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Abstract

Magnetospheres of neutron stars can be perturbed by star quakes, interaction in a binary system, or sudden collapse
of the star. The perturbations are typically in the kilohertz band and excite magnetohydrodynamic waves. We show
that compressive magnetospheric waves steepen into monster shocks, possibly the strongest shocks in the
Universe. The shocks are radiative, i.e., the plasma energy is radiated before it crosses the shock. As the kilohertz
wave with the radiative shock expands through the magnetosphere, it produces a bright X-ray burst. Then, it
launches an approximately adiabatic blast wave, which will expand far from the neutron star. These results suggest
a new mechanism for X-ray bursts from magnetars and support the connection of magnetar X-ray activity with fast
radio bursts. Similar shocks may occur in magnetized neutron-star binaries before they merge, generating an X-ray
precursor of the merger. Powerful radiative shocks are also predicted in the magnetosphere of a neutron star when
it collapses into a black hole, producing a bright X-ray transient.

Unified Astronomy Thesaurus concepts: X-ray transient sources (1852); Neutron stars (1108); Magnetars (992);
Radiative processes (2055); Radio bursts (1339); Plasma astrophysics (1261)

1. Introduction

Magnetospheres of neutron stars are formed by plasma
immersed in a strong magnetic field By,. They have a high
magnetization parameter,
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where py, is the plasma mass density and c is the speed of light;
subscript “bg” stands for “background” for waves investigated
in this paper. The closed magnetosphere is approximately
dipole at radii r much greater than the star radius R,. It ends and
a magnetized wind begins near the light cylinder Ry c = ¢/,
where () is the star rotation rate. This basic picture is confirmed
by extensive studies of pulsars (Philippov & Kramer 2022).

1.1. Perturbations of Neutron Star Magnetospheres

In some cases, the magnetosphere becomes significantly
perturbed. In particular, quakes in magnetars launch magneto-
spheric waves (Blaes et al. 1989; Thompson & Duncan 1996;
Bransgrove et al. 2020). Some mechanism quickly dissipates
the waves, generating X-ray bursts that are observed as the
main form of magnetar activity (Kaspi & Beloborodov 2017).
Significant perturbations are also expected in tight neutron-star
binaries, where the two magnetospheres interact with each
other. A huge disturbance of a neutron star magnetosphere
occurs when the star collapses into a black hole (Lehner et al.
2012). In all of these cases, the excited waves are typically in
the kilohertz band.

Such perturbations are well described by magnetohydrody-
namics (MHD), which supports waves of the perturbed
magnetic field and electric field E_LB,,. These MHD modes
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can have wavevectors k in any direction and can be of two
types: (1) shear Alfvén waves with k-E=0, and (2)
compressive waves with E_Lk, so-called “fast magnetosonic
modes.” Both modes propagate with an ultrarelativistic group
speed,

N )
c
Phase speed v,, = w/k of the magnetosonic waves is also close
to ¢ while Alfvén waves have vy, & ¢ cos o, where « is the
angle between k and By,,. A detailed discussion of waves in et
plasma in a strong background magnetic field By, including
two-fluid and single-fluid (MHD) descriptions, is found in
Arons & Barnard (1986).

1.2. MHD Waves from Quakes

Substantial work was devoted to the relativistic Alfvén
waves excited by magnetar quakes (e.g., Thompson &
Blaes 1998; Troischt & Thompson 2004; Yuan et al. 2020;
Nittild & Beloborodov 2022), and little attention was given to
the magnetosonic waves. In fact, quakes can excite both modes.

Neutron star quakes involve shear oscillations of the crust
with horizontal displacements dér. Shear waves inside the
neutron star crust propagate with speed vy, = w/kg, ~
108 cms™! (Blaes et al. 1989). Their characteristic lowest
frequency is w~ vy, /h ~ 10* rads™', where A is the hydro-
static scale height. A large fraction of the 9uake energy may be
at much higher frequencies, e.g., w~ 10 rads~'. The crustal
waves leak to the magnetosphere with a transmission
coefficient 7~ 0.1 w3° B> (Blaes et al. 1989; Bransgrove
et al. 2020).

To quickly see that quakes can emit both Alfvén and
magnetosonic modes, one can consider crustal oscillations with
w>> c/R, and a wavevector that is exactly radial in a region of
the stellar surface (Figure 1). Such oscillations satisfy
04 = 0p = 0 in spherical coordinates r, 0, ¢, and this symmetry
is preserved during wave transmission, so the emitted
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Figure 1. Excitation of magnetospheric waves by a star quake with w > ¢/R, and a vertical (radial) wavevector k. The wave polarization is set by the direction of the
electric field E = B x v/c in the crustal shear oscillation with a horizontal velocity v. Left: crustal motion with v||r =k x By, excites an Alfvén wave E_Ln. Right:
vLn excites a magnetosonic wave E|ln. The wave amplitude is small, so B = By, near the star.

magnetospheric wave also has a radial k. This simple setup is
reduced to a locally plane-parallel transmission problem; it was
used by Blaes et al. (1989) to study how quakes with
or||(k x Byg) excite Alfvén waves in the magnetosphere. It is
easy to see that quakes with orjf(k x B,,) emit magnetosonic
modes. Polarization of the emitted wave is set by the electric
field in the crustal oscillation, E =By, X v /¢ (where
v = — iwdr), and its type is determined by the orientation of
E relative to the vector n =k X By,. It is a pure Alfvén mode if
E 1 n and a pure magnetosonic wave if E||n. The condition for
magnetosonic excitation E - n = 0 may be stated as

(Bog % v) - (k X Byg) = (Bog - V) (B k)= 0. (3)

The transmitted quake power is partitioned between the Alfvén
and magnetosonic modes as E,f/Er%S = tan*y) where ) is the
angle between the quake motion v and the horizontal
component of the magnetic field Bt},‘g.

A complete picture of wave emission is complicated by
several additional effects:

(1) In addition to the vertical (radial) wavevector k,, crustal
waves have a horizontal component k;, (Bransgrove et al.
2020) and excite nonradial magnetospheric waves. As an
example, Yuan et al. (2020) examined wave generation in
a uniform oblique B\, attached to a horizontal conducting
surface perturbed by axisymmetric horizontal shear. They
showed that the shear excites a mixture of Alfvén and
magnetosonic waves. These calculations should be
extended in the future to include a realistic density
profile of the crust.

(2) Waves of lower frequencies w < ¢/R, develop at larger
radii. Ry~R,+c/w. In the region R, <r<R,, the
magnetosphere adjusts to the surface oscillation in a
quasi-static manner and, effectively, the magnetospheric
footpoints in the wave are relocated from the stellar
surface to the sphere of radius r~ R,,. The quasi-static
deformation of the magnetosphere at r < R,, differs from
the crustal deformation and needs further investigation of
its compressive component that could drive a small-
amplitude magnetosonic wave. For example, a strongly

twisted magnetosphere in axisymmetric equilibrium
responds to additional surface shear 9yv,, = 0 by inflating
at r <R,, (Parfrey et al. 2013).

(3) The twisted magnetospheres near magnetars have sig-
nificant spatial variations of the toroidal magnetic field
component By, so vector n =k x B,, can change its
direction on a scale comparable to 7. Then, any attempt to
launch a pure Alfvén mode at r~Ry ~c/w (for
w<c/R,) will inevitably generate a mixture of the
Alfvén and magnetosonic waves because the two linear
modes have different refraction indices c¢/v,, and will be
unable to adiabatically track the changing local n until
propagating to r > ¢/w.

Pure Alfvénic excitations occur in the simple case of
axisymmetric quakes with azimuthal v and an untwisted
background magnetosphere (then k,=0 and Bgﬁg =0, so
n ||[v). Even in this case, the emitted Alfvén waves can convert
to magnetosonic waves, because of nonlinear effects. Alfvén
waves have vg||Byg, so they are ducted along the closed
magnetic loops, and the nonlinear conversion peaks when the
wave reaches the top of the loop (Yuan et al. 2021). In addition,
at later times, the bouncing Alfvén waves trapped in the loop
develop a nonlinear turbulent cascade, which emits magneto-
sonic waves (e.g., Li et al. 2019).

In addition to sudden quakes, the crust may flow plastically
and slowly twist a magnetospheric flux bundle to an instability
threshold. Three-dimensional simulations of this process
demonstrate that relaxation of the unstable flux bundle
generates fast magnetosonic waves in the magnetosphere
(Mahlmann et al. 2023).

1.3. Shocks

In the limit of high oy, the emitted magnetosonic waves are
equivalent to electromagnetic radio waves propagating without
coupling to the magnetized plasma: the oscillating E_1B,
drives a tiny electric current, negligible compared to the
displacement current 0,E /4. Therefore, compressive pertur-
bations of the magnetosphere are usually assumed to propagate
as vacuum electromagnetic waves superimposed linearly with
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Figure 2. A magnetosonic wave with wavevector kL By, at two oscillation
phases: when the wave field B,, = B — By, is aligned with By, (left) and
antialigned with By, (right). The wave electric field E,, =E is always
orthogonal to By,,. The quantity B? — E? reaches zero when B,, = — By /2. At
this moment, the plasma drift speed v =cE X B/B2 approaches ¢, so it
experiences ultrarelativistic acceleration in the direction opposite to the wave
propagation direction.

the background field By, and freely escape.” The linear
propagation would imply no shock formation.

However, this simple picture is safe only for low-amplitude
waves, |E| < By, i.e., near the neutron star where By, is
strong. As the wave expands to larger radii r, the dipole
background field decreases as Bygocr ° while the wave
amplitude E, decreases as r~'. Their ratio E()/Bbg grows as
* and eventually approaches unity. It is easy to see that the
linear propagation of an oscillating wave becomes impossible
when

2Eqsina > Byg, @)

where « is the angle between By, and the wavevector k.
Indeed, the linear superposition of By, with the vacuum
electromagnetic wave (E,, = E and B,, = B — B,,;) gives

B? — E>=B;, + 2By, - B,, ®)

where we used E2 = B2. MHD description breaks if B> < E*.
This occurs when the condition in Equation (4) is met.

For instance, consider the equatorial plane of a dipole
magnetosphere. Here, a spherical wave front propagates with
k1B,, (a«=m/2) and the magnetic field perturbation B,
oscillates along By, (Figure 2). The linear superposition wave
+background gives minimum B> — E? at By, = Bypg — Ej,
reaching B> — E>=0 when Ey = By /2. Note that the glasma
oscillates with the drift speed v/c = E x B/B* and E* — B’
corresponds to |v| — ¢. This implies a runaway growth of the
plasma kinetic energy, and the MHD wave can no longer be
approximated as a vacuum electromagnetic wave. Such energy
conversion is a general effect of E* — B? (it also happens in
Alfvén waves; Li et al. 2019, 2021; see also Levinson 2022 for a
recent discussion). In magnetosonic waves, energy conversion
prevents reaching E* = B* by steepening the wave into a shock.
The appearance of shocks at E = Bp,/2 was previously noted in
the context of waves in pulsar winds (Lyubarsky 2003). A fully
kinetic (local-box) particle-in-cell simulation of a magnetosonic
wave propagating through a decreasing By, has recently been
performed by Chen et al. (2022). Their simulation demonstrates

3 It was also proposed that QED effects in ultrastrong B, could steepen a

high-frequency wave into a shock (Heyl & Hernquist 2005). Such effects are
absent for kilohertz waves.
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the sudden steepening of the wave into a shock when E-
approaches B,

Waves consisting of half oscillation with By, - By, > 0 and no
part with B, - B,,; < 0 would never face the 2 — B limit. One
may think that in this case the wave avoids shock formation.
However, as explained below, such half-waves also steepen
into shocks, although this occurs gradually, at a larger radius.
This gradual steepening creates a forward shock, launching an
accelerating blast wave that expands far beyond the
magnetosphere.

1.4. This Paper

Since shocks appear to be a generic outcome of magneto-
sonic perturbations, a few questions arise: How strong are the
shocks? What fraction of the original wave energy gets
dissipated by the shock? What fraction of the dissipated energy
is radiated?

These questions can be answered by solving a well-defined
MHD problem with a simple initial condition: launch a
spherically expanding magnetosonic wave with an initial
amplitude Ey/Bn, < 1 so that initially (at small radii) it
behaves as a vacuum electromagnetic wave. Then, track its
expansion through the dipole magnetosphere and examine how
it steepens into a shock and propagates afterward. This problem
is solved in the present paper. We will show that the plasma
Lorentz factor v in the magnetospheric shocks caused by
E* — B? reaches huge values ~ Obg, likely making them the
strongest shocks in the Universe. Therefore, we call them
“monster shocks.” They differ from normal collisionless
plasma shocks because they are highly radiative: we will show
that the plasma approaching the monster shock radiates its
kinetic energy before forming the downstream flow.

Tracking the evolution of magnetospheric waves with shock
formation presents an interesting technical challenge. The
magnetization parameter op, at radii of main interest can
exceed 10'” (Section 2.1). The large Opg 18 usually replaced by
Opg — 00, Which corresponds to taking the force-free electro-
dynamics (FFE) limit of MHD. However, FFE cannot describe
shock formation. FFE neglects plasma inertia, so its wave
modes propagate with exactly speed of light and cannot
steepen.

Since FFE does not provide a suitable framework, one has to
examine the problem using the full MHD equations. The
equations state conservation of energy and momentum and
could be solved numerically with customary discretization
methods. However, in practice such methods fail at high
magnetization o (most existing MHD codes have to keep
0 <100 to avoid numerical issues). We take a different
approach: we solve the MHD equations along characteristics. It
provides an efficient method for both finding and under-
standing the solution at arbitrarily high oy,,. The solution is
easiest to find for short waves, with wavelength A < r.

Calculations in this paper are performed for axisymmetric
wave packets (9, =0). Setting 9, =0 should also be a good
approximation more generally for waves far from their source,
where wavevectors k are radial. The wave evolution along the
radial ray is controlled by the local By, encountered along the
ray; we are interested in the simple case of a dipole By,g.

Formulation of the problem and our method for solving it are
described in Section 2. Section 3 explains how we track shocks
in MHD waves and then Section 4 presents the full numerical
simulation, performed for an equatorial wave in a dipole



THE ASTROPHYSICAL JOURNAL, 959:34 (25pp), 2023 December 10

magnetosphere. Remarkably, the problem also admits a
complete analytical description, which is given in Section 5.
Emission from the monster shock is discussed in Section 6. The
results are discussed in Section 7.

2. Nonlinear Magnetosonic Waves

MHD fluid is described by the plasma mass density p,
velocity v = ¢3, magnetic field B, and electric field E. We wish
to investigate magnetosonic waves launched in a dipole
magnetosphere and find their nonlinear evolution. The term
“nonlinear” here means that (a) the wave oscillation is not
necessarily small compared to the background field By, and
(b) the wave can be strongly deformed during its evolution and
form shocks.

2.1. Unperturbed Background Magnetosphere

The wave will be shown to experience strong evolution at
radii » much greater than the neutron star radius R, ~ 10° cm,
but well inside the light cylinder R; ¢ (all known magnetars in
our galaxy have Ry c > 10" cm). Our calculations below use
the background at radii R, < r < Ry ¢, the magnetosphere is
approximated as dipole, and its rotation is neglected. Thus, for
simplicity, we neglect any twists of the outer magnetosphere,
i.e., assume BY, ~ 0 at radii of interest. The electromagnetic
field of a static dipole magnetosphere is

2 cos b sin 0
e, + B e, (6)

r r

Epy=0, By =

where (e, ey, ey) is the normalized basis in spherical
coordinates r, 6, ¢ with the polar axis along the magnetic
dipole moment p. Magnetars have p ~ 10% G cm?.

Plasma density in the unperturbed static magnetosphere will
be approximated by

p _ Nm
bg PR

Vo = 0, ™)

where the dimensionless parameter N = ny, 13 is approximately
constant with r (Beloborodov 2020); m is the particle (¢*) mass,
and npg = prg/m. The lowest N ~ 103! 1155(Q/rad s71) is set by
the Goldreich-Julian density. The more typical N for magnetars
is much higher, A" ~ 1037, due to strong electric currents near the
star accompanied by e® pair creation with a high multiplicity
(Beloborodov 2021a).* The magnetization parameter of the
background plasma opg = Bbzg / 47prg62 is

D 2

10,2 A/~1.-3 H
Ope ~ = ~ 1002 N3, D=—E
&3 3 ’ 47 Nimc?

The magnetosphere at > 10’ cm is populated with mildly
relativistic ¢, as they are decelerated by drag exerted by the
magnetar radiation (Beloborodov 2013). We neglect these
background motions; thus, the plasma energy density (includ-
ing rest mass) in the unperturbed background ahead of the
wave is approximated as pbgcz.

®)

4 The created pairs flow along the magnetic field lines with a speed controlled
by the magnetar’s radiation field (Beloborodov 2013). In the outer closed
magnetosphere, the plasma accumulates and annihilates at § &~ 7/2, in a layer of
high ¢* density controlled by annihilation balance and the thickness of the
annihilation layer. The e* outflow terminated by the annihilation sink at § = 7/2
may have N~ 1037 at all 6 except the thin equatorial layer.

Beloborodov

2.2. Axisymmetric Waves

We will examine the radial expansion of an axisymmetric
magnetosonic wave. Its electric field E is perpendicular to both
B,, and the (radial) propagation direction, so vector E
oscillates along ¢. It is convenient to define scalar E by

E = —Ee,, =—E, ©9)

The wave magnetic field is perpendicular to E and oscillates in
the poloidal plane,

B = B,e, + Byey. (10)

Any axisymmetric wave can be described by a toroidal
electromagnetic potential,

A=A(r 0e, CcE=-0A, B=V xA. (1)

This class of fields includes the static dipole background as a
special case, with

sin @

Aps(r, 0) = —— e, (12)

Charge density remains zero in magnetosonic waves,
4mp, =V -E =0. Electric current density j satisfies the
Maxwell equation 47j=— 0,E + ¢V x B. In axisymmetric
waves, the current is toroidal:

anj = {or + 10,080 - 9181 e (13)
r
Note also that E are B are related by induction equation

0B = — ¢V X E (the identity 9,V x A =V x 0A):
¢ Og(E sin )
sin 6 '

As a concrete example, we will consider a wave launched
with an initial sine profile

0(rBp) = —c 0,(rE),  O,(rB,) = (14)

r

E (&) = Epsin(wf), E=1— = (15)

One full oscillation corresponds to 0 < £ < A/c=27/w.

2.3. Short Waves (N < 1)

The condition A< r considerably simplifies the wave
propagation problem. In particular, it leads to a simple
expression for current j, which will be used in Section 2.4 to
describe the wave—plasma interaction.

Let us define the wave potential A, =(A — Apgles. It
determines the wave fields and j:

By, =B — By, =V x Ay, cE = —0Ay, (16)

j = [0,0E) + ¢ 8,(rBY) — ¢ 8yBL1—2-. (17)
4rr

For short waves, it is helpful to view fields as functions of ¢, &,
0 instead of ¢, r, 6. The fast oscillation then becomes isolated in
the coordinate &. Differential equations can be rewritten in
variables ¢, £, 0 using

8t|r = ar|£ + aflt’ 8r|t = _a§|t- (18)
Using the #-component of induction Equation (14),

Oc(rE); = 0,(rBY)¢ + Oc(rBY):, (19)
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we rewrite Equation (17) as

Jj = [O(E + rBY)e — ¢ ;B! %. (20)

In short waves, the oscillation of A,, with £ is much faster than
its variation with ¢ or 6 at fixed & Hence,

BY = Cl—r Oc(rAy) > By, (1)

as By, does not contain the large derivative 0¢(rA,,). Note also
that rE = 0:(rAy); + 0;(rAy)e, and

rE — rBY = 1 Oi(rAy)e < rE. (22)
c
Therefore, the expression for j simplifies to
O,(rE
j= M e (23)
27r

There is also a useful relation between plasma density n = p/m
and velocity v in short waves. When electron—positron pair
creation is negligible inside the wave, n and v satisfy the
continuity equation Oz + V - (nv) = 0. In the short-wave limit, it
simplifies to

F: = (¢ — v))h = const = cnp,. (24)

F¢ is the particle flux through the surface of & = const. It is
uniform across the wave packet, and evolves as the packet
propagates to larger radii: F; = cnpgocr—>.

2.4. Wave—Plasma Interaction

We wish to find the evolution of the wave profile E(§). It
evolves because the electromagnetic field exchanges energy
and momentum with the plasma oscillating in the wave. The
plasma motion is described by four-velocity,

1
u' = (v, uw), u=n03, =1 4+ w=—,
(v, w) B s
(25)
where 3=v/c. The equation of motion is
pc? du =j x B, (26)

dt

with the derivative d/dr taken along the fluid streamline:
d/dt=0,+v- V. Taking the scalar product of both sides with
B3, and using E + 3 x B =0, one obtains

Y g @7)
dt

This equation expresses energy conservation. Note that using
pc* = nmc? in Equation (26) assumes a negligible contribution
of internal (thermal) energy to the plasma inertial mass. As
explained below, this is a reasonable approximation, because
significant wave—plasma interaction happens where the plasma

has a low temperature and a high ~.

Substitution of Equation (23) into Equation (27) gives
E dv dvy

O(E) = pc* =L = p, c? =L, 28
3y D) = 6% T = prc T (28)
where we used d§=dr—dr/c=(1—(,)dt along the fluid
streamline and p(1 — 3,) = pp, (Equation (24)). The derivative

Beloborodov

dry/d¢ written out in coordinates x“ = (¢, &, 0, ¢) takes the form,

d_’y — ﬁaﬂvz 8[’}/ +3§7+ ﬂ
¢ d§ 1 -5 r(1 =5y
One might expect the terms with Oyy and Oy to be small
compared to Ogy by the factor of ~\/r< 1. However,
nonlinear evolution can make the term with J,y important.
As shown below, this happens when ~° 2 Obg-

Now we can write the energy equation in its final form:

r0ry + BoOyy
r(l — 8,

where derivative 0, is taken at fixed &, 0, ¢, i.e., along the radial
ray r = ct + const. This equation connects the evolution of £
(t, & 0) and (1, &, 0).

Equation (30) has a simple intuitive interpretation. Multi-
plication of both sides by an infinitesimal 6¢ gives

D,6&le = —Nemc26r. 31)

(29)

0,(rE?) = —47rr2pbgcz[65’y + ], (30)

Here, N; = 4nr’F; is the isotropic equivalent of the particle
flux Fg, and 6y = (dy/d&)é¢ is the change of y along the fluid
streamline as it crosses ¢&; it determines the energy gain of the
plasma crossing 6¢ per unit time, Nemc?6y. The quantity
8E = ¢ r?E? 6¢ is the electromagnetic wave energy (isotropic
equivalent) contained in the infinitesimal part 6 of the
wave profile. This interpretation of 6& is consistent with the
energy density Uy = (E> + B2, + BZ,)/87 ~ E?/4x for the
electromagnetic wave in the short-wave limit.

Thus, Equation (30) merely states that the wave profile *E*(€)
evolves by exchanging energy with the plasma. The plasma
Lorentz factor 1(£) oscillates, and E(£) becomes deformed because
the plasma passing through the wave receives energy at some &,
and returns it to the electromagnetic field at another &. E(§) is
systematically reduced where dvy/d{>0 and increased where
dry/d¢ < 0, leading to the steepening of E(¢).

The FFE limit of MHD would correspond to setting p,, — 0,
so that the right-hand side (RHS) of Equation (30) vanishes.
Hence, the FFE solution is ¥E = const at £ = const. This wave
excites no electric currentj, as can be verified using
Equation (13), and so the FFE limit gives a simple vacuum
wave superimposed on Byg.

Equation (30) is sufficient to find the evolution of MHD
waves if they drive pure radial plasma motions, as happens in
the equatorial waves described below. Then, energy conserva-
tion (or the radial component of momentum Equation (26))
contains the complete dynamical information. Wave propaga-
tion outside the equatorial plane (8 = 7r/2) involves additional
f-motions governed by the #-component of Equation (26).

2.5. Equatorial Waves

The main features of shock development will be shown by
tracking waves at @ =7/2 that are symmetric about the
equatorial plane. Symmetry implies #’=0 and B” = 0 at
0 =/2. The MHD fluid then oscillates with velocity

E x B
16 e —B2 e /6 er. (32)
We will use the following notation:
6= 05, B = By, E = —E, (33)
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These definitions imply E* = E*, B> =B? at § = 7r/2 while E,
B, and 3 may be positive or negative. Note that

E 5 B?
=—, = — 34
g 2 Ve m (34)
Equation (30) for the equatorial wave becomes
252 2, 2 Iy
0,(r’E?) = —4nr PgC Oey + 5/ 35)

Recall that the partial derivatives 0, and O are defined in
variables (#, &) and can act on any function E(t, &), (¢, &), or
r(t, &) = c(t — £) entering Equation (35).

The equatorial wave problem can be reduced to one
unknown function of ¢, & Indeed, any short-wave packet
propagating into an initially unperturbed plasma has a useful
feature: fluid compression n/ny,, at any point in the packet is
related to the local speed 3 (Equation (24)). The magnetic field
is frozen in the fluid and compressed by the same factor, so

n_r _B

=1 -p)" (36)

Npg Pog bg
The electric field E = 3B can be expressed as
o Bbgﬂ
1-03
Thus, all MHD quantities in a short wave are functions of [,
and Equation (35) can be recast so that it contains only

derivatives of v. This requires expressing J,(rE) in terms of
dsy. Differentiating Equation (37), we find®

(37

I"Bbg 3,7
(1= By’
where we used O0,(rBpg)¢ = ¢ d(¥By,)/dr = —2cBp, and

dy=~’3dB. Then, substituting Equation (38) into
Equation (35), we find

O/(rE) = —2cE + (38)

20'b 1 4c Ob, 62

Note that the term (1 — 3)~! in the bracket (brought by 9,y on
the RHS of Equation (35)) is negligible only if 27° < Opg- This
condition corresponds  to  (0,Up): < (0,Uy):  where
Up = ynmc* and U, = E* /4.

A more convenient variable related to (3 is the compression
of proper density p = p/~,

K= =—=—= |— 40)
Pog Bbg Obg

where p and B are measured in the fluid rest frame, and

o= B*/4rpc. Note that —1<3<1 corresponds to
— 00 < Kk < 00 . Equation (39) rewritten in terms of x becomes

(Zabgn3 + %)8,% + Ok = 2 Obg K2 (K* — 1). 41
r

5 The short-wave approximation for E(3) (Equation (37)) is equivalent to

E=B,. It can be used when expressing O,E|¢ in terms of J;3|c. Note,
however, that setting E = B,, would not be safe in expressions containing the
large derivative Og. In particular, 9¢(B,, — E) in short waves is of the same
order as O,E .

Beloborodov

Here, in the coefficient of 0,x we neglected H2/2 < 20’bg,‘£3,
using

1 2
ZUbgn3 + th

= 201, K3

1+(9( ! )l+l. 42)
Obg R 2

The equatorial wave evolution will be found if we solve
Equation (41) for x(f, &). This first-order partial differential
equation is linear in the derivatives 0,x and Ox, and can be
solved using the method of characteristics.

2.6. Characteristics
One can rewrite Equation (41) as

ds | _ c(k — k™
dt lev 11+ (doper®)

(43)

where the derivative dr/dt is taken along curves C*
(characteristics) defined by

€ __ 2

. E— 44
dt 4Ubg/€3 + 1 4

The characteristics £ (f) can also be described by their radial
speed,

_lde A AR

B c dt dt dopgr® + 1

(45)

In an accompanying paper we give an alternative derivation
of the wave evolution equation generalized to relativistically
hot plasmas, and discuss two families of MHD characteristics
C™ propagating with radial speeds®

+ fs
po= LD (46)
1 £ G5
Here, [, is the wave speed relative to the plasma (the
“magnetosonic speed”). In a magnetically dominated plasma,
(s is close to unity. In particular, for a cold plasma,
62 g _ Ho—bg

= = . 47
1+ o 1 + Kopg

The FFE limit corresponds to o, — 0o and 3; — 1. In this
limit, Equations (43) and (44) simplify to dx/d Inr = k — k™!
and dr, /dt = ¢ (<d€,/dt=0), and give the solution

k=41 + 2Kr2, (48)

where K = const along C*. The corresponding solution for E is

E— 1K

r

(FFE). (49)

2.7. Shock Formation

Significant MHD corrections to FFE arise if o= ko drops,
ie., if the plasma experiences strong expansion in the wave,
k< 1. This occurs where the plasma is accelerated as E-
approaches B®. Note that strong expansion also implies strong
adiabatic cooling. Thus, shock formation is expected in the part of

6 ¢ did not explicitly appear in our derivation above. For short waves,

integration of MHD equations along C™ is just another way to get the relation
between n, B, and @ (Equation (36)), and the wave evolution problem is
reduced to integration along C™.
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Figure 3. Schematic illustration of the flow of characteristics C* in FFE and
MHD, shown in the ¢ plane. Each C* has its initial position & and carries a
value of K (§;) = rE/u determined by the initial wave profile. In the FFE limit,
the characteristics are vertical straight lines; they propagate with speed 3, = 1,
which corresponds to d¢, /dt = 0. The MHD correction to FFE implies d¢, /
dt=1—(,=0, so the C" characteristics are no longer static in &; they
become significantly bent in the region where E> approaches B, leading to the
formation of a shock (red curve).

the wave with large 7, small x, and a reduced temperature. The
process of MHD shock formation is illustrated in Figure 3. The
shock occurs where the characteristics cross, bringing different
values of ( to the same location and thus creating a discontinuity.

We consider waves emitted at sufficiently small radii where
By, far exceeds the wave electric field E, and the plasma
oscillates with small |3] <« 1, which implies a negligible
change in plasma density, |k — 1] < 1. At the small radii,
characteristics propagate with speed 3, =1 — O(aggl), and
FFE is an excellent approximation. In particular, the wave
initially propagates with negligible distortion: each C*
characteristic satisfies d¢,/dr=0, i.e., keeps a constant
coordinate {=r—r/c=¢;, and one can define an initial
(undeformed) profile of E(§;). More precisely, the profile of
rE(£) is static at small r while the normalization of E(§) is
decreasing, E Pl

This initial profile is the only parameter of the problem other
than the magnetospheric parameters p = r3Bbg and D = r3abg.

Beloborodov

It is conveniently described by

K(¢) = E (set at small r). (50)
7

We will calculate the wave evolution by tracking the C*
characteristics, each described by its initial position & and
K(&). Note that K(&;) may be positive or negative. Character-
istics with K < 0 will develop « < 1, leading to monster shock
formation.

It is easy to see that even an arbitrarily high oy — oo does
not save the MHD wave from breaking. Indeed, consider a
wave with E oscillating between +E,. As the wave expands
from small radii, where E(r) < Byg(r), the ratio EO/Bbg x
grows and eventually approaches 1/2 at some radius R,.. At
this moment, the minimum E = — Ey = — By,/2 and

E=-B, (=-1, Kk — 0. (G20

An arbitrarily high oy, does not prevent the decrease of
0 = KOpg, Which reduces the speed of C™" characteristics,
dr, /dt < c. The characteristics become bent and eventually
collide, forming a shock (Figure 3).

A formal proof of shock formation is provided by the
solution of the coupled Equations (43) and (44) for x(f) and
E (D orry(t)=c(t— &,.(0) (Appendix A). Numerical examples
will be given in Section 4.

¥ — 00,

3. Method for Tracking Shocks
3.1. Shock Strength

The plasma speed [ is discontinuous at the MHD shock
because the upstream and downstream characteristics bring to
the shock different values of 3: 3, = (34 (subscripts “u” and “d”
refer to the immediate upstream and downstream of the shock).
The corresponding jump in the proper density characterizes the
shock strength,

Pa _ Ka _ 2w+ Bo) )
Wl + By)

Pa K
It is related to the Lorentz factor of the upstream plasma
relative to the downstream, I'yq =Yy Ya(l — BuBa)- A similar
expression for I'yq holds in the shock rest frame K'. To
distinguish between different frames, dynamical quantities
measured in the shock frame will be denoted with a prime, and
quantities measured in the drift frame K (in which E = 0) are
denoted with a tilde. Using 7/, 7/, > 1, one can write the

q

continuity of mass flux as 7,7, ~ 77}, and find

1~ / 1 1
Tya ~ —(7—/ + lf) ~ —(q + —). (53)
2\va M 2 q
3.2. Shock Speed

We can track the evolution of waves with shocks if we know
the shock Lorentz factor relative to the downstream plasma
Yshja- The standard jump conditions for perpendicular relati-
vistic magnetized shocks give 7,4 ~ /oy > 1. The shock is
collisionless and mediated by Larmor rotation, so the jump
normally occurs on the Larmor scale, as verified by detailed
kinetic simulations (Sironi et al. 2021). Dissipation of
the upstream kinetic energy occurs through gyration and
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Figure 4. Lorentz factor of the shock relative to the downstream plasma as a
function of the radiative parameter x (solid curve, calculated as explained in
Appendix B). The dashed line shows the analytical result at y > 1
(Equation (54)).

thermalization enabled by the instability of coherent gyration in
the downstream.

However, the standard picture of Larmor-mediated shocks
can fail for the monster shocks, where particles experience
extremely fast radiative losses. The ultrarelativistic plasma flow
entering the shock is subject to radiation reaction in response to
curvature in the particle trajectory. The upstream flow may
experience a strong radiative drag before it completes one
Larmor rotation and joins the downstream.

The resulting jump conditions can be evaluated by going
beyond the MHD description and examining microphysics of
the shock transition on scales smaller than the particle Larmor
radius. This is done in Appendix B, where we calculate the
structure of the flow across the jump numerically and also
derive an approximate solution analytically. The result is
shown in Figure 4, and the jump condition may be stated as

Yonia = (1 + )7 /oy, (54)

which smoothly matches the results at y < 1 and x> 1. The
parameter x is defined in Equation (B9) in terms of the
upstream Lorentz factor 7(] and magnetic field B] measured in
the shock frame. Using B, = 7/, B, and 7; = qvg = ¢p)g> ONC
can express it as

UTEuq 373h|d

=—— 55
X dre 03/2 (53)

where B, = By and 0, = k,0pe. Equations (54) and (55)
can be solved for g q and X, which gives
UTBbg “fd

N —— (56)

4/7
X
47T€Ii

This expression is found for x > 1, and the solution for x < 1
is not needed, as its value makes no difference for 7, 4 ~

I O RENC N
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The shock Lorentz factor in the lab frame is
Yoh = YshjdYa (1 + Bsnja Ba) = Yshja Kd> (57)

where we used 1+ GgyaBa =~ 1 + B4, because Yghja > va. The
shock motion in the {-coordinate is described by d&, /dt =

1 — Ba &~ (272)". Thus, we find

1/2
e
dé¢ 1 —_— x > 1
—osh — & (UTBbgaﬁgnzl) (58)

Qopgkukd) ! x < L.

There is one caveat in the derivation of this result: we
neglected that the shock can generate an electromagnetic
precursor, which interacts with the upstream flow and may
reduce its Lorentz factor v, (Section 5.5). Note however that
d&g/dr is independent of k, ~ (nyu)*1 when x > 1. Further-
more, the shock speed will be dynamically regulated to a value
independent of , and kg when k4 <1, as explained in
Section 5.4.

3.3. Tracking Waves with Shocks

The MHD wave evolution is controlled by the flow of C*
characteristics in coordinate £ = ¢ — r/c. This flow is described
by Equations (43) and (44). They determine both the shape of
characteristics and the values of «, 3, and E on each ct.

After caustic formation, the born shock separates the ct
flow into two regions: upstream and downstream (ahead and
behind the shock). The characteristics propagate with different
speeds in these regions and collide at the shock. The colliding
characteristics C;” and C; are terminated and disappear from
the wave evolution problem. The location of C,f-C; collision
moves with speed (g, determined by Equation (58). The
shock always propagates faster than C, and slower than
Ca: By < Ban < B4

Equations (43), (44), and (58) give a closed description for
MHD waves with shocks. The cold approximation 75 =0
used in Equations (44) turns out to be sufficient for the
kilohertz waves studied in this paper. The accurate ~y; < 0o is
important in the pre-shock region where s drops so much that
the C* flow experiences significant deformation d¢,/dt
(Figure 3). This region is also coldest (due to adiabatic cooling
accompanylng the drop in k), and so fy = 0. In the post-shock
reglon &> &, fast radiative losses also allow one to use
7 ~ o. Here, the evolution is 51mple anyways, not sensitive to
the precise ~,: the post-shock 7, is so high that C* remain
practically static in the £ coordinate during the main shock
dissipation phase r < 3R...

3.4. Numerical Implementation

The described method for calculating the wave evolution is
easily implemented in a numerical simulation. When launching
a wave, we set up an initially uniform grid in & of size N, and
then use the N, characteristics to track the wave evolution in
the & coordlnate In the simulations presented below, we used
N, = 10°. At each time step dr, the displacement d¢, of each
characteristic and the change of its « are determined by
Equations (44) and (43). After each time step, the code
examines the updated positions or the characteristics and
checks for their crossing to detect shock formation. Once the
shock is born, the code begins to track its motion according to
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Equation (58) and also check at each time step which
characteristics terminate at the shock.

The simulation thus follows the entire evolution of the wave,
from its initial deformation-free propagation at r < R, to shock
formation at r ~ R to subsequent evolution with the embedded
shock. We use an adaptive time step to resolve fast changes in
MHD quantities that occur near R,.. Note also that the density
of characteristics drops ahead of the shock, where x is lowest
and d¢, /dt is highest. To maintain sufficient spatial resolution,
we use adaptive mesh refinement in & without changing the
total number N of active (not terminated) characteristics. This
is achieved by launching new characteristics in the region of
low resolution while discarding the characteristics terminated at
the shock.

The calculated £, (f) and k(f) along each C* determine the
wave profile k() at any time ¢. Thus, we find the evolution of
the wave profile.

4. Sample Numerical Models

As a concrete example, consider a wave with the initial
profile E () = Epsin(w§;). Recall that E o< r~! along each
characteristic C* until it develops an extremely low compres-
sion factor x where B> — E* approaches zero. The initial profile
of E sets the parameter K = rE /. on each C™,

rEy(r)

K (&) = Kosin(w§y), Ko = (59)

The wave trough E = —E, approaches —By,/2 (so E?
approaches B?) at radius R... It is related to K, by

R« ~ ! (60)

V2K,
Radius R, is also related to the isotropic equivalent of the wave
power L ~ cr2E2/2 and the magnetic dipole moment of the
star p:

2\1/4 172
R, = (%) ~ 14 % 108 233 o, 61)

8L Lyt

The background magnetization parameter at R, is determined
by Equation (8),
(2L34
0% = pg(R) &~ 3.6 x 109 22 (62)
37

Our sample models assume the plasma density parameter
N = 10% and 10*7 (Section 2.1). In both models, the magneto-
sphere has dipole moment g =10*Gecm’. The wave has
frequency v=w/2r=10 kHz and initial power L=
10" ergs'. The simulation results are shown in Figure 5 and
may be summarized as follows.

The wave travels with no distortion until it comes to R,
where E* nearly reaches B>. The plasma at this point develops
an ultrarelativistic drift with u ~ —(1 /2)4/Bbg/(B — |E]),
leading to immediate shock formation. In particular, in the
model with A= 10%, the plasma four-velocity upstream of
the shock reaches u,~ — 105, and the shock compression
factor g = kq4/k, exceeds 10*. The shock has a large radiative
parameter x > 1 (Figure 6). An analytical derivation reprodu-
cing the numerical results will be given in Section 5. We will
show there that the Lorentz factor of the accelerated plasma
scales as v o< L/Nv, and our second sample model (with

Beloborodov

N ~ 10%7) gives so high  that the MHD description breaks
and the plasma dynamics needs a two-fluid description.

As one can see in Figure 5, the wave profile E(&) develops a
plateau of E~ — By,,/2, which corresponds to E*~ B> The
small variation 6F along the plateau implies that the plateau is
formed by stretching a small interval 6¢ of the initial profile
E(€). The stretching is clearly demonstrated by the C* flow.
The part of the wave profile where E* approaches B develops a
low #%= (B — |E|)/Byg and here d&,/dt steeply increases
(Equation (44)). As a result, characteristics with E?~B?
swiftly “fall” toward the shock, with acceleration, like a
waterfall. This effect protects the MHD wave from breaking the
condition E* < B*>. Where  becomes so low that /13abg <1,
the C* motion in ¢ saturates at d€, /dt~?2. The fast, large
displacement of C" in & creates a nearly perfect plateau of
E~ — B~ — Byy/2, with a small difference B — |E| ~ 1By,

As the wave propagates to larger radii and Bygo<r
decreases, the plateau level E = — B,,/2 moves up and away
from the original minimum of the sine wave (E = — E,;)), and
hence its width grows, so the plateau is forced to occupy an
increasing part of the wave profile. At radii »> R,, where
Bbg/ 2E) = RX2 / r? < 1, the plateau approaches E =~ 0, i.e., the
part of the wave with E < O becomes erased. As a result, the
wave loses about half of its original energy.” Waves with
multiple oscillations lose even more than half: one can see that
the shock formed in the first oscillation at &= 3w/2w
eventually enters the second oscillation &> 27/w before
stalling there, so the final plateau of E =0 occupies slightly
more than half of the oscillation.

The plasma speed 3= E/B = E/(By, + E) is positive where
E > 0 and reaches maximum at the wave crest. This maximum
[ approaches unity at r > R,.. Here, the plasma speed relative
to the wave, 1 — G~ Byg /E, becomes small, increasing the time
it takes the plasma to cross the first half of the wave oscillation,

T/w dé‘ 7‘2
Tcross :L m ~ wRXZ

The short-wave approximation f..ss << r/c holds throughout
our simulation. The simulation did not follow how the plasma
eventually becomes trapped in the wave, feoss > 7/c;this
occurs later, when the wave propagates to larger radii.
Besides the monster shock launched at £ ~ 37/2w at radius
R.., the simulation shows gradual steepening of the wave at the
leading edge £ = 0 (and at £ ~ 27/w). Atradius Rg =~ 10R,, the
wave launches a forward shock as shown in Section 5.6.

(r > R)). (63)

5. Analytical Description

The wave evolution demonstrated by the numerical simula-
tion may also be derived analytically. Two key dimensionless
parameters of the problem are

wRy 5, mc* N
= % ——

¢ ~ 8 x 1078 N37L3'u, (64)

¢ Oy

o1 By oWy e —
n= STW =210 8 g2y, (65)

where B, = By(R,) and w, = eB, /mc.

7 Maximum dissipation fraction of the shock is a;‘ ~ ¢/wR, < 1. This small
factor is compensated by the large ratio of the traveled distance ~R, to c¢/w,
resulting in strong dissipation.
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Figure 5. Left: evolution of the wave profile E(€) and (), where £ =t — r/c. The wave has frequency v = w/27 = 10 kHz and initial power L = 10% ergs™'; the
magnetosphere has magnetic dipole moment x = 10°* G cm?® and density parameter A" = 10%°. Five snapshots are shown, when the wave packet reaches r/Rx =09
(black), 1 (red), 1.1 (green), 1.5 (blue), and 3.7 (magenta). The electric field E is normalized to E, which would be the wave amplitude if it propagated in vacuum. The
plasma Lorentz factor -y is related to the proper compression x by v = (1 + K%) /2k. Black dotted curves show the analytical result for x(¢) (Equation (78)). The
simulation neglected the shock precursor effect, which can reduce « in the interval 37 /2w < £ < &, (Section 5.5). Right: same wave but now launched into the
magnetosphere with A" = 10%. Here, x becomes extremely small, breaking the MHD description and transitioning to a two-fluid regime. We argue in Section 5.3 that
the two-fluid calculation will likely give the same evolution of E(£) and () as found in the MHD model.

5.1. Shock Formation: Caustic in the C* Flow

Each C™ starts at small radii with £, = &, and one can think
of & as a Lagrangian coordinate in the flow of characteristics
& — £,.(&, ) with initial condition £,(&;, 0) = &. The C* flow
satisfies Equation (A11) found from Equations (43) and (44):

_ (k=1 _
=6t 8¢cDK%k G+

v—1
4¢DK?’

(66)

where D = oy, = UXRX3 . The caustic in the C* flow (birth of
the shock) appears where (0¢, /0§;), vanishes. This means that
characteristics carrying different values of K begin to cross,
creating a discontinuity. This happens at some §; = £ and time
t=t., which may be derived analytically (Appendix A). We
also find the plasma compression factor at the caustic, k.

In the leading order of the small parameters ¢ and (R.w/c)”!,
we obtain

e o A c
R S Gl i e B )
8 2
e ¢ 8JC ¢ )
R, 324 287 Rw | 4RZW?

Powerful kilohertz waves have \/Z < c/ Rw. In this regime,
C" characteristics turn back toward the star (3, < 0) before

10

forming the caustic. The caustic occurs at &. near 37/2w:

16J¢ ¢

Rw '

3w

Ko™ St S

(69)

5.2. Plasma Motion Upstream of the Shock

As one can see in Figure 5, the plasma develops a very low
compression factor « ahead of the shock, a result of huge
plasma acceleration toward the star. The acceleration occurs
along the plateau of E &~ — By,/2, and the four-velocity u of the
plasma drift in the wave is controlled by how close B* — E*
approaches zero:

B -~ 1 Bbg

T Bt

The plasma acceleration is accompanied by its expansion by
the factor of k' ~ 27, as follows from the relation

(70)

U —y~ —

K2 —1 _
o 2K ’

K4+ 1

o (71)

It is the drop of # that boosts the motion of C" characteristics
in the ¢-coordinate, deforming the wave profile. The relation
between x and the displacement of characteristics &, — & is
given by Equation (66). Substituting K = Kj sin(w§;) and
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Figure 6. Evolution of shock parameters in the simulation with A" = 10%:
upstream Lorentz factor ~,, shock compression factor ¢ = K4/, and radiative
parameter Y. Red dotted curves show the analytical results for v,(r), g(r), x(r)
derived in Section 5 (Equations (75), (92), and (94)). The simulation neglected
the precursor effect (Section 5.5).

Ky'=2R?, we find

1 — K)*Ry
g~ =R

= ® 72
' 2c¢ Koysin? (W) (72)

One can use this relation to evaluate &, on the characteristic C,”
that reaches the shock at time . £ = . We are interested in
waves that develop x, < 1, and then Equation (72) gives

N ¢
=y WAE sin?(we)’ (73)

where AL = €Y — &' is the displacement of cl.

For the nascent shock at the caustic, we find wWA¢ =
12,/¢ /243/4, which corresponds to k, = k. (Section 5.1). Later,
AL(r) approximately equals the width of the plateau,

Bug

Ex~E,=—— (plateau), (74)
along which  drops to #, (Figure 5). All C" populating the
plateau have approximately the same E and so nearly the same
—the plateau forms by the huge stretching (by the factor of
~ ") of an initially small interval in the original wave profile &¢;.
This stretching occurs because the characteristics “fall” onto the
shock from & where E approaches —Byo/2, ie., sin(wé) ~
—Byg /2E,.

The plateau begins and ends where sin(w§) ~ —Byg/2E) ~
—R2/r?, so its width is wAE ~ m — 2arcsin(R2/r?). Then,
from Equation (73) we find the plasma Lorentz factor just
upstream of the shock,

1 1 .1
~ —(77 — 2arcsm—), X

,
A — 75
Tu 26, Ot x? R, (73)
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This expression accurately reproduces the simulation results
(Figure 6). The maximum ~,~ (' is reached at r/R, ~
(1+1/m)"?~1.15.

The same ~, can be found from energy conservation, as the
flow is accelerated at the expense of the electromagnetic wave
energy £ = f ¢ r’E? d¢ (isotropic equivalent). The profile E(§)
includes the plateau part (E~ E,= — By,/2) and the part
where E(£) is practically unchanged from the vacuum
propagation E(§) ~ Ejsin(w) (Figure 5). The plateau has
the width A¢ and ends at the shock &; with a jump
[E?] = E{ — EZ, where E,~ E,. During time df~dr/c, the
“area” associated with the integral frzEzdf changes: (1) the rise
of the plateau erases a horizontal stripe |d (r2Ep2)| A¢ and (2)
the motion of the shock erases a vertical stripe r2[E2] dégp. So,
the wave loses energy

dEos ~ —c d(r’EJ)AE + cr?[E?] déy, (76)
The energy lost at £ < &, (the first term on the RHS) goes into
plasma acceleration upstream of the shock,

Yamc2d N = 4c r’E} dInr AE, (77)
where d N = 4nr’cnyg dif = 4mwcNd Inr is the particle number
(isotropic equivalent) passing through the wave during dt, and
we used the fact that Ep2r2 o r~*. Equations (77) and (75) give
the same ~,.

The consideration of the C* flow or energy conservation
gives a simple solution for ~(£) along the plateau. In
particular, using x < 1 and sin*(w¢,) ~ R} /r*, we find from
Equation (72),

1 - CObg

7€) = € —¢&) (& < &< &) (78)

2K r
The solution reproduces ~(¢) found in the simulations
(Figure 5). It ends at the shock with (&) = Vu-

Note that the plasma magnetization in the wave 0 = Ko, is
lowest just upstream of the shock, o, = Kyopg ~ O’bg/ 2. Its
minimum value is reached soon after the wave crosses R.:
Omin ~ (Obg = wR/c > 1. This minimum value is indepen-
dent of oy,g.

5.3. Beyond Single-fluid MHD

The accelerated flow experiences dramatic expansion in the
region & < <&, by a factor of £ '> 1, and the gyro-
frequency in the fluid frame &g = Kwp drops. Note that the
proper time 7 (measured in fluid frame) slows down by a
similar factor, df = dt/~ ~ 2kdt.

Consider now the profile of v(£) > 1 (Equation (78)). A fluid
element crosses d¢ in time df = d¢/(1 — 8) =~ d£/2, and we find
that vy changes along the fluid streamline on the proper
timescale 7., given by

dlny _dy _ ,dy _ 2¢O

it ~ ~
df dt ~ de¢ r

ev

(79)
MHD description assumes that the gyration timescale @' ~

(ws/27)~! is much shorter than 7,,. This condition may be stated
as

wpr _ Wxr

> 1.

(80)

Wp oy A2 =
° 4yopgc 4voye
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It requires v < yvup, Where

Wi meNr
YMHD ~ = .
do.c 0

1)

The MHD solution for the wave propagation problem remains
mathematically well behaved even when -~y reaches arbitrary
high values. However, its applicability to a real plasma is
vindicated only if v < yvup, Which roughly corresponds to
¢ > Qw/w,)'/2. Our sample numerical model with A" = 10%
had the peak v = 10°, just below ywmp &~ 2 x 10°, so the MHD
description is marginally valid near the peak and accurate at
other radii. The model with N'= 1037 developed > Yavup,
breaking the MHD condition.

In waves with ¢ < (2w/w,)!/2, where v reaches yyup, the
e' and ¢~ motions are no longer the common E x B drift, and
they are no longer coupled to the magnetic field via gyration.
The momenta of unmagnetized e and e~ become significantly
different and a two-fluid description is required to formulate the
electric current j and its effect on the electromagnetic field of
the wave. Main features of the two-fluid solution may be
anticipated using the following two considerations.

(1) The symmetry of e¢” and e~ motions in an electro-
magnetic wave implies that they have equal velocities 3, along
the wavevector k and opposite transverse velocities +3, with
By =0 (Beloborodov 2022). We here use local Cartesian
coordinates x, y, z with the z-axis along e,, y along ey, and x
along —e,. The symmetry implies electric currentj = j e, where
j=cenf,. Where vacuum propagation would give E*> BZ,
current is excited in the plasma to limit the growth of E* to
E*>~ B The two-fluid plasma with > yuup can enforce
E?><B?* similar to normal MHD. The ceiling of E*~ B>
corresponds to the plateau E &~ — By, /2, and j needed to sustain
E=x — By, /2 is found from Equation (23):

- _8,(I’E)§ N Ld(erg) - _CBbg

- - dr  dr

(82)

27r 27r

The plasma accelerated in the wave flows with speed 5, ~ — 1
and density n = np/(1 — ;) = npe/2 (Equation (24)), so the
current j corresponds to
ﬁ = L ~ — Bbg = — M
T ecn TerNpg meNr

(83)

Note that |3, ~ Yy If E significantly exceeded B, the
electric field would immediately accelerate particles to a much
greater (.. This cannot happen, because the small 3, ~ —ny/IIHD
already gives j sufficient to enforce the ceiling E* ~ B>. Thus,
the wave profile E(§) in the two-fluid regime should evolve
similarly to MHD—an excess of E> > B* will be shaved off at
E~ — By,/2.

(2) Reducing E? to satisfy the ceiling of E*~ B* implies a
well-defined loss of electromagnetic energy of the wave and the
corresponding energy gain by the plasma (Section 5.2). Energy
conservation then determines the profile of ~ ahead of the
shock just like in the MHD regime, which gives Equation (78)
for ().

So, we expect that the analytical expressions for -, §,, and
u, =0, derived in MHD should carry over to the unmagne-
tized (two-fluid) regime. The transition from MHD to the two-
fluid regime occurs at |u,| ~ 1. The MHD condition |u,| < 1
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may also be stated as

1
< R~

BTN
which is equivalent to v << yvup (Equation (81)). Note that
lu,| < 1 implies v ~ v, = (1 — B2)7/2, i.e., the fluid energy
arises from its bulk motion along z while the internal transverse
motions of ¢* are negligible. By contrast, in the unmagnetized
regime the ¢ develop |u,>> 1, i.e., the internal motions
become relativistic and significantly contribute to the plasma
energy. This change will affect the shock jump conditions;
however, the shock speed will hardly change, since it is
regulated by a different condition that leads to Equation (90)

below.

It is also instructive to look at the dynamical equations
describing the two-fluid ¢™ motions. Taking into account the
symmetry of e velocities, it is sufficient to consider the

(84)

positrons. The energy equation in the plateau region
E ~ — By,/2 reads
dy  eEB, wp
A ~——= 3, 85
dt me 2 & (83)

where wg = eBpg/mc, and d/dt is taken along the particle
trajectory, so dir=d¢/(1 — (3,) ~d&/2. Substituting [, from
Equation (83), one finds

& _ T, (86)

d¢ r
recovering the solution given in Equation (78) for ~(§).

Sustaining [, according to Equation (83) requires a small

mismatch between (3, and fOp=E/B, as seen from the x-
momentum equation,

du,
dt

Let us define A = — (B+ E)/B as a measure for the deviation
of E from —B; A > 0 corresponds to E> > B. It is easy to show
that A > 1 4+ G, =~ (273)*1 is required to achieve u, of the
unmagnetized regime, s0 du,/dt =~ — (wp/2)A. The electric
current j and the corresponding (3, (Equation (83)) will be
sustained if du,/dt = B, dv/dt = — (3> wg/2, which requires

= 2 (E- 8.B) ~ LB — B (87)
mc 2

Amﬁiz( " (88)

) =5
weNr 293D
The tiny positive A shows that E* slightly exceeds B* in the
unmagnetized regime. By contrast, in the MHD regime,
A~ —(29%) ! <0, ie., E* < B> In both cases, the ceiling of
E? ~ B? is strongly enforced.

5.4. Shock Strength

The upstream flow is decelerated in the shock: we observed
in the simulation a huge jump of the plasma proper density
q = py/P,» which implies a huge jump of Lorentz factor
Yo/7va>> 1. By contrast, the electric field has a small jump
during the peak of the monster shock: Eq — E, ~ Eq + Bpg/2 is
a small fraction of E, ~ — By,,/2. This means that the plasma
immediately behind the shock still moves with a large speed:
Ba=E4/(Bog + Eq) ~ — 1 and 74> 1. The plasma decelerates
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to y<~y farther downstream where E > E4 significantly
deviates from —By,/2.

The ratio ,/7q is regulated by the shock jump conditions.
They require fast motion of the shock relative to the
downstream plasma: 7y, 4 &~ X'/ /oy > Jo,. Then, using
Vshjd = 2¥swya (note that 3q~ — 1 is opposite to Gg, ~ 1), one
can show that 4> 1, which corresponds to k3 << 1 and
E4q+ Byg/2 < By /2.

The value of k3 <1 may be derived as follows. The
condition that Ey = Ej sin(w;,) stays close to —By,/2 implies

Bog R}

sin(wéy) =~ ——— = ——

2E, P2’ (89)

This relation controls the shock position &, as a function of
time t~r/c and thus determines its speed d¢, /dt =

1 — Bg =~ (273h)*1 (when the shock Lorentz factor g, > 1).
This gives
wRy
~ X
4c

x*t—1.

(90)

On the other hand, the shock jump conditions require d&,/dt
given in Equation (58). Substituting it into Equation (90), we
find

1o S

Ky =~

(x4
32n

-1, 1)
where 7 = (o1Bx/87e).
The obtained «, and k4 (Equations (75) and (91)) determine

q = Pa/ Py = Ka/Fu:

I V)
q =~ 4d =) (71' - 2arcsini).
TR 2

This result is in excellent agreement with the numerical
simulation (Figure 6). It loses accuracy at large radii where Ey4
significantly deviates from —By,/2, so that the approximation
of Equation (89) becomes invalid. This occurs when kg4
(Equation (91)) increases to ~1, i.e., at radius

3277 1/15
X~ ? .

Note also that x4~ 1 corresponds to g~ 27,. For the wave
simulated in Section 4 with N = 10%, we find x; ~1.85,
which corresponds to r; = xR, ~ 2.6 X 10® cm.

The shock radiative parameter x is given by Equation (56),
as long as x > 1. Substitution of Equations (75) and (91) for x,
and ky yields

_—\3/4 /2
— 932 772 u(w — 2arcsini) :
e x

It reproduces the value of x observed in the simulation.

92)

93)

94)

5.5. Precursor Effect

In an accompanying paper, we will describe an additional
effect: the shock emits high-frequency precursor waves into the
upstream, which can significantly decelerate the upstream flow
before it reaches the collisionless shock.

The precursor emission begins immediately after shock
formation at time ¢, &~ R, /c near the coordinate &, = 37/2w.
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As the wave expands to r > R, the shock moves to &, > &g, SO
the precursor occupies the growing region
37
—— =& <& <&y 95)
2w
Note that the plasma flow in the MHD wave crosses half of the
plateau E~ — By, /2 ahead of the precursor, at &< &, and

begins to interact with the precursor at &, with the Lorentz
factor determined by Equation (78),

4 2

Y&, 1) & %(g — arcsin%). 96)
It is lower by a factor of 2 compared to +, defined previously at
& (Equation (75)). In the accompanying paper, we find that
the precursor can decelerate the upstream flow as it moves from
&o to &, so the flow comes to the shock with (&) < (&)
(and the shock radiative parameter x may drop below unity).
This pre-deceleration effect depends on a somewhat uncertain
efficiency of precursor emission, which has not been studied in
the extreme regime of the monster shocks.

Regardless of the shock structure details, with or without the
precursor, the basic picture remains the same: the upstream first
develops the huge Lorentz factor (&) (or 2v(&y) without the
precursor) and then promptly radiates its energy, before
completing the shock transition. The emitted radiation is in
the X-ray/gamma-ray band, as shown in Section 6 below.

5.6. Forward Shock

The plateau evolution described above leads to erasing half
of the wave oscillation where E < 0. It does not affect the
leading half 0 < wé < 7 where E > 0 (Figure 5). This leading
part of the wave propagates with negligible distortions at radii
r~ R, nearly as in vacuum. However, at larger > R, the
profile of E(&) > 0 gradually steepens at the leading edge £ =0
and eventually forms a forward shock. Below we find radius Rg
where this forward shock is launched.

The part of the wave with £>0 has x> 1 and satisfies
K Opg > 1. This implies small bending of characteristics,
dé, Jdr< 1, and the evolutlon of x along C" follows the
simple relation x* =1+ 2Kr* (Appendix A).

In the zero-order of the small parameter d¢,/dt, C* are
described by &, =& or ry=c(@t—¢&). The -correction
& — &= (k — 1)*/8cDK?x (Equation (66)) m the leadin
order may be found iteratively by substltutmg K*=142K
with the zero-order r = c(t — &). This gives

ok
H_
651 s

= d—Kr — 2Krc.

dg;

2

K2 = 1 + 2Kt — &),

7)

One can now examine the flow of C* characteristics & — £,.(&, 1)
and identify where (O - /0&;); vanishes, launching a shock. For
the C* flow with O'bgli > 1, one can use Equation (97) to find

%,
9¢;
We here focus on the interval 0 < w&; < 7 and observe that

0&, /¢ drops fastest at the leading edge & =0, where k =1 is
minimum and dK /d¢; = Kow = w/2R? is maximum. We find

+ 1|

(98)

P [P et
2DK*| dé ¢ (k+ 1)
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at the leading edge (using r°dK /d¢; = wr3/2R? > ¢),

9 6 6
9| o e s (99)
O, 8cDR? 8 RS
Hence, the forward shock forms at radius
1/6 172
8 H33
Rr = (—) Ri~3x100—>22 _ __ cm. (100)
¢ N

The wave now carries two shocks, at £~ 0 and &> 27/w,
which slowly shift to larger & The nascent forward shock at
r = Rg is weak. It becomes ultrarelativistic at » > Rg and later
turns into a strong blast wave expanding into the wind outside
the magnetosphere.

6. Gamma Rays from Monster Shocks

First, consider shocks with neglected effects of the precursor
on the upstream flow. As the plasma flow crosses the shock, it
radiates its energy in curvature photons. The spectrum of
curvature radiation from a particle with Lorentz factor ~ cuts
off exponentially at w > w. (Landau & Lifshitz 1975), where

A
The radiated power é"e = 4mc? is Lorentz invariant, and may
be evaluated in the shock frame, ¥ = |dy'/dt'|, using the

solution derived in Appendix B. It shows that v/ drops from the
upstream value 7/ & 27,7y, ~ ,/ku With rate

. 4 '7{1 eéu 2 4 YshWB 2

~— L — S — g9, (102
3 Uumc(ﬁ g% 3Jo_u(“/g g%, (102)
where g =17//7., wp=eByy/mc, and B, = kyBy,. The

emission frequency w, is maximum at g = (5/8)*/3,
cwp A 172

W™~ (.88 LN 103

c ’Yu( . Jo ( )

Substituting the solutions for v,(r) (Equation (75)), ~en(7)
(Equation (90)), and 0, = KyObg X Obg/27s, We find

max 1/2
€ = Mo ~ l Bx £ ), (104)
m62 C afBQ

where ay=¢’/hic~1/137, Bo=m’c’/he~4.4 x 10" G,
B, = By(R,), x=r/R,, and

0.88(m — 2arcsinx=2)>/4(1 — x~*)!/8
21/455 ’

fo(x) = (105)

max

One can see that w." is in the far gamma-ray band.

Next, consider emission from shocks affected by the
precursor (Section 5.5). Main emission now occurs where the
upstream flow enters the precursor and begins deceleration with
v~ (&) given by Equation (96). The emission frequency is
still given by Equation (101), but now with &, being the emitted
power that results from the particle interaction with the
precursor. Using d§ = (1 — ()dt ~ 2dt along the plasma stream-
line, one can see that 6¢,,, = 2ymc?/E, defines a characteristic
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deceleration scale, and we rewrite Equation (101) as

32 1/2
v = 2 73/2( ¢ ) . (106)
2 Te 6§dec

During the main phase of shock evolution, the upstream flow
reaches the peak Lorentz factor v(§,) ~ (20)"! and radiates
photons with dimensionless energy
8 x107%vy?
RIS IEEN

(107)

where we have normalized 6&4.. to the precursor width
&n— o~ w . Note that the precursor deceleration effect is
strong if 6fgec < w ™!, and so €. > 1078¢ 3/2 This gives the
characteristic €. in the gamma-ray band.

7. Discussion
7.1. Formation of Shocks

The magnetospheres of neutron stars have a huge magne-
tization parameter oy, and therefore their low-frequency
perturbations are often described as FFE waves, which
propagate with the speed of light. This description is excellent
near the star; however, it fails when perturbations propagate to
larger radii and grow in relative amplitude E/By,. Then, FFE
becomes remarkably self-destructive: it pushes itself out of the
realm of its applicability E* < B2, and the wave dynamics in the
FFE limit o,, — oo becomes undefined. Therefore, waves
should be described using the full MHD framework, with an
arbitrarily large but finite oy,.

In particular, compressive MHD waves (vacuum radio
waves in the FFE limit) steepen into shocks at radius R,
(Equation (60)) for any high oy,,. The higher the value of oy,
the stronger the shock at R,, as we have demonstrated by
solving the MHD wave equation. As an example, we presented
the evolution of a 10kHz wave with an initial sine profile
E = Ejsin(wf), where £ =t — r/c. We have also derived the
wave evolution analytically to show how it depends on the
wave frequency w and power L. Our main conclusions are as
follows.®

1. When the wave reaches R, ~ 10% cm, it suddenly begins
to pull the background magnetosphere toward the star,
creating an ultrarelativistic flow at the wave oscillation
phase near 37/2 (trough), where E* approaches B*
(Figure 5). The flow acceleration at the trough of the
wave is accompanied by plasma expansion, reducing the
local magnetization parameter o, so the wave propagation
slows down at the trough and the wave ‘“‘stumbles,”
steepening into a shock. The accelerated plasma flow
forms the upstream of the shock. It develops a huge
Lorentz factor 7, ~ co./wR, where 0, = 0p,s(R). The
peak ~, is reached when the wave crosses r= 1.15R,,
and here the local magnetization parameter of the flow is
reduced to o, ~ 0 /v, ~ wR, /¢, which is independent of
Opo-

2. Thge monster shock has an unusual microstructure. The
upstream flow experiences strong radiative losses before
completing a single Larmor rotation, i.e., before forming

8 These conclusions hold for kilohertz perturbations typically excited in

magnetars, neutron star binaries, and neutron star collapse. The results are
different for megahertz to gigahertz waves (Beloborodov 2023).
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the downstream MHD flow. This affects the shock jump
conditions. In particular, we found that the shock Lorentz
factor relative to the downstream plasma is 4 ~

(1 + x)/7 o, , where  is a new dimensionless radiative
parameter (Equation (55)). The shock structure is further
complicated by the precursor emission, which can induce
radiative losses of the upstream flow ahead of the shock;
this effect will be described elsewhere.

3. As the kilohertz wave propagates beyond R, half of its
oscillation (7 < w& <2m) becomes erased (Figure 5).
Thus, the wave loses half of its energy after crossing R,.
The large wave energy per magnetospheric particle
corresponds to the huge Lorentz factor gained by the
plasma. The plasma radiates the gained energy in the
ultrarelativistic shock, leading to a bright X-ray burst.

4. Waves accelerating the plasma to v ~ (2wg/w)'/? enter
the two-fluid regime with unmagnetized particles. We
argued in Section 5.3 that the main MHD results will
carry over to the two-fluid regime. In particular, the
Lorentz factor of upstream particles will be given by the
same expression vy~ coy/wR,, reaching enormous
values in powerful low-frequency waves.

5. The leading half of the wave oscillation (wé < 7) does not
approach the condition E*=B?. It crosses R, without
any significant changes. A wave consisting of only this
half oscillation would not develop the monster radiative
shock at R... However, in any case, at a larger radius Rg
(a few times 10° cm; see Equation (100)), the leading
edge of the wave steepens into a forward shock.

Both R, and Ry are well inside the typical light cylinder of a
magnetar, Ry c ~ 10'° ¢m. Thus, strong kilohertz waves from
magnetars inevitably launch shocks inside the magnetosphere.
The monster shock forms at w ~ 37/2; then it weakens and
shifts to wé ~ 2m. The forward shock forms at £ ~ 0 and gets
stronger at large radii; it will evolve into an ultrarelativistic
blast wave expanding into the magnetar wind (this evolution
will be further described elsewhere).

Our results clarify the relation between two pictures
proposed for electromagnetic ejecta from magnetars: a
vacuum-like electromagnetic wave (Lyubarsky 2014) versus
a blast wave in the wind (Beloborodov 2017, 2020). Blast wave
formation is important for the theory of fast radio bursts (see
Lyubarsky 2021 for a review), because it produces semico-
herent radio emission with submillisecond duration. Kinetic
simulations demonstrating the efficiency and polarization of
this emission are found in Sironi et al. (2021). In addition,
Thompson (2023) recently proposed that the blast wave may
produce radio waves by a different mechanism if it expands
into a turbulent medium.

7.2. Compton Drag

Our calculations of magnetospheric MHD waves neglected
Compton drag exerted by ambient radiation. Radiation flows
from magnetars with luminosities L, ~ 10*> ergs™!, peaking at
photon energies e,mc* ~ 1 keV (Kaspi & Beloborodov 2017).
When plasma in the wave develops Lorentz factor v>> 1, it
upscatters the keV photons to energies e, ~ ¢, as long as
v < ;. This gives a maximum power of scattered radiation
LI~ y2L, ~ e 2L, ~ 3 x 10% ergs™' (this upper bound
assumes that each keV photon is upscattered). Waves with
power L> L . are weakly affected by Compton drag. When
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v > e;! scattering occurs with a smaller cross section
Osc ~ 01/, and e ~ . Using the scattering optical depth
Tee ~ 0 N/R2, we find

\/§O’TNL* 10,
p(cL)!/2e;

LSC L* ESC 7—SC
~Y ~Y
L Le,

4 Lizs N
53,—3 M33L434/2
(108)

This again gives L, <L, even if the density parameter
N = nr? is increased by secondary e™ creation (which mainly
occurs behind the wave, not inside it; see Section 7.4 below).
Thus, we conclude that the magnetar radiation does not prevent
the enormous plasma acceleration in magnetosonic waves at
r~R..

7.3. Wave Evolution at 6 =7/2

In this paper, we calculated the wave propagation in the
equatorial plane of a dipole magnetosphere, 6 =m/2. The
obtained solution shows a clear physical picture of the wave
evolution. It includes two facts that help extend the picture to
0=m/2:

(1) The MHD wave is well described as a vacuum
electromagnetic wave superimposed on the background dipole
magnetosphere until this superposition hits the condition
E? = B?, launching the monster shock. In the equatorial plane,
this condition is reached at R,. In other parts of the
magnetosphere, one can find the location of shock formation
from the same condition E*~ B>, which corresponds to drift
speed |Bp| — 1. The drift velocity is given by

N E x B N E(Bbg,9 + E)er — EBbg’,eg
B? By, + 2EBye + E?

Bp ; (109)

with E = — Eey and B = By, + Eey. The wave propagates as in
vacuum until 33 = E2/B? approaches unity, which corre-
sponds to Bbzg + 2EByg9 = 0. This condition is first
approached at the trough of the wave, E= — E,. It defines
the critical surface r.(6):

3 4 — 3sin2f

Ey =
: sin 6

= () =R, (110)

bg,0

A spherical wave with approximately isotropic power reaches
this surface first at = /2, r=R,. As the wave continues its
propagation to r > R, the monster shock develops in a range
of latitudes, sinf, < sinf < 1 (Figure 7), where sin 6,(r) is
found by solving Equation (110) for sin 6.

The condition E* — B corresponds to the plasma velocity 3
approaching the unit vector,’

- (Bbzg,r - Bbzg,e)er + 2Bbg,erg,F}ef)

E? = B?
IBD Bbzg ( )
— 1 2 i
_ (4 = Ssin’f)e; + 25in(20)es (111)
4 — 3sin%d

° The oblique (nonradial) plasma motion in the wave at 6 = 7/2 develops a

velocity component 3 parallel to B, as discussed in the accompanying paper
(Beloborodov 2023). Then, the accurate total four-velocity is u = u + up.
However, uy < up, when E* — B,
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Figure 7. Expansion of a spherical wave front through the magnetosphere. The
front thickness (wave duration) is much smaller than r/c. Its shock-free part
(sin@ < sin#6,) is plotted in green and the part carrying the shock is in red. The
region swept by the shock is shaded in pink; its boundary 6(r) is defined by
Equation (110). The wave front is shown at two moments: (1) when it crosses
radius R, (the shock has formed in the equatorial plane, § = 7/2); and (2)
when it expands to a larger radius (the shock now occupies a range of €). The
shock radiates gamma rays (red arrows) beamed along Bp (Equation (111));
most of them convert to e~ pairs.

This unit vector represents the direction of the accelerated
plasma flow. Note that the radial component of Bp changes
sign at sinf = 2/\/5.

(2) The obtained solution at § = 7r/2 demonstrates that the wave
evolution outside R follows a simple pnn(:lple the part A of the
wave oscillation that has hit the ceiling E* = B> forms the plateau
of E~x E, while the rest of the oscillation profile E(§) follows
nearly vacuum propagation (until the wave approaches Rg > R..).
A similar description can be used at 0 = /2. The plateau electric
field is set by the condition E* ~ B*:

BZ 2
r, 0 b g, = K I o 112
B 0 =5 Bogo . 2r° R2 © (12

It is sustained by electric current j,= —8,(rEp)/2ﬂ'r, as
required by Equation (23). The plasma passing through the

wave is accelerated on the plateau with rate dv/dt = E,, - j,/ pc?,
which gives
dy _ E, .jp B a(rzE ) _ COng Bbzg (113)
df pbg C2 47TC pb‘g r Bbzg,ﬁ

where we used d¢= (1 — 3,)dt = (ppg/p)dt along the plasma
streamline. A plateau of width W, = cA{ gives
W, Bp,
v~ O'bg—p £ .
r Bbg,ﬁ

(114)

The acceleration region W, with E ~ E,, and current j,, appear
at r=r, and grows at r > r,. For example, waves with initial
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profile E(§) = Epsin(w) develop plateaus with W,(r) =
(c/w)[m — 2arcsin(r2/r?)].

As a result of the wave evolution at r > r,, the parts of the
wave profile with E - (k X By,g) < 0 become erased and replaced
by the plateau with E,/E;— 0 at r>r,. In axisymmetric
waves E oscillates along e;, and so the parts with E, >0
become erased. In particular, oscillating kilohertz waves with
average E, ~ 0 lose half of their energy. The lost energy is
radiated by the shock.

7.4. Pair Creation and Emission of X-Ray Bursts

The monster shock radlates high-energy photons (Section 6),
which can convert to ¢ pairs. The upstream flow entering the
equatorial shock moves along —e, with a high Lorentz factor +,
o its gamma-ray emission is beamed toward the star. These
gamma rays propagate perpendicular to By, and will convert to

pairs. The mean free path for conversion is given by
(Erber 1966),

4.4r, B 8 B
Ion(r) = > '—Qexp(——Q].
af Bbg 3€C Bbg

(115)

For our sample models in Section 4, [,n(R,) > R, and L,,(r)
will be reduced below r when the gamma rays propagate to
r < R, where By, > B,.

Magnetosonic waves accelerate the plasma radially only in
the equatorial plane of the magnetosphere. Waves at different
latitudes accelerate the plasma obliquely (Section 7.3), so the
gamma-ray emission is oblique, not beamed toward the star,
and can avoid absorption by the ultrastrong field. Instead, the
oblique gamma rays will convert to ¢™ pairs via photon-photon
collisions, as they propagate toward the equatorial plane and
collide with the symmetric gamma rays from the lower
hemisphere. The collisions will be efficient because of the
broad spectrum of curvature radiation (its half-width extends
from 0.01€. to 1.5¢.; see, e.g., Longair 1994), so the gamma
rays will find counterparts near the threshold for e* creation
with a large cross section ~0.1or. This leads to a high pair
production rate, and the region behind the shock will become
populated with optically thick e* plasma.

The created ™ plasma will cool by emitting softer
synchrotron photons and by scattering the photons as they
diffuse out of the ™ cloud behind the shock. Radiation
production is controlled by the compactness parameter,

O’TL

b = ~ 7.7 x 104 L{* i)/, (116)

8mmc3Ry,
The high compactness implies a large optical depth to photon-
photon collisions, so most gamma-rays should convert to pairs,
which experience fast radiative cooling. Thus, the shock
emission will be reprocessed to photons of lower energies. The
luminosity of the resulting X-ray burst is comparable to the
power of the original kilohertz wave. The burst resembles
radiative processes in compact magnetic flares simulated in
Beloborodov (2021b); its spectrum can be found with similar
detailed radiative transfer simulations, which we leave for
future work.

A minimum duration of the burst is set by the light-crossing
time r/c, where r is a few R,.. A typical value of this minimum
duration is ~10 ms. Bursts with high £, may last longer, as it
takes time for the reprocessed X-rays to diffuse out of the
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optically thick e* cloud. In addition, star quakes may produce
multiple shocks, creating multiple bursts. Such composite
bursts can last ~100ms, depending on the crustal quake
coupling to the neutron star core (Bransgrove et al. 2020).

7.5. X-Ray Precursor of a Binary Merger

Consider a neutron-star binary with masses M; and M,
separated by distance 2a. The reduced mass of the binary is
M =M \M,/(M, + M), and its orbital angular velocity is

~3/2

c|a GM

Q ~ —| — . rg = —2
rg I"g C

In a tight binary (nearing merger), € is in the kilohertz band.

Suppose both stars are strongly magnetized. An interface
between their magnetospheres forms where their pressures
balance. For instance, consider two stars with equal magnetic
dipole moments |gt;| = |po| = p. Then, the interface is in the
middle, at the distance a from each star, and the magnetic field
at the interface is B; ~ ju/a’.

If the orbiting stars are not in synchronous rotation, there is
differential rotation between the two magnetospheres with an
angular frequency (4 comparable to the orbital 2. The two
magnetic moments g, and g, in general are not aligned, and
then the magnetic pressure at the interface will oscillate with
frequency Qgisr. The pressure variation timescale ~Qgk
exceeds the Alfvén crossing time (a few a/c), which reduces
the efficiency of low-frequency wave excitation. However, the
interface is also a source of higher-frequency waves, because it
is prone to instabilities of the Kelvin—-Helmholtz/diocotron
type. The instability will generate vortices of sizes up to a
fraction of a (with frequencies w > c/a), creating traction
between the rotating magnetospheres.

The turbulent region around the interface will emit both
Alfvén and magnetosonic waves, and further investigation of
this process requires numerical simulations. An upper bound on
the power deposited into the turbulence may be roughly
estimated as L, ~ Qdiffa3B,-2 /8m. The power of magnetoso-
nic wave emission L ~ ca?(6B)?/87 < L,y implies an upper
limit on the emission amplitude,

B < (Qdifr‘R )1/2 N (”_g)l/4(Qdift‘)1/2
B c a Q '

In a more general case, the magnetic dipole moments of the
two stars are not equal, f¢; < . Then the interface will form at
a distance R from M, defined by

Lol RO o
R}  (2a — R?

(117)

b= (118)

(119)

The wave source will have a size of ~R < a, and its power may
be estimated as
b2B}
L~ cR> ——.
81

(120)

The emitted magnetosonic waves will steepen into shocks at
radius R, ~ (2b)7'/ 2R (if it is inside the light cylinder of the
binary, R, < c¢/).

The emission of kilohertz waves accompanied by shocks and
turbulent dissipation will continue as long as the two stars orbit
each other, until they eventually merge. The binary loses orbital
energy to gravitational wave emission and shrinks on the
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timescale
(121)

which is also comparable to the time remaining until the
merger. The wave energy generated during the remaining time ¢
may be estimated as tL, and we obtain

4

LT >
Lo+ =5

8mry | 2 7S

A significant energy fraction of the MHD perturbations will be
dissipated and converted to X-rays. This will occur mainly through
the local turbulent dissipation near the interface and may also
launch shocks at larger distances. The dissipation of perturbations
will produce a detectable X-ray precursor of the merger if the stars
have strong magnetic fields. For instance, a binary with g =
1 =10 Gem® may generate X-ray luminosity Ly ~ 10%
ergs ' at7~ 10 s before the merger. Wave dissipation provides an
alternative to the recently proposed precursor emission by
magnetic flares (Most & Philippov 2020; Beloborodov 2021b).
The latter mechanism was shown to operate in binaries with
antialigned g¢; and py; it is driven by the over-twisting of magnetic
flux tubes connecting the two stars.

(L ~ (122)

7.6. Shocks from Neutron Star Collapse

A massive neutron star can be born (e.g., in a merger) with fast
rotation, which temporarily supports it against collapse. Such
objects are likely strongly magnetized and gradually lose rotation
by emitting angular momentum in a magnetized wind. The
spindown can eventually lead to the collapse of the massive
neutron star into a black hole, producing an electromagnetic
transient (Lehner et al. 2012; Falcke & Rezzolla 2014; Most et al.
2018). Numerical simulations of the collapse show that it launches
a strong outgoing electromagnetic pulse propagating through the
outer dipole magnetosphere. A monster shock will form where the
pulse amplitude becomes comparable to the dipole field of the pre-
collapse magnetosphere and B> — E* reaches zero. This condition
was indeed seen in vacuum and FFE simulations of the
magnetosphere of a collapsing star (see Figure 10 in Lehner
et al. 2012). Demonstrating shock formation and tracking its
propagation requires a full MHD calculation, as shown in the
present paper. The shock will dissipate a significant fraction of the
outgoing electromagnetic pulse and produce a bright X-ray
transient.
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Appendix A
Shock Formation in a Cold Magnetosonic Wave

Below, we describe analytically the flow of C* characteristics. We focus here on the part of C* flow with E < 0 (or, equivalently,
K < 1), which experiences strong deformation, leading to caustic formation.
A.1. Evolution of the Plasma Compression Factor v along C*

The relation between x and r along C" is found from the ratio in Equations (45) and (43),

4 31 d 3 3_3/4
ar _ r(@opgk” — 1) = Tbg _ 20bgh / (along C™), (A1)
dr  dopgR*(K* — 1) dk Kk2(1 — K?)

where we used d Inoy/d Inr = —3. This is a linear differential equation for op.(r). Its integrating factor is (I — x?)3/2, and its

solution is
1 _ 2
Opg(K) = # §a* + 3\/1 — k2 4 4arctan ¥ —a, (A2)
8(1 — k2)3/2| 3 K K
where o, is a constant (defined for each characteristic). Note that

o, = lim 1[(1 — n2)3/20bg] (A3)

R —

is set at small radii where oy, > 0, In this inner zone, |k — 1| < 1 corresponds to slow plasma motions in the wave, | 5| < 1, which

is equivalent to By, >> |E|. Comparing the behavior of oy, = 0, (1 — K2)~3/2 with o,y = D/r’ (Equation (8)) one can see that
2 1/3
1 —x?= r_2’ = (2) . (Ad)
r} O

For each C*, the regime |x — 1| <1 holds at radii r < r,. In this zone, the radial position of C* follows vacuum propagation:
F =Ty = c(t — &). Note that (&) is different for different characteristics.
Equation (A4) is equivalent to Equation (48), and so the constants r, and K are related by

1

J2K(E)

Equation (A4) holds as long as 1 — 3, < 1, which corresponds to x > a:l/ 3. We are interested in a more general regime, where (3,

(&) = (AS5)

can significantly drop or even change sign (which means that the C* characteristic turns back to the star). This happens if x decreases
below (40;,)~!/3. In this extreme case, the variation of r with x becomes nonmonotonic; it occurs on a small scale §r < r and can be

seen only when retaining the small terms in Equation (A2).
Let us now find the solution for (f) along C*. Using Equation (A2) in Equation (43), we obtain

_ 2 _ 232!
del __cNl-K [1+7(1 ") ] [1+O( 1 )] (A6)
dt |+ K Iy 4o, Kk KOy

3

Note that £ monotonically decreases with ¢. This equation can be integrated as follows:

NPy el Gl VT (A7)

do, Kk T T

The second term on the left-hand side (LHS) makes a negligible correction to v'1 — k2 if 40,x° > 1, which corresponds to
1 -3, < 1. Then, k = \/ 1 — 12/} = \/ 1 + 2Kr2,. If the condition 40,k > 1 is not satisfied, one must keep both terms on the
LHS. This may happen only at x < 1, and hence the deviation of () from the solution x = \/1 — r2./r? can be found using

expansion in xk < 1. This expansion simplifies Equation (A7) to a depressed cubic equation,

K+ Z(VW - 1)& _ 0 (L R 1). (A8)

s 20, Oy
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It has one real root if ai/ 3(1 — e/ < 3/27/3. Otherwise, it has three real roots, but only one of them is relevant—the root branch

that gives x > 0 and approaches x = /1 — r2./r? when o231 = rae/r) > 1.
The evolution of x along C* with K < 0 may now be summarized as follows:

2
1 — "_«\zc y>1
2y 0,3 cos larccos(#)] 2743 <y < 0?3 2 o Frae
k(1) = | :f ’ | V=30 (1 N T) (A9)
2.y o;'/3 cosh garccosh(ﬁ)] 0<y<293 Fac = ¢(t — &).
2 —1/3 h _1 inh 1 0
—2. /=y o, sSin Earcsm —m y <
! J

These real expressions fully describe #(f) along C* (note that o, >> 1 implies a large overlap of y>> 1 and y < Ui/ 3.

A.2. Crossing of Characteristics

The crossing of C* characteristics is determined by the solution for their shapes &, (¢). It is easier to solve for &, (k) first, and then
use the (monotonic) relation between  and ¢ along C* (Appendix A.1). The solution for & () can be found from the ratio of
Equations (44) and (43),

d
Ky _ r , (A10)
dr 2¢ opgk*(K* — 1)

We substitute here oy,e(x) (Equation (A2)) and r = (o /Jbg)l/ 37, to obtain a closed differential equation for &, (k). Its integration

(with the initial condition £, = &; at kK = 1) yields

£o=&+—= [(1—n)2+0( ! )] (Al1)
2c ok Oy K

One can think of the initial value & as a Lagrangian coordinate in the flow of C" characteristics and quantify deformation of the wave

profile using “strain” 9, /0&; evaluated at t = const. A reduction of 9, /9¢; below unity means compression of the profile, i.e.,

steepening of the wave. The caustic appears where ¢, /0¢; vanishes. This will occur in the region of o' < x < 1, and in this

region the expression for 9¢, /9¢; simplifies to

L

0 ; ) ,
& ~1— 2d + /) , where # = an =r’k, K= daK (A12)
4o, k3 + 1

9 |, dg; &
Here, we used Equation (A8) to express (0x/0¢, ), and retained only the leading terms of the expansion in x < 1. Thus, for each
characteristic C* with K < 0, we find that ¢, /& vanishes when x = k,, where k, satisfies the relation

2k + 1

RI(E) ~ (ky < 1). (A13)

*

The condition x = k., corresponds to time ¢, determined by Equation (AS):

2
Lo1-Z o+ 1220

Ty do, Kk

2
>m@w3@ﬂ+ 1) (Ald)
c
The small difference ¢, — r,/c is determined by the small %, < 1, which is given in the leading order by Equation (A13).
The caustic forms on the characteristic C* for which 0, /0& = 0 is reached first, i.e., where £,(£;) is minimum. This characteristic
(labeled as &) satisfies the condition dt, /d¢; = 0. Using Equation (A13), we find

.. . .2 -
dry _ ¥y . Ry Ty . where r* _ 375 _ r*K’ (A15)
d¢; 60, K Ty T 2K
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and then obtain the condition df,/d& = 0 in the form

dty .

— =+ r*)(l +
ds;

The terms collected in Z(k,) are small, and we find a simple expression for the fluid compression factor at the caustic, ke = Ky (€ ic)
(one can show that Z(x.) < 1 + 7,):

r’K

———|+Z = 0. Al6
2403/{\2,K) ( )

4 VEK

Ke = — . (A17)
¢ 242K
For example, consider waves with a harmonic profile K(&;). Let us define ¥ = wé&; so that K (1)) = K sin. Then,
=R g ma(esing?, = mweesy Ko (A18)
J—sin 2¢(—sin)?/ K
The caustic develops at a Lagrangian coordinate 1. = w¢;, and Equations (A13) and (A17) give
. 1 2 Ry
4 (—sin) )32 K2 = M —, ki = .Q—’ where (= Wit (A19)
(—siny)¥? oy 24 sin* 1), coy
These equations hold if x. < 1, which requires ( < 1. We obtain from these equations,
4\/2 ¢ 3
cos ), = — —(—sin)¥?. A20
Vo= S — (I (A20)

We consider only short waves, wR, /c>> 1. Equation (A20) then implies | cos | < 1, and so in the leading order, one can set
sinty, &~ —1 in Equations (A19) and (A20). This gives the relations stated in Equation (67).

The caustic forms at time 7. = #,(£}) given by Equation (A14). Expanding r,/R, = (1 — cos?¢}.)"/* ~ 1 + (1/4)cos? 1 and
using Equation (67), we obtain Equation (68).

The caustic position in the wave, &, may be found using the relation between &, and  along C* (Equation (A11)). It gives
E ~ ff + 7 /an* K¢, which leads to Equation (69).

Appendix B
Shock Microstructure

The flow is composed of two streams, ¢ and ¢, which have different (symmetric) trajectories. The ™ flow is neutral everywhere,
i.e., its net charge density is zero. As the flow enters the shock, it develops a transverse electric current j, created by the opposite ¢
motions along E. This current controls the self-consistent change of the magnetic field across the shock. In this appendix ¢, E, B, 3,
u“, and n will denote quantities measured in the shock rest frame (elsewhere in the paper, this notation is used for the lab-frame
quantities).

We will use local Cartesian coordinates x, y, z with the x-axis along E and the z-axis along the upstream flow. Then, the magnetic
field B is along y. The upstream quantities ahead of the shock will be denoted with subscript “u.” The upstream flow will be
approximated as cold, i.e., the e* are at rest in the plasma drift frame (the frame K where the electric field vanishes, E = 0). In this
Appendix, we use units of ¢ = 1.

The steady flow is described by quantities that depend only on z. In this approximation, all time derivatives vanish, 0, =0, and
hence V x E = — 9,B =0. In addition, V - E =0 as the net charge density is zero. This implies

E(z) = const = E, = (E,, 0, 0). (BD)

The ¢* streams ahead of the shock have equal velocities

BE=1(0,0,8),  Bu=— (B2)

The straight inertial motion of ¢ describes the cold upstream flow with no gyration in the drift frame K; the e* experience zero
force te(E, + [ﬁ x B,) = 0.
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B.1. Shock Structure Equations

As the plasma crosses the shock, the e four-velocities ul = (v, uy) and B change from their upstream values. The profiles . (z)
and B(z) obey the equations:

O B B f mBE—keB 4 BexB)—f. Y xB=d (B3)

where &, is the power radiated by the ultrarelativistic particle, and fo = B.E&, is the radiated momentum. Similar equations, but

without radiation reaction, were previously used to describe magnetosonic solitons, which have no dissipation (Kennel &
Pellat 1976; Alsop & Arons 1988).

The particle entering the shock radiates because it experiences acceleration (+e/m)(E + 3. x B). The power radiated by a particle
with four-velocity (v, u) is given by (e.g., Landau & Lifshitz 1975),

Eo="L[(WE + u x B? — (u - E*]="2[(yB — u.E)* + E2 — B?], (B4)
4 4

where or = 87rre2 /3 is the Thomson cross section.

Equations (B3) have a symmetry: the e develop 3, = — 3/, 8, = 87, and keep 3; = 3] = 0. Therefore, it is sufficient to solve
for the four-velocity of e™. Below, this will be denoted by u“, omitting the subscript “+.” The symmetry also implies that the electric
current has the form j = (j, 0, 0), where j = enf3,, 3= (3, and n =n_ + n_ is the local plasma density. The current is related to the
uniform particle flux F =ng, = n,0,,

. By
= eF =5 = en, (3, ==. B5)
T, enﬁﬁz (

The current j is expected to be negative, since B is compressed in the shock: dB/dz = — 4mj > 0. This requires 3, < 0. The solution
presented below indeed shows that the e' flow entering the shock develops negative acceleration along x:
B.du,/dz = (e/m)(E — 3,B) < 0. This is consistent with energy conservation: the compression of B occurs at the expense of the
flow kinetic energy, and hence E -j <0 (energy is extracted from the plasma).

Note that v and u, determine all components of four-velocity u® (u, is found from u“u, = — 1 using u, = 0), and hence also
determine 3, and (3,. As a result, we have three coupled equations for three unknowns -, u,, and B. The flow solution has three
parameters: n,, B, and 3,. Given these parameters, the system of Equations (B3) can be integrated numerically. As shown below, the
solution also admits a simple analytical approximation.

A normal collisionless shock with no radiation reaction (y =0) would be described by two dimensionless parameters:
Y= 1 - ﬁﬁ)fl/ 2 and 0, = Bu2 / 4dmmny~,. Its downstream moves with Lorentz factor v, ~ /o, relative to the shock. The shock
structure is normally presented using fields normalized to B, and distance normalized to the Larmor scale r;, = m-y,/eB,. By contrast,
the presence of radiation reaction in Equations (B3) implies that B, cannot be removed by the normalization of fields, since &, is
quadratic in the fields. An additional scale r, = ¢*/m appears in the problem, and the value of B, controls the ratio r,/r.. To
disentangle this problem, it helps to introduce new variables:

gzl, WEM, bzau(ﬁ—l). (B6)
Tu Tu B,
Instead of coordinate z, we will use dimensionless s defined by
ds = B & (B7)
myuJou B
Equations (B3) then become
dg dw }_( € ) db
= =-BF-xR, —=-Fb+-|-wxR, — =787F B8
s Bu X s > wx ds Bu (B8)
where
Oy _ UTBu"le; 2 r
€= > = - — B9
y2 X dre 03/F 33?1y (B9)
1 w
f(g’w’b):_ w Zg—— _6:_6X\/O-_u’ (Blo)
8 Ou
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2bg(g — w/ou)

€ — 2be + g*b. (B11)
1+ By

2
R(g, w, b)= W+g—7w/0u€ — €2 + 2bgw +
1+ fu

Note that the presented form of the flow Equations (B8) uses (3,, €, and x as the three parameters of the shock instead of ~,, o, and
B,. The parameter o, appears only in the functions F and R, where it enters through the term g — w/o,. We will verify below that
w/o, < g throughout the shock transition, and so o, drops out.

The choice of 3,, €, and x as the independent parameters significantly simplifies the problem. For strong ultrarelativistic shocks of
interest, (i) one can set 5, =1, and (ii) € turns out so small that it effectively drops out. As a result, y remains the only important
parameter (while o, and +, enter through the definition of variables g, w, b).

In the limit of y — 0, the autonomous system of Equations (B8) admits an immediate analytical solution. Its first integrals g(b) and w(b)
are

w— bbb + ¢€) + €6y
20,

where we took into account that the solution starts in the upstream with b =0, g =1, w = ¢/2. The first integrals correspond to the
fluxes of specific energy and momentum staying uniform along z, as losses are neglected.

The monster shocks discussed in this paper propagate in the qualitatively different regime of y > 1. The value of y is controlled
by the shock strength developing in the kilohertz wave, as discussed in Section 5.

g = 1-0b, (x =0), (B12)

B.2. Boundary Condition

In order to integrate Equation (BS8), one needs boundary conditions g = go, w = wg, b = by at some sy. We will set the boundary
conditions in the upstream, ahead of the shock. Far into the upstream, the flow is unaware of the shock and has g=1,w=¢/2,b =0,
which corresponds to v=1y,, u,=",0s B=B, However, one cannot impose these simple boundary conditions, because
Equations (B8) have a trivial uniform solution with these values. The shock solution must have an infinitesimal deviation from the
uniform solution at s, — — oo . It is obtained by choosing go, wo, and by slightly perturbed from 1, €/2, and 0.

The upstream flow with g, w, b=1, ¢/2, 0 has R = 0, and the deviation of g, w, b from 1, ¢/2, 0 begins with negligible losses
(xR < F). Hence, one can choose sy where the flow still satisfies the adiabatic solution of Equation (B12). Only one of the three
perturbed quantities at so is independent: by choosing a small perturbation by =0, we also determine g, and w, according to
Equation (B12). Furthermore, changing b is equivalent to shifting s, in the profile of b(s). This shift is irrelevant, since the problem
has translational symmetry along s. Thus, no new free parameters are introduced by the choice of boundary conditions. The shock
transition will follow a unique solution apart from the arbitrary shift along the s-axis.

In practice, by does not need to be infinitesimal. It is sufficient to choose any finite small b, in the zone where the adiabatic solution
of Equation (B12) still holds, i.e., where £, < e|E - 3|. This requires

XR(gy> wo, bo) <K F(gy, wo, bo). (B13)

For shocks of main interest (3, — 1 and small ¢, Ugl), we find, using Equation (B12), that

b b

R%bz(l ——), Fr —
2 N1 —b
The adiabatic condition (B13) is satisfied if by < xil. In the numerical models presented below, we set by = €
condition (B13) for shocks with € < y =

One can also see here that shocks with x < 1 have negligible losses (YR < F) throughout the shock transition, as g drops from unity
and b =1 — g changes from 0O to b ~ 1. By contrast, x > 1 implies almost immediate onset of radiation reaction as the flow enters the
shock.

(€. < e|E - 3)). (B14)

12 This satisfies the

B.3. Numerical Solution

Numerical solutions for shocks with different values of x are shown in Figure 8. They are obtained in the limit of o, > 1 and e < 1 (we
used 0, = 10° and € = 10~ '® when integrating Equations (B8); however, the result is independent of these choices). Note that the flow keeps
B, = 1 everywhere, and hence s o< z. One can see that in the shock the normalized Lorentz factor of the flow g(s) = ~y/~y, decreases while the
magnetic field becomes compressed: b(s) grows from zero up to the final downstream value. The relation between g and b across the shock
transition is shown in Figure 8.

The presented solutions end where the flow develops gyration in the drift frame K. Beyond this point, the maser instability is
expected to destroy the coherent gyration of the e streams (Langdon et al. 1988). This instability is not followed by our calculation,
and this is not needed to see the effect of radiation reaction on the shock structure. After the development of gyration, radiative losses
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Figure 8. Shock structure solution in the approximation of steady e streams (viewed in the shock rest frame). The solution was calculated for x = 0, 10%, 10°, and
107. Left: for each case, we show g(s) (black), b(s) (blue), and v, (s) = B/ B2 — E? normalized to J0y (red). Flows with x > 1 radiate most of their energy before
developing gyration; this results in 7y < 7,. Each solution ends where the downstream begins, i.e., where the e* streams develop gyration (then they become unstable,
thermalizing their gyration energy in the drift frame). The drift Lorentz factor p at the end point represents the downstream speed relative to the shock. Right: relation
between g and b. The approximate analytical solution (Equation (B19)) is shown by the dotted curve and compared with accurate numerical integration (solid curve).
Both numerical and analytical solutions are plotted until the e* streams reach |3,] = 1,/2, which corresponds to 60° gyration in the drift frame.
become normal synchrotron emission, which carries away zero momentum in the drift frame and no longer affects the bulk motion of
the plasma.

We set the end point senq of the coherent stream solution where the e* velocity vector in the drift frame, 3., has rotated by 60°

~+ . .- . . . .

B, ==F1 / 2). We define the approximate downstream quantities at this point. In particular, the drift Lorentz factor
=58 / NB? — E? at s.,q approximately represents the Lorentz factor of the downstream relative to the shock, 4. Figure 4
shows the measured 4 as a function y.'® For shocks with x> 1, the numerical result approximately follows the relation
Y4/~/Fa = X'/7. It can also be derived analytically, as shown below.

B.4. Approximate Analytical Solution

The radiation-reaction transition admits a simple analytical description. A key fact simplifying the analytical approximation is that
the term wyR in dw/ds (Equation (B8)) remains small throughout the shock transition. When this term is neglected, the equations
for dw/ds and db/ds can be integrated for w(b). The resulting relation w(b) is the same as in the adiabatic solution given in
Equation (B12). At b > ¢, it gives

b2
e
Note also that the functions R and F entering the dynamical equations can be simplified. Neglecting the small terms e in
Equation (B11), we obtain

w (B15)

2
R%(w—f—gb)zzbz(é—i-g), F~ L, (B16)
2 Vg

where we used w/o, < g to further simplify F. Like Equation (B15), Equations (B16) approximately hold at b > ¢, practically
throughout the entire shock transition.

With these preliminary remarks, we can describe the shock structure as follows. The shock has two zones:

Adiabatic zone (g, < g < 1). Here, the upstream flow enters the shock by following the solution (B12) for g(b) and w(b). The
adiabatic zone ends when the radiative term becomes important in dg/ds (Equation (B8)), i.e., when xR becomes comparable to F.

10 Different choices for the end point definition (up to ﬁf = T3 ~ 1) affect the measured -4 by tens of percent, a modest correction compared with the main effect—
radiation reaction before the development of gyration. The exact «4 may be found with the full kinetic plasma simulation of the shock.
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This occurs at b; ~ y ' < 1. By this moment, the flow has lost only a small fraction 1 — g, of its initial kinetic energy, which went
into the slight compression of the magnetic field,

1
bial—gr~—< I (B17)
X

Radiation-reaction zone (g, < g < g1). Here, YR > F, and the flow deceleration is controlled by radiative losses. The solution
for b(g) can be found from the ratio of equations dg/ds ~ —xR and db/ds =w (Equation (B8)). Using R ~ g2b? (this holds
because gb > w, as verified below), we find

3 -
YO = by g — g (B18)

We have chosen the integration constant so that b(g;) matches b; (Equation (B17)). However, this boundary condition becomes

unimportant in the radiation-reaction zone, where b > b; and g73/ 2>1- g1 So, the solution simplifies to
%sz ~ g 1. (B19)

This result is in excellent agreement with the accurate numerical solution (Figure 8).
The key approximation of this derivation was the neglect of wxR compared with bF in dw/ds (Equation (B8)). Evaluating the ratio
wxR 2 3/
A~ Zg(1 — g¥?, B20
vr 580 —87) (B20)
one can see that it has a maximum of (2/ 5°/3~0.2, a small value. One can also verify that w/o, < g and
gb/w =~ 2g/b ~ 3xR/F > 1; this vindicates the approximations F ~ b/./g and R ~ g*b>.
The radiation-reaction zone ends where the term xR stops being dominant in dg/ds. This transition may be defined, e.g., by
xR =~ 2F, which occurs at

3 2/7
g~ (—) < 1. (B21)
X

As the radiation-reaction zone ends at g ~ g,, the gyrating downstream begins. The development of gyration can be seen by
transforming the e™ stream velocity to the drift frame. We find the drift speed 3p = E/B = 3,B,/B and then the drift Lorentz factor

- B _ 1 + b/oy ~ [G (B22)
VB2 —E* U +b/o)? - N2
The particle Lorentz factor measured in the drift frame is
. b b
¥~ (v — Bou) & Y g+ ) (B23)
20, 2

The e streams are ultrarelativistic in the drift frame; i.e., 5 & 1, and (3, ~ sin? determines their deflection angles 4-¢ from the z-
axis. Taking into account that i, = u,, we find

B Uy vF o \J28b
x — T — T ~ = .
gl Y/ou g + b/2
Substituting here the approximate solution (B19) for b(g), one can see the development of gyration with decreasing g. In particular,
one can see that |3, ~ 1 at g ~ g,, confirming the formation of a gyrating downstream.
Finally, we can evaluate the shock jump condition of main interest: the downstream Lorentz factor in the shock rest frame, 74
(denoted as v} = Yhja 10 the main text). It approximately equals yp(g2), which gives

(B24)

Yd 1,7
~ X
J%

x> 0. (B25)
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