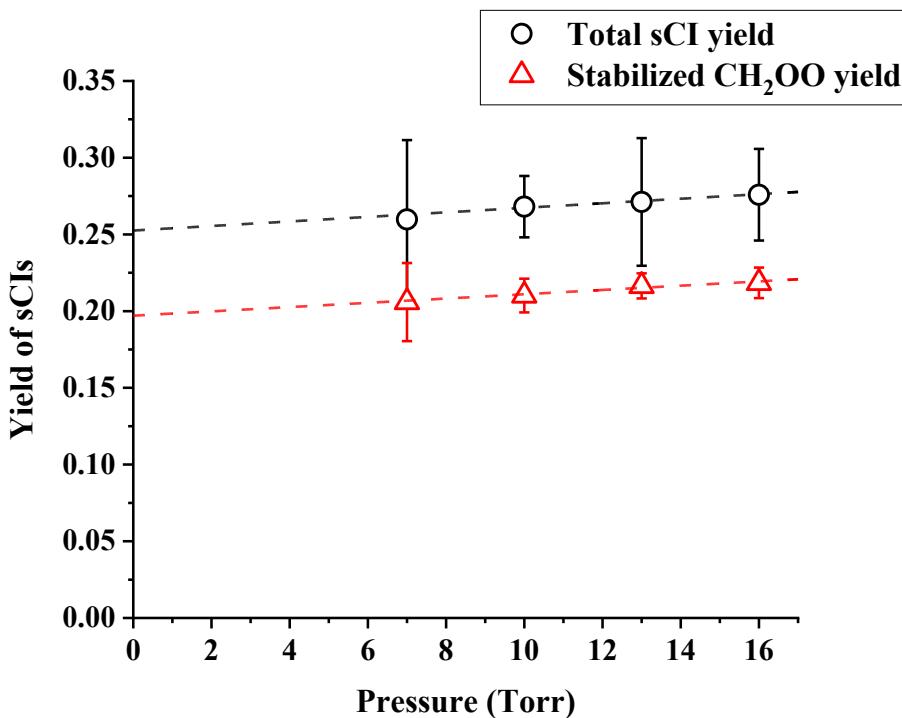
1 equations listed above and the relationships indicated in Scheme 1, the yields of stabilized CH_2OO ,
2 high-energy CH_2OO^* , stabilized CH_3CHOO , and high-energy CH_3CHOO^* can all be obtained
3 using the near-UV CRDS and the SO_2 titration method.

4 Equation 2 is valid when the concentration of SO_2 is high enough to completely react
5 with/scavenge all the sCIs produced from the ozonolysis reaction, before the sCIs can undergo any
6 further unimolecular or bimolecular reactions with other species such as the O_3 , alkene, or HCHO
7 in the system. However, it should be noted that using too much SO_2 may also cause saturation of
8 the absorption spectra and limit the accuracy of the measurements. This is because CRDS has a
9 limited dynamic range in measurement, typically 2 orders of magnitude. Therefore, exceeding the
10 upper limit of the dynamic range would result in a rapid increase of the ringdown decay rate,
11 leading to signal saturation and noisy measurements. To avoid using an excessively high
12 concentration of SO_2 , which could also lead to the formation of secondary products and an increase
13 in the broad background in the absorption spectra, a titration curve was measured as shown in
14 Figure 2, which allowed for the determination of the minimum amount of SO_2 required to
15 completely consume all the sCIs. The titration curve was obtained by measuring the change in the
16 ratio of consumed SO_2 to consumed O_3 ($\Delta[\text{SO}_2]/\Delta[\text{O}_3]$) as the initial concentration of SO_2 was
17 varied under identical conditions of pressure, residence time, and initial propene and O_3
18 concentrations. This approach ensured that the optimal amount of SO_2 was used to titrate the sCIs
19 while avoiding any unnecessary excess. Since O_3 was the limiting reagent in the ozonolysis
20 reaction studied in this experiment (with the propene concentration being approximately three
21 orders of magnitude higher than the O_3 concentration), the ratio of the initial concentrations of SO_2
22 and O_3 was plotted on the horizontal axis. As the initial SO_2 concentration increased, the ratio of
23 $\Delta[\text{SO}_2]/\Delta[\text{O}_3]$ increased and eventually levelled off. At this plateau, $\Delta[\text{SO}_2]/\Delta[\text{O}_3]$ approached a

Figure 2. The titration curve showing the variation in the consumption of SO₂ in propene ozonolysis as the initial SO₂ concentration was varied at a total pressure of 10 Torr. The horizontal axis represents the ratio of the initial SO₂ concentration to the initial O₃ concentration, which reflects the excess extent of the SO₂ titrant. The initial O₃ concentration was kept constant at approximately 1.5×10^{14} molecules cm⁻³ throughout the titration curve. The vertical axis is the ratio of the consumed amounts of SO₂ and O₃. The curve reached a maximum of approximately 27% when concentration of the added SO₂ was high enough to fully titrate all the sCIs produced during propene ozonolysis. The trend line was calculated using kinetic modelling. Error bars represent one standard deviation in repeated measurements at each SO₂ concentration.

1 constant value, indicating the maximum consumption of SO₂ and completion of the titration of
 2 sCIs. This plateau was observed at an initial [SO₂]/[O₃] ratio higher than 1.5, corresponding to SO₂
 3 concentration higher than 2.3×10^{14} molecules cm⁻³. Based on the consumed O₃ being about 40-
 4 50% of its initial concentration and the typical yield of sCIs in ozonolysis being less than 40%, the
 5 amount of SO₂ needed to reach the plateau in the titration curve was more than 10 times higher
 6 than the total amount of sCIs produced in ozonolysis. In the sCI measurement experiments under

1 different pressures, high initial concentrations of SO_2 were used with the $[\text{SO}_2]/[\text{O}_3]$ ratio being
2 approximately 2.3. This allowed for the efficient scavenging of sCIs via the $\text{SO}_2 + \text{sCI}$ reactions,
3 which have a large rate constant (e.g., $k(\text{SO}_2 + \text{CH}_2\text{OO}) = 3.7 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$) and
4 ensured that the $\text{SO}_2 + \text{sCI}$ scavenging reaction was the dominant pathway for the sCI removal,
5 outcompeting all other reaction pathways of sCI. The titration curve was further supported by the
6 results of kinetic modelling built for the titration reaction using the Kintecus software package,³⁷
7 as presented in Table S2 in ESI. The trend line of $\Delta[\text{SO}_2]/\Delta[\text{O}_3]$ calculated from the kinetic
8 modelling (dashed line in Figure 2) was found to be in good agreement with our experimental
9 measurements, except for the initial part of the titration curve where the SO_2 concentration was
10 not high enough to dominate over other reaction pathways involving CH_2OO and CH_3CHOO . In
11 the initial rising part of the curve where all reaction pathways of CH_2OO compete and are involved,
12 the reaction kinetics is complex and harder to model accurately; whereas it becomes easier to
13 model the plateau where SO_2 is sufficient to dominate other pathways and the kinetics becomes
14 “simple”. While the initial gap indicates that there is room to improve our kinetic model, the
15 agreement between the kinetic model and experimental results in the plateau region helps validate
16 the endpoint of titration (the main focus of this work). The experimental measurements on
17 $\Delta[\text{SO}_2]/\Delta[\text{O}_3]$ in this study were subject to noticeable error bars, representing one standard
18 deviation of repeated measurements. The extent of the reactions in the short residence time
19 (approximately 0.9 s) was limited by the relatively slow reaction between propene and O_3 (k
20 (propene + O_3) = $1.05 \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$). Despite the relatively large error bars, it was
21 crucial to maintain a short residence time of less than 1 second to prevent accumulation of
22 secondary products such as formic acids, carbonyls, and SOA. These byproducts can not only
23 contribute to a broad UV absorption background and decrease detection sensitivity but also


1 compete with SO_2 in the reaction with sCIs, as observed in our experiments and confirmed by
2 kinetic modelling calculations.

3

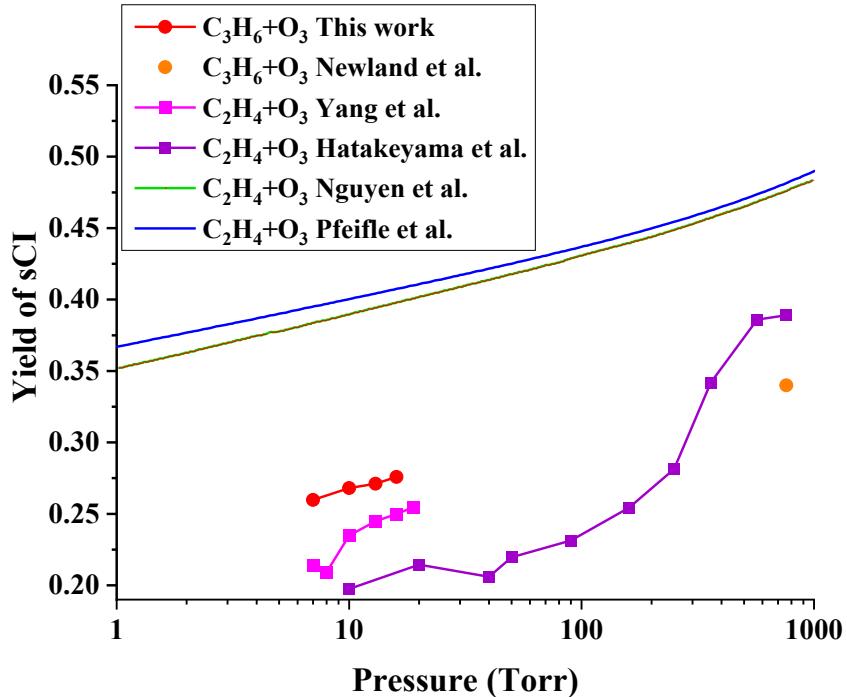
4

5 **Results and discussion**

6 As propene is an asymmetric alkene, its ozonolysis produces formaldehyde oxide (CH_2OO) and
7 *syn/anti* conformers of acetaldehyde oxide (*syn/anti*- CH_3CHOO). Figure 3 shows the total yield
8 of sCIs and the yield of stabilized CH_2OO produced from ozonolysis of propene in the pressure
9 range of 7-16 Torr. The initial $[\text{SO}_2]_i/[\text{O}_3]_i$ ratio was kept at 2.3-2.5 to ensure that sCIs can be
10 scavenged completely at all the pressures. The linear fit of the trend shows that the total sCI yield
11 decreases slightly from 28% to 26% when the pressure decreases from 16 to 7 Torr. The nascent
12 yield of total sCIs in propene ozonolysis is determined to be $25 \pm 2\%$ after extrapolation to the
13 zero-pressure limit. The yield of secondary HCHO after adding SO_2 (the lower limit of the
14 stabilized CH_2OO) also showed a small decrease with decreasing pressure in the 7-16 Torr region,
15 and the lower limit of the nascent yield of stabilized CH_2OO is $20 \pm 2\%$ at zero pressure. The
16 uncertainty of the nascent yields was estimated from the standard error of the weighted linear fit
17 using the least-squares method and corrected with the critical value in 95% confidence *t*-test (more
18 details in the description of Table S6 and Table S7 in ESI). The yield of HCHO in ozonolysis of
19 propene was measured to be $62 \pm 5\%$, which contains both primary HCHO yield and small
20 secondary HCHO yield produced from other pathways. According to our kinetic modelling, the
21 yield of secondary HCHO produced from the CH_2OO bimolecular reactions is $\leq 5\%$ and there
22 could be $\sim 3\%$ additional HCHO from the KHP decomposition (see Table S3). Thus, the total yield
23 of *syn/anti* conformers of CH_3CHOO determined from the primary yield of HCHO from equation

Figure 3. Low-pressure yield of sCIs (stabilized CH₂OO and CH₃CHOO) produced in ozonolysis of propene measured below 16 Torr. Total sCI yield (black) was determined from the consumption of SO₂, while the yield of stabilized CH₂OO (red) was calculated from the production of secondary HCHO after adding SO₂. The dashed lines represent the weighted linear fit of the experimental data points and are extrapolated to the zero-pressure limit. Error bars represent one standard deviation in repeated measurements at each pressure.

1 (4) is estimated to be in a range of 54-62%, and the total yield of CH₂OO is 29-43% (assuming 0-
 2 12% of KHP yield from the POZ decomposition).⁶ From these results, the nascent yields of
 3 stabilized CH₂OO and stabilized CH₃CHOO are calculated to be 20-25% and 0-5%, while the
 4 nascent yield of the high-energy CH₂OO* and high-energy CH₃CHOO* are 9-18% and 53-57%,
 5 respectively. The specific values of the CI yields under different assumptions are listed in Table
 6 S3.


7 The yield of HCHO in ozonolysis reported here, $62 \pm 5\%$, is consistent with the previous studies
 8 of 60-65% yield at the atmospheric pressure,^{29, 36, 42-44} which indicates that pressure may not have

1 a large impact on the branching ratio of the total CH₂OO and CH₃CHOO produced from
2 decomposition of POZ in propene ozonolysis. However, the energy distribution of CIs and the
3 total sCI yield are dependent on the pressure. In the previous studies at the atmospheric pressure,
4 the total yield of sCIs in propene ozonolysis has been determined to be 44%, 25 ± 2% and 34 ±
5 1% by Horie et al.,³⁶ Hatakeyama et al.²⁸ and Newland et al,²⁹ respectively. Among these studies,
6 Hatakeyama et al.²⁸ and Newland et al.²⁹ used SO₂ as the scavenger and quantified either the
7 associated product H₂SO₄ or the consumed SO₂, respectively, while Horie et al.³⁶ added HCHO as
8 the scavenger and measured the adduct between sCIs and HCHO. Our experimental value of the
9 total nascent sCI yield at the zero pressure, 25 ± 2%, is about 9% lower than the 34 ± 1 %
10 atmospheric sCI yield in propene ozonolysis reported by Newland et al.²⁹, who used the same
11 scavenger and quantification method ($\Delta[\text{SO}_2]$ for total sCIs) with this work. Newland et al.²⁹ also
12 reported the yield of stabilized CH₂OO in propene ozonolysis being 23% at the atmospheric
13 pressure, measured from the increase of secondary HCHO after adding SO₂ as in the current work.
14 The nascent yield of stabilized CH₂OO measured in this work is about 3% lower than the
15 atmospheric yield, yet both of them should be considered as lower limits because secondary HCHO
16 were already produced from bimolecular reactions of CH₂OO prior to adding SO₂.

17 From the ratio between the nascent yield of stabilized CH₂OO (20-25%) and the total yield of
18 CH₂OO (29-43%), the nascent stabilization factor of CH₂OO is determined to be 52-74%. The
19 specific values of the CI stabilization factors under different assumptions are listed in Table S3.
20 Newland et al.²⁹ reported the stabilization factor of CH₂OO to be 60% at atmospheric pressure,
21 calculated from the ratio between the lower limit of stabilized CH₂OO yield (23%) and the initial
22 CH₃CHO yield of 38%. Thus, if taking the same method, the nascent stabilization factor of CH₂OO
23 at low pressure in this work is ~8% lower than that at atmospheric pressure. Similarly, the nascent

1 stabilization factor of CH_3CHOO can be estimated to be 0-9% at the zero pressure limit, and it is
2 about 9-30% lower than that at the atmospheric pressure.²⁹ This observation agrees with the
3 relatively low nascent yield of stabilized CH_3CHOO of 0-5% measured in ozonolysis of *trans*-2-
4 butene and *cis*-2-butene.^{32, 33} Compared to CH_3CHOO , CH_2OO has a much higher stabilization
5 factor because of its high isomerization barriers to form dioxirane and hydroperoxide (reported to
6 be 18.2–19.1 and 30.8–31.8 kcal/mol, respectively),^{12, 35} while the *syn*-conformers of the larger
7 sCIs can undergo a lower barrier pathway through the 1,4-hydrogen migration to form alkenyl
8 hydroperoxide, and this process is enhanced by tunnelling (barrier of *syn*- CH_3CHOO to form vinyl
9 hydroperoxide is 17.05 kcal/mol).^{11, 12, 45}

10 Compared to the 20% nascent yield of sCIs in ethene ozonolysis,³⁴ the total nascent sCI yield in
11 propene ozonolysis is about 5% higher. Although the nascent stabilized CH_2OO yield is about the
12 same in propene and ethene ozonolysis (~ 20%), considering that the branching ratio of the CH_2OO
13 pathway from POZ is only ~29-43% in propene ozonolysis (while it is 88-100% in ethene
14 ozonolysis), the nascent stabilization factor of CH_2OO is 29-54% higher in propene ozonolysis
15 compared to that in ethene ozonolysis. Assuming the internal energy is distributed evenly on POZ,
16 after the cleavage of POZ, energy taken away by the carbonyl coproduct would increase with the
17 increase of its size. The acetaldehyde (CH_3CHO) coproduct of CH_2OO in propene ozonolysis can
18 take away more internal energy than the HCHO coproduct of CH_2OO in ethene ozonolysis, and
19 thus the mean internal energy of CH_2OO in propene ozonolysis is lower than that in ethene
20 ozonolysis.

Figure 4. The total sCI yield in propene ozonolysis measured by experimental works compared to the sCI yields reported by experimental and theoretical works for the ethene ozonolysis.^{6, 25, 29, 34, 35}

Previous theoretical calculations suggest that the collisional stabilization of POZ in ozonolysis of alkene is negligible,³⁵ and that the pressure-dependent behavior of sCI yields is due to collisional stabilization of high-energy CIs with buffer gases. In Figure 4, the low-pressure sCI yields measured by this work is compared to the sCI yields measured by Newland et al.²⁹ at atmospheric pressure and the increasing trend of sCI yields reported by experimental and theoretical works for ethene ozonolysis at 1-1000 Torr.^{6, 25, 34, 35} Although the alkenes are different, the general trends are similar to those by theoretical predictions with respect to the logarithmic pressure.^{6, 35} The sCI yields calculated by Nguyen et al.³⁵ were based on statistical energy partitioning, while those by Pfeifle et al.⁶ were from trajectory models (non-statistical theories). A few other theoretical works on ozonolysis support the nonergodic and nonstatistical behaviors of energy partitioning in the

1 ozonolysis reactions of propene and vinyl ethers.^{46, 47} Compared to the previous experimental
2 studies on ethene ozonolysis,^{25, 34} the increase of sCI yield is smaller in propene ozonolysis at 7-
3 760 Torr, which might suggest a smaller collisional stabilization effect of CH₃CHOO than CH₂OO.
4 By comparing the predictions from the theoretical models with the experimental results, future
5 researchers can assess the accuracy and reliability of their models and potentially refine them to
6 better describe the behavior of CIs.

7

8

9 **Conclusions**

10 The yields of the total sCIs, the stabilized CH₂OO, and the stabilized CH₃CHOO produced in
11 ozonolysis of propene were determined at low pressures from 7 to 16 Torr by monitoring the
12 consumption of SO₂ scavenger as well as the production of secondary HCHO using the near-UV
13 CRDS. Nascent yields of these sCIs were obtained from extrapolation to the zero-pressure limit,
14 and the branching ratio of the stabilized and high-energy CH₂OO* and CH₃CHOO* were also
15 determined. CH₂OO has a higher nascent stabilization factor than CH₃CHOO due to its relatively
16 higher energy barrier for isomerization and dissociation. The nascent stabilization factor of
17 CH₂OO is higher in propene ozonolysis than in ethene ozonolysis, because the larger size of the
18 carbonyl co-product in propene ozonolysis can take away more energy. The branching ratio
19 obtained from the current study can be used as benchmarks for future theoretical calculations.

20

21

22 **Electronic Supplementary Information (ESI)**

23 The Supplementary Information is available free of charge. The Supplementary Information
24 provides more experimental and modelling details. Figures S1–S4 present the experimental setup,

1 the broad absorption background $f(\lambda)$ in the spectra, and the comparison between modelling and
2 experimental sCI yields in propene ozonolysis. Tables S1–S8 list flow parameters of the reactor,
3 kinetic modelling, summarized nascent CI/carbonyl yields based on different assumptions, and sCI
4 yields measurements at each pressure.

5

6

7 **Conflicts of Interest**

8 There are no conflicts of interest to declare.

9

10

11 **Acknowledgements**

12 This work was supported by the U.S. National Science Foundation (CHE-2155232). L. Yang
13 acknowledges the support from a UC Riverside Dissertation Research Grant. M. Campos-Pineda
14 acknowledges the support from a UCMEXUS-CONTACYT Doctoral Fellowship.

15

16

17 **Notes and references**

- 18 1. S. E. Paulson and J. J. Orlando, *Geophys. Res. Lett.*, 1996, **23**, 3727-3730.
- 19 2. B. J. Finlayson-Pitts and J. N. Pitts, *Chemistry of the Upper and Lower Atmosphere: Theory,*
20 *Experiments, and Applications*, Academic Press, San Diego, 2000.
- 21 3. R. Atkinson and J. Arey, *Chem. Rev.*, 2003, **103**, 4605-4638.
- 22 4. J. H. Kroll and J. H. Seinfeld, *Atmos. Environ.*, 2008, **42**, 3593-3624.
- 23 5. R. Criegee, *Angew. Chem., Int. Ed. Engl.*, 1975, **14**, 745-752.

1 6. M. Pfeifle, Y. T. Ma, A. W. Jasper, L. B. Harding, W. L. Hase and S. J. Klippenstein, *J.*
2 *Chem. Phys.*, 2018, **148**, 174306.

3 7. A. C. Rousso, N. Hansen, A. W. Jasper and Y. Ju, *J. Phys. Chem. A*, 2018, **122**, 8674-8685.

4 8. N. Genossar, J. P. Porterfield and J. H. Baraban, *Phys. Chem. Chem. Phys.*, 2020, **22**,
5 16949-16955.

6 9. C. S. Lewin, O. Herbinet, G. A. Garcia, P. Arnoux, L.-S. Tran, G. Vanhove, L. Nahon, F.
7 Battin-Leclerc and J. Bourgalais, *Chem. Commun.*, 2022, **58**, 13139-13142.

8 10. C. A. Taatjes, *Annu. Rev. Phys. Chem.*, 2017, **68**, 183-207.

9 11. D. L. Osborn and C. A. Taatjes, *Int. Rev. Phys. Chem.*, 2015, **34**, 309-360.

10 12. M. Olzmann, E. Kraka, D. Cremer, R. Gutbrod and S. Andersson, *J. Phys. Chem. A*, 1997,
11 **101**, 9421-9429.

12 13. G. T. Drozd, T. Kurtén, N. M. Donahue and M. I. Lester, *J. Phys. Chem. A*, 2017, **121**,
13 6036-6045.

14 14. J. Jr-Min Lin and W. Chao, *Chem. Soc. Rev.*, 2017, **46**, 7483-7497.

15 15. O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross and C. A.
16 Taatjes, *Science*, 2012, **335**, 204-207.

17 16. J. D. Fenske, A. S. Hasson, A. W. Ho and S. E. Paulson, *J. Phys. Chem. A*, 2000, **104**,
18 9921-9932.

19 17. O. Welz, A. J. Eskola, L. Sheps, B. Rotavera, J. D. Savee, A. M. Scheer, D. L. Osborn, D.
20 Lowe, A. Murray Booth, P. Xiao, M. Anwar H. Khan, C. J. Percival, D. E. Shallcross and
21 C. A. Taatjes, *Angew. Chem., Int. Ed.*, 2014, **53**, 4547-4550.

22 18. F. Liu, J. M. Beames, A. S. Petit, A. B. McCoy and M. I. Lester, *Science*, 2014, **345**, 1596-
23 1598.

1 19. Y. Liu, K. D. Bayes and S. P. Sander, *J. Phys. Chem. A*, 2014, **118**, 741-747.

2 20. Y.-P. Lee, *J. Chem. Phys.*, 2015, **143**, 020901.

3 21. C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B.

4 Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok, D. L. Osborn and C. J. Percival, *Science*,

5 2013, **340**, 177-180.

6 22. L. Sheps, *J. Phys. Chem. Lett.*, 2013, **4**, 4201-4205.

7 23. G. T. Drozd and N. M. Donahue, *J. Phys. Chem. A*, 2011, **115**, 4381-4387.

8 24. G. T. Drozd, J. Kroll and N. M. Donahue, *J. Phys. Chem. A*, 2011, **115**, 161-166.

9 25. S. Hatakeyama, H. Kobayashi, Z. Y. Lin, H. Takagi and H. Akimoto, *J. Phys. Chem.*, 1986,

10 **90**, 4131-4135.

11 26. J. P. Hakala and N. M. Donahue, *J. Phys. Chem. A*, 2016, **120**, 2173-2178.

12 27. T. Berndt, R. Kaethner, J. Voigtländer, F. Stratmann, M. Pfeifle, P. Reichle, M. Sipilä, M.

13 Kulmala and M. Olzmann, *Phys. Chem. Chem. Phys.*, 2015, **17**, 19862-19873.

14 28. S. Hatakeyama, H. Kobayashi and H. Akimoto, *J. Phys. Chem.*, 1984, **88**, 4736-4739.

15 29. M. J. Newland, B. S. Nelson, A. Munoz, M. Rodenas, T. Vera, J. Tarrega and A. R. Rickard,

16 *Phys. Chem. Chem. Phys.*, 2020, **22**, 13698-13706.

17 30. R. A. Cox, M. Ammann, J. N. Crowley, H. Herrmann, M. E. Jenkin, V. F. McNeill, A.

18 Mellouki, J. Troe and T. J. Wallington, *Atmos. Chem. Phys.*, 2020, **20**, 13497-13519.

19 31. M. J. Newland, A. R. Rickard, L. Vereecken, A. Muñoz, M. Ródenas and W. J. Bloss,

20 *Atmos. Chem. Phys.*, 2015, **15**, 9521-9536.

21 32. M. Campos-Pineda and J. Zhang, *Sci. China Chem.*, 2018, **61**, 850–856.

22 33. M. Campos-Pineda and J. Zhang, *Chem. Phys. Lett.*, 2017, **683**, 647-652.

23 34. L. Yang, M. Campos-Pineda and J. Zhang, *J. Phys. Chem. Lett.*, 2022, **13**, 11496-11502.

1 35. T. L. Nguyen, H. Lee, D. A. Matthews, M. C. McCarthy and J. F. Stanton, *J. Phys. Chem. A*, 2015, **119**, 5524-5533.

2

3 36. O. Horie and G. K. Moortgat, *Atmos. Environ.*, 1991, **25**, 1881-1896.

4 37. J. C. Ianni, in *Computational Fluid and Solid Mechanics 2003*, ed. K. J. Bathe, Elsevier

5 Science Ltd., Oxford, 2003, pp. 1368-1372.

6 38. H. Keller-Rudek, G. K. Moortgat, R. Sander and R. Sorensen, *Earth Syst. Sci. Data*, 2013,

7 **5**, 365-373.

8 39. Y. Y. Wang, M. R. Dash, C. Y. Chung and Y. P. Lee, *J. Chem. Phys.*, 2018, **148**, 064301.

9 40. L. Vereecken, H. Harder and A. Novelli, *Phys. Chem. Chem. Phys.*, 2012, **14**, 14682-14695.

10 41. K. T. Kuwata, E. J. Guinn, M. R. Hermes, J. A. Fernandez, J. M. Mathison and K. Huang,

11 *J. Phys. Chem. A*, 2015, **119**, 10316-10335.

12 42. E. C. Tuazon, S. M. Aschmann, J. Arey and R. Atkinson, *Environ. Sci. Technol.*, 1997, **31**,

13 3004-3009.

14 43. E. Grosjean, J. B. de Andrade and D. Grosjean, *Environ. Sci. Technol.*, 1996, **30**, 975-983.

15 44. A. R. Rickard, D. Johnson, C. D. McGill and G. Marston, *J. Phys. Chem. A*, 1999, **103**,

16 7656-7664.

17 45. T. A. Stephenson and M. I. Lester, *Int. Rev. Phys. Chem.*, 2020, **39**, 1-33.

18 46. G. Vayner, S. V. Addepalli, K. Song and W. L. Hase, *J. Chem. Phys.*, 2006, **125**, 014317.

19 47. L. M. M. Quijano and D. A. Singleton, *J. Am. Chem. Soc.*, 2011, **133**, 13824-13827.

20