

Characterization of Composite Agarose-Collagen Hydrogels for Chondrocyte Culture

¹ Clarisse Zigan, ORCID ID 0009-0000-6964-6465

¹ Claudia Benito Alston, ORCID ID 0000-0002-8957-5083

^{1,2} Aritra Chatterjee, ORCID ID 0000-0002-5318-3459

¹ Luis Solorio, ORCID ID 0000-0003-0135-8728

^{1,3†} Deva D. Chan, 0000-0003-1508-1045

1 Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA

2 Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana, India

3 School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA

[†]Corresponding Author: Deva Chan (chand@purdue.edu)

Word Count: 7109 (incl. references; excl. cover and abstract page, figures, tables, and captions)

Abstract Word Count: 169

ACKNOWLEDGEMENTS

This research was supported by the National Science Foundation Award 2149946.

AUTHOR CONTRIBUTIONS

Conceptualization: Clarisse Zigan, Deva Chan; Methodology: Clarisse Zigan, Claudia Benito Alston, Aritra Chatterjee, Luis Solorio, Deva Chan; Formal analysis and investigation: Clarisse Zigan, Claudia Benito Alston; Writing – original draft preparation: Clarisse Zigan, Claudia Benito Alston; Writing – review and editing: Clarisse Zigan, Claudia Benito Alston, Aritra Chatterjee, Luis Solorio, Deva Chan; Funding acquisition: Deva Chan; Resources: Luis Solorio, Deva Chan; Supervision: Deva Chan.

1 **ABSTRACT**

2 To elucidate the mechanisms of cellular mechanotransduction, it is necessary to employ
3 biomaterials that effectively merge biofunctionality with appropriate mechanical characteristics.
4 Agarose and collagen separately are common biopolymers used in cartilage mechanobiology and
5 mechanotransduction studies but lack features that make them ideal for functional engineered
6 cartilage. In this study, agarose is blended with collagen type I to create hydrogels with final
7 concentrations of 4% w/v or 2% w/v agarose with 2 mg/mL collagen. We hypothesized that the
8 addition of collagen into a high-concentration agarose hydrogel does not diminish mechanical
9 properties. Acellular and cell-laden studies were completed to assess rheologic and compressive
10 properties, contraction, and structural homogeneity in addition to cell proliferation and sulfated
11 glycosaminoglycan production. Over 21 days in culture, cellular 4% agarose – 2-mg/mL collagen
12 I hydrogels seeded with primary murine chondrocytes displayed structural and bulk mechanical
13 behaviors that did not significantly alter from 4% agarose-only hydrogels, cell proliferation, and
14 continual glycosaminoglycan production, indicating promise towards the development of an
15 effective hydrogel for chondrocyte mechanotransduction and mechanobiology studies.

16

17 Key Terms: agarose; collagen; hydrogel; biomaterials; chondrocyte; extracellular matrix
18

19 **STATEMENTS & DECLARATIONS**

20 Data Availability: Collected data is made available using a Harvard Dataverse repository.

21 Funding: This research was supported by the National Science Foundation Award 2149946.

22 Conflict of Interest: The authors have no competing interests to declare that are relevant to the
23 content of this article.

24 Ethics approval: To obtain primary murine cells, animals were euthanized following institutional
25 approval (IACUC protocol 2104002138).

26

27 **INTRODUCTION**

28 Cartilage mechanobiology and tissue engineering fields have both evolved using
29 strategies employed to repair or regenerate damaged cartilage using a combination of
30 biomaterials, cells, and stimulation. It is well accepted that applying mechanical forces to
31 engineered cartilage constructs can help mimic the natural environment and stimulate
32 chondrocytes to produce extracellular matrix (ECM) components and maintain tissue integrity to
33 enhance the formation of functional cartilage tissue [1-3]. However, the underlying mechanisms
34 that are employed during these processes are poorly understood [4, 5]. Many studies focus
35 primarily on the effects of loading conditions applied to cartilage constructs [6-10]. However,
36 another key factor to consider is construct composition, since administered mechanical forces
37 can be influenced by exogenous physical and chemical cues of the 3-dimensional matrix that
38 envelops the cell [11]. Cartilage-like constructs are often formed of polymeric hydrogels [12, 13].

39 Agarose is a common natural polymer used for cartilage mechanobiology studies due to
40 its easily tunable mechanical stiffness. However, prior chondrocyte biology studies use low (2-3%
41 v/v) concentration agarose-based hydrogels [14-18], which do not achieve cartilage-like
42 mechanical properties as their corresponding moduli range from 13 kPa to 18 kPa. Zignego, *et*
43 *al.*, however, found that higher concentration 4.5% w/v agarose hydrogels achieve stiffness levels
44 within ranges found in the native pericellular matrix (PCM; 20-200 kPa [19, 20]) while still
45 maintaining chondrocyte viability, highlighting potential of high stiffness microenvironments to
46 better match cartilage properties for subsequent mechanotransduction studies [21]. However,
47 without modification, agarose lacks integrin binding motifs that are critical in the mediation of cell-
48 ECM interactions.

49 Collagen I is another natural polymer common in chondrocyte studies [22-24]. Unlike
50 agarose, collagen offers ample binding motifs [25], to promote cell adhesion and migration.
51 Collagen hydrogels have a large water content leading to flexibility similar to natural tissue, exhibit
52 biocompatibility and biodegradation abilities, and can be mechanical tuned through physical or
53 chemical cross-linking [12]. While type II collagen is the most abundant extracellular molecule in
54 cartilage, providing foundation for the use of collagen hydrogels, *in vitro* studies generally use
55 type I collagen hydrogels since they demonstrate superior mechanical qualities compared to type
56 II collagen. Prior collagen hydrogel studies used concentrations between 0.5 and 3 mg/mL [22,
57 26, 27] and even up to 7.5 mg/mL [28, 29]. Low concentration collagen hydrogels (<3 mg/mL)
58 poorly maintain their 3-dimensional structure in extended studies [22] and have elastic moduli of
59 5 to 22 Pa [22, 28, 30], well below that of native cartilage. Although collagen concentration can

60 be increased for greater strength, high concentration collagen (5 mg/mL) has been shown to
61 negatively impact the bioactivity of cells embedded within collagen-agarose hydrogels [31].

62 Composite hydrogels combine the favorable properties of each individual polymer,
63 enabling tunable mechanical and structural properties and leading to more ECM-like interactions
64 that promote cues for proliferation, differentiation, and matrix production. Few groups have
65 studied the interactions between agarose and collagen biomaterials and their influence on cells
66 [31-36]. Cambria, *et al.*, assessed the impact of low concentration agarose blended with collagen
67 on nucleus pulposus cells, finding composite hydrogels to outperform agarose-only hydrogels in
68 terms of cell adhesion and proliferation, likely attributable to the binding motifs that exist within
69 the collagen component [32]. Quarta, *et al.*, cultured breast cancer cell lines in agarose-collagen
70 hydrogels to assess the mechanical properties and potential cytotoxicity as agarose content was
71 increased, of which at the low concentrations assessed, while there was a change in mechanical
72 behavior, no cytotoxicity was observed [33]. Ulrich, *et al.*, used another cancer cell line to assess
73 how an increase in hydrogel stiffness would alter cell motility and therefore the potential influence
74 of agarose on collagen deformation and remodeling [34]. While the group's work with mass
75 spectrometry and scanning electron microscopy fail to indicate agarose induces collagen ligand
76 alterations, microscopy images do suggest agarose inhibits cell-directed assembly of large
77 collagen bundles, also influencing cell spreading and motility [34]. While these studies
78 demonstrate applications of agarose-collagen hydrogels and their compositional influence on
79 mechanics, cell viability, and remodeling, study of the response of chondrocytes to this
80 environment are critical to the application of such hydrogels to the study of cartilage
81 mechanobiology.

82 In this study, we aimed to develop an agarose-collagen composite hydrogel that combines
83 the mechanical properties of agarose with the biofunctionality of collagen to mimic native articular
84 cartilage tissue and enable future chondrocyte mechanobiology studies. We hypothesized that
85 the addition of collagen to agarose hydrogels will promote enhanced cell proliferation and
86 subsequent matrix deposition as compared to agarose-only hydrogels without any significant
87 compromise to material properties. Comparing against agarose and collagen only hydrogels, we
88 evaluated agarose-collagen composite hydrogel mechanical properties and structural
89 homogeneity alongside their effect on chondrocyte viability, proliferation, and sulfated
90 glycosaminoglycan (sGAG) production.

91

92 **MATERIALS & METHODS**

93 Experiments conducted in this study were divided into two main categories (1) acellular
94 and (2) cell laden. All hydrogel formulations were otherwise prepared in the same fashion. The
95 aim of acellular experiments was to elucidate the innate structure-function relationships between
96 the hydrogel formulation and the resulting bulk mechanics and structural homogeneity. Cell-laden
97 hydrogel experiments were then used to assess chondrocyte morphology, proliferation rates, and
98 sGAG production.

99 *Hydrogel Preparation*

100 To prepare agarose hydrogels, low-gelling temperature type VII-A agarose (A0701, Sigma
101 Aldrich) was dissolved in 1× phosphate buffered saline (PBS) and autoclaved (chamber
102 temperature of 120°C and sterilization time set to 15 minutes). For cell-based experiments, the
103 solution was cooled to 40°C prior to adding chondrocytes and casting in the mold.

104 Collagen I hydrogels were prepared by chilling and mixing rat tail collagen I (RatCol®;
105 5153, Advanced BioMatrix) with its associated neutralizing solution in accordance with the
106 manufacturer protocol to obtain a 4mg/mL solution.

107 Two composite hydrogel formulations were studied. The first composite consisted of 4%
108 w/v agarose with 2 mg/mL collagen I. The second composite consisted of a 1:1 ratio of the
109 aforementioned agarose-only and collagen-only formulations, leading to 2% w/v agarose with 2
110 mg/mL collagen I concentration. Composite hydrogels were manually mixed via pipetting while
111 maintained in a ~40°C water bath to prevent collagen denaturation and premature agarose
112 gelation.

113 Positive displacement pipette tips were used to aliquot 150- μ L volumes of each hydrogel
114 solution into custom (3-mm tall, 6-mm inner diameter) PDMS based molds (00-30, Ecoflex).

115 *Cell Encapsulation*

116 To obtain primary chondrocytes, seven C57BL/6J mice (5 days old) were humanely
117 euthanized under institutional approval (IACUC protocol 2104002138) to isolate neonatal
118 cartilage of the proximal and distal femur and the proximal tibia under sterile conditions.[37]
119 Tissues were digested in 3 mg/mL type II collagenase (17101-015, Gibco) reconstituted in culture
120 media for one hour at 37°C followed by digestion in 0.5 mg/mL type II collagenase overnight at
121 37°C. Tissue was agitated to dissociate residual tissue pieces, and the entire solution was filtered
122 through a 40- μ m cell strainer into a 50-mL conical tube. Sterile 1× PBS was added until a 40-mL

123 total volume was reached, at which point the solution was centrifuged at 1000 rpm for 10 minutes.
124 The supernatant was aspirated, and the cell pellet resuspended in 30 mL of sterile 1× PBS to be
125 re-centrifuged at 1000 rpm for 10 minutes. The supernatant was again aspirated, and the pellet
126 resuspended in complete growth media and counted.

127 Chondrocytes were resuspended into hydrogels at concentrations of 1×10^6 cells/mL prior
128 to full hydrogel gelation. Low seeding densities in the range of $0.4-6 \times 10^6$ cells/mL exhibit
129 proliferation, preserved chondrogenic markers, and reduced dedifferentiation [38-40]. Hydrogels
130 with and without cells were allowed to solidify at room temperature for 10 minutes, followed by
131 the addition of 0.5-mL complete culture media [phenol-free 4.5 g/L glucose Dulbecco's modified
132 Eagle medium (DMEM; 31053-036, Gibco) supplemented with L-glutamate (AAJ6057322, Gibco)
133 and sodium pyruvate (11360-070, Gibco)) and completed with 10% fetal bovine serum (FBS;
134 12676029, Corning) and 1% penicillin-streptomycin (15140-122, Gibco)]. After the addition of
135 media, collagen fibrillogenesis was allowed to complete at 37°C for 30 minutes, the amount of
136 time needed to detect collagen fibrils after induction of fibrillogenesis [31, 32, 41]. Hydrogels were
137 cultured in a 37°C, 5% CO₂ incubator in 48-well plates for up to 21 days. Culture medium was
138 changed every 2-3 days.

139 *Rheological Characterization of Acellular Hydrogels*

140 Following recommendations for rheological characterization of hydrogels [42], small
141 amplitude oscillatory shear tests were performed (AR-G2 Rheometer, TA Instruments) using a
142 20-mm diameter parallel plate geometry and hydration chamber to mitigate evaporation. 150-µL
143 acellular hydrogel solution was dispensed between plates. Parameters were maintained across
144 hydrogel formulations, except for temperature and equilibrium time. After shear rheometric
145 parameters were set (Table 1), the plate was rapidly heated or cooled to begin gelation. Agarose-
146 containing hydrogels were tested at a temperature of 23°C, as these hydrogel formulations were
147 able to complete gelation at this temperature whereas collagen-only hydrogels were maintained
148 at 37°C for the test duration. Equilibrium time parameters were also based on published
149 recommendation [42] for agarose-only and collagen-only samples. Composite equilibrium times,
150 meanwhile, were set to match the collagen-only equilibrium time, as the collagen component was
151 expected to be more sensitive to storage (G') and loss (G'') moduli were defined as the average
152 of all values recorded per step.

153

154 **Table 1** Parameters for shear rheometric testing

	Frequency Sweep			Strain Sweep			Time Sweep		
	4% Agarose	Agarose- Collagen Composi- tes	4 mg/mL Collagen	4% Agaros- e	Agarose- Collagen Composi- tes	4 mg/mL Collage- n	4% Agaro- se	Agarose- Collagen Composi- tes	4 mg/mL Collage- n
Temperatur e (°C)	23	23	37	23	23	37	23	23	37
Gap Size (μm)	1000	1000	1000	1000	1000	1000	1000	1000	1000
Equilibrium time (sec)	30	60	60	30	60	60	–	–	–
Frequency (Hz)	0.01-100	0.01-100	0.01-100	1	1	1	1	1	1
% Strain	10	10	10	0.1-100	0.1-100	0.1-100	10	10	10

155

156 A frequency sweep between 0.01- and 100-Hz was used to evaluate the crosslinking
 157 behavior of the hydrogels. Strain sweeps from 0.1 to 100% strain were used to assess the linear
 158 viscoelastic region (LVR) limits on fully formed gels. A time sweep was used to confirm consistent
 159 mechanical behavior over time and that no unexpected increase in loss or storage modulus would
 160 occur due to innate material properties during culture. Each sample (n=3) was only used for one
 161 sweep.

162 *Unconfined Compression of Hydrogels*

163 The effect of agarose and collagen concentrations on equilibrium moduli were evaluated
 164 by uniaxial unconfined compression tests. Bulk mechanical changes were assessed in both
 165 acellular (n=6; after 24 hours gelation) and cell-laden hydrogels (n=4; throughout 21-days of
 166 culture) using the same protocol. First, the diameter and heights per each individual sample were
 167 measured with a digital caliper prior to testing on a universal testing machine (ElectroForce 5500,
 168 TA Instruments) equipped with a 20-lbf load cell then maintained in a 1× PBS bath during tests.
 169 Stress-relaxation was then performed to 10% strain and held (acellular: 1200 seconds; cell-laden:
 170 600 seconds) to evaluate the compressive modulus and time-dependent behavior (10% strain,
 171 1% strain/sec). The load vs time data obtained from these tests were converted to stress vs time
 172 data by applying sample geometry information. These data were then used to estimate the
 173 viscoelastic properties of the hydrogels using a nonlinear Prony Series model [43]:

174

$$\sigma(t) = \sigma_\infty + \sigma_1 e^{-\frac{t}{\tau_1}} + \sigma_2 e^{-\frac{t}{\tau_2}} \quad (1)$$

175 where σ_i and τ_i are stress parameters and relaxation time constants, respectively. From these
176 outputs, the equilibrium modulus ($E_\infty = \sigma_\infty/\varepsilon$) and instantaneous modulus ($E_0 = (\sigma_\infty + \sigma_1 + \sigma_2)/\varepsilon$)
177 could be calculated by normalizing the experienced stresses to the applied strain [44]. The
178 model was fitted to experimental data using a non-linear least squares method in MATLAB
179 (R2022a, MathWorks).

180 *Electron Microscopy of Acellular Hydrogels*

181 Texture and homogeneity of hydrogels (n=3) were analyzed by field emission scanning
182 electron microscopy (FE-SEM; SEM). Samples were flash frozen in liquid nitrogen, fractured with
183 a frozen razor blade, and stored at -80 °C. Hydrogels were lyophilized (VirTis, SP Scientific) for
184 48 hours at -20°C followed by 10 hours at 20°C. Samples were sputter coated with 24-nm of Au-
185 Pd (SPI Supplies) then imaged using a cold field emission high resolution scanning electron
186 microscope (S-4800, Hitachi) at an operating voltage of 10-kV. SEM images at 100× magnification
187 were used to quantify porosity using an adapted open-source MATLAB script [45] while 10,000×
188 SEM images were used to quantify collagen fiber diameters using an adapted open-source Fiber
189 Diameter Distribution v1.0.3 script [46, 47]. In short, to quantify porosities, the image
190 segmentation code segmented images using adaptive thresholding, relying on the mean intensity
191 of a local neighborhood rather than global histogram-based thresholding (i.e., Otsu's method). An
192 iterative refinement process was applied through erosion and dilation to enhance the
193 segmentation of the region. However, due to the distinct variations between the collagen fibers
194 and background in the 10,000× images, mean and Gaussian filters were applied. Subsequently,
195 column and row sweeping operations were carried out. Additionally, 2000X SEM images were
196 used for qualitative comparison. While the porosities of these hydrogels should not be directly
197 linked to structural gaps through which cells might traverse due to ice crystals formation
198 influenced by lyophilization variables (i.e., freezing method, time, and sublimation variables) [48,
199 50], it is possible to examine the interconnection of hydrogel networks by considering how their
200 crosslinking properties influence the formation of pore artifacts and therefore their effect on cell
201 migration [48, 50].

202 *Cell Growth*

203 As a surrogate to evaluate cell viability and proliferation, a resazurin assay was used at
204 the initial timepoint (immediately following cell-laden hydrogel gelation) and intermittently over 21
205 days of culture. Hydrogels (n=3) were incubated at 37°C, 5% CO₂ for 4 hours in a solution of

206 DMEM supplemented with 10% Resazurin dye following the manufacturer protocol (AR002, R&D
207 Systems). Fluorescence was quantified using an excitation of 530/15 nm and emission of 590/15
208 nm on a fluorescent plate reader (BioTek Cytation 5, Agilent Technologies).

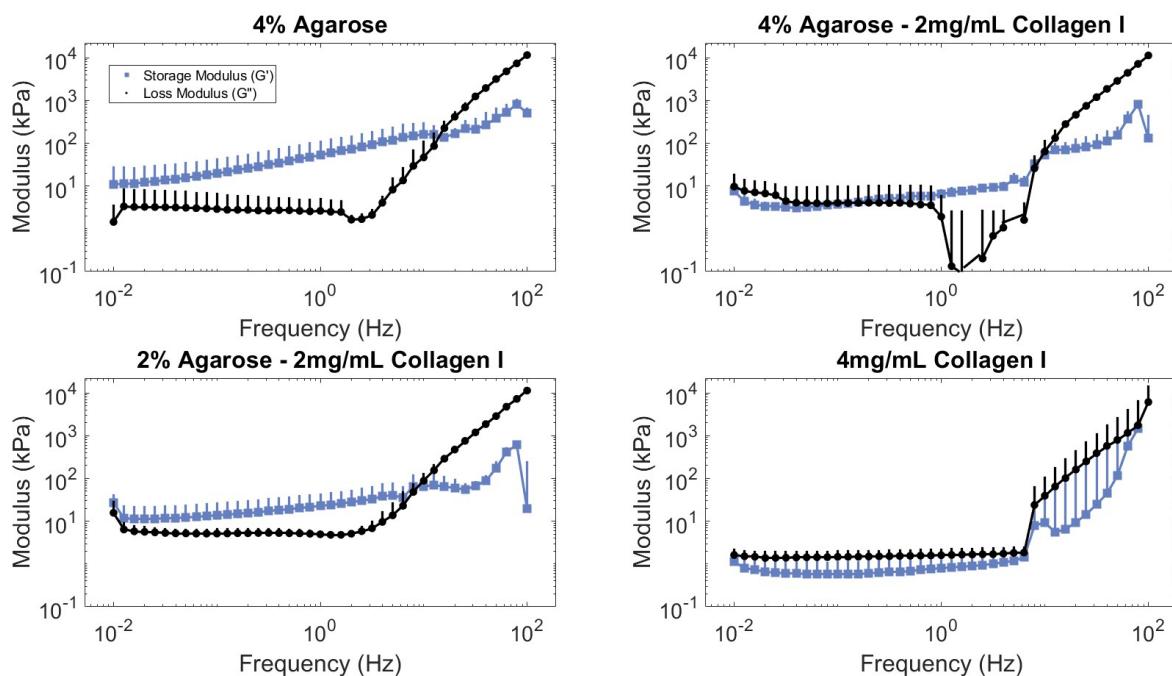
209 *Extracellular Matrix Production*

210 The sGAG content in cell-laden hydrogel constructs was measured to compare ECM
211 remodeling with respect to hydrogel formulations. After 3, 7, 14, or 21 days of culture, hydrogels
212 (n=3) were weighed, flash frozen, lyophilized overnight, and reweighed. Hydrogels were digested
213 in 1 mL of 50 µg/mL Proteinase K (P6556, Sigma Aldrich) in 50 mM Tris, 1 mM CaCl₂, pH = 8 for
214 16 hours at 56°C followed by 30 minutes at 90°C and an additional digest of 4 units of beta-
215 agarase (M0392S, New England BioLabs) for 1 hour at 65°C to ensure full agarose breakdown.
216 Supernatants were collected for dimethylmethylen blue (DMMB) assays, and chondroitin sulfate
217 from bovine trachea (C9819, Sigma Aldrich) was used as a standard. DMMB solution was added
218 (200 µL/well) and absorbance was measured at 540 nm and 590 nm using a plate reader (BioTek
219 Cytation 5, Agilent Technologies). For all samples, sGAG quantity was normalized against
220 hydrogel dry weight.

221 *Statistical Analysis*

222 Results are reported as mean ± standard error (SE) for tests using at least three replicates.
223 Preliminary studies on acellular hydrogels for compression testing, and a 1-week culture of cell-
224 laden hydrogels for resazurin and sGAG assays, showed that 3 samples was sufficient to achieve
225 a power of 0.8. Two-sided, unpaired t-tests were used in rheometry analyses to detect differences
226 in hydrogel plateau or transition points, in SEM imaging to detect pore diameter differences, and
227 in fluorescence imaging to detect nuclear morphology differences. One-way ANOVA with post-
228 hoc Bonferroni or Tukey corrections were used to detect temporal influences in addition to
229 hydrogel formulation influences during compression tests and sGAG tests. *p*-values less than
230 0.05 were considered statistically significant. Statistical analyses were performed with MATLAB
231 (R2022a, MathWorks).

232

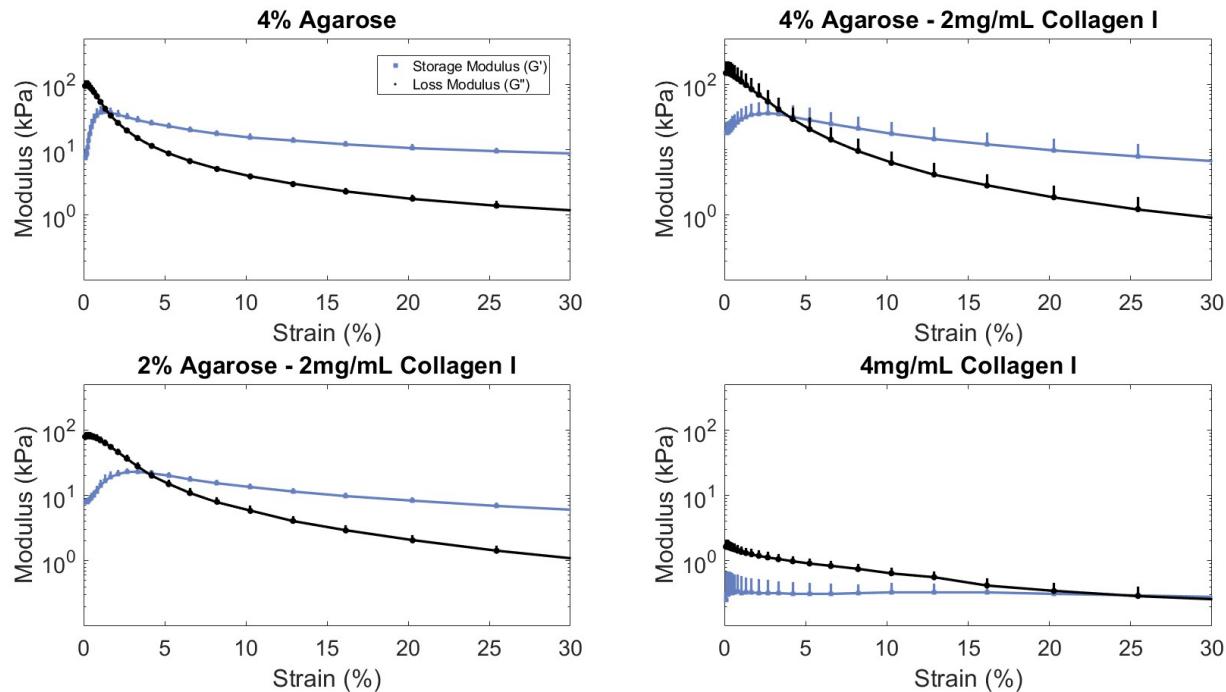

233 **RESULTS**

234 *Agarose Dominates the Mechanical Characteristics of Composite Hydrogels*

235 All hydrogels exhibited sol-gel transition, as evidenced by a crossover point during
236 frequency-sweep tests (Figure 1). 4 mg/mL collagen hydrogels reach the sol-gel transition at the

237 lowest frequency (6.07 ± 1.48 Hz), followed by the two intermediate composites (2% agarose – 2
 238 mg/mL collagen: 8.37 ± 1.74 Hz and 4% agarose – 2 mg/mL collagen: 10.18 ± 1.34 Hz), then 4%
 239 agarose hydrogels (12.81 ± 1.69 Hz). At frequencies above 10 Hz (10 – 100 Hz), variations in
 240 sample responses increase rapidly. The sol-gel transition is a point along the frequency response
 241 curve to an oscillatory input at which the loss moduli becomes higher than the storage moduli,
 242 indicating the samples becomes highly deformable, or more liquid-like than solid-like [51]. The
 243 relationship between the storage and loss moduli trends indicated that at low frequencies, the
 244 samples exhibit gel-like behavior whereas at higher frequencies, samples begin to display
 245 viscoelastic-solid-like properties.

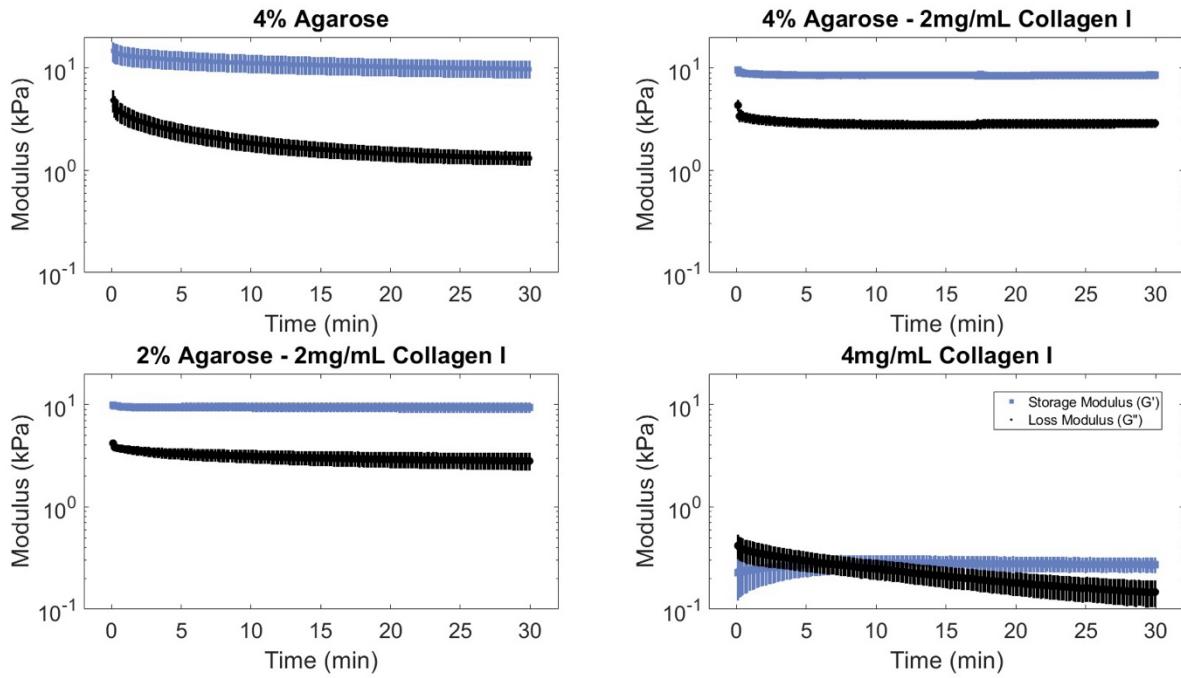
246


Fig 1 Addition of collagen to agarose reduced the frequency at which the storage and loss moduli cross. The linear equilibrium modulus is defined at the plateau region of G' , which occurs at low frequencies for all pipetted hydrogel formulations. G' and G'' are shown between 0.01 and 100 Hz and zoomed into the region between 1 and 10 Hz for 4% agarose, 4% agarose – 2 mg/mL collagen, 2% agarose – 2 mg/mL collagen, and 4 mg/mL collagen hydrogels. 3 replicates presented as mean + SE.

247

248 All hydrogels displayed a plateau in moduli by 30% strain during strain sweeps (Figure 2).
 249 The agarose-only hydrogel required the least strain (1.34 ± 0.32 % strain) to achieve the gel-sol
 250 transition. Composite 4% agarose – 2 mg/mL collagen and 2% agarose – 2mg/mL collagen
 251 hydrogels achieve this transition point at a higher but insignificantly different strain (4.82 ± 1.39 %

252 and $4.72 \pm 0.74\%$ strain, respectively). The collagen-only hydrogel on the other hand is more
253 compliant compared to agarose hydrogels and reached the gel-sol transition point at a
254 significantly ($p < 0.05$) higher strain amplitude ($26.8 \pm 9.53\%$).


255

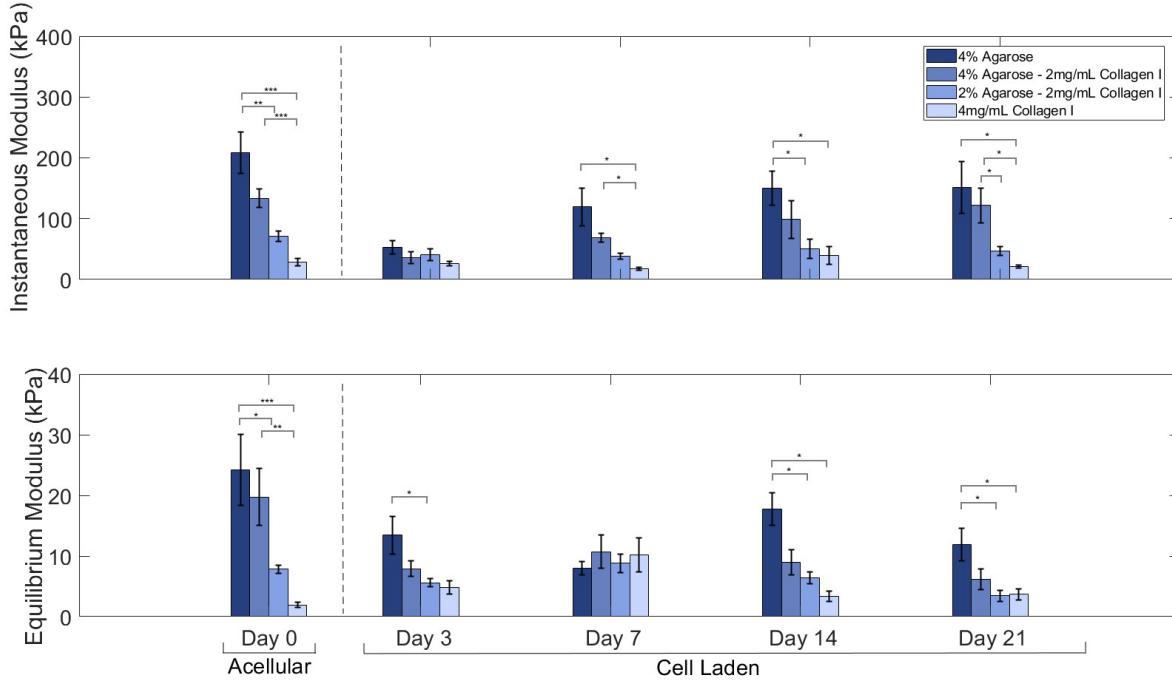
256
257 **Fig 2** Agarose-only and composite agarose-collagen hydrogels achieved the gel-sol transition
258 point at similar strains. The linear viscoelastic region can be determined with respect to strain
259 where G' and G'' are calculated between 0.1 and 100% strain for all pipetted hydrogel
260 formulations. 3 replicates presented as mean + SE.

261

262 Within the first 30 minutes of rheometric time sweeps, all hydrogels reached a plateau,
263 indicating that the hydrogels should maintain their mechanical behavior for sustained culture
264 (Figure 3). A storage modulus greater than the loss modulus indicates solid behavior, of which all
265 agarose-containing hydrogels clearly demonstrate ($p < 0.001$) before collagen-only hydrogels
266 achieve a similar gelled state, though at an order of magnitude softer.

Fig 3 All hydrogel formulations demonstrated stabilized mechanical behavior within thirty minutes. Gel formation was monitored for 30 minutes for all hydrogels. G' and G'' are presented for all formulations. 3 replicates presented as mean + SE.

263

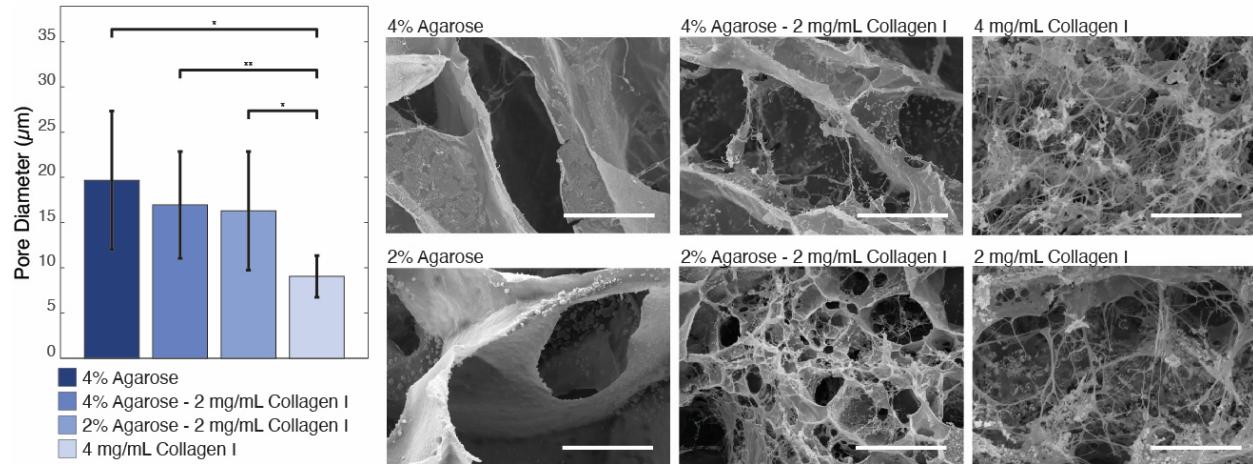

264 In acellular hydrogels, equilibrium modulus was the main interest, as this metric best
 265 represents the stiffness of the hydrogels in a swollen state, the same state these samples will
 266 undergo during later cell-laden experiments. Stress relaxation under unconfined compression
 267 (Figure 4) demonstrated the 4% agarose hydrogels had a similar equilibrium modulus (24.24 ± 5.83
 268 kPa) to the 4% agarose – 2 mg/mL collagen hydrogels (19.72 ± 4.68 kPa). 2% agarose – 2 mg/mL
 269 collagen display significantly lower equilibrium moduli (7.86 ± 0.67 kPa) compared to the 4%
 270 agarose containing hydrogels ($p < 0.05$) in addition to the 4mg/mL collagen hydrogels (1.93 ± 0.46
 271 kPa) showing significantly lower levels than both 4% agarose – 2 mg/mL collagen ($p < 0.01$) and
 272 4% agarose ($p < 0.001$). Results demonstrate similarities with shear rheometry outputs, as both
 273 storage moduli discussed above, and equilibrium moduli here represent the elastic behavior of
 274 viscoelastic materials – of which are more prominent in the 4% agarose-containing hydrogels.

275 Cell-laden, agarose-containing hydrogels displayed minimal compaction over time,
 276 displaying an average diameter increase of 0.09 mm and height decrease of 0.77 mm from initial
 277 dimensions. In comparison, collagen-only hydrogels displayed significant changes ($p < 0.05$) in
 278 height and diameter (0.47 ± 0.26 mm and 0.80 ± 0.32 mm, respectively) after 21 days of
 279 chondrocyte culture.

280 Initially stiffer hydrogels, with respect to the initial equilibrium moduli previously discussed,
281 demonstrate a greater change in instantaneous modulus as compared to softer, collagen-
282 dominant hydrogels. However, an important note is that the exposure to cells and culturing
283 conditions will alter the mechanical behaviors of the hydrogels. Therefore, direct comparisons
284 between acellular and cell-laden hydrogel properties should be interpreted with caution. Except
285 for these collagen-only hydrogels, the instantaneous moduli continually increase over 21 days in
286 culture. The final (day 21) instantaneous modulus for 4% agarose hydrogels is 151.77 ± 42.58 kPa,
287 for 4% agarose – 2mg/mL collagen is 121.77 ± 28.93 kPa, for 2% agarose – 2mg/mL collagen is
288 47.10 ± 7.32 kPa, and for 4mg/mL collagen is 21.63 ± 2.21 kPa (Figure 4).

289 A similar generalization can be made for the equilibrium moduli over time, though there is
290 much higher variability across time points assessed. Statistically, however, temporal effects were
291 not significant across the 21 days assessed. The introduction and culture of chondrocyte into the
292 hydrogel does cause a decrease in moduli when compared to the initial acellular hydrogels. In
293 fact, after 21 days in culture, the equilibrium moduli all decrease to roughly half of the initial
294 acellular levels whereas in terms of instantaneous moduli, only agarose-containing hydrogels
295 demonstrate a decrease, both of which may be attributed to cellular remodeling of the matrix. The
296 final (day 21) equilibrium modulus for 4% agarose hydrogels is 11.87 ± 2.68 kPa, for 4% agarose
297 – 2mg/mL collagen is 6.11 ± 1.70 kPa, for 2% agarose – 2mg/mL collagen is 3.45 ± 0.91 kPa, and
298 for 4mg/mL collagen is 3.67 ± 0.94 kPa (Figure 4).

299

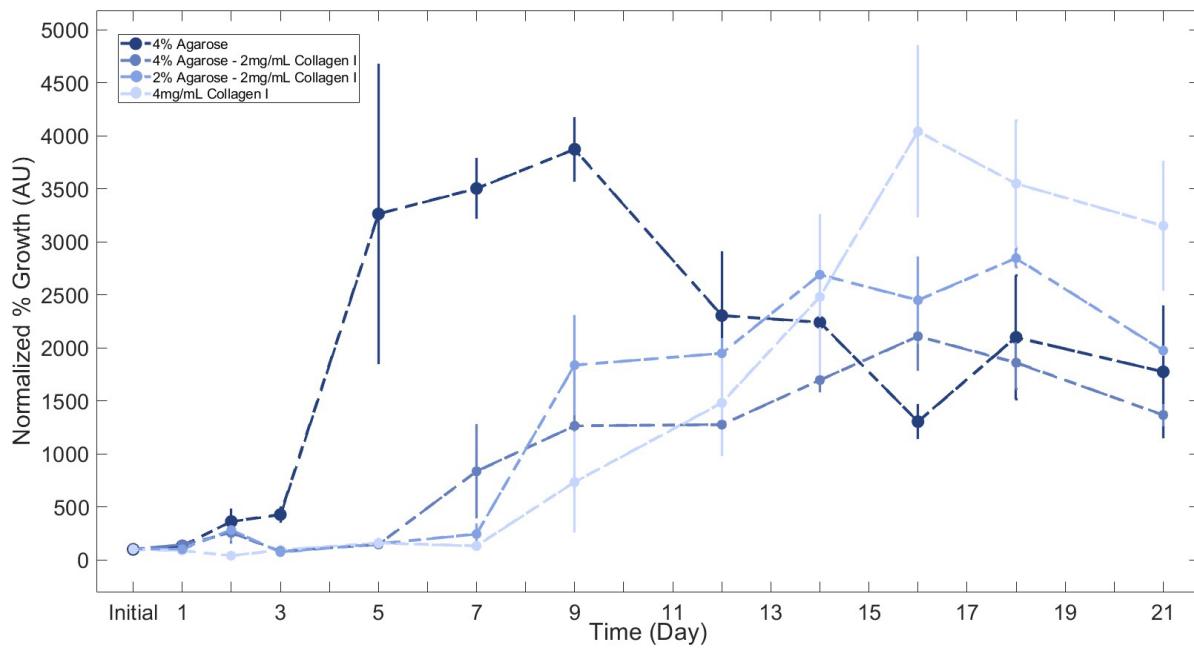

Fig 4 Agarose-only and 4% agarose – 2mg/mL collagen hydrogels displayed similar moduli. Fully gelled hydrogels (n=6 for 24-hour acellular studies and n=4 for 21-day cell-laden studies) were tested under unconfined, uniaxial compression-based stress relaxation in a randomized order, compared using a one-way ANOVA with post-hoc Bonferroni correction ($\alpha=0.05$) and presented as mean \pm SE.

300

301 *Higher Agarose Concentrations are Associated with Larger Pore Diameters*

302 Hydrogel pore diameters were compared at 100 \times magnification via SEM (Figure 5). The
 303 largest pore diameters were found in 4% agarose hydrogels (19.57 ± 7.61 μ m) followed by 2%
 304 agarose hydrogels (19.044 ± 7.33 μ m), 4% agarose – 2mg/mL collagen and 2% agarose – 2mg/mL
 305 collagen pore diameters (16.90 ± 5.90 μ m and 16.21 ± 6.55 μ m, respectively). Significantly smaller
 306 ($p<0.05$) pore diameters were observed in 4- and 2mg/mL collagen samples (9.10 ± 2.68 μ m and
 307 12.48 ± 4.10 μ m, respectively). Agarose-only hydrogels demonstrated a positive correlation
 308 between concentration levels and resultant pore diameters whereas collagen-only hydrogels
 309 demonstrated a negative correlation of pore and fiber diameter at 100 \times and 10,000 \times magnification
 310 levels, respectively.

311

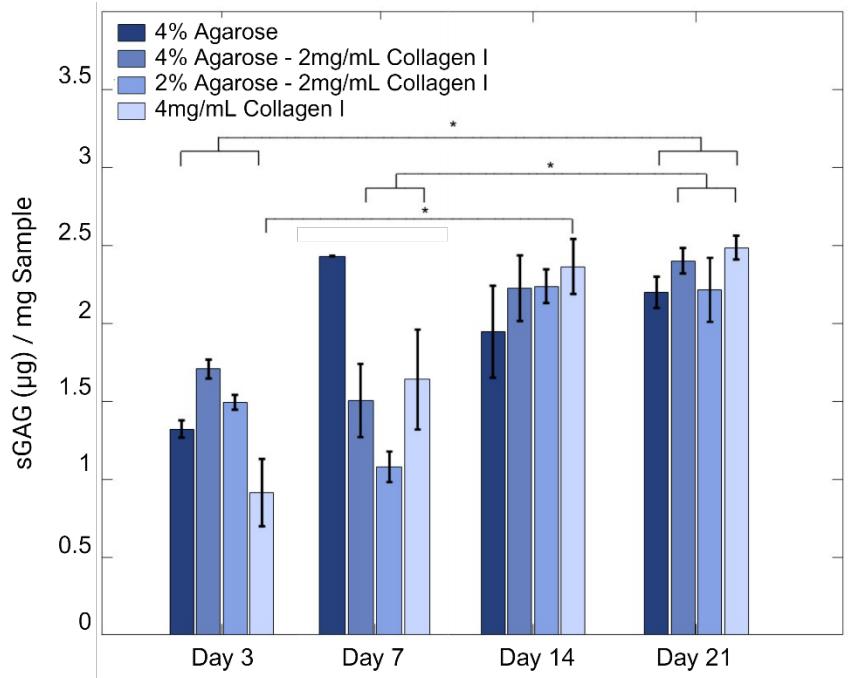

Fig 5 Addition of collagen to agarose reduced pore diameters in SEM images. Pore size was quantified using 3 biological replicate 100 \times images of lyophilized hydrogels and assessed using a one-way ANOVA with post-hoc Bonferroni correction ($\alpha=0.05$), presented as mean \pm SE. 2000 \times representative images of hydrogels demonstrate fiber presence and morphology. Scale bars = 20 μ m.

312

313 *Composite Hydrogels Display Intermediate Cell Responses between Agarose- or Collagen- only*
 314 *Hydrogels*

315 Since cells were briefly subjected to mechanical and thermal stress during hydrogel
 316 formulation methods, cell viability was initially measured directly following cell seeding to establish
 317 a baseline. All hydrogels maintained the seeded chondrocytes within their 3-dimensional matrix
 318 and demonstrated continued growth, as assessed via resazurin assays and visual inspection
 319 under brightfield microscopy. Agarose-only hydrogels demonstrated the quickest initial increase
 320 in growth, collagen-only hydrogels initially lagged but eventually demonstrated the largest growth
 321 rates (Figure 6). Composite hydrogels meanwhile displayed similar rates to each other and
 322 followed the progression cell growth curves through the lag, log, and stationary phases (Figure
 323 6).

324


Fig 6 Chondrocyte metabolic activity, an indicator of cell viability and proliferation, demonstrated cell growth across all hydrogels. Cell viability is presented as a percentage of baseline (100%) levels, using 3 biological replicates and presented as mean \pm SE.

325

326 *Hydrogel Formulation is Not a Significant Driver in Observed sGAG Content*

327 sGAG was analyzed normal to sample dry weight. Interestingly, both composite hydrogels
 328 demonstrated a brief decrease in sGAG content between days 3 and 7 before continuing to show
 329 continuous increases in content. DMMB results demonstrate on day 3, sGAG content in 4%
 330 agarose – 2mg/mL collagen hydrogels were statistically higher than other groups (Figure 7). Other
 331 than this initial case, however, the temporal influence was the main driver on sGAG content
 332 ($p<0.01$) while formulation alone was not significant driver ($p=0.7$), indicating that the addition of
 333 agarose in the composite hydrogels does not hinder the ability of chondrocytes to secrete sGAG
 334 in vitro at the levels tested.

335

Fig 7 Collagen-containing hydrogels demonstrated an increase in sGAG content that plateaued by day 21. One-way ANOVA with post-hoc Bonferroni correction of multiple pairwise comparisons ($\alpha=0.05$) were used to detect temporal and hydrogel formulation influences on sGAG content in hydrogels ($n=3$) and results are presented as mean \pm SE.

336

337 **DISCUSSION**

338 Biomaterials meeting the mechanical and biochemical requirements for functional
 339 environments during cell culture are necessary for mechanotransduction. This study aimed to
 340 evaluate agarose-collagen composite hydrogels as a simple, effective option for chondrocyte
 341 mechanobiology studies. Four hydrogel formulations were assessed, including a high-
 342 concentration, 4% agarose hydrogel, two common-level collagen concentrations with varied
 343 agarose (4% agarose – 2mg/mL collagen and 2% agarose – 2mg/mL collagen), and a 4mg/mL
 344 collagen hydrogel. Both acellular and prolonged cell-laden studies indicate that high-
 345 concentration agarose blended with collagen hydrogels may be a suitable environment for
 346 extended, 3-dimensional chondrocyte culture.

347 *Mechanical Properties describe the Hydrogel Structure-Function Relationship*

348 Of the sweeps performed, all acellular hydrogels demonstrated linear viscoelastic
 349 characteristics that fall within the bounds of common parameters used in loading studies [42, 52],
 350 a critical factor when developing a hydrogel material meant for culture in physiologically relevant,
 351 dynamic conditions. The addition of collagen into agarose did not significantly change the

352 rheologic properties of the hydrogel though it did slightly reduce the storage modulus. Similar to
353 Cambria, *et al.* [32], we did not observe a significant difference between the moduli of agarose-
354 only and 4% agarose – 2 mg/mL collagen I (both at roughly 10 kPa) and as the agarose content
355 decreases, so does the moduli, with a particularly sharp drop between composite hydrogels and
356 collagen-only hydrogels. The blending of collagen and agarose at these concentrations therefore
357 do not seem to impair bond formation during gelation, though it is possible that at higher collagen
358 concentrations, fiber aggregation might interfere with gelation, leading to macroscopic defects, as
359 suggested by the results found by Cambria, *et al.* [32], and SEM images of collagen-only samples.

360 To assess how the addition of collagen may influence the compressive properties of
361 agarose hydrogels, unconfined, uniaxial compression testing was completed. Acellular 4%
362 agarose hydrogels were the stiffest material after gelation, followed by 4% agarose – 2 mg/mL
363 collagen, which both fall within the lower bounds of native cartilage PCM [19, 20]. Acellular
364 agarose-containing hydrogels have been previously reported to express significantly higher
365 equilibrium moduli as compared to cell-laden hydrogels of the same formulation due to the
366 presence of cells forming an extracellular matrix [53]. The moduli values of the composite
367 hydrogels demonstrate a dependence on the volume fractions of the agarose and collagen, in
368 which hydrogels with higher agarose content showed improved mechanical properties, reflecting
369 changes to hydrogel moduli reported in other studies. 0.5% agarose hydrogels have an
370 equilibrium modulus ranging from 5 to 8 kPa [33], 2% agarose hydrogels at 14 kPa [53], 3%
371 agarose hydrogels at roughly 20 kPa [14], and 4% agarose hydrogels at 40 kPa [53]. Low
372 concentration agarose– collagen hydrogels have been previously shown to demonstrate a spread
373 in behavior over a week of culture similar to the behavior of the 2% agarose – 2 mg/mL collagen
374 hydrogels [33]. Meanwhile, collagen-only hydrogels demonstrated substantially lower equilibrium
375 moduli following compression [54], like that of 2.3 mg/mL collagen hydrogels, which have a
376 modulus of only 0.1 kPa [29]. Cell-laden agarose-containing hydrogels presented the most
377 structural stability over time, in part due to the lack of agarose production by chondrocytes. Since
378 the cells do not produce any enzymes that break down agarose, the material does not erode
379 quickly [34]. Collagen-based hydrogels, on the other hand, are well known to contract over time,
380 decreasing upwards of 70% in diameter [23, 28]. Supplementing observations from rheologic
381 testing, the low levels of contraction observed in the composite formulations demonstrated how
382 the agarose component dominated over collagen to maintain the hydrogel shape with time. This
383 presents an advantage for studies in which hydrogels need to be cultured for long durations or

384 undergo loading to mimic physiologic conditions. advantage for studies in which hydrogels need
385 to be cultured for long durations or undergo loading to mimic physiologic conditions.

386 In general, the relaxation behavior of the hydrogels seems to be dominated by the agarose
387 composition. The observed increase in moduli over time may be due to greater fiber engagement
388 or increased matrix deposition as the cells continue to proliferate [35]. In prior studies, acellular
389 agarose hydrogels had an equilibrium modulus of 17.7 ± 2.7 kPa after a week of culture [14], and
390 2% agarose hydrogels had an equilibrium modulus of 14.2 ± 2.7 kPa after gelation [53]. On the
391 other hand, collagen-based hydrogels show almost an order of magnitude lower modulus. For
392 example, equilibrium modulus fell in the 0.5 kPa range, with a higher instantaneous modulus of
393 roughly 5 kPa, at the same time point [29]. The equilibrium moduli range we measured in 4%
394 agarose and 4% agarose – 2mg/mL collagen I after full gelation (19.72 ± 4.68 kPa) fell within
395 previously reported ranges for agarose [14, 53].

396 We observed that increasing agarose content results in stiffer hydrogels but that the
397 addition of cells affecting the overall modulus as a function of culture time. These trends in
398 material properties parallel those observed by others. Buckley, *et al.*, showed that modulus
399 increased twofold for every 2% agarose increase within the 2% to 6% range [53]. In cell-laden
400 hydrogels, Buschmann, *et al.*, found a slow increase in stiffness over the first two weeks of culture
401 [14]. By day 28, the modulus was about 80 kPa, before dropping back to roughly 65 kPa by day
402 47 [14]. In addition, our acellular hydrogels maintained an equilibrium modulus consistently
403 around 17 kPa, indicating that matrix deposition by resident cells plays a crucial role in the
404 structural integrity of the hydrogel. Buckley, *et al.*, additionally noted that parameters related to
405 the experimental methods (i.e., batch-to-batch variability, cell seeding density) influenced the
406 equilibrium modulus; they demonstrated several cases where acellular hydrogels displayed a
407 significantly higher modulus than those hydrogels seeded with a high concentration of cells [53].
408 Congruent to these findings, over the 21 days of culture in our study, cell-laden hydrogels
409 demonstrated lower moduli than acellular hydrogels immediately following gelation.

410 Pore diameter sizes seem to follow the same trend as equilibrium moduli, in which 4%
411 agarose hydrogels, the material with the largest pore diameter, also demonstrate the highest
412 moduli. This related change in pore geometry and subsequent material property are likely
413 attributable to the reduction of hydrogel bonding with decreased agarose concentrations [30, 33,
414 55, 56]. The composite hydrogels demonstrate similar porosities and moduli but are both lower
415 than agarose-only hydrogels. These composites are double networked since they consist of
416 contrasting component properties and molar concentrations. The differences in crosslinking

417 mechanisms between materials within these hydrogels likely influence the observed trends in
418 pore and modulus values [57-59]. Both agarose and collagen are capable of hydrogen bonding
419 [60], suggesting the potential for crosslinking. This is supported by the porosity changes we
420 observed from SEM imaging, whereby decreasing the concentration of agarose relative to
421 collagen resulted in reduced porosity and smaller pore sizes. Such crosslinking was observed by
422 Quarta, *et al.* [33], and the homogeneity of such networks also demonstrated by others [32]. Cell
423 adhesion and contractility have been previously studied in 0.5 mg/mL collagen hydrogels with 0%
424 to 0.5% w/v agarose to demonstrate agarose-mediated inhibition of collagen fiber bundling,
425 deformation, and remodeling [34]. The group also discovered that by covalently crosslinking the
426 hydrogel with glutaraldehyde, cells were able to spread more effectively with minimal matrix
427 remodeling, indicating that agarose alone does not limit cell spreading [34]. Furthermore, by
428 increasing collagen concentrations, therefore increasing ligand density, they were also able to
429 overcome cell spreading limitations. This points to the possibility of initial covalent crosslinking
430 between hydrogels being increased at our higher concentration. These connections across
431 polymer materials potentially benefit cell-matrix interactions by providing cells initial binding sites
432 on which to further deposit extracellular matrix proteins [61].

433 Collagen-only hydrogels, meanwhile, demonstrate a negative relationship between
434 porosity and moduli, possibly mediated in part by bond strengths, as there exists a positive
435 relationship between collagen concentration and ionic strength [56] and further a positive
436 relationship between increases in ionic bond strength and fiber networks connectivity [34, 62],
437 leading to smaller pore and fiber diameters. Furthermore, variability between samples can arise
438 and is demonstrated in literature depending on collagen source, polymerization temperature, and
439 pH, all of which affect crosslinking and cellular interactions [48, 49, 55, 63].

440 *Cell and Extracellular Matrix Responses describe the Hydrogel Biofunctionality*

441 In this study, the stiffest hydrogel, 4% agarose-only, led to the quickest and most dramatic
442 increase in proliferation on day 7, as measured through mitochondrial activity, although the
443 4mg/mL collagen-only hydrogels reached similar growth rates within two weeks of culture.
444 Previous reports are inconclusive towards the relationship between hydrogel viscosity and cell
445 proliferation over a 21-day period. For example, Lee, *et al.*, found that higher viscosities led to
446 higher proliferation rates [64] whereas Cambria, *et al.*, found the opposite [32]. Potential
447 explanations for the contradictory results may be the influence of contact inhibition or biochemical
448 signaling differences across biomaterials (gelatin blends versus agarose-collagen blends,
449 respectively). Since mammalian cells will not bind to agarose polysaccharides, it is possible that

450 the embedded cells were able to begin proliferating much sooner in a free-floating state as
451 compared to the collagen-containing hydrogels that allowed the cells to take time and bind to
452 fibers prior to entering the exponential growth phase. The composite hydrogels resulted in growth
453 curves with peaks between days 14 and 18. Collagen hydrogels achieve peaks in proliferation
454 between days 16 and 21.

455 No significant differences in sGAG content by time point were observed among the
456 formulations after day 3. Over the course of the study, all hydrogels continued to demonstrate
457 greater sGAG content, suggesting continual matrix synthesis. A lack of consensus exists
458 regarding sGAG content in composite hydrogels. While some reports show higher collagen
459 content associated with higher sGAG content [32], others report the opposite effect, in which a
460 low collagen content led to higher sGAG content [31]. However, as previously referred to, these
461 differences could also be attributable to discrepancies among collagen sources and associated
462 influences on cell behavior.

463 This study focused on the structural and biofunctional properties of agarose-collagen
464 composite hydrogels. Consistent results for material properties of the hydrogel formulations (i.e.,
465 rheologic sweeps, compression testing, contraction) enabled sufficient statistical power, even with
466 only 3 samples. Although the greater variability of biologic analyses (i.e., resazurin, sGAG assays)
467 resulted in reduced power in post hoc evaluation, our results still demonstrate biocompatibility of
468 these hydrogels for extended cell culture. To gain a deeper insight into the influence of these
469 physical cues of the composite hydrogels, future work should address how cell types interact
470 differently with the hydrogel over time using additional biochemical and immunohistochemistry
471 analyses. These hydrogels can be easily and quickly produced, mechanical shear and
472 compressive properties show promising behavior as stable, long-term environments, microscopy
473 images demonstrate homogenous and interconnected networks for cell growth, and preliminary
474 cell-laden studies demonstrate continual proliferation, matrix deposition, and maintained
475 morphology. Overall, the 4% agarose – 2mg/mL collagen hydrogel formulation showed potential
476 in the context of chondrocyte mechanobiology studies.

Citation Diversity Statement:

Recent work in scientific fields have identified biases in citation practices such that papers of minority scholars are found under-cited [65]. We recognize this bias and have worked to ensure that we are referencing appropriate papers with fair author inclusion.

REFERENCES

1. Kock L, van Donkelaar CC, Ito K. Tissue engineering of functional articular cartilage: the current status. *Cell Tissue Res.* 2012;347(3):613-27. <https://doi.org/10.1007/s00441-011-1243-1>.
2. Akkiraju H, Nohe A. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration. *J Dev Biol.* 2015;3(4):177-92. <https://doi.org/10.3390/jdb3040177>.
3. Vincent TL, Wann AKT. Mechanoadaptation: articular cartilage through thick and thin. *The Journal of Physiology.* 2019;597(5):1271-81. <https://doi.org/10.1113/JP275451>.
4. Zhao Z, Li Y, Wang M, Zhao S, Zhao Z, Fang J. Mechanotransduction pathways in the regulation of cartilage chondrocyte homoeostasis. *J Cell Mol Med.* 2020;24(10):5408-19. <https://doi.org/10.1111/jcmm.15204>.
5. Dolzani P, Assirelli E, Pulsatelli L, Meliconi R, Mariani E, Neri S. Ex vivo physiological compression of human osteoarthritis cartilage modulates cellular and matrix components. *PLoS One.* 2019;14(9):e0222947. <https://doi.org/10.1371/journal.pone.0222947>.
6. Vago J, Katona E, Takacs R, Docs K, Hajdu T, Kovacs P, et al. Cyclic uniaxial mechanical load enhances chondrogenesis through entraining the molecular circadian clock. *J Pineal Res.* 2022;73(4):e12827. <https://doi.org/10.1111/jpi.12827>.
7. Elder SH, Goldstein SA, Kimura JH, Soslowsky LJ, Spengler DM. Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading. *Ann Biomed Eng.* 2001;29(6):476-82. <https://doi.org/10.1114/1.1376696>.
8. Ashwell MS, Gonda MG, Gray K, Maltecca C, O'Nan AT, Cassady JP, et al. Changes in chondrocyte gene expression following in vitro impaction of porcine articular cartilage in an impact injury model. *J Orthop Res.* 2013;31(3):385-91. <https://doi.org/10.1002/jor.22239>.
9. Nam J, Aguda BD, Rath B, Agarwal S. Biomechanical thresholds regulate inflammation through the NF-kappaB pathway: experiments and modeling. *PLoS One.* 2009;4(4):e5262. <https://doi.org/10.1371/journal.pone.0005262>.
10. Quinn TM, Grodzinsky AJ, Hunziker EB, Sandy JD. Effects of injurious compression on matrix turnover around individual cells in calf articular cartilage explants. *J Orthop Res.* 1998;16(4):490-9. <https://doi.org/10.1002/jor.1100160415>.
11. Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. *Assay Drug Dev Technol.* 2014;12(4):207-18. <https://doi.org/10.1089/adt.2014.573>.

12. Hafezi M, Nouri Khorasani S, Zare M, Esmaeely Neisiany R, Davoodi P. Advanced Hydrogels for Cartilage Tissue Engineering: Recent Progress and Future Directions. *Polymers (Basel)*. 2021;13(23). <https://doi.org/10.3390/polym13234199>.

13. Wei W, Ma Y, Yao X, Zhou W, Wang X, Li C, et al. Advanced hydrogels for the repair of cartilage defects and regeneration. *Bioact Mater*. 2021;6(4):998-1011. <https://doi.org/10.1016/j.bioactmat.2020.09.030>.

14. Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. *J Cell Sci*. 1995;108 (Pt 4):1497-508. <https://doi.org/10.1242/jcs.108.4.1497>.

15. Bougault C, Aubert-Foucher E, Paumier A, Perrier-Groult E, Huot L, Hot D, et al. Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. *PLoS One*. 2012;7(5):e36964. <https://doi.org/10.1371/journal.pone.0036964>.

16. Di Federico E, Bader DL, Shelton JC. Design and validation of an in vitro loading system for the combined application of cyclic compression and shear to 3D chondrocytes-seeded agarose constructs. *Med Eng Phys*. 2014;36(4):534-40. <https://doi.org/10.1016/j.medengphy.2013.11.007>.

17. Sheehy EJ, Buckley CT, Kelly DJ. Chondrocytes and bone marrow-derived mesenchymal stem cells undergoing chondrogenesis in agarose hydrogels of solid and channelled architectures respond differentially to dynamic culture conditions. *Journal of tissue engineering and regenerative medicine*. 2011;5(9):747-58. <https://doi.org/10.1002/term.385>.

18. Mauck RL, Soltz MA, Wang CC, Wong DD, Chao PH, Valhmu WB, et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. *J Biomech Eng*. 2000;122(3):252-60. <https://doi.org/10.1115/1.429656>.

19. Alexopoulos LG, Haider MA, Vail TP, Guilak F. Alterations in the mechanical properties of the human chondrocyte pericellular matrix with osteoarthritis. *J Biomech Eng*. 2003;125(3):323-33. <https://doi.org/10.1115/1.1579047>.

20. Darling EM, Wilusz RE, Bolognesi MP, Zauscher S, Guilak F. Spatial mapping of the biomechanical properties of the pericellular matrix of articular cartilage measured in situ via atomic force microscopy. *Biophys J*. 2010;98(12):2848-56. <https://doi.org/10.1016/j.bpj.2010.03.037>.

21. Zignego DL, Jutila AA, Gelbke MK, Gannon DM, June RK. The mechanical microenvironment of high concentration agarose for applying deformation to primary chondrocytes. *J Biomech*. 2014;47(9):2143-8. <https://doi.org/10.1016/j.jbiomech.2013.10.051>.

22. Jin GZ, Kim HW. Effects of Type I Collagen Concentration in Hydrogel on the Growth and Phenotypic Expression of Rat Chondrocytes. *Tissue Eng Regen Med*. 2017;14(4):383-91. <https://doi.org/10.1007/s13770-017-0060-3>.

23. Dong X, Zhang M, Jin X. Comparison of Volume Retention and Biocompatibility of Acellular Dermal Matrix/Hyaluronic Acid Filler to Autologous Fat Grafts in a Mouse Model. *Aesthetic Plast Surg*. 2022;46(Suppl 1):207-8. <https://doi.org/10.1007/s00266-021-02433-x>.

24. Revell CM, Athanasiou KA. Success rates and immunologic responses of autogenic, allogenic, and xenogenic treatments to repair articular cartilage defects. *Tissue Eng Part B Rev.* 2009;15(1):1-15. <https://doi.org/10.1089/ten.teb.2008.0189>.

25. Zhu J, Hoop CL, Case DA, Baum J. Cryptic binding sites become accessible through surface reconstruction of the type I collagen fibril. *Sci Rep.* 2018;8(1):16646. <https://doi.org/10.1038/s41598-018-34616-z>.

26. Sanz-Ramos P, Mora G, Vicente-Pascual M, Ochoa I, Alcaine C, Moreno R, et al. Response of sheep chondrocytes to changes in substrate stiffness from 2 to 20 Pa: effect of cell passaging. *Connect Tissue Res.* 2013;54(3):159-66. <https://doi.org/10.3109/03008207.2012.762360>.

27. Zhang L, Yuan T, Guo L, Zhang X. An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells. *Journal of biomedical materials research Part A.* 2012;100(10):2717-25. <https://doi.org/10.1002/jbm.a.34194>.

28. Cao W, Lin W, Cai H, Chen Y, Man Y, Liang J, et al. Dynamic mechanical loading facilitated chondrogenic differentiation of rabbit BMSCs in collagen scaffolds. *Regen Biomater.* 2019;6(2):99-106. <https://doi.org/10.1093/rb/rbz005>.

29. Novak T, Voytik-Harbin SL, Neu CP. Cell encapsulation in a magnetically aligned collagen-GAG copolymer microenvironment. *Acta Biomater.* 2015;11:274-82. <https://doi.org/10.1016/j.actbio.2014.09.031>.

30. Antoine EE, Vlachos PP, Rylander MN. Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. *Tissue Eng Part B Rev.* 2014;20(6):683-96. <https://doi.org/10.1089/ten.TEB.2014.0086>.

31. Lopez-Marcial GR, Elango K, O'Connell GD. Addition of collagen type I in agarose created a dose-dependent effect on matrix production in engineered cartilage. *Regen Biomater.* 2022;9:rbac048. <https://doi.org/10.1093/rb/rbac048>.

32. Cambria E, Brunner S, Heusser S, Fisch P, Hitzl W, Ferguson SJ, et al. Cell-Laden Agarose-Collagen Composite Hydrogels for Mechanotransduction Studies. *Front Bioeng Biotechnol.* 2020;8:346. <https://doi.org/10.3389/fbioe.2020.00346>.

33. Quarta A, Gallo N, Vergara D, Salvatore L, Nobile C, Ragusa A, et al. Investigation on the Composition of Agarose-Collagen I Blended Hydrogels as Matrices for the Growth of Spheroids from Breast Cancer Cell Lines. *Pharmaceutics.* 2021;13(7). <https://doi.org/10.3390/pharmaceutics13070963>.

34. Ulrich TA, Lee TG, Shon HK, Moon DW, Kumar S. Microscale mechanisms of agarose-induced disruption of collagen remodeling. *Biomaterials.* 2011;32(24):5633-42. <https://doi.org/10.1016/j.biomaterials.2011.04.045>.

35. Lake SP, Hald ES, Barocas VH. Collagen-agarose co-gels as a model for collagen-matrix interaction in soft tissues subjected to indentation. *Journal of biomedical materials research Part A.* 2011;99(4):507-15. <https://doi.org/10.1002/jbm.a.33183>.

36. Batorsky A, Liao J, Lund AW, Plopper GE, Stegemann JP. Encapsulation of adult human mesenchymal stem cells within collagen-agarose microenvironments. *Biotechnology and bioengineering*. 2005;92(4):492-500. <https://doi.org/10.1002/bit.20614>.

37. Gosset M, Berenbaum F, Thirion S, Jacques C. Primary culture and phenotyping of murine chondrocytes. *Nat Protoc*. 2008;3(8):1253-60. <https://doi.org/10.1038/nprot.2008.95>.

38. Jin GZ, Kim HW. Efficacy of collagen and alginate hydrogels for the prevention of rat chondrocyte dedifferentiation. *J Tissue Eng*. 2018;9:2041731418802438. <https://doi.org/10.1177/2041731418802438>.

39. Cao C, Zhang Y, Ye Y, Sun T. Effects of cell phenotype and seeding density on the chondrogenic capacity of human osteoarthritic chondrocytes in type I collagen scaffolds. *J Orthop Surg Res*. 2020;15(1):120. <https://doi.org/10.1186/s13018-020-01617-6>.

40. Mhanna R, Kashyap A, Palazzolo G, Vallmajo-Martin Q, Becher J, Moller S, et al. Chondrocyte culture in three dimensional alginate sulfate hydrogels promotes proliferation while maintaining expression of chondrogenic markers. *Tissue engineering Part A*. 2014;20(9-10):1454-64. <https://doi.org/10.1089/ten.TEA.2013.0544>.

41. Bancelin S, Aime C, Coradin T, Schanne-Klein MC. In situ three-dimensional monitoring of collagen fibrillogenesis using SHG microscopy. *Biomed Opt Express*. 2012;3(6):1446-54. <https://doi.org/10.1364/BOE.3.001446>.

42. Zuidema JM, Rivet CJ, Gilbert RJ, Morrison FA. A protocol for rheological characterization of hydrogels for tissue engineering strategies. *Journal of biomedical materials research Part B, Applied biomaterials*. 2014;102(5):1063-73. <https://doi.org/10.1002/jbm.b.33088>.

43. Bonifasi-Lista C, Lake SP, Small MS, Weiss JA. Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading. *J Orthop Res*. 2005;23(1):67-76. <https://doi.org/10.1016/j.orthres.2004.06.002>.

44. Coluccino L, Peres C, Gottardi R, Bianchini P, Diaspro A, Ceseracciu L. Anisotropy in the viscoelastic response of knee meniscus cartilage. *J Appl Biomater Funct Mater*. 2017;15(1):e77-e83. <https://doi.org/10.5301/jabfm.5000319>.

45. Bhattacharya J. ColHAX_Image_Segmentation. GitHub. 2022. https://github.itap.purdue.edu/PavlosVlachosGroup/ColHAX_Image_Segmentation.

46. Rabbani A, Salehi S. Dynamic modeling of the formation damage and mud cake deposition using filtration theories coupled with SEM image processing. *Journal of Natural Gas Science and Engineering*. 2017;42:157-68. <https://doi.org/10.1016/j.jngse.2017.02.047>.

47. Ezeakacha C, Rabbani A, Salehi S, Ghalambor A. Integrated Image Processing and Computational Techniques to Characterize Formation Damage. *SPE International Conference and Exhibition on Formation Damage Control*. Lafayette, LA. 2018.

48. Jansen KA, Licup AJ, Sharma A, Rens R, MacKintosh FC, Koenderink GH. The Role of Network Architecture in Collagen Mechanics. *Biophys J*. 2018;114(11):2665-78. <https://doi.org/10.1016/j.bpj.2018.04.043>.

49. Kreger ST, Bell BJ, Bailey J, Stites E, Kuske J, Waisner B, et al. Polymerization and matrix physical properties as important design considerations for soluble collagen formulations. *Biopolymers*. 2010;93(8):690-707. <https://doi.org/10.1002/bip.21431>.

50. Kaberova Z, Karpushkin E, Nevoralova M, Vetrik M, Slouf M, Duskova-Smrckova M. Microscopic Structure of Swollen Hydrogels by Scanning Electron and Light Microscopies: Artifacts and Reality. *Polymers (Basel)*. 2020;12(3). <https://doi.org/10.3390/polym12030578>.

51. Innocenzi P. The Sol-to-Gel Transition. SpringerBriefs in Materials. Springer Cham; 2019. <https://doi.org/10.1007/978-3-030-20030-5>.

52. Stojkov G, Niyazov Z, Picchioni F, Bose RK. Relationship between Structure and Rheology of Hydrogels for Various Applications. *Gels*. 2021;7(4). <https://doi.org/10.3390/gels7040255>.

53. Buckley CT, Thorpe SD, O'Brien FJ, Robinson AJ, Kelly DJ. The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels. *J Mech Behav Biomed Mater*. 2009;2(5):512-21. <https://doi.org/10.1016/j.jmbbm.2008.12.007>.

54. Nam S, Hu KH, Butte MJ, Chaudhuri O. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. *Proc Natl Acad Sci U S A*. 2016;113(20):5492-7. <https://doi.org/10.1073/pnas.1523906113>.

55. Stuart K, Panitch A. Influence of chondroitin sulfate on collagen gel structure and mechanical properties at physiologically relevant levels. *Biopolymers*. 2008;89(10):841-51. <https://doi.org/10.1002/bip.21024>.

56. Torres JE, Meng F, Bhattacharya S, Buno KP, Ahmadzadegan A, Madduri S, et al. Interpenetrating Networks of Collagen and Hyaluronic Acid That Serve as In Vitro Tissue Models for Assessing Macromolecular Transport. *Biomacromolecules*. 2023;24(11):4718-30. <https://doi.org/10.1021/acs.biomac.3c00448>.

57. Dhand AP, Galarraga JH, Burdick JA. Enhancing Biopolymer Hydrogel Functionality through Interpenetrating Networks. *Trends Biotechnol*. 2021;39(5):519-38. <https://doi.org/10.1016/j.tibtech.2020.08.007>.

58. Bartnikowski M, Wellard RM, Woodruff M, Klein T. Tailoring Hydrogel Viscoelasticity with Physical and Chemical Crosslinking. *Polymers*. 2015;7(12):2650-69. <https://doi.org/doi:10.3390/polym7121539>.

59. Mayumi K, Liu C, Yasuda Y, Ito K. Softness, Elasticity, and Toughness of Polymer Networks with Slide-Ring Cross-Links. *Gels*. 2021;7(3). <https://doi.org/10.3390/gels7030091>.

60. Tako M, Nakamura S. Gelation mechanism of agarose. *Carbohydrate Research*. 1988;180(2):277-84. [https://doi.org/https://doi.org/10.1016/0008-6215\(88\)80084-3](https://doi.org/https://doi.org/10.1016/0008-6215(88)80084-3).

61. Ahearne M. Introduction to cell-hydrogel mechanosensing. *Interface Focus*. 2014;4(2):20130038. <https://doi.org/10.1098/rsfs.2013.0038>.

62. Shoulders MD, Raines RT. Collagen structure and stability. *Annu Rev Biochem*. 2009;78:929-58. <https://doi.org/10.1146/annurev.biochem.77.032207.120833>.

63. Reese SP, Farhang N, Poulson R, Parkman G, Weiss JA. Nanoscale Imaging of Collagen Gels with Focused Ion Beam Milling and Scanning Electron Microscopy. *Biophys J.* 2016;111(8):1797-804. <https://doi.org/10.1016/j.bpj.2016.08.039>.

64. Lee K, Chen Y, Li X, Wang Y, Kawazoe N, Yang Y, et al. Solution viscosity regulates chondrocyte proliferation and phenotype during 3D culture. *J Mater Chem B.* 2019;7(48):7713-22. <https://doi.org/10.1039/c9tb02204j>.

65. Dion ML, Sumner JL, Mitchell SM. Gendered Citation Patterns across Political Science and Social Science Methodology Fields. *Political Analysis.* 2018;26(3):312-27. <https://doi.org/10.1017/pan.2018.12>.