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Abstract

Magnetospheres of neutron stars can be perturbed by star quakes, interaction in a binary system, or sudden collapse
of the star. The perturbations are typically in the kilohertz band and excite magnetohydrodynamic waves. We show
that compressive magnetospheric waves steepen into monster shocks, possibly the strongest shocks in the
Universe. The shocks are radiative, i.e., the plasma energy is radiated before it crosses the shock. As the kilohertz
wave with the radiative shock expands through the magnetosphere, it produces a bright X-ray burst. Then, it
launches an approximately adiabatic blast wave, which will expand far from the neutron star. These results suggest
a new mechanism for X-ray bursts from magnetars and support the connection of magnetar X-ray activity with fast
radio bursts. Similar shocks may occur in magnetized neutron-star binaries before they merge, generating an X-ray
precursor of the merger. Powerful radiative shocks are also predicted in the magnetosphere of a neutron star when
it collapses into a black hole, producing a bright X-ray transient.

Unified Astronomy Thesaurus concepts: X-ray transient sources (1852); Neutron stars (1108); Magnetars (992);
Radiative processes (2055); Radio bursts (1339); Plasma astrophysics (1261)

1. Introduction

Magnetospheres of neutron stars are formed by plasma
immersed in a strong magnetic field Bbg. They have a high
magnetization parameter,

( )s
pr

º
B

c4
1, 1bg

bg
2

bg
2

where ρbg is the plasma mass density and c is the speed of light;

subscript “bg” stands for “background” for waves investigated

in this paper. The closed magnetosphere is approximately

dipole at radii r much greater than the star radius Rå. It ends and

a magnetized wind begins near the light cylinder RLC= c/Ω,
where Ω is the star rotation rate. This basic picture is confirmed

by extensive studies of pulsars (Philippov & Kramer 2022).

1.1. Perturbations of Neutron Star Magnetospheres

In some cases, the magnetosphere becomes significantly
perturbed. In particular, quakes in magnetars launch magneto-
spheric waves (Blaes et al. 1989; Thompson & Duncan 1996;
Bransgrove et al. 2020). Some mechanism quickly dissipates
the waves, generating X-ray bursts that are observed as the
main form of magnetar activity (Kaspi & Beloborodov 2017).
Significant perturbations are also expected in tight neutron-star
binaries, where the two magnetospheres interact with each
other. A huge disturbance of a neutron star magnetosphere
occurs when the star collapses into a black hole (Lehner et al.
2012). In all of these cases, the excited waves are typically in
the kilohertz band.

Such perturbations are well described by magnetohydrody-
namics (MHD), which supports waves of the perturbed
magnetic field and electric field E⊥Bbg. These MHD modes

can have wavevectors k in any direction and can be of two
types: (1) shear Alfvén waves with k ·E≠ 0, and (2)
compressive waves with E⊥k, so-called “fast magnetosonic
modes.” Both modes propagate with an ultrarelativistic group
speed,
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c
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Phase speed vph= ω/k of the magnetosonic waves is also close

to c while Alfvén waves have a»v c cosph , where α is the

angle between k and Bbg. A detailed discussion of waves in e±

plasma in a strong background magnetic field Bbg, including

two-fluid and single-fluid (MHD) descriptions, is found in

Arons & Barnard (1986).

1.2. MHD Waves from Quakes

Substantial work was devoted to the relativistic Alfvén
waves excited by magnetar quakes (e.g., Thompson &
Blaes 1998; Troischt & Thompson 2004; Yuan et al. 2020;
Nättilä & Beloborodov 2022), and little attention was given to
the magnetosonic waves. In fact, quakes can excite both modes.
Neutron star quakes involve shear oscillations of the crust

with horizontal displacements δr. Shear waves inside the
neutron star crust propagate with speed vsh= ω/ksh≈
108 cm s−1

(Blaes et al. 1989). Their characteristic lowest
frequency is ω∼ vsh/h∼ 104 rad s−1, where h is the hydro-
static scale height. A large fraction of the quake energy may be
at much higher frequencies, e.g., ω∼ 105 rad s−1. The crustal
waves leak to the magnetosphere with a transmission

coefficient w~ B0.1 5
3 5

15
2 5 (Blaes et al. 1989; Bransgrove

et al. 2020).
To quickly see that quakes can emit both Alfvén and

magnetosonic modes, one can consider crustal oscillations with
ω? c/Rå and a wavevector that is exactly radial in a region of
the stellar surface (Figure 1). Such oscillations satisfy
∂f= ∂θ= 0 in spherical coordinates r, θ, f, and this symmetry
is preserved during wave transmission, so the emitted

The Astrophysical Journal, 959:34 (25pp), 2023 December 10 https://doi.org/10.3847/1538-4357/acf659

© 2023. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms

of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

1



magnetospheric wave also has a radial k. This simple setup is
reduced to a locally plane-parallel transmission problem; it was
used by Blaes et al. (1989) to study how quakes with
δr∥(k× Bbg) excite Alfvén waves in the magnetosphere. It is
easy to see that quakes with δr(k×Bbg) emit magnetosonic
modes. Polarization of the emitted wave is set by the electric
field in the crustal oscillation, E=Bbg× v/c (where
v=− iωδr), and its type is determined by the orientation of
E relative to the vector n≡ k× Bbg. It is a pure Alfvén mode if
E⊥n and a pure magnetosonic wave if E∥n. The condition for
magnetosonic excitation E · n≠ 0 may be stated as

( ) · ( ) ( · )( · ) ( )´ ´ = ¹B v k B B v B k 0. 3bg bg bg bg

The transmitted quake power is partitioned between the Alfvén

and magnetosonic modes as y=E E tanA
2

ms
2 2 where ψ is the

angle between the quake motion v and the horizontal

component of the magnetic field Bbg
h .

A complete picture of wave emission is complicated by
several additional effects:

(1) In addition to the vertical (radial) wavevector kr, crustal
waves have a horizontal component kh (Bransgrove et al.
2020) and excite nonradial magnetospheric waves. As an
example, Yuan et al. (2020) examined wave generation in
a uniform oblique Bbg attached to a horizontal conducting
surface perturbed by axisymmetric horizontal shear. They
showed that the shear excites a mixture of Alfvén and
magnetosonic waves. These calculations should be
extended in the future to include a realistic density
profile of the crust.

(2) Waves of lower frequencies ω c/Rå develop at larger
radii Rw∼ Rå+ c/ω. In the region Rå< r< Rw, the
magnetosphere adjusts to the surface oscillation in a
quasi-static manner and, effectively, the magnetospheric
footpoints in the wave are relocated from the stellar
surface to the sphere of radius r≈ Rw. The quasi-static
deformation of the magnetosphere at r Rw differs from
the crustal deformation and needs further investigation of
its compressive component that could drive a small-
amplitude magnetosonic wave. For example, a strongly

twisted magnetosphere in axisymmetric equilibrium
responds to additional surface shear ∂θvf≠ 0 by inflating
at r Rw (Parfrey et al. 2013).

(3) The twisted magnetospheres near magnetars have sig-
nificant spatial variations of the toroidal magnetic field
component Bf, so vector n= k× Bbg can change its
direction on a scale comparable to r. Then, any attempt to
launch a pure Alfvén mode at r∼ Rw∼ c/ω (for
ω c/Rå) will inevitably generate a mixture of the
Alfvén and magnetosonic waves because the two linear
modes have different refraction indices c/vph and will be
unable to adiabatically track the changing local n until
propagating to r? c/ω.

Pure Alfvénic excitations occur in the simple case of
axisymmetric quakes with azimuthal v and an untwisted

background magnetosphere (then kf= 0 and =fB 0bg , so

n ∥v). Even in this case, the emitted Alfvén waves can convert
to magnetosonic waves, because of nonlinear effects. Alfvén
waves have vgr∥Bbg, so they are ducted along the closed
magnetic loops, and the nonlinear conversion peaks when the
wave reaches the top of the loop (Yuan et al. 2021). In addition,
at later times, the bouncing Alfvén waves trapped in the loop
develop a nonlinear turbulent cascade, which emits magneto-
sonic waves (e.g., Li et al. 2019).
In addition to sudden quakes, the crust may flow plastically

and slowly twist a magnetospheric flux bundle to an instability
threshold. Three-dimensional simulations of this process
demonstrate that relaxation of the unstable flux bundle
generates fast magnetosonic waves in the magnetosphere
(Mahlmann et al. 2023).

1.3. Shocks

In the limit of high σbg, the emitted magnetosonic waves are
equivalent to electromagnetic radio waves propagating without
coupling to the magnetized plasma: the oscillating E⊥Bbg

drives a tiny electric current, negligible compared to the
displacement current ∂tE/4π. Therefore, compressive pertur-
bations of the magnetosphere are usually assumed to propagate
as vacuum electromagnetic waves superimposed linearly with

Figure 1. Excitation of magnetospheric waves by a star quake with ω? c/Rå and a vertical (radial) wavevector k. The wave polarization is set by the direction of the
electric field E = B × v/c in the crustal shear oscillation with a horizontal velocity v. Left: crustal motion with v∥n ≡ k × Bbg excites an Alfvén wave E⊥n. Right:
v⊥n excites a magnetosonic wave E∥n. The wave amplitude is small, so B ≈ Bbg near the star.

2
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the background field Bbg, and freely escape.3 The linear
propagation would imply no shock formation.

However, this simple picture is safe only for low-amplitude
waves, |E|= Bbg, i.e., near the neutron star where Bbg is
strong. As the wave expands to larger radii r, the dipole
background field decreases as Bbg∝ r−3 while the wave
amplitude E0 decreases as r−1. Their ratio E0/Bbg grows as
r
2 and eventually approaches unity. It is easy to see that the
linear propagation of an oscillating wave becomes impossible
when

( )a >E B2 sin , 40 bg

where α is the angle between Bbg and the wavevector k.

Indeed, the linear superposition of Bbg with the vacuum

electromagnetic wave (Ew=E and Bw= B− Bbg) gives

· ( )- = + B BB E B 2 , 52 2
bg
2

bg w

where we used =E Bw
2

w
2. MHD description breaks if B2

< E2.

This occurs when the condition in Equation (4) is met.
For instance, consider the equatorial plane of a dipole

magnetosphere. Here, a spherical wave front propagates with
k⊥Bbg (α= π/2) and the magnetic field perturbation Bw

oscillates along Bbg (Figure 2). The linear superposition wave
+background gives minimum B2− E2 at = -B B Emin bg 0,
reaching B2− E2

= 0 when E0= Bbg/2. Note that the plasma
oscillates with the drift speed v/c=E×B/B2, and E2

→ B2

corresponds to |v|→ c. This implies a runaway growth of the
plasma kinetic energy, and the MHD wave can no longer be
approximated as a vacuum electromagnetic wave. Such energy
conversion is a general effect of E2

→ B2
(it also happens in

Alfvén waves; Li et al. 2019, 2021; see also Levinson 2022 for a
recent discussion). In magnetosonic waves, energy conversion
prevents reaching E

2
=B

2 by steepening the wave into a shock.
The appearance of shocks at E0=Bbg/2 was previously noted in
the context of waves in pulsar winds (Lyubarsky 2003). A fully
kinetic (local-box) particle-in-cell simulation of a magnetosonic
wave propagating through a decreasing Bbg has recently been
performed by Chen et al. (2022). Their simulation demonstrates

the sudden steepening of the wave into a shock when E2

approaches B2.
Waves consisting of half oscillation with Bw ·Bbg> 0 and no

part with Bw ·Bbg< 0 would never face the E2
= B

2 limit. One
may think that in this case the wave avoids shock formation.
However, as explained below, such half-waves also steepen
into shocks, although this occurs gradually, at a larger radius.
This gradual steepening creates a forward shock, launching an
accelerating blast wave that expands far beyond the
magnetosphere.

1.4. This Paper

Since shocks appear to be a generic outcome of magneto-
sonic perturbations, a few questions arise: How strong are the
shocks? What fraction of the original wave energy gets
dissipated by the shock? What fraction of the dissipated energy
is radiated?
These questions can be answered by solving a well-defined

MHD problem with a simple initial condition: launch a
spherically expanding magnetosonic wave with an initial
amplitude E0/Bbg= 1 so that initially (at small radii) it
behaves as a vacuum electromagnetic wave. Then, track its
expansion through the dipole magnetosphere and examine how
it steepens into a shock and propagates afterward. This problem
is solved in the present paper. We will show that the plasma
Lorentz factor γ in the magnetospheric shocks caused by
E2
→ B2 reaches huge values γ∝ σbg, likely making them the

strongest shocks in the Universe. Therefore, we call them
“monster shocks.” They differ from normal collisionless
plasma shocks because they are highly radiative: we will show
that the plasma approaching the monster shock radiates its
kinetic energy before forming the downstream flow.
Tracking the evolution of magnetospheric waves with shock

formation presents an interesting technical challenge. The
magnetization parameter σbg at radii of main interest can
exceed 1010 (Section 2.1). The large σbg is usually replaced by
σbg→∞ , which corresponds to taking the force-free electro-
dynamics (FFE) limit of MHD. However, FFE cannot describe
shock formation. FFE neglects plasma inertia, so its wave
modes propagate with exactly speed of light and cannot
steepen.
Since FFE does not provide a suitable framework, one has to

examine the problem using the full MHD equations. The
equations state conservation of energy and momentum and
could be solved numerically with customary discretization
methods. However, in practice such methods fail at high
magnetization σ (most existing MHD codes have to keep
σ< 100 to avoid numerical issues). We take a different
approach: we solve the MHD equations along characteristics. It
provides an efficient method for both finding and under-
standing the solution at arbitrarily high σbg. The solution is
easiest to find for short waves, with wavelength λ= r.
Calculations in this paper are performed for axisymmetric

wave packets (∂f= 0). Setting ∂f= 0 should also be a good
approximation more generally for waves far from their source,
where wavevectors k are radial. The wave evolution along the
radial ray is controlled by the local Bbg encountered along the
ray; we are interested in the simple case of a dipole Bbg.
Formulation of the problem and our method for solving it are

described in Section 2. Section 3 explains how we track shocks
in MHD waves and then Section 4 presents the full numerical
simulation, performed for an equatorial wave in a dipole

Figure 2. A magnetosonic wave with wavevector k⊥Bbg at two oscillation
phases: when the wave field Bw = B − Bbg is aligned with Bbg (left) and
antialigned with Bbg (right). The wave electric field Ew = E is always
orthogonal to Bbg. The quantity B

2 − E
2 reaches zero when Bw = − Bbg/2. At

this moment, the plasma drift speed v = c E × B/B2 approaches c, so it
experiences ultrarelativistic acceleration in the direction opposite to the wave
propagation direction.

3
It was also proposed that QED effects in ultrastrong Bbg could steepen a

high-frequency wave into a shock (Heyl & Hernquist 2005). Such effects are
absent for kilohertz waves.

3
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magnetosphere. Remarkably, the problem also admits a
complete analytical description, which is given in Section 5.
Emission from the monster shock is discussed in Section 6. The
results are discussed in Section 7.

2. Nonlinear Magnetosonic Waves

MHD fluid is described by the plasma mass density ρ,
velocity v= cβ, magnetic field B, and electric field E. We wish
to investigate magnetosonic waves launched in a dipole
magnetosphere and find their nonlinear evolution. The term
“nonlinear” here means that (a) the wave oscillation is not
necessarily small compared to the background field Bbg, and
(b) the wave can be strongly deformed during its evolution and
form shocks.

2.1. Unperturbed Background Magnetosphere

The wave will be shown to experience strong evolution at
radii r much greater than the neutron star radius Rå∼ 106 cm,
but well inside the light cylinder RLC (all known magnetars in
our galaxy have RLC 1010 cm). Our calculations below use
the background at radii Rå= r= RLC, the magnetosphere is
approximated as dipole, and its rotation is neglected. Thus, for
simplicity, we neglect any twists of the outer magnetosphere,

i.e., assume »fB 0bg at radii of interest. The electromagnetic
field of a static dipole magnetosphere is

( )
m q m q

= = + qE B e e
r r

0,
2 cos sin

, 6rbg bg 3 3

where (er, eθ, ef) is the normalized basis in spherical

coordinates r, θ, f with the polar axis along the magnetic

dipole moment μ. Magnetars have μ∼ 1033 G cm3.
Plasma density in the unperturbed static magnetosphere will

be approximated by

( )r = »


v
m

r
, 0, 7bg 3 bg

where the dimensionless parameter º n rbg
3 is approximately

constant with r (Beloborodov 2020); m is the particle (e±) mass,

and nbg= ρbg/m. The lowest ( )m~ W - 10 rad s31
33

1 is set by

the Goldreich–Julian density. The more typical  for magnetars

is much higher, ~ 1037, due to strong electric currents near the

star accompanied by e± pair creation with a high multiplicity

(Beloborodov 2021a).4 The magnetization parameter of the

background plasma s pr= B c4bg bg
2

bg
2 is

( )s m
m
p
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2
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The magnetosphere at r> 107 cm is populated with mildly
relativistic e±, as they are decelerated by drag exerted by the
magnetar radiation (Beloborodov 2013). We neglect these
background motions; thus, the plasma energy density (includ-
ing rest mass) in the unperturbed background ahead of the
wave is approximated as ρbgc

2.

2.2. Axisymmetric Waves

We will examine the radial expansion of an axisymmetric
magnetosonic wave. Its electric field E is perpendicular to both
Bbg and the (radial) propagation direction, so vector E
oscillates along f. It is convenient to define scalar E by

( )= - º -f fE eE E E, . 9

The wave magnetic field is perpendicular to E and oscillates in

the poloidal plane,

( )= + q qB e eB B . 10r r

Any axisymmetric wave can be described by a toroidal

electromagnetic potential,

( ) ( )q= = -¶ =  ´fA e E A B AA t r c, , , , . 11t

This class of fields includes the static dipole background as a

special case, with

( ) ( )q
m q

= fA er
r

,
sin

. 12bg 2

Charge density remains zero in magnetosonic waves,
4πρe=∇ ·E= 0. Electric current density j satisfies the
Maxwell equation 4πj=−∂tE+ c∇×B. In axisymmetric
waves, the current is toroidal:

{ }[ ( ) ] ( )p = ¶ + ¶ - ¶q q fj eE
c

r
rB B4 . 13t r r

Note also that E are B are related by induction equation

∂tB=− c∇×E (the identity ∂t∇× A=∇× ∂tA):

( ) ( ) ( )
( )

( )
q

q
¶ = - ¶ ¶ =

¶
q

q
rB c rE rB

c E
,

sin

sin
. 14t r t r

As a concrete example, we will consider a wave launched
with an initial sine profile

( ) ( ) ( )x wx x= = -E E t
r

c
sin , . 150

One full oscillation corresponds to 0< ξ< λ/c= 2π/ω.

2.3. Short Waves (λ= r)

The condition λ= r considerably simplifies the wave
propagation problem. In particular, it leads to a simple
expression for current j, which will be used in Section 2.4 to
describe the wave–plasma interaction.
Let us define the wave potential Aw≡ (A− Abg)ef. It

determines the wave fields and j:

( )º - =  ´ = -¶B B B A E Ac, , 16tw bg w w

[ ( ) ( ) ] ( )
p

= ¶ + ¶ - ¶q
q

f
j

e
rE c rB c B

r4
. 17t r

r
w w

For short waves, it is helpful to view fields as functions of t, ξ,

θ instead of t, r, θ. The fast oscillation then becomes isolated in

the coordinate ξ. Differential equations can be rewritten in

variables t, ξ, θ using

∣ ∣ ∣ ∣ ∣ ( )¶ = ¶ + ¶ ¶ = -¶x x x, . 18t r t t r t t

Using the θ-component of induction Equation (14),

( ) ( ) ( ) ( )¶ = ¶ + ¶x
q
x x

qrE rB rB , 19t t tw w

4
The created pairs flow along the magnetic field lines with a speed controlled

by the magnetar’s radiation field (Beloborodov 2013). In the outer closed
magnetosphere, the plasma accumulates and annihilates at θ ≈ π/2, in a layer of
high e

± density controlled by annihilation balance and the thickness of the
annihilation layer. The e± outflow terminated by the annihilation sink at θ = π/2
may have ~ 1037 at all θ except the thin equatorial layer.

4
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we rewrite Equation (17) as

[ ( ) ] ( )
p

= ¶ + - ¶q
x q

f
j

e
rE rB c B

r4
. 20t

r
w w

In short waves, the oscillation of Aw with ξ is much faster than

its variation with t or θ at fixed ξ. Hence,

( ) ( )= ¶q
xB

c r
rA B

1
, 21r

w w w

as B r
w does not contain the large derivative ∂ξ(rAw). Note also

that ( ) ( )= ¶ + ¶x xrE rA rAt tw w , and

( ) ( )- = ¶q
xrE rB

c
rA rE

1
. 22tw w

Therefore, the expression for j simplifies to

( )
( )

p
=
¶ x

fj e
rE

r2
. 23

t

There is also a useful relation between plasma density n= ρ/m
and velocity v in short waves. When electron–positron pair
creation is negligible inside the wave, n and v satisfy the
continuity equation ∂tn+∇ · (nv)= 0. In the short-wave limit, it
simplifies to

( ) ( )º - = =xF c v n cnconst . 24r bg

Fξ is the particle flux through the surface of x = const. It is

uniform across the wave packet, and evolves as the packet

propagates to larger radii: = µx
-F cn rbg
3.

2.4. Wave–Plasma Interaction

We wish to find the evolution of the wave profile E(ξ). It
evolves because the electromagnetic field exchanges energy
and momentum with the plasma oscillating in the wave. The
plasma motion is described by four-velocity,

( )

( )

bg g g
b

= º = + =
-

m u uu u, , , 1
1

1
,

25

2 2
2

where β= v/c. The equation of motion is

( )r = ´
u

j Bc
d

dt
, 262

with the derivative d/dt taken along the fluid streamline:

d/dt= ∂t+ v ·∇. Taking the scalar product of both sides with

β, and using E+ β× B= 0, one obtains

· ( )r
g
= E jc

d

dt
. 272

This equation expresses energy conservation. Note that using

ρc2= nmc2 in Equation (26) assumes a negligible contribution

of internal (thermal) energy to the plasma inertial mass. As

explained below, this is a reasonable approximation, because

significant wave–plasma interaction happens where the plasma

has a low temperature and a high γ.
Substitution of Equation (23) into Equation (27) gives

( ) ( )
p

r
g

r
g
x

- ¶ = =x
E

r
rE c

d

dt
c

d

d2
, 28t2

2
bg

2

where we used dξ= dt− dr/c= (1− βr)dt along the fluid

streamline and ρ(1− βr)= ρbg (Equation (24)). The derivative

dγ/dξ written out in coordinates xα= (t, ξ, θ, f) takes the form,

( )
( )

g
x x

g
g
b

g
g
b

= ¶ =
¶
-

+ ¶ +
¶
-

a

a x
q qd

d

dx

d

v

r1 1
. 29

t

r r

One might expect the terms with ∂tγ and ∂θγ to be small

compared to ∂ξγ by the factor of ∼λ/r= 1. However,

nonlinear evolution can make the term with ∂tγ important.

As shown below, this happens when γ3 σbg.
Now we can write the energy equation in its final form:

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )p r g
g b g

b
¶ = - ¶ +

¶ + ¶
-

x
q q

r E r c
r

r
4

1
, 30t

t

r

2 2 2
bg

2

where derivative ∂t is taken at fixed ξ, θ, f, i.e., along the radial
ray = +r ct const. This equation connects the evolution of E

(t, ξ, θ) and γ(t, ξ, θ).
Equation (30) has a simple intuitive interpretation. Multi-

plication of both sides by an infinitesimal δξ gives

∣ ( )d dg¶ = -x x  mc . 31t
2

Here,  pºx x r F4 2 is the isotropic equivalent of the particle

flux Fξ, and δγ= (dγ/dξ)δξ is the change of γ along the fluid

streamline as it crosses δξ; it determines the energy gain of the

plasma crossing δξ per unit time,  dgx mc2 . The quantity

d dx= c r E2 2 is the electromagnetic wave energy (isotropic

equivalent) contained in the infinitesimal part δξ of the

wave profile. This interpretation of d is consistent with the

energy density ( ) p p= + + »qU E B B E8 4rw
2

w,
2

w,
2 2 for the

electromagnetic wave in the short-wave limit.
Thus, Equation (30) merely states that the wave profile r2E2(ξ)

evolves by exchanging energy with the plasma. The plasma
Lorentz factor γ(ξ) oscillates, and E(ξ) becomes deformed because
the plasma passing through the wave receives energy at some ξ1
and returns it to the electromagnetic field at another ξ2. E(ξ) is
systematically reduced where dγ/dξ> 0 and increased where
dγ/dξ< 0, leading to the steepening of E(ξ).
The FFE limit of MHD would correspond to setting ρbg→ 0,

so that the right-hand side (RHS) of Equation (30) vanishes.
Hence, the FFE solution is rE = const at ξ = const. This wave
excites no electric current j, as can be verified using
Equation (13), and so the FFE limit gives a simple vacuum
wave superimposed on Bbg.
Equation (30) is sufficient to find the evolution of MHD

waves if they drive pure radial plasma motions, as happens in
the equatorial waves described below. Then, energy conserva-
tion (or the radial component of momentum Equation (26))
contains the complete dynamical information. Wave propaga-
tion outside the equatorial plane (θ≠ π/2) involves additional
θ-motions governed by the θ-component of Equation (26).

2.5. Equatorial Waves

The main features of shock development will be shown by
tracking waves at θ= π/2 that are symmetric about the
equatorial plane. Symmetry implies u θ

= 0 and B r
= 0 at

θ= π/2. The MHD fluid then oscillates with velocity

( )b b=
´

=
E B

B
e . 32r2

We will use the following notation:

( )b bº º º -q fB B E E, , . 33r
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These definitions imply E2
= E2, B2

= B2 at θ= π/2 while E,

B, and β may be positive or negative. Note that

( )b g= =
-

E

B

B

B E
, . 342

2

2 2

Equation (30) for the equatorial wave becomes

⎜ ⎟⎛
⎝

⎞
⎠

( ) ( )p r g
g
b

¶ = - ¶ +
¶
-

xr E r c4
1

. 35t
t2 2 2

bg
2

Recall that the partial derivatives ∂t and ∂ξ are defined in

variables (t, ξ) and can act on any function E(t, ξ), γ(t, ξ), or

r(t, ξ)= c(t− ξ) entering Equation (35).
The equatorial wave problem can be reduced to one

unknown function of t, ξ. Indeed, any short-wave packet
propagating into an initially unperturbed plasma has a useful
feature: fluid compression n/nbg at any point in the packet is
related to the local speed β (Equation (24)). The magnetic field
is frozen in the fluid and compressed by the same factor, so

( ) ( )
r
r

b= = = - -n

n

B

B
1 . 36

bg bg bg

1

The electric field E= βB can be expressed as

( )
b
b

=
-

E
B

1
. 37

bg

Thus, all MHD quantities in a short wave are functions of β,

and Equation (35) can be recast so that it contains only

derivatives of γ. This requires expressing ( )¶ rEt in terms of

∂tγ. Differentiating Equation (37), we find5

( )
( )

( )
g

b g b
¶ = - +

¶

-
rE cE

rB
2

1
, 38t

tbg

2 3

where we used ( ) ( )¶ = = -xrB c d rB dr cB2t bg bg bg and

dγ= γ3β dβ. Then, substituting Equation (38) into

Equation (35), we find

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )
s

g b b
g g

s b
b-

+
-

¶ + ¶ =
-

x
c

r

2

1

1

1

4

1
. 39t

bg

3 3

bg
2

2

Note that the term ( )b- -1 1 in the bracket (brought by ∂tγ on

the RHS of Equation (35)) is negligible only if 2γ3= σbg. This

condition corresponds to ( ) ( )¶ ¶x xU Ut tpl w where

Upl= γnmc2 and Uw= E2/4π.
A more convenient variable related to β is the compression

of proper density r̃ r g= ,

˜ ˜
( )k

r
r

s
s

b
b

º = = =
+
-

B

B

1

1
, 40

bg bg bg

where r̃ and B̃ are measured in the fluid rest frame, and

˜ ˜s prº B c4
2 2. Note that −1< β< 1 corresponds to

−∞< κ<∞ . Equation (39) rewritten in terms of κ becomes

⎛⎝ ⎞⎠ ( ) ( )s k k k s k k+ ¶ + ¶ = -x
c

r
2

1

2

2
1 . 41tbg

3
bg

2 2

Here, in the coefficient of ∂tκ we neglected κ2/2= 2σbgκ
3,

using

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥

( )s k
k

s k
s k

+
+

= + +2
1

2
2 1

1 1

2
. 42bg

3
2

bg
3

bg

The equatorial wave evolution will be found if we solve
Equation (41) for κ(t, ξ). This first-order partial differential
equation is linear in the derivatives ∂tκ and ∂ξκ, and can be
solved using the method of characteristics.

2.6. Characteristics

One can rewrite Equation (41) as

( )

[ ( ) ]
( )

k k k
s k

=
-

+

-

-+

d

dt

c

r 1 4
, 43

C

1

bg
3 1

where the derivative dκ/dt is taken along curves C+

(characteristics) defined by

( )
x

s k
=

+
+d

dt

2

4 1
. 44

bg
3

The characteristics ξ+(t) can also be described by their radial

speed,

( )b
x s k

s k
= = - =

-

+
+

+ +

c

dr

dt

d

dt

1
1

4 1

4 1
. 45

bg
3

bg
3

In an accompanying paper we give an alternative derivation
of the wave evolution equation generalized to relativistically
hot plasmas, and discuss two families of MHD characteristics
C± propagating with radial speeds6

( )b
b b
bb

=




1

. 46
s

s

Here, βs is the wave speed relative to the plasma (the

“magnetosonic speed”). In a magnetically dominated plasma,

βs is close to unity. In particular, for a cold plasma,

( )b
s
s

ks
ks

=
+

=
+1 1

. 47s
2 bg

bg

The FFE limit corresponds to σbg→∞ and βs→ 1. In this
limit, Equations (43) and (44) simplify to k k k= - -d d rln 1

and dr+/dt= c (⇔dξ+/dt= 0), and give the solution

( )k = + Kr1 2 , 482

where K = const along C+. The corresponding solution for E is

( ) ( )
m

=E
K

r
FFE . 49

2.7. Shock Formation

Significant MHD corrections to FFE arise if σ= κσbg drops,
i.e., if the plasma experiences strong expansion in the wave,
κ= 1. This occurs where the plasma is accelerated as E2

approaches B2. Note that strong expansion also implies strong
adiabatic cooling. Thus, shock formation is expected in the part of

5
The short-wave approximation for E(β) (Equation (37)) is equivalent to

E = Bw. It can be used when expressing ∣¶ xEt in terms of ∣b¶ xt . Note,
however, that setting E = Bw would not be safe in expressions containing the
large derivative ∂ξ. In particular, ∂ξ(Bw − E) in short waves is of the same
order as ∣¶ xEt .

6
C− did not explicitly appear in our derivation above. For short waves,

integration of MHD equations along C
− is just another way to get the relation

between n, B, and β (Equation (36)), and the wave evolution problem is
reduced to integration along C

+.

6

The Astrophysical Journal, 959:34 (25pp), 2023 December 10 Beloborodov



the wave with large γ, small κ, and a reduced temperature. The

process of MHD shock formation is illustrated in Figure 3. The

shock occurs where the characteristics cross, bringing different

values of β to the same location and thus creating a discontinuity.
We consider waves emitted at sufficiently small radii where

Bbg far exceeds the wave electric field E, and the plasma
oscillates with small |β|= 1, which implies a negligible

change in plasma density, |κ− 1|= 1. At the small radii,

characteristics propagate with speed ( )b s= -+
-1 bg
1 , and

FFE is an excellent approximation. In particular, the wave

initially propagates with negligible distortion: each C
+

characteristic satisfies dξ+/dt= 0, i.e., keeps a constant

coordinate ξ= t− r/c= ξi, and one can define an initial

(undeformed) profile of E(ξi). More precisely, the profile of

( )xrE is static at small r while the normalization of E(ξ) is
decreasing, E ∝ r−1.

This initial profile is the only parameter of the problem other
than the magnetospheric parameters μ= r3Bbg and D= r3σbg.

It is conveniently described by

( ) ( ) ( )x
m

ºK
rE

rset at small . 50i

We will calculate the wave evolution by tracking the C+

characteristics, each described by its initial position ξi and

K(ξi). Note that K(ξi) may be positive or negative. Character-

istics with K< 0 will develop κ= 1, leading to monster shock

formation.
It is easy to see that even an arbitrarily high σbg→∞ does

not save the MHD wave from breaking. Indeed, consider a
wave with E oscillating between ±E0. As the wave expands
from small radii, where E0(r)= Bbg(r), the ratio E0/Bbg∝ r2

grows and eventually approaches 1/2 at some radius R×. At
this moment, the minimum E=− E0=− Bbg/2 and

( )b g k= - = -  ¥ E B, 1, , 0. 51

An arbitrarily high σbg does not prevent the decrease of

σ= κσbg, which reduces the speed of C+ characteristics,

dr+/dt< c. The characteristics become bent and eventually

collide, forming a shock (Figure 3).
A formal proof of shock formation is provided by the

solution of the coupled Equations (43) and (44) for κ(t) and
ξ+(t) or r+(t)= c(t− ξ+(t)) (Appendix A). Numerical examples
will be given in Section 4.

3. Method for Tracking Shocks

3.1. Shock Strength

The plasma speed β is discontinuous at the MHD shock
because the upstream and downstream characteristics bring to
the shock different values of β: βu≠ βd (subscripts “u” and “d”
refer to the immediate upstream and downstream of the shock).
The corresponding jump in the proper density characterizes the
shock strength,

˜

˜

( )

( )
( )

r
r

k
k

g b
g b

º = =
+
+

q
1

1
. 52d

d

d

u

d d

u u

It is related to the Lorentz factor of the upstream plasma

relative to the downstream, Γu|d= γuγd(1− βuβd). A similar

expression for Γu|d holds in the shock rest frame ¢ . To

distinguish between different frames, dynamical quantities

measured in the shock frame will be denoted with a prime, and

quantities measured in the drift frame ̃ (in which ˜ =E 0) are

denoted with a tilde. Using g g¢ ¢, 1
u d

, one can write the

continuity of mass flux as ˜ ˜r g r g¢ » ¢
u u d d

, and find

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )∣

g
g

g
g

G »
¢
¢
+

¢
¢
» +q

q

1

2

1

2

1
. 53u d

u

d

d

u

3.2. Shock Speed

We can track the evolution of waves with shocks if we know
the shock Lorentz factor relative to the downstream plasma
γsh|d. The standard jump conditions for perpendicular relati-
vistic magnetized shocks give ∣ g s» 1sh d u . The shock is
collisionless and mediated by Larmor rotation, so the jump
normally occurs on the Larmor scale, as verified by detailed
kinetic simulations (Sironi et al. 2021). Dissipation of
the upstream kinetic energy occurs through gyration and

Figure 3. Schematic illustration of the flow of characteristics C+ in FFE and
MHD, shown in the t–ξ plane. Each C+ has its initial position ξi and carries a
value of ( )x m=K rEi determined by the initial wave profile. In the FFE limit,
the characteristics are vertical straight lines; they propagate with speed β+ = 1,
which corresponds to dξ+/dt = 0. The MHD correction to FFE implies dξ+/
dt = 1 − β+ ≠ 0, so the C

+ characteristics are no longer static in ξ; they
become significantly bent in the region where E2 approaches B2, leading to the
formation of a shock (red curve).
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thermalization enabled by the instability of coherent gyration in
the downstream.

However, the standard picture of Larmor-mediated shocks
can fail for the monster shocks, where particles experience
extremely fast radiative losses. The ultrarelativistic plasma flow
entering the shock is subject to radiation reaction in response to
curvature in the particle trajectory. The upstream flow may
experience a strong radiative drag before it completes one
Larmor rotation and joins the downstream.

The resulting jump conditions can be evaluated by going
beyond the MHD description and examining microphysics of
the shock transition on scales smaller than the particle Larmor
radius. This is done in Appendix B, where we calculate the
structure of the flow across the jump numerically and also
derive an approximate solution analytically. The result is
shown in Figure 4, and the jump condition may be stated as

( ) ( )∣g c s» +1 , 54sh d
1 7

u

which smoothly matches the results at χ= 1 and χ? 1. The

parameter χ is defined in Equation (B9) in terms of the

upstream Lorentz factor g¢
u
and magnetic field ¢Bu measured in

the shock frame. Using ˜g¢ = ¢B Bu u u and ∣g g g¢ = ¢ =q q
u d sh d, one

can express it as

˜
( )

∣c
s g

p s
=

B q

e4
, 55

T u
3

sh d
3

u
3 2

where ˜ k=B Bu u bg and σu= κuσbg. Equations (54) and (55)

can be solved for γsh|d and χ, which gives

( )c
s k

p k
»

B

e4
. 564 7 T bg d

3

u
2

This expression is found for χ? 1, and the solution for χ< 1

is not needed, as its value makes no difference for ∣g »sh d

( )c s s+ »1 1 7
u u .

The shock Lorentz factor in the lab frame is

( ) ( )∣ ∣ ∣g g g b b g k= + »1 , 57sh sh d d sh d d sh d d

where we used 1+ βsh|dβd≈ 1+ βd, because γsh|d? γd. The

shock motion in the ξ-coordinate is described by x =d dtsh

( )b g- » -1 2sh sh
2 1. Thus, we find

⎧
⎨
⎪

⎩⎪

⎛
⎝⎜

⎞
⎠⎟

( )

( )
x

g

p
s s k

c

s k k c

» »
>

<-

d

dt

e

B
1

2

1

2 1.

58sh

sh
2 T bg bg

2
d
7

1 2

bg u d
2 1

There is one caveat in the derivation of this result: we
neglected that the shock can generate an electromagnetic
precursor, which interacts with the upstream flow and may
reduce its Lorentz factor γu (Section 5.5). Note however that
dξsh/dt is independent of ( )k g» -2u u

1 when χ? 1. Further-
more, the shock speed will be dynamically regulated to a value
independent of κu and κd when κd= 1, as explained in
Section 5.4.

3.3. Tracking Waves with Shocks

The MHD wave evolution is controlled by the flow of C+

characteristics in coordinate ξ= t− r/c. This flow is described
by Equations (43) and (44). They determine both the shape of
characteristics and the values of κ, β, and E on each C+.
After caustic formation, the born shock separates the C+

flow into two regions: upstream and downstream (ahead and
behind the shock). The characteristics propagate with different
speeds in these regions and collide at the shock. The colliding
characteristics +Cu and +Cd are terminated and disappear from

the wave evolution problem. The location of +Cu -
+Cd collision

moves with speed βsh determined by Equation (58). The
shock always propagates faster than +Cu and slower than
+Cd : b b b< <+ +

u sh d .
Equations (43), (44), and (58) give a closed description for

MHD waves with shocks. The cold approximation g s=
s
2

used in Equations (44) turns out to be sufficient for the
kilohertz waves studied in this paper. The accurate γs<∞ is
important in the pre-shock region where κ drops so much that
the C+

flow experiences significant deformation dξ+/dt
(Figure 3). This region is also coldest (due to adiabatic cooling
accompanying the drop in κ), and so g s=

s
2 . In the post-shock

region ξ> ξsh, fast radiative losses also allow one to use
g s»
s
2 . Here, the evolution is simple anyways, not sensitive to

the precise γs: the post-shock γs is so high that C+ remain
practically static in the ξ coordinate during the main shock
dissipation phase r 3R×.

3.4. Numerical Implementation

The described method for calculating the wave evolution is
easily implemented in a numerical simulation. When launching
a wave, we set up an initially uniform grid in ξi of size N+, and
then use the N+ characteristics to track the wave evolution in
the ξ coordinate. In the simulations presented below, we used
N+= 105. At each time step dt, the displacement dξ+ of each
characteristic and the change of its κ are determined by
Equations (44) and (43). After each time step, the code
examines the updated positions or the characteristics and
checks for their crossing to detect shock formation. Once the
shock is born, the code begins to track its motion according to

Figure 4. Lorentz factor of the shock relative to the downstream plasma as a
function of the radiative parameter χ (solid curve, calculated as explained in
Appendix B). The dashed line shows the analytical result at χ? 1
(Equation (54)).
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Equation (58) and also check at each time step which
characteristics terminate at the shock.

The simulation thus follows the entire evolution of the wave,
from its initial deformation-free propagation at r< R× to shock
formation at r≈ R× to subsequent evolution with the embedded
shock. We use an adaptive time step to resolve fast changes in
MHD quantities that occur near R×. Note also that the density
of characteristics drops ahead of the shock, where κ is lowest
and dξ+/dt is highest. To maintain sufficient spatial resolution,
we use adaptive mesh refinement in ξi without changing the
total number N+ of active (not terminated) characteristics. This
is achieved by launching new characteristics in the region of
low resolution while discarding the characteristics terminated at
the shock.

The calculated ξ+(t) and κ(t) along each C+ determine the
wave profile κ(ξ) at any time t. Thus, we find the evolution of
the wave profile.

4. Sample Numerical Models

As a concrete example, consider a wave with the initial
profile ( ) ( )x wx=E E sini 0 i . Recall that E ∝ r−1 along each
characteristic C+ until it develops an extremely low compres-
sion factor κ where B2− E2 approaches zero. The initial profile
of E sets the parameter m=K rE on each C+,

( ) ( )
( )

( )x wx
m

= =K K K
rE r

sin , . 59i 0 i 0
0

The wave trough E=− E0 approaches −Bbg/2 (so E2

approaches B2
) at radius R×. It is related to K0 by

( )»Ŕ
K

1

2
. 60

0

Radius R× is also related to the isotropic equivalent of the wave

power »L cr E 22
0
2 and the magnetic dipole moment of the

star μ:

⎜ ⎟⎛
⎝

⎞
⎠ ( )

m m
= » ´Ŕ

c

L L8
1.4 10 cm. 61

2 1 4

8 33
1 2

43
1 4

The background magnetization parameter at R× is determined

by Equation (8),

( ) ( )s s
m

º » ´´ ´


R
L

3.6 10 . 62bg
9 33

1 2
43
3 4

37

Our sample models assume the plasma density parameter

= 1039 and 1037 (Section 2.1). In both models, the magneto-

sphere has dipole moment μ= 1033G cm3. The wave has

frequency ν=ω/2π= 10 kHz and initial power L=

1043 erg s−1. The simulation results are shown in Figure 5 and

may be summarized as follows.
The wave travels with no distortion until it comes to R×

where E2 nearly reaches B2. The plasma at this point develops
an ultrarelativistic drift with ( ) ( ∣ ∣)» - -u B B E1 2 bg ,
leading to immediate shock formation. In particular, in the
model with = 1039, the plasma four-velocity upstream of
the shock reaches uu∼− 105, and the shock compression
factor q= κd/κu exceeds 10

4. The shock has a large radiative
parameter χ? 1 (Figure 6). An analytical derivation reprodu-
cing the numerical results will be given in Section 5. We will
show there that the Lorentz factor of the accelerated plasma
scales as g nµ L , and our second sample model (with

~ 1037) gives so high γ that the MHD description breaks
and the plasma dynamics needs a two-fluid description.
As one can see in Figure 5, the wave profile E(ξ) develops a

plateau of E≈− Bbg/2, which corresponds to E
2≈ B

2. The
small variation δE along the plateau implies that the plateau is
formed by stretching a small interval δξ of the initial profile
E(ξ). The stretching is clearly demonstrated by the C+

flow.
The part of the wave profile where E2 approaches B2 develops a
low κ2= (B− |E|)/Bbg, and here dξ+/dt steeply increases
(Equation (44)). As a result, characteristics with E2≈ B2

swiftly “fall” toward the shock, with acceleration, like a
waterfall. This effect protects the MHD wave from breaking the
condition E2

< B2. Where κ becomes so low that κ3σbg= 1,
the C+ motion in ξ saturates at dξ+/dt≈ 2. The fast, large
displacement of C+ in ξ creates a nearly perfect plateau of
E≈− B≈− Bbg/2, with a small difference B− |E|≈ κ2Bbg.
As the wave propagates to larger radii and Bbg∝ r

−3

decreases, the plateau level E=− Bbg/2 moves up and away
from the original minimum of the sine wave (E=− E0), and
hence its width grows, so the plateau is forced to occupy an
increasing part of the wave profile. At radii r? R×, where

= ´B E R r2 1bg 0
2 2 , the plateau approaches E≈ 0, i.e., the

part of the wave with E< 0 becomes erased. As a result, the
wave loses about half of its original energy.7 Waves with
multiple oscillations lose even more than half: one can see that
the shock formed in the first oscillation at ξ≈ 3π/2ω
eventually enters the second oscillation ξ> 2π/ω before
stalling there, so the final plateau of E= 0 occupies slightly
more than half of the oscillation.
The plasma speed β= E/B= E/(Bbg+ E) is positive where

E> 0 and reaches maximum at the wave crest. This maximum
β approaches unity at r? R×. Here, the plasma speed relative
to the wave, 1− β≈ Bbg/E, becomes small, increasing the time
it takes the plasma to cross the first half of the wave oscillation,

( ) ( )ò
x
b w

=
-

»
p w

´
´t

d r

R
r R

1
. 63cross

0

2

2

The short-wave approximation tcross= r/c holds throughout

our simulation. The simulation did not follow how the plasma

eventually becomes trapped in the wave, tcross> r/c; this
occurs later, when the wave propagates to larger radii.
Besides the monster shock launched at ξ≈ 3π/2ω at radius

R×, the simulation shows gradual steepening of the wave at the
leading edge ξ= 0 (and at ξ≈ 2π/ω). At radius RF≈ 10R×, the
wave launches a forward shock as shown in Section 5.6.

5. Analytical Description

The wave evolution demonstrated by the numerical simula-
tion may also be derived analytically. Two key dimensionless
parameters of the problem are

( )z
w
s

p
n

nº = » ´´

´

- -


R

c

mc

L
L8 10 , 642

2
8

37 43
1

4

( )h
s
p

w
mº = » ´´ ´ - -B

e

r

c
L

8 3
2 10 , 65

eT 8
33
1 2

43
3 4

where B×≡ Bbg(R×) and ω×≡ eB×/mc.

7
Maximum dissipation fraction of the shock is s w~-

´c R 1u
1 . This small

factor is compensated by the large ratio of the traveled distance ∼R× to c/ω,
resulting in strong dissipation.
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5.1. Shock Formation: Caustic in the C+ Flow

Each C+ starts at small radii with ξ+= ξi, and one can think
of ξi as a Lagrangian coordinate in the flow of characteristics
ξi→ ξ+(ξi, t) with initial condition ξ+(ξi, 0)= ξi. The C+

flow
satisfies Equation (A11) found from Equations (43) and (44):

( )
( )x x

k
k

x
g

= +
-

= +
-

+
cDK cDK

1

8

1

4
, 66i

2

2 i 2

where s s= = ´ ´D r Rbg
3 3. The caustic in the C+

flow (birth of

the shock) appears where ( )x x¶ ¶+ ti vanishes. This means that

characteristics carrying different values of K begin to cross,

creating a discontinuity. This happens at some x x=i i
c and time

t= tc, which may be derived analytically (Appendix A). We

also find the plasma compression factor at the caustic, κc.
In the leading order of the small parameters ζ and ( )w´ -R c 1,

we obtain

( ) ( )k
z

wx
z

w
= = -

´

c

R24
, cos

4

24
, 67c 1 4 i

c

3 4

( )
z z

w w
- = - - +

´ ´ ´

ct

R

c

R

c

R
1

3 24

8

24 4
. 68

c

3 4

2

2 2

Powerful kilohertz waves have z w´c R . In this regime,

C+ characteristics turn back toward the star (β+< 0) before

forming the caustic. The caustic occurs at ξc near 3π/2ω:

( )wx
p z

w
» + -

´

c

R

3

2

16

24
. 69c 3 4

5.2. Plasma Motion Upstream of the Shock

As one can see in Figure 5, the plasma develops a very low
compression factor κ ahead of the shock, a result of huge
plasma acceleration toward the star. The acceleration occurs
along the plateau of E≈− Bbg/2, and the four-velocity u of the
plasma drift in the wave is controlled by how close B2− E2

approaches zero:

( )g» - » -
-

» -
+

u
B

B E

B

B E

1

2 2
. 70

2 2

bg

bg

The plasma acceleration is accompanied by its expansion by

the factor of κ−1≈ 2γ, as follows from the relation

( )
k
k

g
k
k

+
=

-
= u

1

2
,

1

2
. 71

2 2

It is the drop of κ that boosts the motion of C+ characteristics

in the ξ-coordinate, deforming the wave profile. The relation

between κ and the displacement of characteristics ξ+− ξi is

given by Equation (66). Substituting ( )wx=K K sin0 i and

Figure 5. Left: evolution of the wave profile E(ξ) and κ(ξ), where ξ ≡ t − r/c. The wave has frequency ν = ω/2π = 10 kHz and initial power L = 1043 erg s−1; the

magnetosphere has magnetic dipole moment μ = 1033 G cm3 and density parameter = 1039. Five snapshots are shown, when the wave packet reaches r/R× = 0.9
(black), 1 (red), 1.1 (green), 1.5 (blue), and 3.7 (magenta). The electric field E is normalized to E0, which would be the wave amplitude if it propagated in vacuum. The
plasma Lorentz factor γ is related to the proper compression κ by γ = (1 + κ2)/2κ. Black dotted curves show the analytical result for κ(ξ) (Equation (78)). The
simulation neglected the shock precursor effect, which can reduce γ in the interval 3π/2ω < ξ < ξsh (Section 5.5). Right: same wave but now launched into the

magnetosphere with = 1037. Here, κ becomes extremely small, breaking the MHD description and transitioning to a two-fluid regime. We argue in Section 5.3 that
the two-fluid calculation will likely give the same evolution of E(ξ) and κ(ξ) as found in the MHD model.
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=-
´K R20

1 2, we find

( )

( )
( )x x

k
ks wx

- =
-

+
´

´

R

c

1

2 sin
. 72i

2

2
i

One can use this relation to evaluate κu on the characteristic
+Cu

that reaches the shock at time t: x x=+
u

sh. We are interested in

waves that develop κu= 1, and then Equation (72) gives

( )
( )k

z
w x wx

»
D2 sin

, 73u 2
i
u

where x x xD º -+
u

i
u is the displacement of +Cu .

For the nascent shock at the caustic, we find w xD »
z12 243 4, which corresponds to κu= κc (Section 5.1). Later,

Δξ(t) approximately equals the width of the plateau,

( ) ( )» = -E E
B

2
plateau , 74p

bg

along which κ drops to κu (Figure 5). All C+ populating the

plateau have approximately the same E and so nearly the same

ξi—the plateau forms by the huge stretching (by the factor of

∼κ−1) of an initially small interval in the original wave profile δξi.
This stretching occurs because the characteristics “fall” onto the

shock from ξi where E approaches −Bbg/2, i.e., ( )wx »sin i

-B E2bg 0.
The plateau begins and ends where ( )wx » - »B Esin 2bg 0

- ´R r2 2, so its width is ( )w x pD » - ´R r2arcsin 2 2 . Then,
from Equation (73) we find the plasma Lorentz factor just
upstream of the shock,

⎛⎝ ⎞⎠ ( )g
k z

p» » - º
´x x

x
r

R

1

2

1
2arcsin

1
, . 75u

u
4 2

This expression accurately reproduces the simulation results

(Figure 6). The maximum γu≈ ζ−1 is reached at r/R×≈
(1+ 1/π)

1/2≈ 1.15.
The same γu can be found from energy conservation, as the

flow is accelerated at the expense of the electromagnetic wave

energy ò x= c r E d2 2 (isotropic equivalent). The profile E(ξ)

includes the plateau part (E≈ Ep=− Bbg/2) and the part
where E(ξ) is practically unchanged from the vacuum
propagation ( ) ( )x wx»E E sin0 (Figure 5). The plateau has
the width Δξ and ends at the shock ξsh with a jump
[ ] = -E E E2

d
2

u
2, where Eu≈ Ep. During time dt≈ dr/c, the

“area” associated with the integral ∫r2E2dξ changes: (1) the rise
of the plateau erases a horizontal stripe ∣ ( )∣ xDd r E2 p

2 and (2)
the motion of the shock erases a vertical stripe r2[E2

] dξsh. So,
the wave loses energy

( ) [ ] ( )x x» - D +d c d r E cr E d . 76lost
2

p
2 2 2

sh

The energy lost at ξ< ξsh (the first term on the RHS) goes into

plasma acceleration upstream of the shock,

( )g x» Dmc d c r E d r4 ln , 77u
2 2

p
2

where p p= = d r cn dt c d r4 4 ln2
bg is the particle number

(isotropic equivalent) passing through the wave during dt, and

we used the fact that µ -E r rp
2 2 4. Equations (77) and (75) give

the same γu.
The consideration of the C+

flow or energy conservation
gives a simple solution for γ(ξ) along the plateau. In
particular, using κ= 1 and ( )wx » ´R rsin2 i

4 4, we find from
Equation (72),

( ) ( ) ( ) ( )g x
k

s
x x x x x» » - < <

c

r

1

2
. 78

bg

i i sh

The solution reproduces γ(ξ) found in the simulations

(Figure 5). It ends at the shock with γ(ξsh)= γu.
Note that the plasma magnetization in the wave σ= κσbg is

lowest just upstream of the shock, σu= κuσbg≈ σbg/2γu. Its
minimum value is reached soon after the wave crosses R×:

s zs w~ = Ŕ c 1min bg . This minimum value is indepen-
dent of σbg.

5.3. Beyond Single-fluid MHD

The accelerated flow experiences dramatic expansion in the
region ξsh< ξ< ξi, by a factor of κ−1

? 1, and the gyro-
frequency in the fluid frame w̃ kw=B B drops. Note that the
proper time t̃ (measured in fluid frame) slows down by a
similar factor, ˜ g k= »dt dt dt2 .
Consider now the profile of γ(ξ)? 1 (Equation (78)). A fluid

element crosses dξ in time dt= dξ/(1− β)≈ dξ/2, and we find
that γ changes along the fluid streamline on the proper
timescale t̃ev given by

˜
˜

( )
g g g

x
s

º = » »-t
d

dt

d

dt

d

d

c

r

ln
2

2
. 79ev

1 bg

MHD description assumes that the gyration timescale w̃ »-
B
1

( )w g -2B
1 is much shorter than t̃ev. This condition may be stated

as

˜ ˜ ( )w
w
gs

w
gs

» = ´

´
t

r

c

r

c4 4
1. 80B

B
ev

bg

Figure 6. Evolution of shock parameters in the simulation with = 1039:
upstream Lorentz factor γu, shock compression factor q ≡ κd/κu, and radiative
parameter χ. Red dotted curves show the analytical results for γu(r), q(r), χ(r)

derived in Section 5 (Equations (75), (92), and (94)). The simulation neglected
the precursor effect (Section 5.5).
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It requires γ= γMHD, where

( )g
w
s

p
m

» =´

´

r

c

e r

4
. 81MHD

The MHD solution for the wave propagation problem remains

mathematically well behaved even when γ reaches arbitrary

high values. However, its applicability to a real plasma is

vindicated only if γ= γMHD, which roughly corresponds to

( )z w w´2 1 2. Our sample numerical model with = 1039

had the peak γ≈ 105, just below γMHD≈ 2× 105, so the MHD

description is marginally valid near the peak and accurate at

other radii. The model with = 1037 developed γ? γMHD,

breaking the MHD condition.
In waves with ( )z w w´ 2 1 2, where γ reaches γMHD, the

e+ and e− motions are no longer the common E × B drift, and
they are no longer coupled to the magnetic field via gyration.
The momenta of unmagnetized e+ and e− become significantly
different and a two-fluid description is required to formulate the
electric current j and its effect on the electromagnetic field of
the wave. Main features of the two-fluid solution may be
anticipated using the following two considerations.

(1) The symmetry of e+ and e− motions in an electro-
magnetic wave implies that they have equal velocities βz along
the wavevector k and opposite transverse velocities ±βx with
βy= 0 (Beloborodov 2022). We here use local Cartesian
coordinates x, y, z with the z-axis along er, y along eθ, and x
along −ef. The symmetry implies electric current j= j ex where
j= cenβx. Where vacuum propagation would give E2

> B2,
current is excited in the plasma to limit the growth of E2 to
E2≈ B2. The two-fluid plasma with γ> γMHD can enforce
E2 B2 similar to normal MHD. The ceiling of E2≈ B2

corresponds to the plateau E≈− Bbg/2, and j needed to sustain
E≈− Bbg/2 is found from Equation (23):

( ) ( )
( )

p p p
» -

¶
» » -x

j
rE

r

c

r

d rB

dr

cB

r2 4 2
. 82

t bg bg

The plasma accelerated in the wave flows with speed βz≈− 1

and density n≈ nbg/(1− βz)≈ nbg/2 (Equation (24)), so the

current j corresponds to

( )b
p

m
p

= » - = -


j

ecn

B

ern e r
. 83x

bg

bg

Note that ∣ ∣b g» -
x MHD

1 . If E2 significantly exceeded B2, the

electric field would immediately accelerate particles to a much

greater βx. This cannot happen, because the small b g» - -
x MHD

1

already gives j sufficient to enforce the ceiling E2≈ B2. Thus,

the wave profile E(ξ) in the two-fluid regime should evolve

similarly to MHD—an excess of E2
> B2 will be shaved off at

E≈− Bbg/2.
(2) Reducing E2 to satisfy the ceiling of E2≈ B2 implies a

well-defined loss of electromagnetic energy of the wave and the
corresponding energy gain by the plasma (Section 5.2). Energy
conservation then determines the profile of γ ahead of the
shock just like in the MHD regime, which gives Equation (78)
for γ(ξ).

So, we expect that the analytical expressions for γ, βx, and
ux= γβx derived in MHD should carry over to the unmagne-
tized (two-fluid) regime. The transition from MHD to the two-
fluid regime occurs at |ux|∼ 1. The MHD condition |ux|= 1

may also be stated as

∣ ∣
( ) ( )g

b
p
m

»
e r1

MHD , 84
x

which is equivalent to γ= γMHD (Equation (81)). Note that

|ux|= 1 implies ( )g g b» º - -1z z
2 1 2, i.e., the fluid energy

arises from its bulk motion along z while the internal transverse

motions of e± are negligible. By contrast, in the unmagnetized

regime the e
± develop |ux|? 1, i.e., the internal motions

become relativistic and significantly contribute to the plasma

energy. This change will affect the shock jump conditions;

however, the shock speed will hardly change, since it is

regulated by a different condition that leads to Equation (90)

below.
It is also instructive to look at the dynamical equations

describing the two-fluid e
± motions. Taking into account the

symmetry of e± velocities, it is sufficient to consider the
positrons. The energy equation in the plateau region
E≈− Bbg/2 reads

( )
g b w

b= » -
d

dt

eE

mc 2
, 85

x B
x

where ωB= eBbg/mc, and d/dt is taken along the particle

trajectory, so dt= dξ/(1− βz)≈ dξ/2. Substituting βx from

Equation (83), one finds

( )
g
x

s
=

d

d

c

r
, 86

bg

recovering the solution given in Equation (78) for γ(ξ).
Sustaining βx according to Equation (83) requires a small

mismatch between βz and βD= E/B, as seen from the x-
momentum equation,

( ) ( ) ( )b
w
b b= - » -

du

dt

e

mc
E B

2
. 87

x
z

B
zD

Let us define Δ≡− (B+ E)/B as a measure for the deviation

of E from −B;Δ> 0 corresponds to E2
> B2. It is easy to show

that ( )b gD > + » -1 2z z
2 1 is required to achieve ux of the

unmagnetized regime, so dux/dt≈− (ωB/2)Δ. The electric

current j and the corresponding βx (Equation (83)) will be

sustained if b g b w= = -du dt d dt 2x x x B
2 , which requires

⎛⎝ ⎞⎠ ( )b
m
p g

D » » »
e r

1

2
. 88x

2
2

MHD
2

The tiny positive Δ shows that E2 slightly exceeds B2 in the

unmagnetized regime. By contrast, in the MHD regime,

( )gD » - <-2 02 1 , i.e., E2
< B2. In both cases, the ceiling of

E2≈ B2 is strongly enforced.

5.4. Shock Strength

The upstream flow is decelerated in the shock: we observed
in the simulation a huge jump of the plasma proper density

˜ ˜r r=q d u, which implies a huge jump of Lorentz factor
γu/γd? 1. By contrast, the electric field has a small jump
during the peak of the monster shock: Ed− Eu≈ Ed+ Bbg/2 is
a small fraction of Eu≈− Bbg/2. This means that the plasma
immediately behind the shock still moves with a large speed:
βd= Ed/(Bbg+ Ed)≈− 1 and γd? 1. The plasma decelerates
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to γ< γd farther downstream where E> Ed significantly
deviates from −Bbg/2.

The ratio γu/γd is regulated by the shock jump conditions.
They require fast motion of the shock relative to the
downstream plasma: ∣ g c s s»sh d

1 7
u u . Then, using

γsh|d≈ 2γshγd (note that βd≈− 1 is opposite to βsh≈ 1), one
can show that γd? 1, which corresponds to κd= 1 and
Ed+ Bbg/2= Bbg/2.

The value of κd= 1 may be derived as follows. The
condition that ( )wx=E E sind 0 sh stays close to −Bbg/2 implies

( ) ( )wx » - = - ´B

E

R

r
sin

2
. 89sh

bg

0

2

2

This relation controls the shock position ξsh as a function of

time t≈ r/c and thus determines its speed x =d dtsh

( )b g- » -1 2sh sh
2 1 (when the shock Lorentz factor γsh? 1).

This gives

⎛
⎝

⎞
⎠ ( )g

x w
» » -

-
´d

dt

R

c
x x2

4
1 . 90sh

2 sh
1

4

On the other hand, the shock jump conditions require dξsh/dt
given in Equation (58). Substituting it into Equation (90), we

find

( ) ( )k
z
h

» -x x
32

1 , 91d
7

2
11 4

where η= (σTB×/8πe).
The obtained κu and κd (Equations (75) and (91)) determine

˜ ˜r r k k= =q d u d u:

⎡
⎣⎢

⎤
⎦⎥

⎛⎝ ⎞⎠
( )

( )
z h

p»
-

-
-

q
x

x x

4 1
2arcsin

1
. 92

4

5 13

1 7

2

This result is in excellent agreement with the numerical

simulation (Figure 6). It loses accuracy at large radii where Ed

significantly deviates from −Bbg/2, so that the approximation

of Equation (89) becomes invalid. This occurs when κd
(Equation (91)) increases to ∼1, i.e., at radius

⎜ ⎟⎛
⎝

⎞
⎠

( )
h
z

»x
32

. 931 2

1 15

Note also that κd≈ 1 corresponds to q≈ 2γu. For the wave

simulated in Section 4 with = 1039, we find x1≈ 1.85,

which corresponds to r1= x1R×≈ 2.6× 108 cm.
The shock radiative parameter χ is given by Equation (56),

as long as χ? 1. Substitution of Equations (75) and (91) for κu
and κd yields

⎛⎝ ⎞⎠
( )

( )c
h
z

p=
-

-
-x

x x
2

1
2arcsin

1
. 943 2

2

4 3 4

8 2

7 2

It reproduces the value of χ observed in the simulation.

5.5. Precursor Effect

In an accompanying paper, we will describe an additional
effect: the shock emits high-frequency precursor waves into the
upstream, which can significantly decelerate the upstream flow
before it reaches the collisionless shock.

The precursor emission begins immediately after shock
formation at time t×≈ R×/c near the coordinate ξ0= 3π/2ω.

As the wave expands to r> R×, the shock moves to ξsh> ξ0, so
the precursor occupies the growing region

( )
p
w

x x x= < <
3

2
. 950 sh

Note that the plasma flow in the MHD wave crosses half of the

plateau E≈− Bbg/2 ahead of the precursor, at ξ< ξ0, and

begins to interact with the precursor at ξ0 with the Lorentz

factor determined by Equation (78),

⎜ ⎟⎛
⎝

⎞
⎠

( ) ( )g x
z

p
» -´ ´r

R

r

R

r
,

2
arcsin . 960

4

4

2

2

It is lower by a factor of 2 compared to γu defined previously at

ξsh (Equation (75)). In the accompanying paper, we find that

the precursor can decelerate the upstream flow as it moves from

ξ0 to ξsh, so the flow comes to the shock with γ(ξsh)= γ(ξ0)

(and the shock radiative parameter χ may drop below unity).

This pre-deceleration effect depends on a somewhat uncertain

efficiency of precursor emission, which has not been studied in

the extreme regime of the monster shocks.
Regardless of the shock structure details, with or without the

precursor, the basic picture remains the same: the upstream first
develops the huge Lorentz factor γ(ξ0) (or 2γ(ξ0) without the
precursor) and then promptly radiates its energy, before
completing the shock transition. The emitted radiation is in
the X-ray/gamma-ray band, as shown in Section 6 below.

5.6. Forward Shock

The plateau evolution described above leads to erasing half
of the wave oscillation where E< 0. It does not affect the
leading half 0< ωξ< π where E> 0 (Figure 5). This leading
part of the wave propagates with negligible distortions at radii
r∼ R×, nearly as in vacuum. However, at larger r? R× the
profile of E(ξ)> 0 gradually steepens at the leading edge ξ= 0
and eventually forms a forward shock. Below we find radius RF

where this forward shock is launched.
The part of the wave with E> 0 has κ> 1 and satisfies

κ3σbg? 1. This implies small bending of characteristics,
dξ+/dt= 1, and the evolution of κ along C+ follows the
simple relation κ2= 1+ 2Kr2 (Appendix A).
In the zero-order of the small parameter dξ+/dt, C

+ are
described by ξ+= ξi or r+= c(t− ξi). The correction

( )x x k k- = -+ cDK1 8i
2 2 (Equation (66)) in the leading

order may be found iteratively by substituting κ2= 1+ 2Kr2

with the zero-order r= c(t− ξi). This gives

( )

( )

k x k
k
x x

= + -
¶
¶

= -Kc t
dK

d
r Krc1 2 , 2 .

97
t

2 2
i
2

i i

2

One can now examine the flow of C+ characteristics ξi→ ξ+(ξi, t)

and identify where ( )x x¶ ¶+ ti vanishes, launching a shock. For

the C+
flow with σbgκ

3
? 1, one can use Equation (97) to find

⎡
⎣⎢

⎤
⎦⎥

( )

( )
( )

x
x k x

k
k

¶

¶
= -

+
+

++ r

D

dK

d

r

c
1

2

3 1

1
1 . 98

ti

3

3
i

3

3

We here focus on the interval 0< ωξi< π and observe that
∂ξ+/∂ξi drops fastest at the leading edge ξi= 0, where κ= 1 is

minimum and x w w= = ´dK d K R2i 0
2 is maximum. We find
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at the leading edge (using x w= ´r dK d r R c23
i

3 2 ),

( )
x
x

w z¶

¶
= - = -+

´ ´

r

cDR

r

R
1

8
1

8
. 99

ti

6

2

6

6

Hence, the forward shock forms at radius
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⎞
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m

n
= » ´´


R R

L

8
3 10 cm. 100F

1 6

9 33
1 2

37
1 6

4
1 6

43
1 12

The wave now carries two shocks, at ξ≈ 0 and ξ> 2π/ω,
which slowly shift to larger ξ. The nascent forward shock at

r= RF is weak. It becomes ultrarelativistic at r? RF and later

turns into a strong blast wave expanding into the wind outside

the magnetosphere.

6. Gamma Rays from Monster Shocks

First, consider shocks with neglected effects of the precursor
on the upstream flow. As the plasma flow crosses the shock, it
radiates its energy in curvature photons. The spectrum of
curvature radiation from a particle with Lorentz factor γ cuts
off exponentially at ω> ωc (Landau & Lifshitz 1975), where

⎜ ⎟⎛⎝ ⎞⎠
⎛
⎝

⎞
⎠

( )


w g=
c
e

3

2
. 101

e
c

3 2

2

1 2

The radiated power  g= mce
2 is Lorentz invariant, and may

be evaluated in the shock frame, ∣ ∣g g= ¢ ¢d dt , using the

solution derived in Appendix B. It shows that g¢ drops from the

upstream value g g g g k¢ » »2
u u sh sh u with rate

˜
( ) ( ) ( )g g

s
g w
s

»
¢

- » -
eB

mc
g g g g

4

3

4

3
, 102

Bu

u

u 2 sh

u

2

where g g= ¢ ¢g
u
, ωB= eBbg/mc, and ˜ k=B Bu u bg. The

emission frequency ωc is maximum at g= (5/8)2/3,

⎜ ⎟⎛
⎝

⎞
⎠

( )w g
w g

s
»

c

r
0.88 . 103

B

e
c
max

u
sh

u

1 2

Substituting the solutions for γu(r) (Equation (75)), γsh(r)

(Equation (90)), and σu= κuσbg≈ σbg/2γu, we find

⎜ ⎟⎛
⎝

⎞
⎠

( ) ( )
w

z a
º » ´

mc

B

B
f x

1
, 104

f Q
cc

c
max

2

1 2

where αf= e2/ÿc≈ 1/137, BQ=m2c3/ÿe≈ 4.4× 1013 G,

B×= Bbg(R×), x= r/R×, and

( )
( ) ( )

( )
p

=
- -- -

f x
x x

x

0.88 2arcsin 1

2
. 105c

2 5 4 4 1 8

1 4 5

One can see that wc
max is in the far gamma-ray band.

Next, consider emission from shocks affected by the
precursor (Section 5.5). Main emission now occurs where the
upstream flow enters the precursor and begins deceleration with
γ≈ γ(ξ0) given by Equation (96). The emission frequency is

still given by Equation (101), but now with e being the emitted
power that results from the particle interaction with the
precursor. Using dξ= (1− β)dt≈ 2dt along the plasma stream-
line, one can see that dx gº mc2 edec

2 defines a characteristic

deceleration scale, and we rewrite Equation (101) as

⎜ ⎟⎛
⎝

⎞
⎠

( )w g
dx

=
c

r

3

2
. 106c

e

3 2
3 2

dec

1 2

During the main phase of shock evolution, the upstream flow

reaches the peak Lorentz factor ( ) ( )g x z» -20
1 and radiates

photons with dimensionless energy

( )
( )

n
w dx z

»
´ -


8 10

, 107c

9
4
1 2

dec
1 2 3 2

where we have normalized δξdec to the precursor width

ξsh− ξ0∼ ω−1. Note that the precursor deceleration effect is

strong if δξdec= ω−1, and so òc? 10−8ζ−3/2. This gives the

characteristic òc in the gamma-ray band.

7. Discussion

7.1. Formation of Shocks

The magnetospheres of neutron stars have a huge magne-
tization parameter σbg, and therefore their low-frequency
perturbations are often described as FFE waves, which
propagate with the speed of light. This description is excellent
near the star; however, it fails when perturbations propagate to
larger radii and grow in relative amplitude E/Bbg. Then, FFE
becomes remarkably self-destructive: it pushes itself out of the
realm of its applicability E2

< B2, and the wave dynamics in the
FFE limit σbg→∞ becomes undefined. Therefore, waves
should be described using the full MHD framework, with an
arbitrarily large but finite σbg.
In particular, compressive MHD waves (vacuum radio

waves in the FFE limit) steepen into shocks at radius R×

(Equation (60)) for any high σbg. The higher the value of σbg,
the stronger the shock at R×, as we have demonstrated by
solving the MHD wave equation. As an example, we presented
the evolution of a 10 kHz wave with an initial sine profile

( )wx=E E sin0 , where ξ= t− r/c. We have also derived the
wave evolution analytically to show how it depends on the
wave frequency ω and power L. Our main conclusions are as
follows.8

1. When the wave reaches R×∼ 108 cm, it suddenly begins
to pull the background magnetosphere toward the star,
creating an ultrarelativistic flow at the wave oscillation
phase near 3π/2 (trough), where E2 approaches B2

(Figure 5). The flow acceleration at the trough of the
wave is accompanied by plasma expansion, reducing the
local magnetization parameter σ, so the wave propagation
slows down at the trough and the wave “stumbles,”
steepening into a shock. The accelerated plasma flow
forms the upstream of the shock. It develops a huge
Lorentz factor γu∼ cσ×/ωR×, where σ×≡ σbg(R×). The
peak γu is reached when the wave crosses r≈ 1.15R×,
and here the local magnetization parameter of the flow is
reduced to σu∼ σ×/γu∼ ωR×/c, which is independent of
σbg.

2. The monster shock has an unusual microstructure. The
upstream flow experiences strong radiative losses before
completing a single Larmor rotation, i.e., before forming

8
These conclusions hold for kilohertz perturbations typically excited in

magnetars, neutron star binaries, and neutron star collapse. The results are
different for megahertz to gigahertz waves (Beloborodov 2023).
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the downstream MHD flow. This affects the shock jump
conditions. In particular, we found that the shock Lorentz
factor relative to the downstream plasma is ∣g »sh d

( )c s+1 1 7
u , where χ is a new dimensionless radiative

parameter (Equation (55)). The shock structure is further
complicated by the precursor emission, which can induce
radiative losses of the upstream flow ahead of the shock;
this effect will be described elsewhere.

3. As the kilohertz wave propagates beyond R×, half of its
oscillation (π< ωξ< 2π) becomes erased (Figure 5).
Thus, the wave loses half of its energy after crossing R×.
The large wave energy per magnetospheric particle
corresponds to the huge Lorentz factor gained by the
plasma. The plasma radiates the gained energy in the
ultrarelativistic shock, leading to a bright X-ray burst.

4. Waves accelerating the plasma to ( )g w w~ 2 B
1 2 enter

the two-fluid regime with unmagnetized particles. We
argued in Section 5.3 that the main MHD results will
carry over to the two-fluid regime. In particular, the
Lorentz factor of upstream particles will be given by the
same expression γ∼ cσ×/ωR×, reaching enormous
values in powerful low-frequency waves.

5. The leading half of the wave oscillation (ωξ< π) does not
approach the condition E2

= B2. It crosses R× without
any significant changes. A wave consisting of only this
half oscillation would not develop the monster radiative
shock at R×. However, in any case, at a larger radius RF

(a few times 109 cm; see Equation (100)), the leading
edge of the wave steepens into a forward shock.

Both R× and RF are well inside the typical light cylinder of a
magnetar, RLC∼ 1010 cm. Thus, strong kilohertz waves from
magnetars inevitably launch shocks inside the magnetosphere.
The monster shock forms at ωξ≈ 3π/2; then it weakens and
shifts to ωξ≈ 2π. The forward shock forms at ξ≈ 0 and gets
stronger at large radii; it will evolve into an ultrarelativistic
blast wave expanding into the magnetar wind (this evolution
will be further described elsewhere).

Our results clarify the relation between two pictures
proposed for electromagnetic ejecta from magnetars: a
vacuum-like electromagnetic wave (Lyubarsky 2014) versus
a blast wave in the wind (Beloborodov 2017, 2020). Blast wave
formation is important for the theory of fast radio bursts (see
Lyubarsky 2021 for a review), because it produces semico-
herent radio emission with submillisecond duration. Kinetic
simulations demonstrating the efficiency and polarization of
this emission are found in Sironi et al. (2021). In addition,
Thompson (2023) recently proposed that the blast wave may
produce radio waves by a different mechanism if it expands
into a turbulent medium.

7.2. Compton Drag

Our calculations of magnetospheric MHD waves neglected
Compton drag exerted by ambient radiation. Radiation flows
from magnetars with luminosities Lå∼ 1035 erg s−1, peaking at
photon energies εåmc

2∼ 1 keV (Kaspi & Beloborodov 2017).
When plasma in the wave develops Lorentz factor γ? 1, it
upscatters the keV photons to energies εsc∼ γ2εå as long as
g e< -


1. This gives a maximum power of scattered radiation

g e~ ~ ~ ´-
  L L L 3 10sc

max 2 2 40 erg s−1
(this upper bound

assumes that each keV photon is upscattered). Waves with
power L? Lsc are weakly affected by Compton drag. When

g e> -

1 scattering occurs with a smaller cross section

σsc∼ σT/γεå and εsc∼ γ. Using the scattering optical depth

t s~ ´ Rsc sc
2, we find

( )

( )

e t
e

s
m e e m

~ ~ ~ -

-

 











L

L

L

L

L

cL

L

L

8
10 .

108

sc sc sc T

1 2 2
4 ,35

, 3
2

39

33 44
1 2

This again gives Lsc= L, even if the density parameter

= nr3 is increased by secondary e± creation (which mainly

occurs behind the wave, not inside it; see Section 7.4 below).

Thus, we conclude that the magnetar radiation does not prevent

the enormous plasma acceleration in magnetosonic waves at

r≈ R×.

7.3. Wave Evolution at θ ≠ π/2

In this paper, we calculated the wave propagation in the
equatorial plane of a dipole magnetosphere, θ= π/2. The
obtained solution shows a clear physical picture of the wave
evolution. It includes two facts that help extend the picture to
θ≠ π/2:

(1) The MHD wave is well described as a vacuum
electromagnetic wave superimposed on the background dipole
magnetosphere until this superposition hits the condition
E2

= B2, launching the monster shock. In the equatorial plane,
this condition is reached at R×. In other parts of the
magnetosphere, one can find the location of shock formation
from the same condition E2≈ B2, which corresponds to drift
speed |βD|→ 1. The drift velocity is given by

( )
( )b =

´
=

+ -

+ +
q q

q

E B e e

B

E B E EB

B EB E2
, 109

r r
D 2

bg, bg,

bg
2

bg,
2

with E=− Eef and B= Bbg+ Eeθ. The wave propagates as in

vacuum until b = E BD
2 2 2 approaches unity, which corre-

sponds to + =qB EB2 0bg
2

bg, . This condition is first

approached at the trough of the wave, E=− E0. It defines

the critical surface r×(θ):

( ) ( )q
q

q
=  =

-

q
´ ´E

B

B
r R

2

4 3 sin

sin
. 1100

bg
2

bg,

2

A spherical wave with approximately isotropic power reaches

this surface first at θ= π/2, r= R×. As the wave continues its

propagation to r> R×, the monster shock develops in a range

of latitudes, q q<´ sin sin 1 (Figure 7), where ( )q́ rsin is

found by solving Equation (110) for qsin .
The condition E2

→ B2 corresponds to the plasma velocity β
approaching the unit vector,9

( )
( )

( ) ( )
( )

b

q q
q

=
- +

=

=
- +

-

q q q

q

e e

e e

B B B B

B
E B

2

4 5 sin 2 sin 2

4 3 sin
. 111

r r r

r

D
bg,
2

bg,
2

bg, bg,

bg
2

2 2

2

2

9
The oblique (nonradial) plasma motion in the wave at θ ≠ π/2 develops a

velocity component β∥ parallel to B, as discussed in the accompanying paper
(Beloborodov 2023). Then, the accurate total four-velocity is u = u∥ + uD.
However, u∥= uD when E2

→ B2.
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This unit vector represents the direction of the accelerated

plasma flow. Note that the radial component of βD changes

sign at q =sin 2 5 .
(2) The obtained solution at θ= π/2 demonstrates that the wave

evolution outside R× follows a simple principle: the partΔξ of the
wave oscillation that has hit the ceiling E2=B2 forms the plateau
of E≈Ep while the rest of the oscillation profile E(ξ) follows
nearly vacuum propagation (until the wave approaches RF?R×).
A similar description can be used at θ≠ π/2. The plateau electric
field is set by the condition E

2≈B
2:

( ) ( )q
m

= =
q
f f

´

´

E e er
B

B r

r

R
,

2 2
. 112p

bg
2

bg,
3

2

2

It is sustained by electric current jp=−∂r(rEp)/2πr, as

required by Equation (23). The plasma passing through the

wave is accelerated on the plateau with rate dγ/dt= Ep · jp/ρc
2,

which gives

· ( )
( )

g
x r p r

s
= = -

¶
=

q

E jd

d c

r E

c r

c

r

B

B4
, 113

rp p

bg
2

2
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2

bg
2
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where we used dξ= (1− βr)dt= (ρbg/ρ)dt along the plasma

streamline. A plateau of width Wp= cΔξ gives

( )g s»
q

W

r

B

B
. 114bg

p bg
2

bg,
2

The acceleration region Wp with E≈Ep and current jp appear

at r= r× and grows at r> r×. For example, waves with initial

profile ( ) ( )x wx=E E sin0 develop plateaus with ( ) »W rp

( )[ ( )]w p - ´c r r2arcsin 2 2 .
As a result of the wave evolution at r> r×, the parts of the

wave profile with E · (k×Bbg)< 0 become erased and replaced
by the plateau with Ep/E0→ 0 at r? r×. In axisymmetric
waves E oscillates along ef, and so the parts with Ef> 0
become erased. In particular, oscillating kilohertz waves with
average »fE 0 lose half of their energy. The lost energy is
radiated by the shock.

7.4. Pair Creation and Emission of X-Ray Bursts

The monster shock radiates high-energy photons (Section 6),
which can convert to e± pairs. The upstream flow entering the
equatorial shock moves along −er with a high Lorentz factor γ,
so its gamma-ray emission is beamed toward the star. These
gamma rays propagate perpendicular to Bbg and will convert to
e± pairs. The mean free path for conversion is given by
(Erber 1966),

⎜ ⎟⎛
⎝

⎞
⎠

( ) ( )
a

»


l r
r B

B

B

B

4.4
exp

8

3
. 115

e

f

Q Q
ph 2

bg c bg

For our sample models in Section 4, lph(R×)? R× and lph(r)

will be reduced below r when the gamma rays propagate to

r= R× where Bbg? B×.
Magnetosonic waves accelerate the plasma radially only in

the equatorial plane of the magnetosphere. Waves at different
latitudes accelerate the plasma obliquely (Section 7.3), so the
gamma-ray emission is oblique, not beamed toward the star,
and can avoid absorption by the ultrastrong field. Instead, the
oblique gamma rays will convert to e± pairs via photon-photon
collisions, as they propagate toward the equatorial plane and
collide with the symmetric gamma rays from the lower
hemisphere. The collisions will be efficient because of the
broad spectrum of curvature radiation (its half-width extends
from 0.01òc to 1.5òc; see, e.g., Longair 1994), so the gamma
rays will find counterparts near the threshold for e± creation
with a large cross section ∼0.1σT. This leads to a high pair
production rate, and the region behind the shock will become
populated with optically thick e

± plasma.
The created e± plasma will cool by emitting softer

synchrotron photons and by scattering the photons as they
diffuse out of the e

± cloud behind the shock. Radiation
production is controlled by the compactness parameter,

( )
s
p

m= » ´´
´

-ℓ
L

mc R
L

8
7.7 10 . 116

T

3
4

43
5 4

33
1 2

The high compactness implies a large optical depth to photon-

photon collisions, so most gamma-rays should convert to pairs,

which experience fast radiative cooling. Thus, the shock

emission will be reprocessed to photons of lower energies. The

luminosity of the resulting X-ray burst is comparable to the

power of the original kilohertz wave. The burst resembles

radiative processes in compact magnetic flares simulated in

Beloborodov (2021b); its spectrum can be found with similar

detailed radiative transfer simulations, which we leave for

future work.
A minimum duration of the burst is set by the light-crossing

time r/c, where r is a few R×. A typical value of this minimum
duration is ∼10 ms. Bursts with high ℓ× may last longer, as it
takes time for the reprocessed X-rays to diffuse out of the

Figure 7. Expansion of a spherical wave front through the magnetosphere. The
front thickness (wave duration) is much smaller than r/c. Its shock-free part
( q q< ´sin sin ) is plotted in green and the part carrying the shock is in red. The
region swept by the shock is shaded in pink; its boundary θ(r) is defined by
Equation (110). The wave front is shown at two moments: (1) when it crosses
radius R× (the shock has formed in the equatorial plane, θ = π/2); and (2)
when it expands to a larger radius (the shock now occupies a range of θ). The
shock radiates gamma rays (red arrows) beamed along βD (Equation (111));
most of them convert to e

± pairs.
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optically thick e± cloud. In addition, star quakes may produce
multiple shocks, creating multiple bursts. Such composite
bursts can last ∼100 ms, depending on the crustal quake
coupling to the neutron star core (Bransgrove et al. 2020).

7.5. X-Ray Precursor of a Binary Merger

Consider a neutron-star binary with masses M1 and M2

separated by distance 2a. The reduced mass of the binary is
M=M1M2/(M1+M2), and its orbital angular velocity is

⎜ ⎟⎛
⎝

⎞
⎠

( )W » º
-

c

r

a

r
r

GM

c
, . 117

g g
g

3 2

2

In a tight binary (nearing merger), Ω is in the kilohertz band.
Suppose both stars are strongly magnetized. An interface

between their magnetospheres forms where their pressures
balance. For instance, consider two stars with equal magnetic
dipole moments |μ1|= |μ2|= μ. Then, the interface is in the
middle, at the distance a from each star, and the magnetic field
at the interface is Bi≈ μ/a3.

If the orbiting stars are not in synchronous rotation, there is
differential rotation between the two magnetospheres with an
angular frequency Ωdiff comparable to the orbital Ω. The two
magnetic moments μ1 and μ2 in general are not aligned, and
then the magnetic pressure at the interface will oscillate with
frequency Ωdiff. The pressure variation timescale ~W-diff

1

exceeds the Alfvén crossing time (a few a/c), which reduces
the efficiency of low-frequency wave excitation. However, the
interface is also a source of higher-frequency waves, because it
is prone to instabilities of the Kelvin–Helmholtz/diocotron
type. The instability will generate vortices of sizes up to a
fraction of a (with frequencies ω> c/a), creating traction
between the rotating magnetospheres.

The turbulent region around the interface will emit both
Alfvén and magnetosonic waves, and further investigation of
this process requires numerical simulations. An upper bound on
the power deposited into the turbulence may be roughly
estimated as p~ WL a B 8imax diff

3 2 . The power of magnetoso-

nic wave emission ( )d p~ <L ca B L82 2
max implies an upper

limit on the emission amplitude,
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diff
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In a more general case, the magnetic dipole moments of the
two stars are not equal, μ1< μ2. Then the interface will form at
a distance R from M1, defined by

( )
( )

m m
»

-R a R2
. 1191

3

2

3

The wave source will have a size of ∼R< a, and its power may

be estimated as

( )
p

~L cR
b B

8
. 120i2

2 2

The emitted magnetosonic waves will steepen into shocks at

radius R×∼ (2b)−1/2R (if it is inside the light cylinder of the

binary, R×< c/Ω).
The emission of kilohertz waves accompanied by shocks and

turbulent dissipation will continue as long as the two stars orbit
each other, until they eventually merge. The binary loses orbital
energy to gravitational wave emission and shrinks on the

timescale
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which is also comparable to the time remaining until the

merger. The wave energy generated during the remaining time t

may be estimated as tL, and we obtain
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A significant energy fraction of the MHD perturbations will be

dissipated and converted to X-rays. This will occur mainly through

the local turbulent dissipation near the interface and may also

launch shocks at larger distances. The dissipation of perturbations

will produce a detectable X-ray precursor of the merger if the stars

have strong magnetic fields. For instance, a binary with μ1=

μ2= 1032 G cm3 may generate X-ray luminosity LX∼ 1046

erg s−1 at t∼ 10 s before the merger. Wave dissipation provides an

alternative to the recently proposed precursor emission by

magnetic flares (Most & Philippov 2020; Beloborodov 2021b).

The latter mechanism was shown to operate in binaries with

antialigned μ1 and μ2; it is driven by the over-twisting of magnetic

flux tubes connecting the two stars.

7.6. Shocks from Neutron Star Collapse

A massive neutron star can be born (e.g., in a merger) with fast
rotation, which temporarily supports it against collapse. Such
objects are likely strongly magnetized and gradually lose rotation
by emitting angular momentum in a magnetized wind. The
spindown can eventually lead to the collapse of the massive
neutron star into a black hole, producing an electromagnetic
transient (Lehner et al. 2012; Falcke & Rezzolla 2014; Most et al.
2018). Numerical simulations of the collapse show that it launches
a strong outgoing electromagnetic pulse propagating through the
outer dipole magnetosphere. A monster shock will form where the
pulse amplitude becomes comparable to the dipole field of the pre-
collapse magnetosphere and B2−E2 reaches zero. This condition
was indeed seen in vacuum and FFE simulations of the
magnetosphere of a collapsing star (see Figure 10 in Lehner
et al. 2012). Demonstrating shock formation and tracking its
propagation requires a full MHD calculation, as shown in the
present paper. The shock will dissipate a significant fraction of the
outgoing electromagnetic pulse and produce a bright X-ray
transient.
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Appendix A

Shock Formation in a Cold Magnetosonic Wave

Below, we describe analytically the flow of C+ characteristics. We focus here on the part of C+
flow with E< 0 (or, equivalently,

κ< 1), which experiences strong deformation, leading to caustic formation.

A.1. Evolution of the Plasma Compression Factor κ along C+

The relation between κ and r along C
+ is found from the ratio in Equations (45) and (43),
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where we used s = -d d rln ln 3bg . This is a linear differential equation for σbg(κ). Its integrating factor is ( )k-1 2 3 2, and its

solution is
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where σå is a constant (defined for each characteristic). Note that

[( ) ] ( )s
k
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
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1

1 A32 3 2
bg

is set at small radii where σbg? σå. In this inner zone, |κ− 1|= 1 corresponds to slow plasma motions in the wave, |β|= 1, which

is equivalent to Bbg? |E|. Comparing the behavior of ( )s s k= - -
 1bg

2 3 2 with σbg=D/r3 (Equation (8)) one can see that
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For each C+, the regime |κ− 1|= 1 holds at radii r= rå. In this zone, the radial position of C+ follows vacuum propagation:

r= rvac= c(t− ξi). Note that rå(ξi) is different for different characteristics.

Equation (A4) is equivalent to Equation (48), and so the constants rå and K are related by
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Equation (A4) holds as long as 1− β+= 1, which corresponds to k s-
1 3. We are interested in a more general regime, where β+

can significantly drop or even change sign (which means that the C+ characteristic turns back to the star). This happens if κ decreases

below ( )s -
4 1 3. In this extreme case, the variation of r with κ becomes nonmonotonic; it occurs on a small scale δr= r and can be

seen only when retaining the small terms in Equation (A2).

Let us now find the solution for κ(t) along C+. Using Equation (A2) in Equation (43), we obtain
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Note that κ monotonically decreases with t. This equation can be integrated as follows:
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The second term on the left-hand side (LHS) makes a negligible correction to k-1 2 if 4σåκ
3
? 1, which corresponds to

1− β+= 1. Then, k = - = +r r Kr1 1 2vac
2 2

vac
2 . If the condition 4σåκ

3
? 1 is not satisfied, one must keep both terms on the

LHS. This may happen only at κ= 1, and hence the deviation of κ(t) from the solution k = - r r1 vac
2 2 can be found using

expansion in κ= 1. This expansion simplifies Equation (A7) to a depressed cubic equation,
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It has one real root if ( )s - < r r1 3 22 3
vac

7 3. Otherwise, it has three real roots, but only one of them is relevant—the root branch

that gives κ> 0 and approaches k = - r r1 vac
2 2 when ( ) s - r r1 12 3

vac .

The evolution of κ along C+ with K< 0 may now be summarized as follows:
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These real expressions fully describe κ(t) along C
+

(note that σå? 1 implies a large overlap of y? 1 and  sy 2 3).

A.2. Crossing of Characteristics

The crossing of C+ characteristics is determined by the solution for their shapes ξ+(t). It is easier to solve for ξ+(κ) first, and then

use the (monotonic) relation between κ and t along C+
(Appendix A.1). The solution for ξ+(κ) can be found from the ratio of

Equations (44) and (43),
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We substitute here σbg(κ) (Equation (A2)) and ( )s s=  r rbg
1 3 to obtain a closed differential equation for ξ+(κ). Its integration

(with the initial condition ξ+= ξi at κ= 1) yields
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One can think of the initial value ξi as a Lagrangian coordinate in the flow of C+ characteristics and quantify deformation of the wave

profile using “strain” ∂ξ+/∂ξi evaluated at t = const. A reduction of ∂ξ+/∂ξi below unity means compression of the profile, i.e.,

steepening of the wave. The caustic appears where ∂ξ+/∂ξi vanishes. This will occur in the region of  s k-
 11 , and in this

region the expression for ∂ξ+/∂ξi simplifies to

( )
( )

   x
x s k x x
¶

¶
» -

+
+

º = º+ 







r
r

dr

d
r K K

dK

d
1

2 1

4 1
, where , . A12

ti
3

i

3

i

Here, we used Equation (A8) to express ( )k x¶ ¶ + t and retained only the leading terms of the expansion in κ= 1. Thus, for each

characteristic C+ with K< 0, we find that ∂ξ+/∂ξi vanishes when κ= κv, where κv satisfies the relation

( ) ( ) ( )
 k x
s

k»
+


r2 1

4
1 . A13v

3
i v

The condition κ= κv corresponds to time tv determined by Equation (A8):

⎜ ⎟⎛
⎝

⎞
⎠

( )
( )

( ) ( )
k

k
k

s k
x

k
s k

= - + +
+

 » - +


 





t

r
t

r

c
1

2

1

4
1

2

1

4
. A14

2
4

v i
v
2

v

The small difference tv− rå/c is determined by the small κv= 1, which is given in the leading order by Equation (A13).

The caustic forms on the characteristic C+ for which ∂ξ+/∂ξi= 0 is reached first, i.e., where tv(ξi) is minimum. This characteristic

(labeled as x
i
c) satisfies the condition dtv/dξi= 0. Using Equation (A13), we find

( )

‥
‥

‥

 k
x s k

k
= + = -












d

d

r r

r
r

r

r

r K

K6
, where

3

2
, A15

v

i v
2

v
2
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and then obtain the condition dtv/dξi= 0 in the form

⎜ ⎟⎛
⎝

⎞
⎠

( )
̈

( )
x s k
= + + + =





dt

d
r

r K

K
Z1 1

24
0. A16

v

i

2

2
v
2

The terms collected in Z(κv) are small, and we find a simple expression for the fluid compression factor at the caustic, ( )k k xºc v i
c

(one can show that ( )  k + Z r1c ):

̈
( )k

s
» - 



r K

K24
. A17c

4
2

2

For example, consider waves with a harmonic profile K(ξi). Let us define ψ≡ ωξi so that ( )y y=K K sin0 . Then,

/

/
( )

( )
( )

‥


y

s s y
w y
y

w=
-

= - =
-

= -´
´

´
  r

R
r

R

c

K

Ksin
, sin ,

cos

2 sin
, . A183 2

3 2
2

The caustic develops at a Lagrangian coordinate y wx=c i
c, and Equations (A13) and (A17) give

/

/
( )

( )
( )y k

z y
y s

k
z
y

z
w
s

- =
-

+ = º
´

´

´

R

c
4 sin

cos

sin

1
,

24 sin
, where . A19c

3 2
c
3 c

c
3 2 c

4
2

4
c

These equations hold if κc= 1, which requires ζ= 1. We obtain from these equations,

( ) ( )y
z

w
y= - -

´

c

R
cos

4

24
sin . A20c 3 4 c

3 2

We consider only short waves, ωR×/c? 1. Equation (A20) then implies ∣ ∣ ycos 1c , and so in the leading order, one can set

y » -sin 1c in Equations (A19) and (A20). This gives the relations stated in Equation (67).

The caustic forms at time ( )x=t tc v i
c given by Equation (A14). Expanding ( ) ( )y y= - » +´

-
r R 1 cos 1 1 4 cosc c

2 1 4 2 and

using Equation (67), we obtain Equation (68).

The caustic position in the wave, ξc, may be found using the relation between ξ+ and κ along C+
(Equation (A11)). It gives

x x s k» +  r c2c
c
i c, which leads to Equation (69).

Appendix B

Shock Microstructure

The flow is composed of two streams, e+ and e−, which have different (symmetric) trajectories. The e± flow is neutral everywhere,

i.e., its net charge density is zero. As the flow enters the shock, it develops a transverse electric current j, created by the opposite e±

motions along E. This current controls the self-consistent change of the magnetic field across the shock. In this appendix t, E, B, β,

uα, and n will denote quantities measured in the shock rest frame (elsewhere in the paper, this notation is used for the lab-frame

quantities).

We will use local Cartesian coordinates x, y, z with the x-axis along E and the z-axis along the upstream flow. Then, the magnetic

field B is along y. The upstream quantities ahead of the shock will be denoted with subscript “u.” The upstream flow will be

approximated as cold, i.e., the e± are at rest in the plasma drift frame (the frame ̃ where the electric field vanishes, ˜ =E 0). In this

Appendix, we use units of c= 1.

The steady flow is described by quantities that depend only on z. In this approximation, all time derivatives vanish, ∂t= 0, and

hence ∇× E=−∂tB= 0. In addition, ∇ ·E= 0 as the net charge density is zero. This implies

( ) ( ) ( )= = =E Ez const E , 0, 0 . B1u u

The e± streams ahead of the shock have equal velocities

( ) ( )b b b= = E

B
0, 0, , . B2u u u

u

u

The straight inertial motion of e± describes the cold upstream flow with no gyration in the drift frame ̃; the e± experience zero

force ( )b + ´ =E Be 0u u u .
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B.1. Shock Structure Equations

As the plasma crosses the shock, the e± four-velocities ( )g=a  uu , and B change from their upstream values. The profiles ( )a
u z

and B(z) obey the equations:

( ) ( )b bb
g

b p=  ⋅ - =  + ´ -  ´ =



 E

u
E B f B jm

d

dz
e m

d

dz
e, , 4 , B3z e z

where e is the power radiated by the ultrarelativistic particle, and b= f e is the radiated momentum. Similar equations, but

without radiation reaction, were previously used to describe magnetosonic solitons, which have no dissipation (Kennel &

Pellat 1976; Alsop & Arons 1988).

The particle entering the shock radiates because it experiences acceleration (±e/m)(E+ β±× B). The power radiated by a particle

with four-velocity (γ, u) is given by (e.g., Landau & Lifshitz 1975),

[( ) ( ) ] [( ) ] ( ) s
p
g

s
p
g= + ´ - ⋅ = - + - E u B u E B u E E B

4 4
, B4e z

T 2 2 T 2 2 2

where s p= r8 3eT
2 is the Thomson cross section.

Equations (B3) have a symmetry: the e± develop b b= -- +
x x , b b=- +

z z , and keep b b= =- + 0y y . Therefore, it is sufficient to solve

for the four-velocity of e+. Below, this will be denoted by uα, omitting the subscript “+.” The symmetry also implies that the electric

current has the form j= ( j, 0, 0), where j= enβx, β≡ β+ and n= n++ n− is the local plasma density. The current is related to the

uniform particle flux F= nβz= nuβu,

( )
b
b

b
b
b

= =j eF en . B5
x

z

x

z
u u

The current j is expected to be negative, since B is compressed in the shock: dB/dz=− 4πj> 0. This requires βx< 0. The solution

presented below indeed shows that the e
+

flow entering the shock develops negative acceleration along x:

βzdux/dz= (e/m)(E− βzB)< 0. This is consistent with energy conservation: the compression of B occurs at the expense of the

flow kinetic energy, and hence E · j< 0 (energy is extracted from the plasma).

Note that γ and uz determine all components of four-velocity uα
(ux is found from uαuα=− 1 using uy = 0), and hence also

determine βx and βz. As a result, we have three coupled equations for three unknowns γ, uz, and B. The flow solution has three

parameters: nu, Bu, and βu. Given these parameters, the system of Equations (B3) can be integrated numerically. As shown below, the

solution also admits a simple analytical approximation.

A normal collisionless shock with no radiation reaction (χ= 0) would be described by two dimensionless parameters:

( )g b= - -1u u
2 1 2 and s p g= B mn4u u

2
u u. Its downstream moves with Lorentz factor g s»d u relative to the shock. The shock

structure is normally presented using fields normalized to Bu and distance normalized to the Larmor scale rL≡mγu/eBu. By contrast,

the presence of radiation reaction in Equations (B3) implies that Bu cannot be removed by the normalization of fields, since e is
quadratic in the fields. An additional scale re= e2/m appears in the problem, and the value of Bu controls the ratio re/rL. To
disentangle this problem, it helps to introduce new variables:

⎜ ⎟⎛
⎝

⎞
⎠

( )
( )

g
g

s g
g

sº º
-

º -g w
u

b
B

B
, , 1 . B6

z

u

u

u
u

u

Instead of coordinate z, we will use dimensionless s defined by

( )
g s b

=ds
eB

m

dz
. B7

z

u

u u

Equations (B3) then become

⎛⎝ ⎞⎠ ( )b c c b= - - = - + - =


    
dg

ds

dw

ds
b w

db

ds
,

2
, , B8u u

where

( )
s
g

c
s g
p s

º º =


B

e

r

r
,

4

2

3
, B9

eu

u
2

T u u
2

u
3 2 3 2

L

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

s
b sº - - = - g w b

g
w g

w
, ,

1
2 , B10x

u
u
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⎜ ⎟⎛
⎝

⎞
⎠

/ /
( )

( )
( )

s
b

s
b

º +
-
+

- + +
-
+

- +    g w b w
g w

bgw
bg g w

b g b, ,
1

2
2

1
2 . B11

u

u

2

2 u

u

2 2

Note that the presented form of the flow Equations (B8) uses βu, ò, and χ as the three parameters of the shock instead of γu, σu, and

Bu. The parameter σu appears only in the functions  and , where it enters through the term g− w/σu. We will verify below that

w/σu= g throughout the shock transition, and so σu drops out.

The choice of βu, ò, and χ as the independent parameters significantly simplifies the problem. For strong ultrarelativistic shocks of

interest, (i) one can set βu= 1, and (ii) ò turns out so small that it effectively drops out. As a result, χ remains the only important

parameter (while σu and γu enter through the definition of variables g, w, b).

In the limit of χ→ 0, the autonomous system of Equations (B8) admits an immediate analytical solution. Its first integrals g(b) and w(b)

are

( )
( ) ( )

b
b

c= - =
+ +

=
 

g b w
b b

1 ,
2

0 , B12
u

u

where we took into account that the solution starts in the upstream with b= 0, g= 1, w= ò/2. The first integrals correspond to the

fluxes of specific energy and momentum staying uniform along z, as losses are neglected.

The monster shocks discussed in this paper propagate in the qualitatively different regime of χ? 1. The value of χ is controlled

by the shock strength developing in the kilohertz wave, as discussed in Section 5.

B.2. Boundary Condition

In order to integrate Equation (B8), one needs boundary conditions g= g0, w= w0, b= b0 at some s0. We will set the boundary

conditions in the upstream, ahead of the shock. Far into the upstream, the flow is unaware of the shock and has g= 1, w= ò/2, b= 0,

which corresponds to γ= γu, uz= γuβu, B= Bu. However, one cannot impose these simple boundary conditions, because

Equations (B8) have a trivial uniform solution with these values. The shock solution must have an infinitesimal deviation from the

uniform solution at s0→−∞ . It is obtained by choosing g0, w0, and b0 slightly perturbed from 1, ò/2, and 0.

The upstream flow with g, w, b= 1, ò/2, 0 has = 0, and the deviation of g, w, b from 1, ò/2, 0 begins with negligible losses

( c  ). Hence, one can choose s0 where the flow still satisfies the adiabatic solution of Equation (B12). Only one of the three

perturbed quantities at s0 is independent: by choosing a small perturbation b0≠ 0, we also determine g0 and w0 according to

Equation (B12). Furthermore, changing b0 is equivalent to shifting s0 in the profile of b(s). This shift is irrelevant, since the problem

has translational symmetry along s. Thus, no new free parameters are introduced by the choice of boundary conditions. The shock

transition will follow a unique solution apart from the arbitrary shift along the s-axis.

In practice, b0 does not need to be infinitesimal. It is sufficient to choose any finite small b0 in the zone where the adiabatic solution

of Equation (B12) still holds, i.e., where ∣ · ∣  b Eee . This requires

( ) ( ) ( )c g w b g w b, , , , . B130 0 0 0 0 0

For shocks of main interest (βu→ 1 and small ò, s-u
1), we find, using Equation (B12), that

⎛⎝ ⎞⎠ ( ∣ · ∣) ( )  b» - »
-

   Eb
b b

b
e1

2
,

1
. B14e

2
2

The adiabatic condition (B13) is satisfied if b0= χ−1. In the numerical models presented below, we set b0= ò
1/2. This satisfies the

condition (B13) for shocks with ò= χ−2.

One can also see here that shocks with χ= 1 have negligible losses ( c  ) throughout the shock transition, as g drops from unity

and b= 1− g changes from 0 to b∼ 1. By contrast, χ? 1 implies almost immediate onset of radiation reaction as the flow enters the

shock.

B.3. Numerical Solution

Numerical solutions for shocks with different values of χ are shown in Figure 8. They are obtained in the limit of σu? 1 and ò= 1 (we

used σu= 103 and ò= 10−16 when integrating Equations (B8); however, the result is independent of these choices). Note that the flow keeps

βz≈ 1 everywhere, and hence s∝ z. One can see that in the shock the normalized Lorentz factor of the flow g(s)= γ/γu decreases while the

magnetic field becomes compressed: b(s) grows from zero up to the final downstream value. The relation between g and b across the shock

transition is shown in Figure 8.

The presented solutions end where the flow develops gyration in the drift frame ̃. Beyond this point, the maser instability is

expected to destroy the coherent gyration of the e± streams (Langdon et al. 1988). This instability is not followed by our calculation,

and this is not needed to see the effect of radiation reaction on the shock structure. After the development of gyration, radiative losses
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become normal synchrotron emission, which carries away zero momentum in the drift frame and no longer affects the bulk motion of

the plasma.

We set the end point send of the coherent stream solution where the e± velocity vector in the drift frame, b̃, has rotated by 60°

( ˜ b = 1 2x ). We define the approximate downstream quantities at this point. In particular, the drift Lorentz factor

g = -B B ED
2 2 at send approximately represents the Lorentz factor of the downstream relative to the shock, γd. Figure 4

shows the measured γd as a function χ.10 For shocks with χ? 1, the numerical result approximately follows the relation

g s c»d u
1 7. It can also be derived analytically, as shown below.

B.4. Approximate Analytical Solution

The radiation-reaction transition admits a simple analytical description. A key fact simplifying the analytical approximation is that

the term cw in dw/ds (Equation (B8)) remains small throughout the shock transition. When this term is neglected, the equations

for dw/ds and db/ds can be integrated for w(b). The resulting relation w(b) is the same as in the adiabatic solution given in

Equation (B12). At b? ò, it gives

( )»w
b

2
. B15

2

Note also that the functions  and  entering the dynamical equations can be simplified. Neglecting the small terms ∝ò in

Equation (B11), we obtain

⎛⎝ ⎞⎠( ) ( )» + » + » w gb b
b

g
b

g2
, , B162 2

2

where we used w/σu= g to further simplify  . Like Equation (B15), Equations (B16) approximately hold at b? ò, practically

throughout the entire shock transition.

With these preliminary remarks, we can describe the shock structure as follows. The shock has two zones:

Adiabatic zone (g1< g< 1). Here, the upstream flow enters the shock by following the solution (B12) for g(b) and w(b). The

adiabatic zone ends when the radiative term becomes important in dg/ds (Equation (B8)), i.e., when c becomes comparable to  .

Figure 8. Shock structure solution in the approximation of steady e± streams (viewed in the shock rest frame). The solution was calculated for χ = 0, 103, 105, and

107. Left: for each case, we show g(s) (black), b(s) (blue), and ( )g = -s B B ED
2 2 normalized to su (red). Flows with χ? 1 radiate most of their energy before

developing gyration; this results in γ= γu. Each solution ends where the downstream begins, i.e., where the e± streams develop gyration (then they become unstable,
thermalizing their gyration energy in the drift frame). The drift Lorentz factor γD at the end point represents the downstream speed relative to the shock. Right: relation
between g and b. The approximate analytical solution (Equation (B19)) is shown by the dotted curve and compared with accurate numerical integration (solid curve).

Both numerical and analytical solutions are plotted until the e± streams reach ∣ ˜ ∣b = 1 2x , which corresponds to 60° gyration in the drift frame.

10
Different choices for the end point definition (up to ˜ ˜b b= »

1x ) affect the measured γd by tens of percent, a modest correction compared with the main effect—

radiation reaction before the development of gyration. The exact γd may be found with the full kinetic plasma simulation of the shock.
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This occurs at b1∼ χ−1
= 1. By this moment, the flow has lost only a small fraction 1− g1 of its initial kinetic energy, which went

into the slight compression of the magnetic field,

( )
c

» - »b g1
1

1. B171 1

Radiation-reaction zone (g2= g= g1). Here, c  , and the flow deceleration is controlled by radiative losses. The solution

for b(g) can be found from the ratio of equations c» - dg ds and db/ds= w (Equation (B8)). Using » g b2 2 (this holds

because gb? w, as verified below), we find

( ) ( )c - » -- -b b g g
3

4
. B182

1
2 3 2

1
3 2

We have chosen the integration constant so that b(g1) matches b1 (Equation (B17)). However, this boundary condition becomes

unimportant in the radiation-reaction zone, where b? b1 and g−3/2
? 1− g1. So, the solution simplifies to

( )c » --b g
3

4
1. B192 3 2

This result is in excellent agreement with the accurate numerical solution (Figure 8).

The key approximation of this derivation was the neglect of cw compared with b in dw/ds (Equation (B8)). Evaluating the ratio

( ) ( )
c

» -



w

b
g g

2

3
1 , B203 2

one can see that it has a maximum of (2/5)5/3≈0.2, a small value. One can also verify that w/σu= g and

c» »  gb w g b2 3 1; this vindicates the approximations » b g and » g b2 2.

The radiation-reaction zone ends where the term c stops being dominant in dg/ds. This transition may be defined, e.g., by

c » 2 , which occurs at

⎜ ⎟⎛
⎝

⎞
⎠

( )
c

»g
3

1. B212

2 7

As the radiation-reaction zone ends at g∼ g2, the gyrating downstream begins. The development of gyration can be seen by

transforming the e+ stream velocity to the drift frame. We find the drift speed βD= E/B= βuBu/B and then the drift Lorentz factor

( )
( )g

s

s b

s
=

-
=

+

+ -
»

B

B E

b

b b

1

1 2
. B22D

2 2

u

u
2

u
2

u

The particle Lorentz factor measured in the drift frame is

⎛⎝ ⎞⎠˜ ( ) ( )g g g b g
s

» - » +u
b

g
b

2 2
. B23zD D u

u

The e± streams are ultrarelativistic in the drift frame; i.e., b̃ » 1, and ˜ ˜b y» sinx determines their deflection angles ỹ from the z-

axis. Taking into account that ˜ =u ux x, we find

˜
˜ ˜

( )b
g

g
g s

= = - » -
+

u gb

g b

2

2
. B24x

x

u

Substituting here the approximate solution (B19) for b(g), one can see the development of gyration with decreasing g. In particular,

one can see that ∣ ˜ ∣b ~ 1x at g∼ g2, confirming the formation of a gyrating downstream.

Finally, we can evaluate the shock jump condition of main interest: the downstream Lorentz factor in the shock rest frame, γd
(denoted as ∣g g¢ =

d sh d in the main text). It approximately equals γD(g2), which gives

( ) ( )g
s

c c» 1 . B25
d

u

1 7
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