

Mechanism of Thermal Decomposition of Hydroxyacetone: Vacuum Ultraviolet Photoionization Time-of-Flight Mass Spectrometry and Density Functional Theory Study

Xinghua Liu,^a Ru Sun,^b Kuanliang Shao,^c Jingsong Zhang,^{c,d,*}

^a School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, PR China

^b School of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, PR China

^c Department of Chemistry, University of California, Riverside, California 92521, United States

^d Air Pollution Research Center, University of California, Riverside, California 92521, United States

Abstract

12 Thermal decomposition mechanism of hydroxyacetone from 850 K to 1390 K was examined by
13 using flash pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry (VUV-
14 PI-TOFMS) combined with density functional theory (DFT) calculation. The results showed that
15 keto-enol tautomerisms could occur prior to thermal decomposition of hydroxyacetone. The
16 decomposition pathways of hydroxyacetone and its isomer 2-hydroxypropanal were characterized.
17 The thermal decomposition reactions started at about 950 K. The homolysis reactions related to
18 the cleavage of C_{CO}-C_{COH} bond of hydroxyacetone and 2-hydroxypropanal, as well as CH₃ loss of
19 hydroxyacetone, dominated the initial decomposition reactions. The subsequent decompositions
20 of the radical intermediates generated by the initial homolysis decompositions were the major
21 secondary decomposition reactions. The formation pathways of small molecules, such as H₂, CH₄,
22 H₂O and HCHO, were proposed to proceed via molecular elimination reactions facilitated by the
23 active α -H atoms. These elimination reactions were not negligible at high temperatures above 1230

1 K.

2

3 Keywords: Bio-oil model compound, hydroxyacetone, thermal decomposition, mechanism.

4

5 * Corresponding author. Email: jingsong.zhang@ucr.edu; Tel +1 951 827 4197; Fax: +1 951 827 4713.

6

7 **1. Introduction**

8 Biomass, the largest renewable energy resource, is attracting more and more attention due to the

9 depletion of fossil fuels, increasing energy demand, and environmental concerns.¹⁻² Hydrogen and

10 synthesis gas production via thermal and catalytic reforming techniques have been considered as

11 one of the promising ways of biomass utilization.³⁻⁶ Hydroxyacetone, also known as acetol, can be

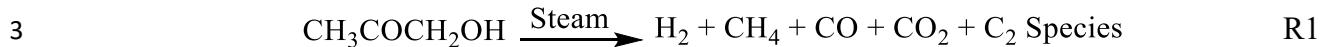
12 produced by pyrolysis of biomass-derived materials, such as cellulose,⁷⁻⁹ hemicellulose,¹⁰ sugar¹¹⁻

13 and glycerol.¹³⁻¹⁶ Hydroxyacetone is considered as the highest content in the ketone fraction and

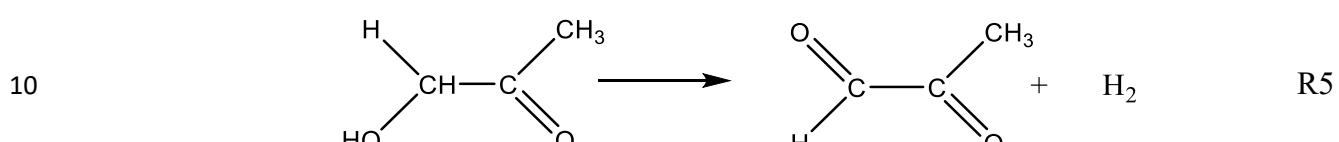
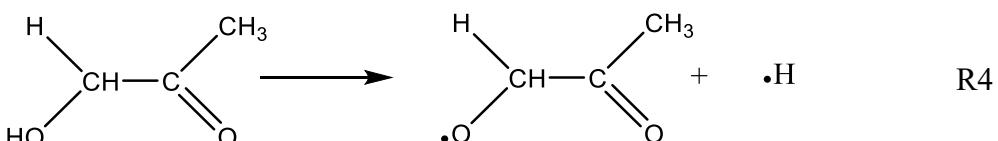
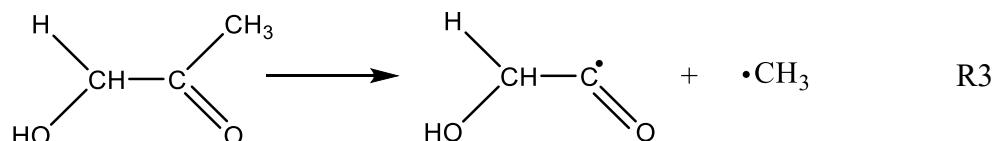
14 between the fifth and eighth of the major nonacidic compounds of bio-oil.¹⁷⁻¹⁸ Therefore, the

15 knowledge of the pyrolysis mechanism of hydroxyacetone is important for understanding the

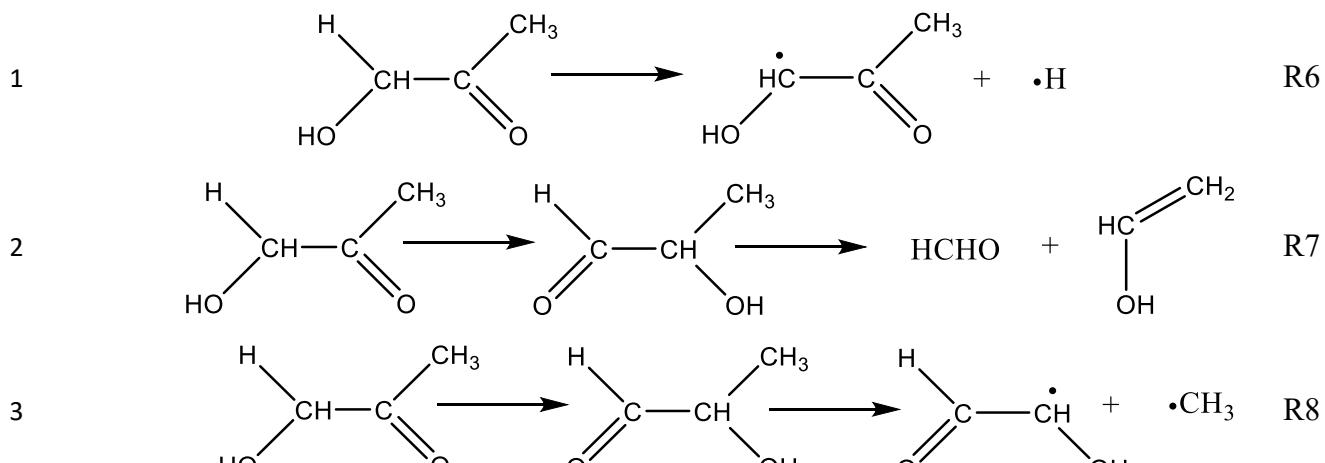
16 processes of steam reforming and thermal conversion of biomass/bio-oil. However, to date, only a


17 few studies have been reported on this topic.

18 Ramos et al.¹⁹ reported that H₂, CH₄, CO, CO₂ and C₂ species were produced in gaseous yields




19 with the participation of steam via R1 in the non-catalytic process of hydroxyacetone over 450-

20 650 °C. However, Bimbela et al.¹⁷ suggested that steam did not participate in R1 in the steam


1 reforming of hydroxyacetone over 550-750 °C. Fuentes-Cano et al.⁶ claimed that hydroxyacetone
2 was thermally decomposed via R2 by stoichiometry.

5 Wang et al.²⁰ proposed that the primary decomposition pathways of hydroxyacetone were methyl
6 radical and hydrogen elimination via R3 and R4. Albuquerque et al.²¹ pointed out that
7 dehydrogenation of hydroxyacetone leads to pyruvaldehyde and H₂ through R5.

11 Jing et al.²² investigated the tautomerization and decomposition of hydroxyacetone using density
12 functional theory (DFT) at the M06-2X/6-31G(2df,p) level. They found that the H atom could be
13 eliminated via R6. This pathway also occurred in the catalytic oxidation process of
14 hydroxyacetone.²³ In addition, the result showed that hydroxyacetone isomerized to 2-
15 hydroxypropanal via H atom transfer with low barrier heights of about 40 kcal/mol. Then 2-
16 hydroxypropanal decomposed via two competitive pathways to produce formaldehyde (R7) and
17 methyl radical (R8), respectively.

5 To the best of our knowledge, a thorough thermal decomposition mechanism of hydroxyacetone
 6 has not been reported. In this work, the mechanism was systematically investigated using a flash
 7 pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry (VUV-PI-TOFMS)
 8 combined with the DFT calculation. The experimental approach of flash pyrolysis coupled to
 9 supersonic expansion/molecular beam sampling and VUV-PI-TOFMS provides a short reaction
 10 time to investigate the initial steps of pyrolysis, supersonic cooling/molecular beam sampling to
 11 preserve the reaction intermediates and products, mass spectrometry detection of a broad range of
 12 reactive intermediates and products, and minimized ion fragmentation due to the low
 13 photoionization energy. The bond homolysis and molecular elimination pathways in the initial
 14 stage of pyrolysis can be directly observed simultaneously in this work, with minimal complication
 15 from the subsequent reactions. The detailed thermal decomposition mechanism of hydroxyacetone
 16 would benefit the understanding of thermal treatment of biomass and bio-oil.

17

1 **2. Experimental and Computational Methods**

2 The VUV-PI-TOFMS experimental setup has been described in detail previously.²⁴⁻²⁸

3 Hydroxyacetone (Sigma Aldrich, 99%) was used in this work without further purification. The

4 hydroxyacetone sample (~ 0.3%) was prepared by bubbling helium (~ 1.5 atm) through the

5 hydroxyacetone liquid in a bubbler at room temperature.²⁹ The sample was transferred via a pulsed

6 nozzle into a micro-pyrolyzer made of SiC tube (Carborundum, 40 mm long, heated length 10 mm,

7 2 mm O.D., 1 mm I.D.). The pyrolysis micro-reactor was based on the design described by Chen

8 and co-workers.³⁰ The pyrolyzer was heated up to 1390 K by varying the electric current passing

9 through the SiC tube. A type C thermocouple was attached to the pyrolyzer to measure the

10 pyrolysis temperature. The gas flow properties in the SiC microreactor were investigated

11 previously at elevated temperatures and at 1-2 atm backing pressure (i.e., under conditions similar

12 to our experiment).³¹⁻³³ The speed of the sample flow was approximately sonic in the short, heated

13 region, with a ~ 50 μ s residence/reaction time for precursors in the He carrier gas. The very dilute

14 concentration of the precursor in He buffer gas and short reaction time in the heated region favored

15 unimolecular reactions, and bimolecular reactive collisions were estimated to be sufficiently minor

16 except at very high temperatures (> 1400 K), as suggested by the modellings³²⁻³³ and our previous

17 study.²⁷ Similarly, under these experimental conditions, the intermediates produced from the initial

18 thermal decompositions of the precursor would not undergo significant secondary decompositions

19 at the initial and medium high temperatures (e.g., 900-1100 K) (due to the short reaction time and

20 small decomposition rate constant of the precursor) until at more elevated temperatures. It should

21 be noted that the distribution of pressure and temperature inside the microreactor was nonuniform

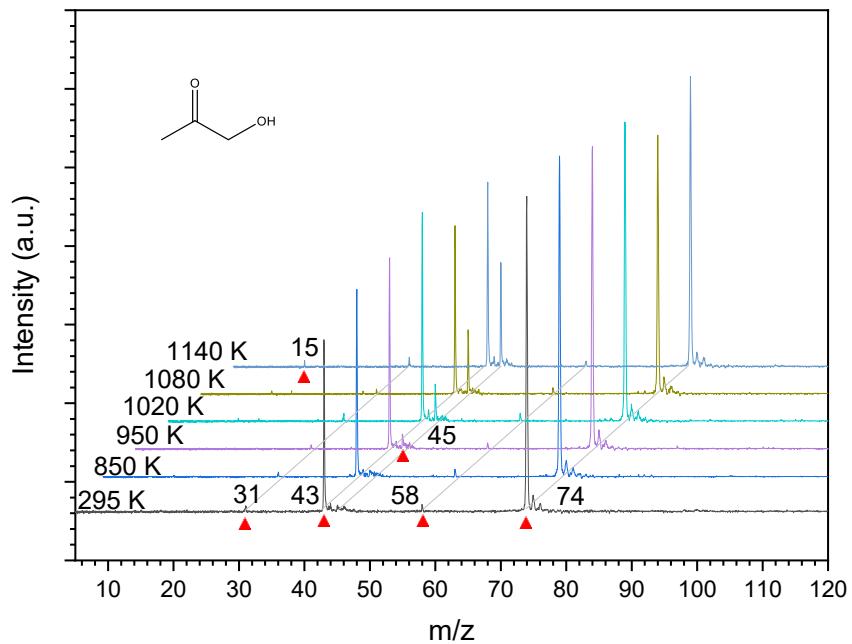
1 and likely not at equilibrium,³²⁻³³ thus this work focused more on qualitative reaction mechanisms
2 than quantitative kinetics. The gas pressure at the exit of the tube was still sufficient to produce a
3 supersonic expansion and cooling; upon exiting from the heated reaction zone, the nascent
4 products, intermediates, and any remaining reactants were sampled into and supersonically cooled
5 in a molecular beam (with an internal temperature of 20-150 K),³⁰⁻³¹ which significantly reduced
6 their internal energy and dissociative photoionization. Downstream in a high vacuum detection
7 region, they were photoionized by a 118.2 nm (10.49 eV, 10 Hz) VUV radiation generated by
8 tripling the 355 nm output of a Nd:YAG laser in a Xe gas cell (~ 20 Torr). The positively charged
9 ions were extracted into a linear TOFMS and collected by a microchannel plate detector. The
10 pyrolysis mass spectra were recorded in a digital storage oscilloscope. Each spectrum represented
11 the averaged signal of 512 laser shots. The TOF spectra were then converted to the mass spectra.

12 DFT theory has been widely employed to investigate the pyrolysis mechanism of organic
13 compounds.^{12, 28, 34} In this work, the possible decomposition pathways were located at the
14 (U)B3LYP/6-311++G(d,p) level of theory. Frequency and intrinsic reaction coordinate (IRC)
15 calculations³⁵ were performed in order to ensure the accuracy of the transition states. Single point
16 energies of related reactants, transition states, and products were calculated at the (U)B3LYP/6-
17 311++G(d,p) level with zero point energy (ZPE) correction. The energy barrier was defined as the
18 energy difference between the transition state and the corresponding reactant. All calculations were
19 performed using the Gaussian 09 program.³⁶ The calculated single point energies at the
20 (U)B3LYP/6-311++G(d,p) level are within 1.0 kcal/mol with respect to those of the CBS-QB3
21 method and within 2.0 kcal/mol with respect to those of UM06-2X/6-311++G(2df,2p) (see Table

1 S1 in Supporting Information (SI)), respectively, indicating a good accuracy of the (U)B3LYP/6-
2 311++G(d,p) method. All the geometry coordinates of the species related to hydroxyacetone
3 thermal decomposition are provided in SI.

4 Unimolecular reaction rate constants of the initiation reactions were calculated using transition
5 state theory (TST). For the unimolecular dissociation reaction with a well-defined transition state,
6 the rate constant was calculated using TST with Wigner tunneling correction.³⁷⁻⁴⁰ The single point
7 energy and frequencies of reactants and transition states were obtained from the DFT calculations
8 at the (U)B3LYP/6-311++G(d,p) level of theory using the Gaussian 09 package as described before.

9 For the bond homolysis (barrierless) reactions, variational transition state theory (VTST) with
10 Wigner tunneling correction was applied.³⁷⁻⁴⁰ A series of constrained optimizations along the
11 reaction path were carried out, and at each optimized geometry (“trial transition state”), the
12 potential energy and vibrational frequencies were calculated at the same level of theory. The
13 dividing surfaces for the barrierless reactions at different temperatures were determined by finding
14 the maximum Gibbs free energy change $\Delta G^\circ(T)$ of the “trial transition state” along the reaction
15 pathway at individual temperatures. This computational protocol was similar to previous works,⁴¹⁻

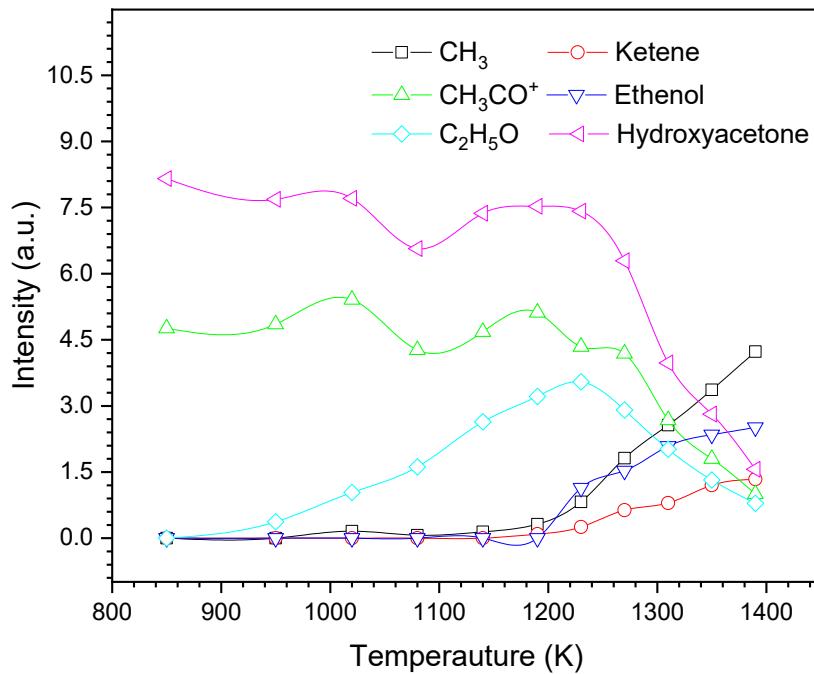

16 ⁴³ All the rate constant calculations were performed using the KISTHELP program.^{39, 44-45}

17
18

1 **3. Results**

2 3.1 Experiments of Thermal Decomposition of Hydroxyacetone

3 The mass spectra of hydroxyacetone pyrolysis over 295-1390 K are shown in Fig. 1 and 2. Two
4 photoionization peaks at m/z 74 and 43 were found at 295 K. They corresponded to the
5 hydroxyacetone parent mass peak and the CH_3CO^+ dissociative photoionization mass peak,
6 respectively. Two other minor dissociative photoionization peaks at m/z 58 and 31 were also
7 identified. The minor m/z 31 peak may be attributed to the ionization of $\cdot\text{CH}_2\text{OH}$, which is the
8 coproduct of CH_3CO^+ . The minor m/z 58 peak may be produced by CH_4 elimination via
9 photoionization dissociation. As the pyrolysis temperature was increased, no new peaks were
10 found in the range of 295-850 K. The first distinguishable peak produced by thermal
11 decomposition was observed at m/z 45 at 950 K, and it grew significantly when the temperature
12 increased from 950 K to 1140 K. It was the mass peak of the neutral $\text{C}_2\text{H}_5\text{O}$ radical. It should be
13 noted that the CH_3CO radical at m/z 43 could be formed by thermal decomposition of the parent
14 molecule in this initial temperature range. The first sign of the appearance of the CH_3CO radical
15 from thermal dissociation could not be determined clearly because it was mixed with the
16 dissociative photoionization fragment peak of the parent at m/z 43. The production of the CH_3CO
17 radical could be inferred indirectly because the intensity ratio of the m/z 43 peak and the parent
18 peak increased slightly with the increasing temperature in this region. Methyl radical peak at m/z
19 15 was detected at 1140 K. It could be directly produced by unimolecular decomposition of
20 hydroxyacetone. Another possible formation pathway of the methyl radical was subsequent
21 decomposition of the CH_3CO radical, which could serve as additional evidence of the CH_3CO



1 radical production. Meanwhile, the intensity of the m/z 31 peak of the CH₂OH radical, the
2 counterpart of the CH₃CO radical produced by C_{CO}-C_{COH} homolysis of hydroxyacetone, increased
3 slightly. Therefore, it is reasonable to consider that the CH₃CO radical could be generated
4 thermally at or above 1140 K.

5 The m/z 15 peak increased significantly from 1190 K to 1390 K. The m/z 31 peak increased
6 modestly to its maximum intensity from 1190 K to 1270 K, then decreased slightly from 1310 K
7 to 1390 K. Two small peaks at m/z 72 and 42 started to appear at 1190 K. The m/z 72 peak
8 representing C₃H₄O₂ was probably formed by H₂ elimination of hydroxyacetone via R5. The m/z
9 72 peak remained a minor peak up to 1390 K. The m/z 42 peak was ketene (H₂C=C=O) formed
10 by H loss of the CH₃CO radical. The m/z 42 peak increased significantly when the temperature
11 increased from 1230 K to 1390 K. The peak at m/z 44 started to increase at 1190 K and became
12 significant at and above 1230 K. The intensity ratio of the peak at m/z 43 to the peak at m/z 44
13 was about 4:1 at 1230 K, which was obviously larger than the ratio of the peak at m/z 43 to its ¹³C
14 isotopic peak at m/z 44. Therefore, the increased peak at m/z 44 above 1190 K may indicate the
15 formation of ethenol by formaldehyde elimination of hydroxyacetone (rather than the isotopic
16 effect of the peak at m/z 43). The formaldehyde counter fragment was not detected due to its high
17 ionization energy (10.86 eV)⁴⁶ above the photon energy in this study. A small peak at m/z 56
18 corresponding to C₃H₄O was also found at 1230 K. It may be formed by H₂O elimination of
19 hydroxyacetone or 2-hydroxypropanal (an isomer of hydroxyacetone and to be discussed in detail
20 in the following section). The m/z 56 peak increased with increasing temperature up to 1390 K.
21 The m/z 58 peak increased slightly from 1230 K to 1390 K. A small peak at m/z 59 appeared at

1 1230 K; this could be the co-fragment in the CH₃-loss channel of hydroxyacetone. A very minor
2 peak at m/z 73 seems to appear at 1230 K, and it remained very small or barely present at higher
3 temperatures. A peak at m/z 29 was observed at 1270 K. It might be the peak of the HCO radical.
4 It was possibly formed as the counter fragment of CH₃C(H)OH (m/z 45) from the Cco-CcoH bond
5 cleavage of CH₃CH(OH)-CHO (2-hydroxypropanal), which is an isomer of hydroxyacetone and
6 will be discussed in detail in the following section. The m/z 45 peak (CH₃C(H)OH) increased to
7 its maximum intensity at ~ 1250 K and then decreased at higher temperatures, indicating its
8 secondary decomposition. An alternative source for the m/z 44 peak was H-atom loss of
9 CH₃C(H)OH forming ethenol or acetaldehyde. No new peaks of significant intensities were
10 detected from 1310 up to 1390 K.

11 The intensities of the main peaks versus temperature are plotted in Fig. 3. The intensities of
12 hydroxyacetone (m/z 74) and peak at m/z 43 decreased rapidly starting from 1190 K (as the main
13 source of the m/z 43 peak was CH₃CO⁺ from dissociative photoionization of the parent), while the
14 intensities of the methyl radical (m/z 15), ketene (m/z 42) and ethenol (m/z 44) increased obviously
15 starting from about the same temperature of ~ 1190 K. These indicate that the initial main stage of
16 thermal decomposition of hydroxyacetone took place at and above 1190 K. The intensity of the
17 C₂H₅O radical (m/z 45) gradually increased from 950 K and peaked at 1230 K, and then decreased
18 with the increase of temperature, showing that the rate of the subsequent decomposition reactions
19 of the C₂H₅O radical overcame the rate of its formation reactions. Besides the parent peak, the
20 peak of the CH₃CO⁺/CH₃CO radical at m/z 43 was prominent when the temperature was lower
21 than 1310 K. The peak of the methyl radical became dominant at 1350 K and higher temperatures.

1

2 Fig. 3 Intensity evolution of the main peaks of hydroxyacetone pyrolysis over 850-1390 K.

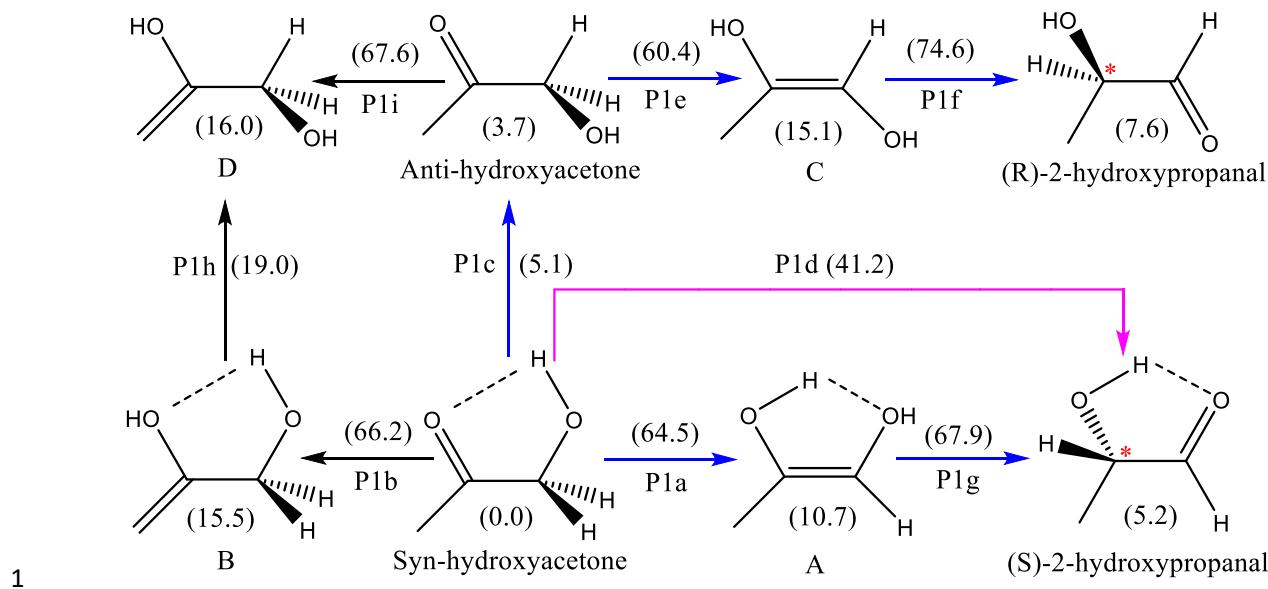
3

4 3.2 Computational Results

5 3.2.1 Isomerization Reactions

6 The possible isomers and isomerization pathways of hydroxyacetone are shown in Scheme 1.

7 Two stable conformers of hydroxyacetone are found. Syn-hydroxyacetone with intramolecular H-


8 bond between the carbonyl group and hydroxyl group has a lower single point energy than anti-

9 hydroxyacetone. The energy barrier between these two conformers is 5.1 kcal/mol. Keto-enol

10 tautomerism is a typical isomerization of ketone. Different conformers lead to different

11 tautomerism pathways. Syn-hydroxyacetone has three isomerization pathways corresponding to 3

12 different types of H migrating to the carbonyl group. The H in -CH₂- migrates to the carbonyl

1 Scheme 1. Possible isomerization pathways of hydroxyacetone (numbers in parentheses are single
2 point energies and energy barriers relative to syn-hydroxyacetone in kcal/mol, with ZPE
3 corrections).

4

5

6 group via P1a to give an enol type isomer A, while the H in $-\text{CH}_3$ migrates to the carbonyl group

7 via P1b to give another enol-type isomer B. The H in $-\text{OH}$ can move directly to the carbonyl group

8 via P1d to form (S)-2-hydroxypropanal because of the effect of intramolecular H-bond. Among

9 these three H-migration reactions, P1d is the most energetically favorable pathway with an energy

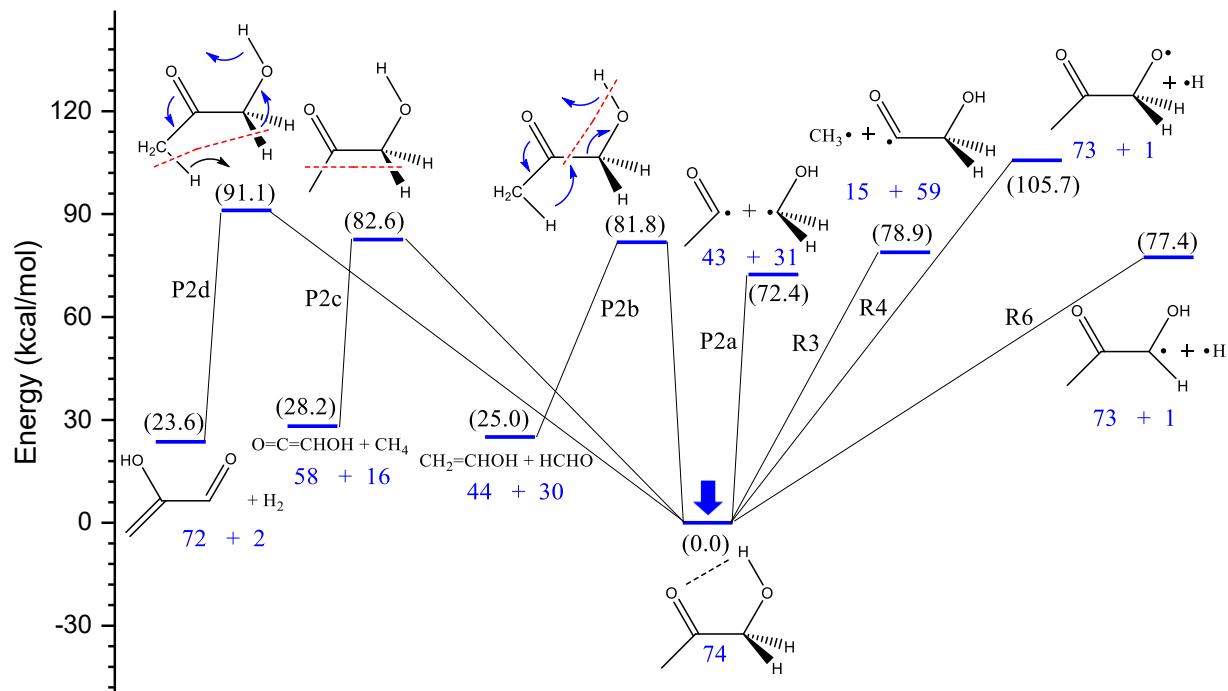
10 barrier of 41.2 kcal/mol. Anti-hydroxyacetone has two isomerization pathways. H migrations via

11 P1e and P1i produce the enol isomers C and D, respectively. Isomers A and C are enediol

12 intermediates and can further isomerize to (S)-2-hydroxypropanal and (R)-2-hydroxypropanal via

13 P1f and P1g by migration of the H on $-\text{OH}$, respectively. Isomerization to P1f has the highest

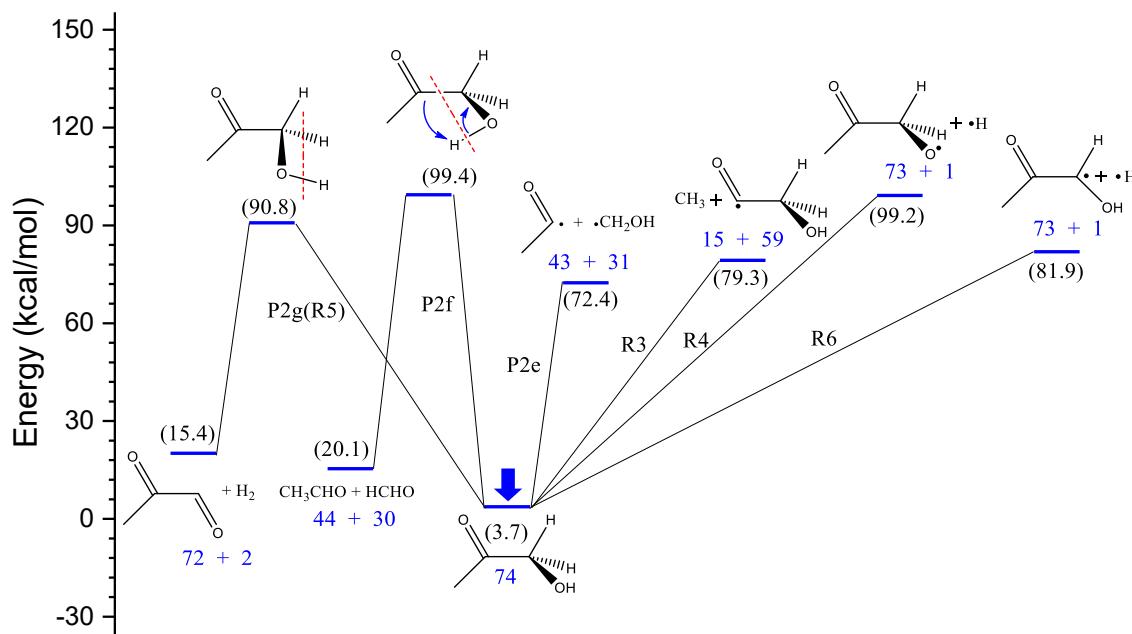
14 energy barrier with respect to syn-hydroxyacetone (74.6 kcal/mol) among all the isomerization


15 pathways. The structures of the species presented in Scheme 1 are closely related. Syn-

1 hydroxyacetone and anti-hydroxyacetone are conformers, and so are B and D. A and C are cis-
2 trans isomers. (S)-2-hydroxypropanal and (R)-2-hydroxypropanal are optical isomers.

3

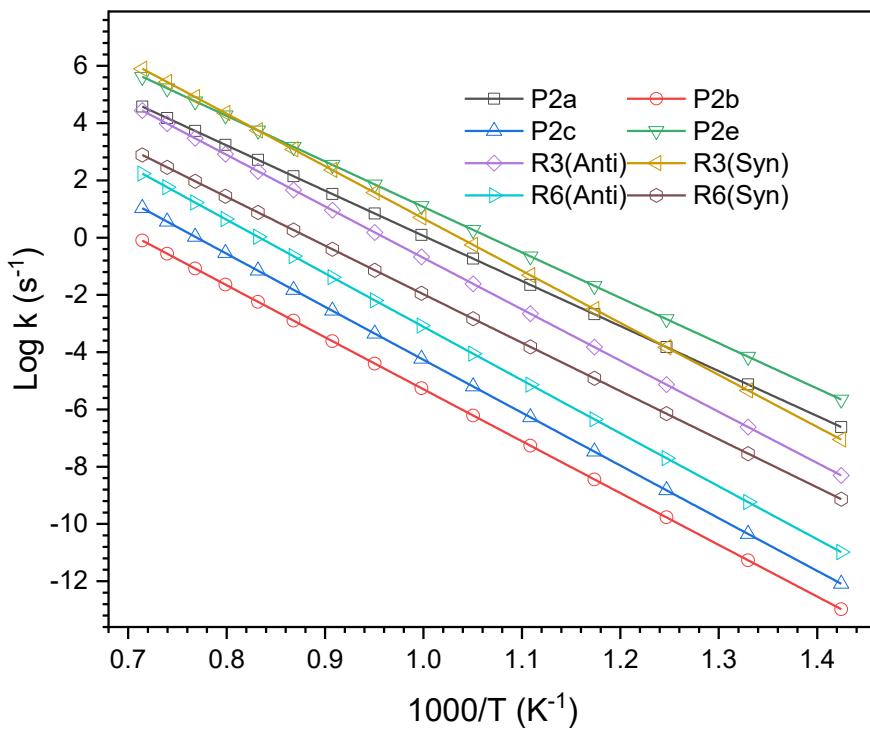
4 3.2.2 Thermal Decomposition of Hydroxyacetone


5 The bond dissociation energy (BDE) values of syn- and anti-hydroxyacetone were calculated
6 and provided in Table S2 in SI. The bond homolysis between the carbonyl carbon and the carbon
7 attached to the hydroxyl group (C_{CO}-C_{COH}) via P2a, producing the CH₃CO + CH₂OH radicals, is
8 found to be the most energetically favored pathway with an energy threshold of 72.4 kcal/mol in
9 Fig. 4. The BDE values of bond homolysis reaction R3 and R6 are higher than that of P2a. R3
10 gives CH₃ and OCCH₂OH (m/z 59) radicals. Bond homolysis R4 has the highest energy threshold

11

12 Fig. 4 Possible decomposition pathways of syn-hydroxyacetone. Numbers in parentheses are
13 single point energies and energy barriers relative to syn-hydroxyacetone in kcal/mol, with ZPE
14 corrections. Numbers in blue are m/z values.

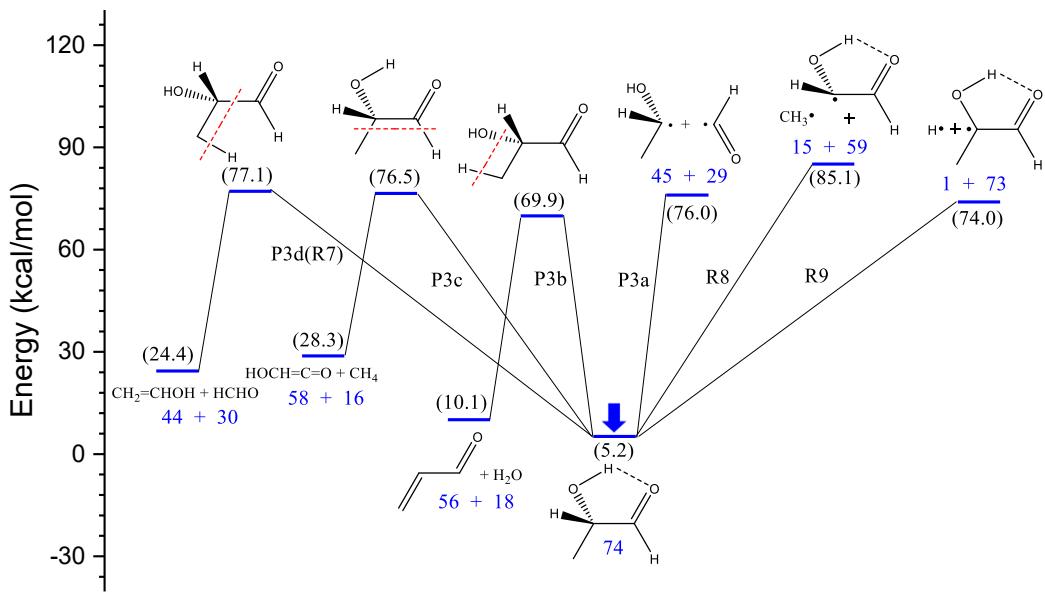
1 of 105.7 kcal/mol, thus least likely to occur. Three molecular elimination pathways (P2b, P2c, and
 2 P2d) of syn-hydroxyacetone are determined. Formaldehyde elimination of syn-hydroxyacetone
 3 via P2b yields ethenol (m/z 44) with an energy barrier of 81.8 kcal/mol. In the process of P2b, the
 4 H in the hydroxyl group migrates to the carbonyl group to form a new hydroxyl group. Meanwhile,
 5 the H in the methyl group migrates to the carbonyl group and forms a new bond with the carbonyl
 6 carbon. The elimination of methane from syn-hydroxyacetone via P2c has a slightly higher energy
 7 barrier with a value of 82.6 kcal/mol. The by-product of methane via P2c is hydroxyl ketene, and
 8 this may explain the small increase in m/z 58 in Fig. 2. The H₂ elimination of syn-hydroxyacetone
 9 via P2d occurs at 91.1 kcal/mol, which is much higher than that of P2b and P2c. The H atoms
 10 eliminated are from the methyl and methylene groups, respectively.

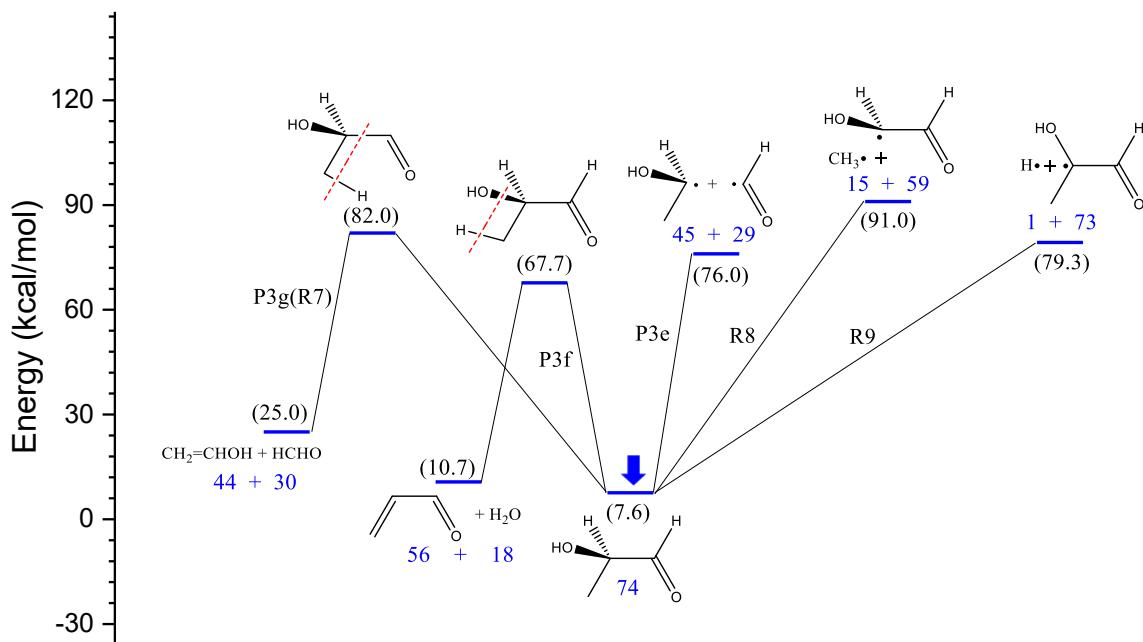


11
 12 Fig. 5 Possible decomposition pathways of anti-hydroxyacetone. Numbers in parentheses are
 13 single point energies and energy barriers relative to syn-hydroxyacetone in kcal/mol, with ZPE
 14 corrections. Numbers in blue are m/z values.
 15

1 The possible unimolecular decomposition pathways of anti-hydroxyacetone are shown in Fig.
2 5. The pathway P2e to the $\text{CH}_3\text{CO} + \text{CH}_2\text{OH}$ products, corresponding to the homolysis of the C_{CO} -
3 C_{COH} bond, has a relatively low bond dissociation energy of 72.4 kcal/mol with respect to syn-
4 hydroxyacetone, showing that P2e is the most energetically favorable decomposition pathway. The
5 BDEs of other homolysis pathways, such as R3, R4 and R6, are similar to those in syn-
6 hydroxyacetone. Formaldehyde elimination of anti-hydroxyacetone via P2f is unlikely to occur
7 due to its high energy barrier (99.4 kcal/mol) with respect to syn-hydroxyacetone. The energy
8 barrier of H_2 elimination of anti-hydroxyacetone via P2g is 90.8 kcal/mol with respect to syn-
9 hydroxyacetone, which is similar to P2d for syn-hydroxyacetone. It should be noted that the co-
10 products of the formaldehyde and H_2 elimination of anti-hydroxyacetone are different from those
11 of syn-hydroxyacetone because of the different initial configurations.

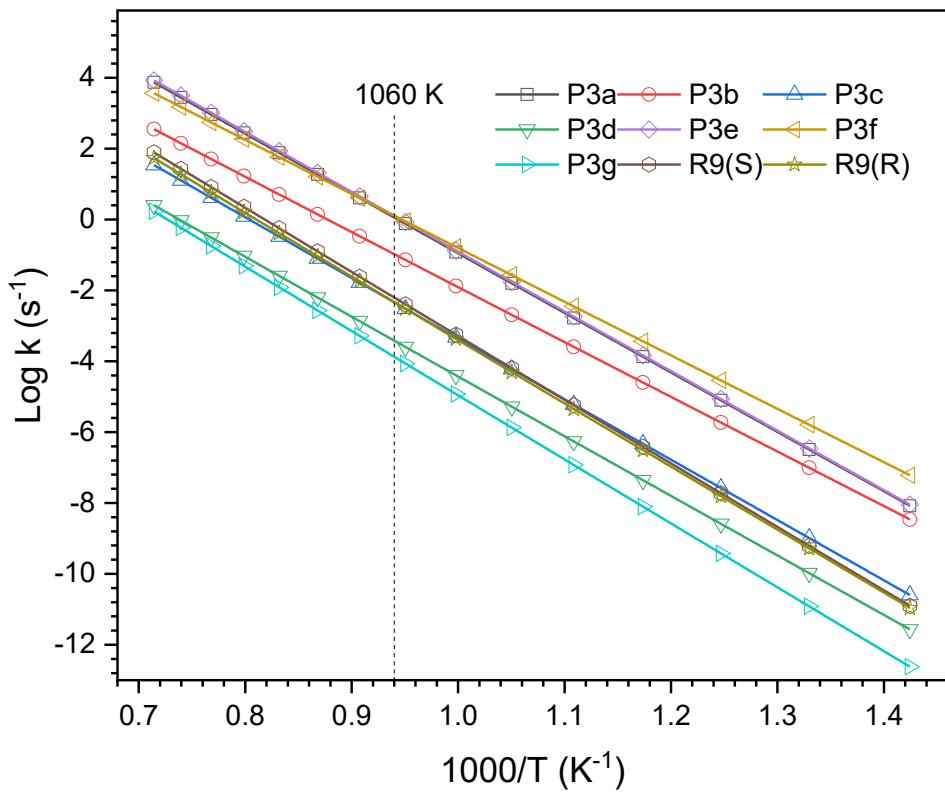
12 The VTST/TST calculations were performed for decomposition of both syn-hydroxyacetone
13 and anti-hydroxyacetone in order to reveal the competition among the homolysis and molecular
14 elimination pathways. Fig. 6 shows the reaction rate constant curves from 700-1400 K of the
15 pathways with energy barriers lower than 85.0 kcal/mol (those with energy barriers greater than
16 85.0 kcal/mol are considered as less competitive). Homolysis pathways P2a, P2e, and R3 have
17 large reaction rate constants compared with homolysis R6 and molecular elimination pathways
18 (P2b and P2c). The homolysis products of the $\text{C}_{\text{CO}}\text{-}\text{C}_{\text{COH}}$ bond of hydroxyacetone via P2a and P2e
19 are the CH_3CO and CH_2OH radicals, which can further decompose by loss of H atom or methyl
20 radical. The decomposition of CH_3CO radical yields CO and methyl radical with an energy barrier
21 of 12.2 kcal/mol with respect to CH_3CO radical, and produces ketene and H atom with an energy


1 barrier of 42.3 kcal/mol. This indicates that methyl radical is energetically more favorable to be
 2 produced than ketene. The H loss of the CH_2OH radical produces formaldehyde. R3 relates to the
 3 formation of CH_3 and OCCH_2OH (m/z 59) radicals; R3 (syn-hydroxyacetone) becomes important
 4 at the highest temperatures. OCCH_2OH (m/z 59) can further lose an H atom to form
 5 OC=CHOH (m/z=58); this may be another source of the m/z 58 peak.


6
 7 Fig. 6 Reaction rate constants of possible decomposition pathways of hydroxyacetone from 700-
 8 1400 K.
 9

10 3.2.3 Thermal Decomposition of 2-Hydroxypropanal

11 The BDEs of (S)- and (R)-2-hydroxypropanal were calculated and provided in Table S3 in SI.
 12 The three lowest energy homolysis pathways are shown in Fig. 7. The homolysis of the $\text{C}_{\text{CO}}\text{-C}_{\text{COH}}$
 13 bond of (S)-2-hydroxypropanal via P3a forms the $\text{CH}_3\text{C}(\text{H})\text{OH}$ and HCO radicals. The
 14 dissociation energy of the $\text{C}_{\text{CO}}\text{-C}_{\text{COH}}$ bond is 76.0 kcal/mol with respect to syn-hydroxyacetone.



1
2 Fig. 7 Possible decomposition pathways of (S)-2-hydroxypropanal. Numbers in parentheses are
3 single point energies and energy barriers relative to syn-hydroxyacetone in kcal/mol, with ZPE
4 corrections. Numbers in blue are m/z values.
5
6 The H loss pathway via R9 has an energy threshold of 74.0 kcal/mol. R8 has the highest
7 dissociation energy among all the pathways including molecular elimination channels, indicating
8 that R8 is energetically unfavorable. The H₂O elimination of (S)-2-hydroxypropanal via P3b has
9 the lowest energy barrier (69.9 kcal/mol) with respect to syn-hydroxyacetone. (S)-2-
10 hydroxypropanal can decompose via two additional molecular elimination pathways. The methane
11 elimination of (S)-2-hydroxypropanal through P3c is similar to that of P2c. P3c needs to overcome
12 an energy barrier of 76.5 kcal/mol to form hydroxyl ketene and methane. The formaldehyde
13 elimination of (S)-2-hydroxypropanal via P3d (R7) also has a similar energy barrier (77.1 kcal/mol)
14 with respect to syn-hydroxyacetone.

1
2 Fig. 8 Possible decomposition pathways of (R)-2-hydroxypropanal. P3e-3g: numbers in
3 parentheses are single point energies and energy barriers relative to syn-hydroxyacetone in
4 kcal/mol, with ZPE corrections. Number in blue are m/z values.
5

6 The possible decomposition pathways of (R)-2-hydroxypropanal are shown in Fig. 8. The
7 homolysis of the C_{CO}-C_{COH} bond of (R)-2-hydroxypropanal via P3e forms the CH₃C(H)OH and
8 HCO radicals. The dissociation energy of the C_{CO}-C_{COH} bond is 76.0 kcal/mol with respect to
9 syn-hydroxyacetone. The H-loss R8 and CH₃-loss R9 of (R)-2-hydroxypropanal have larger
10 energy barriers than those in (S)-2-hydroxypropanal. Direct H₂O elimination of (R)-2-
11 hydroxypropanal takes place via P3f, leading to 2-propenal with a relatively low energy barrier of
12 67.7 kcal/mol with respect to syn-hydroxyacetone. The formaldehyde elimination of (R)-2-
13 hydroxypropanal via P3g produces ethenol as a co-product. The elimination mechanism of P3g
14 (R7) is simpler compared with P2b, involving elimination of the carbonyl group and the adjacent
15 H in methyl group.

1
2 Fig. 9 Reaction rate constants of possible decomposition pathways of 2-hydroxypropanal from
3 700-1400 K.
4

5 The homolytic and molecular elimination decomposition pathways of (S)- and (R)-2-
6 hydroxypropanal have similar energy barrier or threshold. In order to determine the main pathway
7 amongst these, the VTST/TST calculations were performed for their decomposition pathways with
8 energy threshold or barrier below 85 kcal/mol. As shown in Fig. 9, the overall trend of the rate
9 constant k is consistent with the values of the energy barriers. Noteworthily, the rate constant of
10 homolysis of the C_{CO}-C_{COH} bond of (S)-2-hydroxypropanal via P3a (black line, which mostly
11 overlapped with that of C_{CO}-C_{COH} bond homolysis P3e, purple line) is larger than that of H₂O
12 elimination P3b (red line) even though P3b has a relatively lower energy barrier. This is consistent

1 with the fact that the H₂O molecular elimination P3b proceeds via a reaction barrier and a tight
2 transition state (with a smaller preexponential factor), while the C_{CO}-C_{COH} bond homolysis P3a
3 proceeds via a loose transition state (with a larger preexponential factor), which could make P3a
4 more competitive than P3b in the initial thermal decomposition of hydroxyacetone at the modest
5 temperatures, even though the former has a slightly higher activation energy. This shows that the
6 homolysis of the C_{CO}-C_{COH} bond via P3a is the main initial decomposition reaction. This
7 conclusion is also supported by the experimental results that the first distinguishable peak at m/z
8 45 corresponding to the CH₃C(H)OH radical was found at 950 K, while only a small peak at m/z
9 56 corresponding to 2-propenal in the H₂O elimination pathway P3b was found at 1230 K. At
10 higher temperatures, the H₂O molecular elimination became more significant as observed. For (R)-
11 2-hydroxypropanal, the C_{CO}-C_{COH} bond homolysis P3e and H₂O elimination P3f have larger rate
12 constants than other pathways in (R)-2-hydroxypropanal. The rate constant of P3e becomes greater
13 than that of P3f over 1060 K. This indicates that the homolysis of the C_{CO}-C_{COH} bond via P3e and
14 the water elimination pathway P3f are the main initial decomposition pathway of (R)-2-
15 hydroxypropanal. R9 and P3c have medium rate constant k, and R7 (P3d or P3g) have the smallest
16 rate constant k. These pathways are less competitive than the C_{CO}-C_{COH} bond homolysis pathways
17 (P3a and P3e) and the H₂O elimination pathways (P3b and P3f).

18

1 **4. Discussions**

2 **4.1 Initiation Reactions**

3 Based on the energetics calculation results, the energy barriers of isomerization reactions of
4 hydroxyacetone (41.2-74.6 kcal/mol) are significantly lower than those of the unimolecular
5 decomposition reactions of hydroxyacetone (67.7-105.7 kcal/mol). This implies that the
6 isomerization reactions can take place prior to and in competition with the thermal decomposition
7 reactions. Therefore, the conformers and isomers of hydroxyacetone contribute to the initial
8 thermal decomposition reactions and their intermediates and products. However, the initial
9 decomposition pathways of isomers labeled as A, B, C and D in the enol form are much less
10 important and are not further considered. The reason is that it is relatively more difficult to break
11 the C-C double bond compared to the C-C σ single bond. In addition, the planar structure of enol-
12 type isomers hinders concerted molecular elimination due to the steric effect. The H₂O elimination
13 pathways of the enol-type isomers were examined theoretically here. These pathways obviously
14 have greater energy barriers (87-95 kcal/mol, seen Table S4 in SI) than that of P3b and P3f (69.9
15 and 67.7 kcal/mol).

16 As shown in Fig. 1, the CH₃CO (m/z 43), CH₃C(H)OH (m/z 45) and CH₃ (m/z 15) radicals were
17 found at medium temperatures (950-1140 K). It demonstrates that the homolysis reactions
18 dominate the initial thermal decomposition reactions of hydroxyacetone. The CH₃CO radical at
19 m/z 43 is produced by the homolysis of the C_{CO}-C_{COH} bond of hydroxyacetone via P2a and P2e
20 The CH₃C(H)OH radical (m/z 45) is formed by the homolysis of the C_{CO}-C_{COH} bond of 2-
21 hydroxypropanal via P3a and P3e. The calculated reaction energetics and rate constants also

1 support that the pathways corresponding to the C_{CO}-C_{COH} bond dissociation are the main initial
2 pathways. The CH₃-loss R3 and H-loss R6 have higher energy barriers (77.4-81.9 kcal/mol), and
3 the kinetic calculations show that the rate constants of R3 are obviously greater than those of R6.
4 Especially for R3 of syn-hydroxyacetone, the corresponding rate constant becomes the greatest
5 among all the R3 and R6 decomposition pathways, and at the highest temperature, it becomes
6 competitive with that of P2a and P2e. The m/z 15 and 59 peaks would be generated when R3
7 occurred. While m/z 15 was prominent at high temperature, m/z 59 was of small intensity in the
8 mass spectra. One possible reason is that the m/z 59 radical underwent secondary loss of an H
9 atom to form OC=CHOH(m/z=58), which was found to increase at > 1230 K in the mass spectra.
10 Therefore, R3 is a possible initial decomposition pathway. The m/z 73 peak was observed with
11 very small or nearly no intensity at and above 1230 K, indicating very small contributions from
12 the R6 pathways. H-loss R4 and CH₃-loss R8 are not considered as the initial decomposition
13 pathways since their BDE values are greater than 85 kcal/mol.

14 Small molecules, such as H₂, methane, H₂O, and formaldehyde can be produced by direct
15 molecular eliminations of hydroxyacetone and 2-hydroxypropanal. The corresponding peaks of
16 the co-products are at m/z 72, 58, 56, and 44. However, these peaks produced by the initial thermal
17 decomposition were not detected in the initial temperature range of 950-1140 K but only at higher
18 temperature range above 1190 K, showing that the concerted molecular elimination reactions are
19 not important as the initial pathways at the medium temperatures of 950-1140 K. The energy
20 barriers of the H₂, CH₄, and HCHO molecular eliminations of hydroxyacetone are greater than
21 81.8 kcal/mol, which is higher than that of the homolysis of the C_{CO}-C_{COH} bond (72.4 kcal/mol in

1 syn- and anti-hydroxyacetone). The energy barriers of the CH₄ and HCHO molecular eliminations
2 of 2-hydroxypropanal are in the range of 76.5-82.0 kcal/mol. These energy comparisons render
3 that the C_{CO}-C_{COH} bond homolysis is more competitive than the H₂, CH₄, and HCHO molecular
4 elimination pathways, consistent with the observed pyrolysis mass spectra of hydroxyacetone (Fig.
5 1 and 2). The energy barrier of the concerted H₂O elimination of (S)-2-hydroxypropanal via P3b
6 is only 69.9 kcal/mol. However, as indicated by the TST/VTST calculations, the rate constant of
7 the H₂O elimination P3b is lower than those of the C_{CO}-C_{COH} bond homolysis P3a and P3e. This
8 is confirmed by the pyrolysis mass spectra. The CH₃CO (m/z 43) and CH₃C(H)OH (m/z 45)
9 radicals produced by the homolysis pathways were found at 950 K. In comparison, the m/z 56
10 peak (co-product of H₂O elimination) appeared at ~ 1230 K, indicating that P3b occurred at higher
11 temperatures than the C_{CO}-C_{COH} bond homolysis of hydroxyacetone. At higher temperatures, the
12 H₂O molecular elimination became more significant. The energy barrier of the H₂O molecular
13 elimination of (R)-2-hydroxypropanal via P3f is only 67.7 kcal/mol. The TST/VTST rate constant
14 calculations showed that the P3f pathway was more important than the C_{CO}-C_{COH} bond homolysis
15 P3a and P3e at temperatures below 1060 K. This is not consistent with the pyrolysis mass spectra.
16 It is not clear what causes the discrepancy, and further improvements of the energetic and kinetic
17 calculations could be needed. One possible reason is that there are four steps from syn-
18 hydroxyacetone to the H₂O elimination of (R)-2-hydroxypropanal (P1c→P1e→P1f→P3f)
19 according to Scheme 1 and Fig. 8. The isomerization reaction P1f is the rate-determining step with
20 the greatest energy barrier of 74.6 kcal/mol. Therefore, the m/z 56 peak from the H₂O elimination
21 was not shown in the mass spectra at the initial and medium temperatures even though P3f has a

1 relatively large rate constant.

2

3 4.2 Secondary Decomposition Reactions

4 Secondary decomposition reactions mainly refer to the subsequent decomposition reactions of
5 the radical intermediates produced from the initial decomposition reactions in this study. These
6 radical intermediates can be further activated by secondary thermal collisions with the buffer gas
7 (which is > 99% of the gas mixture) at more elevated temperatures above the initiation temperature.

8 The CH₃CO radical (m/z=43), produced by the cleavage of the C_{CO}-C_{COH} bond via P2a and P2e,
9 decomposes by loss of a methyl radical (m/z 15) with an energy threshold of 12.2 kcal/mol (by the
10 DFT calculation). The CH₃CO radical can also lose a hydrogen atom on the methyl group to form
11 ketene (m/z 42) with an energy threshold of 42.3 kcal/mol. Fig. 3 clearly shows that the intensities
12 of the peaks of ketene and methyl radical gradually increased with the decrease of the intensity of
13 CH₃CO radical starting from 1190 K. This experimental result confirms the subsequent
14 decomposition pathways of CH₃CO radical proposed based on the DFT calculations. The CH₂OH
15 radical (m/z 31), the counterpart of CH₃CO radical in the homolysis of C_{CO}-C_{COH} bond of
16 hydroxyacetone, decomposes by losing one H atom to form formaldehyde (m/z 30) with an energy
17 barrier of 35.9 kcal/mol. This is consistent with the increase of m/z 31 peak to its maximum from
18 1140 K to 1270 K, followed by a slight decrease in intensity from 1310 K to 1390 K (Fig. 1 and
19 2). The peak of formaldehyde was not observed throughout the whole temperature range because
20 of its high ionization energy (IP=10.86 eV).⁴⁶

21 The cleavage of the C_{CO}-C_{COH} bond of 2-hydroxypropanal via P3a and P3e generates the

1 CH₃C(H)OH and HCO radicals. The CH₃C(H)OH radical (m/z 45) can eliminate the H atom in
2 the methyl group to form ethenol (m/z 44) with an energy threshold of 25.9 kcal/mol or the H atom
3 in the hydroxyl group to form acetaldehyde (m/z 44) with an energy threshold of 38.1 kcal/mol,
4 respectively. The ethenol + H pathway is more favorable due to its lower energy. From the
5 pyrolysis mass spectra, the first distinguishable peak of ethenol or acetaldehyde at m/z 44 was
6 found at 1230 K, while the peak of CH₃C(H)OH radical at m/z 45 was found at 950 K. This
7 indicates that CH₃C(H)OH radical is formed prior to ethenol or acetaldehyde. The intensity
8 evolution curves in Fig. 3 also show that the intensity of the m/z 44 peak increased accordingly
9 and significantly with the decrease in intensity of the m/z 45 peak when the temperature was above
10 1230 K. In other words, the amounts of ethenol or acetaldehyde increase with the depletion of the
11 CH₃C(H)OH radical. It should be pointed out that ethenol (m/z 44) can also be generated by
12 formaldehyde elimination via P2b and P3d (R7). However, pathways P2b and P3d are much less
13 important as their energy barriers are greater than that for the homolytic production of the
14 CH₃C(H)OH radical (which can then undergo the H loss upon activation by secondary collisions).
15 The HCO radical (m/z 29), the co-product of the CH₃C(H)OH radical formed via P3a and P3e,
16 decomposes into H atom and CO (m/z 28). The peak of the HCO radical was clearly observed at
17 1270 K, while the peak of CO was not found in the pyrolysis spectra due to its high ionization
18 energy (14.00 eV).⁴⁷

19

20 4.3 α -H Reactivity and Elimination Reactions

21 In addition to the homolysis reactions in the process of hydroxyacetone pyrolysis, reactions

1 involving α -H are also important. It is well known that the α -H of aldehyde or ketone is acidic
2 because of the inductive effect of the carbonyl group. The activity of α -H enables the keto-enol
3 tautomerisms. Hydroxyacetone has two types of α -H, the H atom in $-\text{CH}_3$ group and the H atom
4 in $-\text{CH}_2-$ group. The reactivity of the α -H in the $-\text{CH}_2-$ group is higher than that in the $-\text{CH}_3$ group
5 because the OH group attached to the $-\text{CH}_2-$ group enhances the inductive effect. This conclusion
6 is evident from the calculation results that the energy barrier of P1b involving the α -H in CH_3 is
7 greater than that of P1a involving the α -H in $-\text{CH}_2-$ group. A similar result can be obtained by
8 comparing the pathways of P1e and P1i. Another type of reactions related to α -H are H_2 elimination
9 reactions. H_2 can be formed by P2d and P2g (R5) involving the α -H in the $-\text{CH}_2-$ group of
10 hydroxyacetone. The peak of the co-product of H_2 at m/z 72 was found above 1190 K. The energy
11 barriers of P2d and P2g (R5) are 81.8 and 90.8 kcal/mol with respect to syn-hydroxyacetone. The
12 energy barrier values suggest that P2d is more energetically favorable than R5.

13 CH_4 , formaldehyde and H_2O elimination reactions are also related to α -H, and are not negligible
14 at high temperatures (> 1190 K) except for the H_2 elimination reactions. CH_4 can be produced via
15 P2c and P3c. The appearance of the peak of the CH_4 co-product at m/z 58 manifests that P2c and
16 P3c are present in the process of hydroxyacetone pyrolysis. P2b, P2f, P3d (R7) and P3g (R7) are
17 four different pathways of formaldehyde formation by direct molecular elimination. The peak of
18 the co-product of formaldehyde at m/z 44 was found at temperatures above 1230 K. Among these
19 pathways, P3d (R7) has the lowest energy barrier with a value of 77.1 kcal/mol with respect to
20 syn-hydroxyacetone. The direct formation of H_2O during the pyrolysis of hydroxyacetone has not
21 been reported in the literature. The formation pathways of H_2O via P3b and P3f are verified in the

1 present study. The peak of the co-product of H₂O at m/z 56 was also observed when the
2 temperature was greater than 1230 K.

3

4 **5. Conclusions**

5 The thermal decomposition mechanism of hydroxyacetone has been studied systematically by
6 using VUV-PI-TOFMS combined with the DFT calculations. The results show that the keto-enol
7 tautomerism can occur when the temperature is not high enough to cause thermal decomposition.
8 Possible decomposition pathways of syn-hydroxyacetone, anti-hydroxyacetone, (S)-2-
9 hydroxypropanal and (R)-2-hydroxypropanal are discussed in the present work. Thermal
10 decomposition reactions occurred from about 950 K. Homolysis reactions involving the C_{CO}-C_{COH}
11 bond via P2a, P2e, P3a and P3e, as well as the homolytic CH₃-loss R3, are determined as the main
12 initial decomposition reactions. The subsequent decompositions of the radical intermediates
13 (·CH₃CO, ·CH₂OH, ·CH₃C(H)OH and ·HCO) are considered as the main secondary
14 decomposition reactions. Elimination reactions to produce small molecules, such as H₂O, H₂, CH₄
15 and HCHO, were identified at temperatures above 1230 K, with the H₂O elimination being the
16 most important molecular elimination channels. The active α -H atoms play an important role in
17 these elimination reactions. The detailed mechanism of the thermal decomposition of
18 hydroxyacetone would provide useful insights for improving steam reforming and thermal
19 conversion of biomass and bio-oil.

20

1

2 **Acknowledgement**

3 This work was supported by the US National Science Foundation (NSF CHE-2155232). KLS
4 acknowledges support from a UC President's Dissertation-Year Fellowship. XHL acknowledges
5 the support from the program of China Scholarships Council (No. 201606440042).

6

7 **Declaration of Conflicting Interests Statement**

8 The Authors declare no competing financial interest.

9

10 **Supporting Information**

11 Relative energies of isomers with respect to syn-hydroxyacetone calculated at different level of
12 theories, the BDE values of hydroxyacetone and 2-hydroxypropanal, the energy barriers of H₂O
13 elimination pathways of the enol isomers, and the calculated Cartesian coordinates of the species
14 involved in the hydroxyacetone and 2-hydroxypropanal thermal decompositions.

15

16 **References**

17 (1) de Souza, R. O. M. A.; Miranda, L. S. M.; Luque, R., Bio(chemo)technological strategies for
18 biomass conversion into bioethanol and key carboxylic acids. *Green Chemistry* **2014**, *16*, 2386-
19 2405.

20 (2) Zhang, X., Essential scientific mapping of the value chain of thermochemically converted

1 second-generation bio-fuels. *Green Chemistry* **2016**, *18*, 5086-5117.

2 (3) Trane, R.; Dahl, S.; Skjøth-Rasmussen, M. S.; Jensen, A. D., Catalytic steam reforming of bio-

3 oil. *International Journal of Hydrogen Energy* **2012**, *37*, 6447-6472.

4 (4) Dubey, V. R.; Vaidya, P. D., Kinetics of steam reforming of acetol over a Pt/C catalyst.

5 *Chemical Engineering Journal* **2012**, *180*, 263-269.

6 (5) Gutiérrez Ortiz, F. J.; Campanario, F. J.; Ollero, P., Supercritical water reforming of model

7 compounds of bio-oil aqueous phase: Acetic acid, acetol, butanol and glucose. *Chemical*

8 *Engineering Journal* **2016**, *298*, 243-258.

9 (6) Fuentes-Cano, D.; Gómez-Barea, A.; Nilsson, S.; Ollero, P., Kinetic Modeling of Tar and Light

10 Hydrocarbons during the Thermal Conversion of Biomass. *Energy & Fuels* **2016**, *30*, 377-385.

11 (7) Zheng, M.; Wang, Z.; Li, X.; Qiao, X.; Song, W.; Guo, L., Initial reaction mechanisms of

12 cellulose pyrolysis revealed by ReaxFF molecular dynamics. *Fuel* **2016**, *177*, 130-141.

13 (8) Uemura, K.; Appari, S.; Kudo, S.; Hayashi, J.-i.; Einaga, H.; Norinaga, K., In-situ reforming

14 of the volatiles from fast pyrolysis of ligno-cellulosic biomass over zeolite catalysts for aromatic

15 compound production. *Fuel Processing Technology* **2015**, *136*, 73-78.

16 (9) Norinaga, K.; Yang, H.; Tanaka, R.; Appari, S.; Iwanaga, K.; Takashima, Y.; Kudo, S.; Shoji,

17 T.; Hayashi, J.-i., A mechanistic study on the reaction pathways leading to benzene and

18 naphthalene in cellulose vapor phase cracking. *Biomass and Bioenergy* **2014**, *69*, 144-154.

19 (10) Huang, J.; He, C.; Wu, L.; Tong, H., Theoretical studies on thermal decomposition mechanism

20 of arabinofuranose. *Journal of the Energy Institute* **2017**, *90*, 372-381.

21 (11) Ryozo, G.; Jun'ichi, H.; Kenichi, K.; Sinichi, O., Studies on the Chemical Decomposition of

1 Simple Sugars. X. Acetol Formation from 14C-Labeled Hexoses. *Bulletin of the Chemical Society*
2 *of Japan* **1961**, *34*, 753-757.

3 (12)Hu, B.; Lu, Q.; Jiang, X.-y.; Liu, J.; Cui, M.-s.; Dong, C.-q.; Yang, Y.-p., Formation
4 mechanism of hydroxyacetone in glucose pyrolysis: A combined experimental and
5 theoretical study. *Proceedings of the Combustion Institute* **2019**, *37*, 2741-2748.

6 (13)Velasquez, M.; Santamaria, A.; Batiot-Dupeyrat, C., Selective conversion of glycerol to
7 hydroxyacetone in gas phase over La₂CuO₄ catalyst. *Applied Catalysis B: Environmental* **2014**,
8 *160-161*, 606-613.

9 (14)Papageridis, K. N.; Siakavelas, G.; Charisiou, N. D.; Avraam, D. G.; Tzounis, L.; Kousi, K.;
10 Goula, M. A., Comparative study of Ni, Co, Cu supported on γ -alumina catalysts for hydrogen
11 production via the glycerol steam reforming reaction. *Fuel Processing Technology* **2016**, *152*, 156-
12 175.

13 (15)Lari, G. M.; Pastore, G.; Haus, M.; Ding, Y.; Papadokonstantakis, S.; Mondelli, C.; Perez-
14 Ramirez, J., Environmental and economical perspectives of a glycerol biorefinery. *Energy &*
15 *Environmental Science* **2018**, *11*, 1012-1029.

16 (16)Chuang-Wei, C.; Ali, T.; R., S. W.; M., R. J.; J., S. G., Low-pressure packed-bed gas phase
17 conversion of glycerol to acetol. *AIChE Journal* **2008**, *54*, 2456-2463.

18 (17)Bimbela, F.; Oliva, M.; Ruiz, J.; García, L.; Arauzo, J., Catalytic steam reforming of model
19 compounds of biomass pyrolysis liquids in fixed bed: Acetol and n-butanol. *Journal of Analytical*
20 *and Applied Pyrolysis* **2009**, *85*, 204-213.

21 (18)Chen, D.; Cen, K.; Chen, F.; Ma, Z.; Zhou, J.; Li, M., Are the typical organic components in

1 biomass pyrolyzed bio-oil available for leaching of alkali and alkaline earth metallic species
2 (AAEMs) from biomass? *Fuel* **2020**, *260*, 116347.

3 (19)Ramos, M. C.; Navascués, A. I.; García, L.; Bilbao, R., Hydrogen Production by Catalytic
4 Steam Reforming of Acetol, a Model Compound of Bio-Oil. *Industrial & Engineering Chemistry*
5 *Research* **2007**, *46*, 2399-2406.

6 (20)Wang, S.; Cai, Q.; Zhang, F.; Li, X.; Zhang, L.; Luo, Z., Hydrogen production via catalytic
7 reforming of the bio-oil model compounds: Acetic acid, phenol and hydroxyacetone. *International*
8 *Journal of Hydrogen Energy* **2014**, *39*, 18675-18687.

9 (21)Albuquerque, E. M.; Borges, L. E. P.; Fraga, M. A., Lactic acid production from
10 hydroxyacetone on dual metal/base heterogeneous catalytic systems. *Green Chemistry* **2015**, *17*,
11 3889-3899.

12 (22)Jing, S.; Sui, S.; Gabriel, d. S., The gas phase aldose-ketone isomerization mechanism: Direct
13 interconversion of the model hydroxycarbonyls 2-hydroxypropanal and hydroxyacetone.
14 *International Journal of Quantum Chemistry* **2017**, *117*, e25434.

15 (23)de Araújo, M. L.; Mandelli, D.; Kozlov, Y. N.; Carvalho, W. A.; Shul'pin, G. B., Oxidation of
16 hydroxyacetone (acetol) with hydrogen peroxide in acetonitrile solution catalyzed by iron(III)
17 chloride. *Journal of Molecular Catalysis A: Chemical* **2016**, *422*, 103-114.

18 (24)Chambreau, S. D.; Zhang, J.; Traeger, J. C.; Morton, T. H., Photoionization of methyl t-butyl
19 ether (MTBE) and t-octyl methyl ether (TOME) and analysis of their pyrolyses by supersonic
20 jet/photoionization mass spectrometry. *International Journal of Mass Spectrometry* **2000**, *199*, 17-
21 27.

1 (25)Chambreau, S. D.; Zhang, J., VUV photoionization time-of-flight mass spectrometry of flash
2 pyrolysis of silane and disilane. *Chemical Physics Letters* **2001**, *343*, 482-488.

3 (26)Lemieux, J. M.; Zhang, J., Thermal decomposition of tetramethylsilane and
4 tetramethylgermane by flash pyrolysis vacuum ultraviolet photoionization time-of-flight mass
5 spectrometry. *International Journal of Mass Spectrometry* **2014**, *373*, 50-55.

6 (27)Jones, P. J.; Riser, B.; Zhang, J., Flash Pyrolysis of t-Butyl Hydroperoxide and Di-t-butyl
7 Peroxide: Evidence of Roaming in the Decomposition of Organic Hydroperoxides. *The Journal of*
8 *Physical Chemistry A* **2017**, *121*, 7846-7853.

9 (28)Liu, X.; Zhang, J.; Vazquez, A.; Wang, D.; Li, S., Mechanism of the thermal decomposition
10 of tetramethylsilane: a flash pyrolysis vacuum ultraviolet photoionization time-of-flight mass
11 spectrometry and density functional theory study. *Physical Chemistry Chemical Physics* **2018**, *20*,
12 18782-18789.

13 (29)Petitjean, M.; Reyès-Pérez, E.; Pérez, D.; Mirabel, P.; Le Calvé, S., Vapor Pressure
14 Measurements of Hydroxyacetaldehyde and Hydroxyacetone in the Temperature Range (273 to
15 356) K. *Journal of Chemical & Engineering Data* **2010**, *55*, 852-855.

16 (30)Kohn, D. W.; Clauberg, H.; Chen, P., Flash pyrolysis nozzle for generation of radicals in a
17 supersonic jet expansion. *Review of Scientific Instruments* **1992**, *63*, 4003-4005.

18 (31)Zhang, X.; Friderichsen, A. V.; Nandi, S.; Ellison, G. B.; David, D. E.; McKinnon, J. T.;
19 Lindeman, T. G.; Dayton, D. C.; Nimlos, M. R., Intense, hyperthermal source of organic radicals
20 for matrix-isolation spectroscopy. *Review of scientific instruments* **2003**, *74*, 3077-3086.

21 (32)Guan, Q.; Urness, K. N.; Ormond, T. K.; David, D. E.; Barney Ellison, G.; Daily, J. W., The

1 properties of a micro-reactor for the study of the unimolecular decomposition of large molecules.

2 *International Reviews in Physical Chemistry* **2014**, *33*, 447-487.

3 (33) Weddle, P. J.; Karakaya, C.; Zhu, H.; Sivaramakrishnan, R.; Prozument, K.; Kee, R. J.,

4 Boundary-Layer Model to Predict Chemically Reacting Flow within Heated, High-Speed,

5 Microtubular Reactors. *International Journal of Chemical Kinetics* **2018**, *50*, 473-480.

6 (34) Liu, C.; Ye, L.; Yuan, W.; Zhang, Y.; Zou, J.; Yang, J.; Wang, Y.; Qi, F.; Zhou, Z., Investigation

7 on pyrolysis mechanism of guaiacol as lignin model compound at atmospheric pressure. *Fuel* **2018**,

8 232, 632-638.

9 (35) Fukui, K., The path of chemical reactions - the IRC approach. *Accounts of Chemical Research*

10 **1981**, *14*, 363-368.

11 (36) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;

12 Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A., et al. Gaussian 09, Revision B.01;

13 Gaussian, Inc.: Wallingford, CT, **2010**.

14 (37) Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J., Current Status of Transition-State Theory.

15 *The Journal of Physical Chemistry* **1996**, *100*, 12771-12800.

16 (38) Wigner, E., The transition state method. *Transactions of the Faraday Society* **1938**, *34*, 29-41.

17 (39) Jasper, A. W.; Miller, J. A.; Klippenstein, S. J., Collision Efficiency of Water in the

18 Unimolecular Reaction $\text{CH}_4 (+\text{H}_2\text{O}) \rightleftharpoons \text{CH}_3 + \text{H} (+\text{H}_2\text{O})$: One-Dimensional and Two-Dimensional

19 Solutions of the Low-Pressure-Limit Master Equation. *The Journal of Physical Chemistry A* **2013**,

20 *117*, 12243-12255.

21 (40) Canneaux, S.; Bohr, F.; Henon, E., KiSTheLP: A program to predict thermodynamic properties

1 and rate constants from quantum chemistry results[†]. **2014**, *35*, 82-93.

2 (41)Ali, M. A., Computational studies on the gas phase reaction of methylenimine (CH₂NH) with
3 water molecules. *Scientific Reports* **2020**, *10*, 10995.

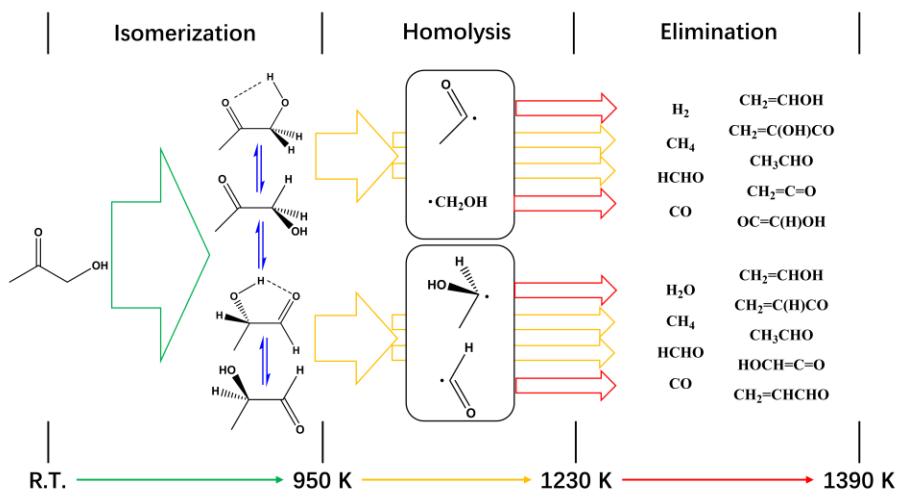
4 (42)Shao, K.; Brunson, J.; Tian, Y.; Zhang, J., Flash pyrolysis mechanism of trimethylchlorosilane.
5 *International Journal of Mass Spectrometry* **2022**, *482*, 116933.

6 (43)Shao, K.; Liu, X.; Zhang, J., Thermal Decomposition Mechanism of Tetraethylsilane by Flash
7 Pyrolysis Vacuum Ultraviolet Photoionization Mass Spectrometry and DFT Calculations: The
8 Competition between β -Hydride Elimination and Bond Homolysis. *The Journal of Physical
9 Chemistry A* **2023**, *127*, 3966-3975.

10 (44)Mohandas, S.; Ramabhadran, R. O.; Kumar, S. S., Theoretical Investigation of a Vital Step in
11 the Gas-Phase Formation of Interstellar Ammonia NH₂⁺ + H₂ → NH₃⁺ + H. *The Journal of
12 Physical Chemistry A* **2020**, *124*, 8373-8382.

13 (45)Begum, S.; Subramanian, R., Theoretical studies on gas-phase kinetics and mechanism of H-
14 abstraction reaction from methanol by ClO and BrO radicals. *RSC Advances* **2015**, *5*, 39110-39121.

15 (46)Traeger, J. C., Heat of formation for the formyl cation by photoionization mass spectrometry.
16 *International Journal of Mass Spectrometry and Ion Processes* **1985**, *66*, 271-282.


17 (47)Rabalais, J. W.; Debies, T. P.; Berkosky, J. L.; Huang, J. T. J.; Ellison, F. O., Calculated
18 photoionization cross sections and relative experimental photoionization intensities for a selection
19 of small molecules. **1974**, *61*, 516-528.

20

21

1 TOC Graphic

2

3