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Abstract

We investigate how a fast radio burst (FRB) emitted near a magnetar would propagate through its surrounding
dipole magnetosphere at radii r= 107–109 cm. First, we show that a GHz burst emitted in the O-mode with
luminosity L? 1040 erg s−1 is immediately damped for all propagation directions except a narrow cone along the
magnetic axis. Then, we examine bursts in the X-mode. GHz waves propagating near the magnetic equator behave
as magnetohydrodynamic (MHD) waves if they have L? 1040 erg s−1. The waves develop plasma shocks in each

oscillation and dissipate at r L3 108 42
1 4~ ´ - cm. Waves with lower L or propagation directions closer to the

magnetic axis do not obey MHD. Instead, they interact with individual particles and require a kinetic description.
The kinetic interaction quickly accelerates particles to Lorentz factors 104–105 at the expense of the wave energy,
which again results in strong damping of the wave. In either propagation regime, MHD or kinetic, the dipole
magnetosphere surrounding the FRB source acts as a pillow absorbing the radio burst and reradiating the absorbed
energy in X-rays. These results constrain the origin of observed FRBs. We argue that the observed FRBs avoid
damping because they are emitted by relativistic outflows from magnetospheric explosions, so that the GHz waves
do not need to propagate through the outer equilibrium magnetosphere surrounding the magnetar.

Unified Astronomy Thesaurus concepts: X-ray transient sources (1852); Neutron stars (1108); Magnetars (992);
Radiative processes (2055); Radio bursts (1339); Plasma astrophysics (1261)

1. Introduction

Fast radio bursts (FRBs) are among the most mysterious
astrophysical phenomena. They are detected at GHz frequen-
cies from large cosmological distances. The bursts have huge
luminosities up to ∼1044 erg s−1 and millisecond durations
(Petroff et al. 2019).

The short durations suggest that FRBs are generated by
compact objects. In particular, magnetars are natural candi-
dates, as they are well known as prolific X-ray bursters (Kaspi
& Beloborodov 2017). Evidence for the magnetar-FRB
association has been provided by the detection of millisecond
GHz bursts from SGR 1935+2154, a known magnetar in our
Galaxy (Bochenek et al. 2020; The CHIME/FRB Collabora-
tion et al. 2020), although the bursts were weaker than the
cosmological FRBs. The radio bursting mechanism is not
established (see Lyubarsky 2021; Zhang 2023 for a review).

Useful constraints on the FRB origin can be found by
examining propagation of radio waves through the plasma
magnetosphere surrounding magnetars. In particular, if the
GHz source sits in the ultrastrong inner magnetosphere (which
confines and powers the source), then the observed emission
must be able to escape through the surrounding outer
magnetosphere. Can the radio wave actually escape?

Two linear polarization modes are possible for electro-
magnetic waves in the magnetosphere: the O-mode and the
X-mode (Arons & Barnard 1986). As shown in Section 2,
FRBs emitted in the O-mode experience immediate damping.
For the X-mode, the propagation problem is more subtle, and it
is solved in the remaining Sections 3–7. Hereafter, by “radio
waves,” we mean the X-mode electromagnetic waves.

A dangerous region for the X-mode wave is where the
background dipole magnetic field Bbg decreases to ∼E0 (the
wave amplitude). In particular, the calculation of the plasma
response to a sine radio wave with E0> Bbg shows its strong
damping (Beloborodov 2021, 2022, hereafter B22). The wave
quickly accelerates plasma particles up to the radiation-reaction
limit, and the particles radiate the received energy in the
gamma-ray band. Effectively, the plasma scatters the radio
wave to gamma rays, and then its energy converts to an
avalanche of e± pairs. This calculation did not address how the
oscillating wave reached the outer magnetosphere where
Bbg< E0, but demonstrated that if it did then it would not
survive.
The present paper investigates the full evolution of radio

waves emitted at small radii (where Bbg? E0) and propagating
to the outer region where Bbg< E0. At small radii, the X-mode
wave has no problem with propagation —it is well described as
a vacuum electromagnetic wave superimposed on the dipole
background. This description fails where Bbg/E0 decreases to
∼1. Here, the electromagnetic invariant B2

− E2 approaches
zero, and a dramatic transition occurs in the wave evolution.
Kinetic plasma simulations of this transition show that the

wave launches shocks in the background plasma (Chen et al.
2022b). One can demonstrate the formation of shocks and track
their evolution using the MHD framework (Beloborodov 2023,
hereafter Paper I). The MHD description holds for waves of
sufficiently low frequencies, and then the X-mode radio wave
behaves as a compressive MHD mode, called “fast magneto-
sonic.” Paper I focused on kHz magnetosonic waves and
showed that they evolve into monster radiative shocks, with
Lorentz factors exceeding 105.
Remarkably, MHD description also holds for GHz radio

waves of sufficiently high-power L> LMHD. As shown in the
present paper, LMHD happens to be in the range relevant for
FRB luminosities, and its value LMHD(θ) depends on the wave
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propagation angle θ relative to the magnetic dipole axis. In
particular, near the magnetic equator, the condition L> LMHD

is satisfied by typical extragalactic FRBs. This fact allows us to
solve for the wave propagation in the equatorial region using
the MHD framework. Then, we examine waves around the
magnetic axis, where LMHD> L, and a kinetic description is
required. We find that in both regimes, MHD and kinetic, the
GHz waves are damped.

2. Damping of O-modes

We will investigate propagation of waves from a putative
GHz source through the surrounding e± dipole magnetosphere.
The source sits sufficiently close to the magnetar, where Bbg far
exceeds the amplitude E0 of emitted waves,

( )E B . 10 bg

This requires a source radius r L3 108
33
1 2

42
1 4 m´ - cm,

where μ is the dipole moment of the magnetosphere, and

L cr E 22
0
2= is the emitted wave power. The condition in

Equation (1) corresponds to the local magnetospheric energy

density B 8bg
2 p exceeding the wave energy density E 80

2 p, as
expected in any scenario picturing an FRB source confined in

the magnetosphere and powered by the magnetosphere. The

dipole magnetosphere forms the background for the emitted

waves. Its most important property is the huge magnetization

parameter B c4 1bg bg
2

bg
2 s prº , where ρbg is the plasma

mass density.

2.1. Review of Wave Modes

Consider a harmonic wave described by its wavevector k,
frequency ω= 2πν, amplitude E0, and polarization. The
frequency and amplitude determine the dimensionless strength
parameter,

( )a
eE

mc
r L2.3 10 . 20

0 5
8
1

42
1 2

9
1

w
n= » ´ - -

The oscillating wave fields Ew= E and Bw= B− Bbg satisfy

the induction equation ∂tBw=− c∇×E:

( )B k Ec . 3ww = ´

The electric charge density and current density in the wave are

determined by the Maxwell equations,

· ( )k E j k B Ei ic i4 , 4 . 4e wpr p w= = ´ +

As long as the Larmor frequency of plasma particles ωL far

exceeds ω, they respond to the wave through the guiding center

motion, including the E× B drift with velocity vD=

cE×B/B2
(whose contribution to the electric current is

jD= vDρe).
Linear wave modes in the limit of σbg→∞ and

ωL/ω→∞ have been examined by Arons & Barnard (1986).
The modes have two possible polarizations: E oscillates either
along vector n= k× Bbg (X-mode) or perpendicular to n (O-
mode). Both modes have a group speed nearly equal to the
speed of light, v c 1gr bg

1s» - - . For the X-mode, k ·E= 0
implies ρe= 0 and jD= 0. The X-mode excites a negligible
electric current and propagates as in a vacuum despite the
presence of plasma, with the dispersion relation ω≈ ck. By
contrast, the O-mode may have a component of E parallel to

Bbg (which will be denoted E∥) and drive strong plasma
response. This section focuses on the O-modes.
In the limit of a low plasma density (vacuum), the O-mode

would have

( - ) ( )E E sin O mode in vacuum , 5 a=

where α is the angle between k and Bbg. We will assume

α≠ 0.3 In the presence of e± plasma, charged particles can

freely slide along the magnetic field lines and tend to screen E∥.

Therefore, the O-mode dispersion relation ω(k) (Arons &

Barnard 1986) depends on the plasma density n or the

corresponding plasma frequency,

⎜ ⎟⎛
¿

À
£ ( )

e n

m
n

2
0.9 GHz, 6p

p
2 1 2

10
1 2n

w
p p

= = »

where m is the electron/positron mass. A typical e± density

distribution around magnetars is ( )n r r1010 9
3~ - cm−3

(Belo-

borodov 2020). It implies ωp> ω at radii r< 109 cm.
If plasma succeeds in screening, E∥= 0, the O-modes

become relativistic Alfvén waves of ideal MHD, which satisfy
E ·B= 0 and E · j= 0. At σbg? 1, the Alfvén waves have
Bw≈ E and ω(k)≈ ck∥. Their group velocity vgr=∇kω is
parallel to Bbg, so Alfvén waves are ducted along the magnetic
field lines and cannot escape the closed magnetosphere. One
can also show that the oscillating electric current supporting the
Alfvén wave is parallel to Bbg and given by

( )j
i

E
4

sin . 7A

w
p

a»

The condition for small-amplitude O-modes to behave as
Alfvén waves with E∥= 0 is ωp> ω. However, this screening
condition holds only for waves with a0= 1.4 For waves with
a0> 1, the screening j= jA depends not only on ωp/ω but also
on the wave amplitude E0. This occurs because jA∝ E0 while
the maximum speed c limits the electric current to j< cen, so j
is no longer proportional to E0. O-modes with ω< ωp behave
as Alfvén waves at small amplitudes E0, and become “charge
starved” at sufficiently large E0 when jA> enc. Note that this
can happen even when E0= Bbg. Charge starvation was
previously discussed for Alfvén waves excited by neutron star
quakes (Thompson & Blaes 1998; Bransgrove et al. 2020;
Kumar & Bošnjak 2020; Chen et al. 2022a; Kumar et al. 2022).
GHz O-modes enter charge starvation much easier than kHz

waves, as one can see from

∣ ∣
( )

j

ecn

E

ecn
a

sin

4
sin . 8st

A max 0
2

p
2 0k

w a
p

w
w

aº » =

Using a0 from Equation (2) and the typical ωp from

Equation (6), one finds that the strong GHz O-modes have

the starvation parameter κst> 1 unless α is nearly zero (i.e.,

k∥Bbg, which is not sustainable in a curved Bbg). Note that the

regime of κst> 1 does not always imply that the wave develops

a strong E∥: numerical experiments with Alfvén waves

3
The case of α = 0 is degenerate: the O-mode behaves as an X-mode.

However, sustaining α = 0 along the ray is possible only for waves
propagating exactly along the magnetic dipole axis.
4

The screening condition for O-modes with a0= 1 is derived from the
nonrelativistic plasma response to the unscreened E∥: a harmonic wave of E∥

generates e
± velocities v ieE m ica sin0  w a=  =  and creates current

j ie nE m i E 42
p
2

 w w pw= = . If j > jA, the assumption of unscreened E∥

becomes inconsistent, i.e., E∥ is screened. This occurs if ωp > ω.

2
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launched into a uniform background with κst> 1 show that

they remain Alfvén waves—they sustain jA by advecting and

compressing a charge-separated plasma (Chen et al. 2022a).

However, in a nonuniform background (the dipole magneto-

sphere), the Alfvén waves are sheared, and their wavevector

becomes increasingly oblique to Bbg, i.e., angle α grows with

time (Bransgrove et al. 2020; Chen et al. 2022a). Then, the

plasma advected by the wave can become insufficient to sustain

jA and a strong E∥ develops.
Entering the unscreened regime with E E sin a» is a

necessary condition for the O-mode escape; otherwise, the
wave is ducted along the closed magnetic field lines. Therefore,
in the remainder of this section, we focus on O-modes that have
developed the unscreened E∥. Their dispersion relation is
similar to vacuum electromagnetic waves, and like the
X-modes, they can have vgrBbg, so they are no longer ducted
along Bbg. This condition is necessary, but not sufficient for the
O-mode escape, as escape also requires the waves to avoid
damping.

2.2. Energy Losses of Unscreened O-modes

The escape of unscreened O-modes is hindered by their
damping: the wave experiences energy losses because of
particle acceleration by the E∥. The E∥ oscillates with amplitude
E sin0 a and accelerates the plasma particles in each oscillation
up to the Lorentz factor

( )a sin . 90g a»

The particles with high γ emit radiation at the expense of the

electromagnetic energy of the O-mode. The power radiated by

each particle e
 is determined by its motion in the wave and

may be evaluated as follows.
The accelerated particles remain strongly magnetized in the

inner magnetosphere, since their Larmor frequency ωL= ωB/γ
far exceeds the wave frequency ω. The motion of magnetized
particles is a combination of sliding along B with velocity β∥

and drifting perpendicular to B with β⊥=E×B/B2
(other,

slower drifts of the guiding center will be neglected below).
Since the O-mode magnetic field Bw=B−Bbg oscillates
perpendicular to Bbg, the direction of B is tilted by the
oscillating angle ψ given by B Btan w bgy = . So, the direction
of β∥∥B oscillates in the Bbg–Bw plane with frequency ω and
amplitude ( )E B E Barctan0 0 bg 0 bgy = » . The oscillation
amplitude of β⊥ is of the same order or smaller, depending
on α. As a result, the particle velocity vector β periodically
deviates from Bbg by an angle ∼ψ0, and the particle executes a
curved orbit in each wave oscillation, with a characteristic
curvature radius

( )r
c cB

E
. 10c

0

bg

0wy w
~ ~

The power of curvature radiation emitted by the relativistic

particle (Landau & Lifshitz 1975) is

( )
c e

r

e

c
a

E

B

2

3

2

3
sin . 11e

c

2 4

2

2
2

0
4 0

2

bg
2

4 g
w a= ~

This power is enormous, and the wave may avoid losses only if

α is small, which is sustainable only near the magnetic dipole

axis. The corresponding constraint on the propagation direction

defines a narrow escape cone as shown below.

Plasma with density n emits energy with rate n e
 , and so, the

wave experiences irreversible loss of energy on the timescale

( )t
E

n

c

r a8

3

4 sin
, 12

e e

damp
0
2

bg

2
0
4 4p
s

w a
= ~



where re= e2/mc2. The efficiency of damping can be seen by

comparing the wave travel time r/c with tdamp.
Consider a wave with a radial wavevector k at angle θ

relative to the magnetic dipole axis. The angle α between k and
Bbg satisfies 2 tan tana q= for a dipole Bbg. Using
Equation (2), we find at θ< 1

( )
ct

r

m c r

r L

3
. 13

e

damp
2 4 2

bg
3

3 2 4

w s

q
~

The escape condition ctdamp/r 1 gives an upper limit for the

luminosity of the escaping O-mode,

( )
( )

( )L
mc r

r

3
. 14

e

2
bg

3 1 2

3 2 2
q

w s

q
ø

For magnetars in a persistent (nonbursting) state, one expects

σbgr
3
∼ 1034 cm3 as a typical value (Paper I). Such values of

σbg would allow the escape of O-mode with luminosity L

within a cone of L0.08 9
1 2

42
1 2q n -ø . The corresponding

maximum solid angle for escape is

⎜ ⎟⎛
¿

À
£

( )
L

r

2 2
3 10

10 cm
. 15

max max
2

3 9

42

bg
3

34 3

1 2
d
p

q n sW
= ~ ´ -

This constraint is strongest for FRBs with the highest L
1043 erg s−1 and for lowest frequencies (ν≈ 0.1 GHz is the

lowest observed in FRBs so far).
The value of σbg entering the limit in Equation (15) has been

normalized to an optimistically large value. Its actual value can
be dramatically reduced by e± creation that accompanies
curvature emission by the accelerated particles. Note that the
spectrum of curvature emission declines exponentially at
frequencies above ωc= (3/2)γ3c/rc, so the characteristic
energy of emitted photons is

( )
E

B
a

3

2
sin . 16c

0

bg
0
3 3w w a~ 

If ÿωcmc2, a huge number of curvature photons convert to

e± pairs via photon–photon collisions. It is easy to verify that

this process gives plasma density sufficient to put the O-mode

back into the Alfvén wave regime (the wave is no longer

charge starved), preventing its escape.
Thus, a necessary condition for O-mode escape is

ÿωc=mc2. The wave needs to avoid the avalanche of copious
e± creation by the photons in the far exponential tail of
curvature emission, which requires ÿωc 0.1mc2. This gives
the constraint

⎜ ⎟⎛
¿

À
£ ( )

a

mc B

E

r

L

2 0.1
0.05 . 17

0

2
bg

0

1 3
8
1 3

33
1 3

9
2 3

42
2 3

q
w

m

n
»ø



One now finds the maximum solid angle for O-mode escape

from a source sitting at a radius r< 108 cm,

( )
L2 2

10 . 18
max max

2
3 33

2 3

9
4 3

42
4 3

d
p

q m

n
W

= » -
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This constraint is independent of the background plasma

density ρbg (or the corresponding σbg). It becomes particularly

tight for the brightest FRBs with L 1043 erg s−1 and the

highest frequencies observed in FRBs so far, ν= 5–8 GHz.

3. Radio Waves in MHD Regime

The remaining sections will focus on propagation of
X-modes. They propagate freely with negligible coupling to
the magnetospheric plasma when E0= Bbg. The X-modes
experience no damping until nonlinear effects develop. These
effects appear where linear propagation would violate the
condition E2

< B2.

3.1. Formulation of the Problem

Suppose a GHz wave packet is emitted near the magnetar
and then expands to larger radii r where the magnetosphere is
initially unperturbed. We are interested in the evolution of the
packet at r∼ 108–109 cm where E2 approaches B2 and the
linear vacuum-like propagation ends. These radii are still well
inside the light cylinder RLC= c/Ω∼ 1010 cm, so rotation of
the magnetosphere is slow, Ωr= c, and may be neglected. The
unperturbed magnetosphere here may be described as a dipole
Bbg.

The unperturbed outer magnetosphere in front of the wave is
populated with mildly relativistic electrons and positrons (their
speeds are reduced by drag exerted by the magnetar radiation;
see Beloborodov 2013). Then, the energy density of the
background plasma is comparable to its rest mass–density
ρbgc

2. This density enters the definition of the magnetization
parameter,

( )
B

c

D

r
D

mc4
,

4
, 19bg

bg
2

bg
2 3

2

2
s

pr
m
p

º » =
þ

where m is the electron mass, and μ is the magnetic dipole

moment of the magnetar. The dimensionless parameter

r m3
bgrºþ is approximately constant with radius r; its

typical expected value is 1037~þ (Beloborodov 2020).
We will consider a wave packet far from its source. It

occupies a thin shell δr/r= 1 and has a nearly radial
wavevector k, so the packet behaves locally as part of an
axisymmetric wave (∂f≈ 0). Magnetosonic waves have a
toroidal electric field E∥k× Bbg, and we define

( )E E , 20º - f

using the normalized basis er, eθ, ef of the spherical coordinate

system r, θ, f with the polar axis along the magnetospheric

dipole moment μ. Our calculation will track the propagation of

the spherically expanding wave packet. As a concrete example,

we will consider a radio wave launched with an initial sine

profile

( ) ( ) ( )E E t
r

c
sin , 0 . 210x wx x t= < º - <

The packet has a short duration τ 1 ms, and we are interested

in its propagation at radii r? cτ.
As long as the magnetospheric particles exposed to the wave

remain magnetized, i.e., their Larmor frequency far exceeds the
wave frequency ω, the radio wave obeys MHD and can be
thought of as a fast-magnetosonic wave (the validity of MHD
description will be discussed in detail in Section 6). Particle

motion in the MHD wave can be thought of as the drift of the
Larmor orbit. The e± drift velocity β± has a charge-symmetric
(MHD) component β and a small antisymmetric component
±βp (polarization drift), which sustains the electric current
j= enβp. There is no need for explicit calculations of these
drifts in response to the electromagnetic wave. Instead, MHD
describes the evolution of fields E and B by treating the plasma
as a perfectly conducting fluid, which satisfies E+ v×
B/c= 0. The fluid is described by its velocity v= βc and
mass density ρ=mn. The unperturbed static background
corresponds to E= 0, B=Bbg, v= 0, and ρ= ρbg.
At small radii, where E0/Bbg= 1, the wave propagates

without deformation. It has the speed v c 1 1wave bg
1s= - »- ,

and the MHD wave is equivalent to a vacuum electromagnetic
wave superimposed on Bbg. The linear propagation ends where
the linear superposition hits the condition E2

= B2, which
corresponds to v→ c (Paper I). In the equatorial plane, this
occurs at radius R× where E0= Bbg/2,

⎜ ⎟⎛
¿

À
£ ( )R

c

L L8
2.47 10 cm. 22

2 1 4

8 33
1 2

42
1 4

m m
= » ´´

Here, L cr E 22
0
2= is the wave power.

We wish to find the nonlinear evolution of the electro-
magnetic wave as it crosses radius R×. Note that the evolution
occurs at a very high magnetization parameter σbg. In
particular, at R×, one finds

( ) ( )R
L

6.4 10 . 23bg
8 33

1 2
42
3 4

37

s s
m

º » ´´ ´
þ

Numerical examples shown below will assume a magnetar with

a typical magnetic dipole moment μ= 1033 G cm3 and plasma

density parameter 1037=þ .

3.2. Nonlinear Wave Equation

Before describing the full problem of GHz waves in a hot
plasma (heated by shocks), we start with waves in a cold
plasma. This gives a quick introduction to the calculation
method using characteristics.
The nonlinear evolution equation for magnetosonic waves

with a spherical wave front (far from the source) is derived in
Paper I. At all polar angles θ, the wave excites a pure toroidal
current j while sustaining zero charge density, ρe= 0. Plasma
motion in the wave obeys the momentum and energy
equations,

· ( )
u

j B E jc
d

dt
c
d

dt
, , 242 2r r

g
= ´ =

where u= γβ, ( )1 2 1 2g b= - - , and the time derivative is

taken along the fluid streamline: d/dt= ∂t+ v ·∇. Conserva-

tion of particle number (neglecting e± creation and annihila-

tion) is stated by the continuity equation,

· ( ) ( )vF n n 0, 25t¶ = ¶ +  =a
a

where uα
= (γ, u) is the fluid four-velocity, ˜F nu=a a is the

four-flux of particle number, and ñ n g= is the proper

density.
We are interested here in wave packets with many

oscillations and a short length cτ= r. It is convenient to use
coordinates (t, ξ, θ, f), so that the fast oscillation is isolated in
the single coordinate ξ= t− r/c (and variations with t and r at

4
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fixed ξ are slow). The continuity equation in the short-wave
limit gives

( ) ( )F c v n cnconst , 26r bg= - = =x

and energy conservation can be cast into the following form

(Paper I):

¤
⎣⎢

⎤
⎦⎥

( )
( )

( )r E r c
r

r
4

1
. 27t

t

r

2 2 2
bg

2p r g
g b g

b
¶ = - ¶ +

¶ + ¶
-

x
q q

Here, the derivative ∂t is taken at fixed ξ, θ (i.e., along the

radial ray r ct const= + ), and the derivative ∂ξ is taken at

fixed t, θ. The second term in the square brackets is small

compared to ∂ξγ unless γ approaches bg
1 3s (Paper I). This

typically does not occur in GHz waves, which develop less

extreme γ compared to kHz waves (as explained below), and

so, the energy equation simplifies to

( ) ( )r E r c4 . 28t
2 2 2

bg
2p r g¶ = - ¶x

It describes the coupled evolution of E(t, ξ, θ) and γ(t, ξ, θ) for

the waves propagating in the MHD regime.
We now focus on waves in the equatorial plane (θ= π/2),

assuming equatorial symmetry. Waves at different polar angles
will be investigated in Section 5.

3.3. Equatorial Waves

In the equatorial wave, the plasma oscillates with a radial
drift speed β= E× B/B2

= βrer, since vθ= 0 by symmetry.
Besides E≡− Ef, we will use the following notation:

( )B B
v

c

E

B
, . 29

rbº º =q

Equation (26) gives the plasma compression factor in short

waves, n= (1− β)nbg. The magnetic field is frozen in the fluid

and compressed by the same factor,

( ) ( )
n

n

B

B
1 . 30

bg bg bg

1r
r

b= = = - -

All MHD quantities in the equatorial wave can now be

expressed in terms of β, including the electric field,

( )E B
B

1
. 31

bgb
b
b

= =
-

Substituting Equation (31) into Equation (28) and using

dγ= γ3βdβ, one obtains

( ) ( )
( )

c

r

2

1

4

1
. 32

tbg

3 3

bg
2

2

s g
g b

g
s b
b

¶

-
+ ¶ =

-
x

A convenient MHD variable is the compression of proper
density r̃ r g= relative to its background value ρbg,

˜ ˜
( )

B

B

1

1
, 33

bg bg bg

k
r
r

s
s

b
b

º = = =
+
-

where r̃ and B̃ are measured in the fluid rest frame, and

˜ ˜B c4
2 2s prº . Equation (32) rewritten in terms of κ becomes

( ) ( )
c

r
2

2
1 . 34tbg

3
bg

2 2s k k k s k k¶ + ¶ = -x

Using the method of characteristics, we express this equation as

( ) ( )
d

dt

c

r
, 35

C

1k
k k= - -

+

where the derivative is taken along curves C+ (characteristics)

determined by the ratio of the coefficients of ∂tξ and ∂tκ in

Equation (34),

( )
d

dt

1

2
. 36
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x
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The characteristics ξ+(t) can also be described by their radial

speed β+= c−1dr+/dt= 1− dξ+/dt.
Recall that Equations (35) and (36) are obtained assuming

cold plasma. Appendix A gives a more formal derivation using
the stress-energy tensor of electromagnetic field + plasma, and
shows that Equation (35) also holds when the cold approx-
imation is relaxed, i.e., the plasma is allowed to be
relativistically hot. The shape of C+ characteristics in this
more general case is described by

( )
d

dt

1

2
, 37

s
2 2

x

g k
=+

where γs is the magnetosonic Lorentz factor defined in

Appendix A. Its value in a hot plasma is given by (see

Appendix A.5)

¤⎣ ⎤⎦( ) ( )
k

k
1 1

1
1

. 38
s
2 2

2
3g s

e
e
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Here, ( ˜ ) ˜c U c2
p

2e r r= + is the dimensionless specific plasma

energy (including rest mass and thermal energy); k= 3 if

thermal motions of plasma particles are isotropic in the fluid

frame, and k= 2 if the thermal velocities are confined to the

plane perpendicular to B. As shown below, the plasma is

heated in shocks, which are mediated by Larmor rotation, and

so, heating occurs in the plane perpendicular to B. It is

uncertain whether the plasma becomes isotropic far down-

stream of the shock; therefore, we allow both possibilities k= 2

and k= 3.
For waves in a cold plasma, ε= 1 and

s
2

bgg s ks= = . In
this case, Equation (37) is reduced to Equation (36).

3.4. Bending of Characteristics

Shocks form because the C+ characteristics in spacetime are
bent from straight lines, leading to collisions between them.
This bending is described by dξ+/dt≠ 0, and one can see from
Equation (37) that it is strongest when κ is small. Note that

( ) [ ( )]1 1 1k g b g b= + = - - is smallest where β approaches
−1 (i.e., the plasma drifts with a maximum Lorentz factor maxg
toward the star), which occurs where E2 approaches B2.
As explained in Paper I (and in Section 4.3 below), maxg and

( )2min max
1k g» - are set by the ratio of the electromagnetic

energy in one wave oscillation, L/ν, to the plasma rest mass in
the magnetosphere, mc4 2p~ þ . This ratio scales with the wave
frequency as ν−1, and here one can see the first big difference
between GHz and kHz waves: maxg is much lower in GHz
waves. In particular, γ stays far below γs, and γsκ? 1 holds
across the wave. This implies that the C+ characteristics
propagate with dξ+/dt= 1 (see Equation (37)), i.e., their
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speeds dr+/dt stay close to c. Thus, the bending of
characteristics is a small parameter.

This feature of GHz waves allows one to easily find the
evolution of κ along C

+. Using ( )dt d dt dr c1 1x= - +
- and

dξ+/dt= 1, we find from Equation (35),

⎜ ⎟¤
⎣⎢

⎛
¿

À
£
⎤
⎦⎥

( ) ( )
d

d r

d

dtln
1 . 391k

k k
x

= - +- +ÿ

This equation implies that the radial dependence of κ along

each C+ has the functional shape,

( )Kr1 2 , 402k = +

where K= const. The constant K is different on different C+ and

set by the initial profile of the wave. Using E= βB=

βBbg/(1− β) and substituting β= (κ2− 1)/(κ2+ 1), we obtain

the solution for E along C
+,

( )E
K

r
. 41

m
=

It is the same as in a vacuum wave, E∝ r−1. We conclude that

the presence of plasma influences the GHz wave propagation

by slightly changing the shape of C+ characteristics while the

evolution of E(r) along each C+ remains unchanged from the

vacuum solution.
Note that the small bending of characteristics, dξ+/dt= 1,

can strongly deform the oscillations with wavelength λ= r.
This occurs when the small deviation of C+ from straight lines,
δr+∼ c(dξ+/dt)t= r, reaches a fraction of λ. Then, character-
istics collide, forming a discontinuity of the MHD quantities—
a shock.

3.5. Coupling of Wave Evolution to Thermal Balance

Next, we note another essential difference between kHz and
of GHz waves. In kHz waves, the monster shocks have ultrafast
radiative losses. As a result, it turns out sufficient to use the
cold approximation ε≈ 1, which gives

s
2

bgg s ks» = . By
contrast, for GHz waves, the plasma cooling time exceeds the
wave oscillation period. This leads to accumulation of a large ε
along the wave train. It affects γs, and the wave evolution
becomes coupled to the plasma thermal balance. Thus, the
wave problem requires a self-consistent solution for κ(t, ξ) and
ε(t, ξ). The evolution of ε(t, ξ) is governed by heating in shocks
and synchrotron cooling, as described below.

3.6. Shock Heating

The plasma speed β is discontinuous at the shock, as the
upstream and downstream characteristics bring to the shock
different values of β: βu≠ βd (hereafter subscripts “u” and “d”
refer to the immediate upstream and immediate downstream of
the shock). The Lorentz factor of the upstream plasma relative
to the downstream plasma, �rel, is related to the shock
compression factor ˜ ˜q d u d ur r k k= = (Appendix B):

( ) ( ) ( )q q1
1

2
. 42rel u d u d

1g g b bG = - = + -

In Appendix B, we describe the shock jump conditions and

derive the plasma energy per unit mass immediately

downstream of the shock:
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where k= 3 for isotropic plasma, and k= 2 when particles are

heated only in the plane perpendicular to B. Note that radiative

losses do not affect the shock jump conditions, as the plasma

cools on a timescale much longer than the Larmor time that sets

the shock width (the opposite regime occurs in kHz waves; see

Paper I).
The jump conditions also determine the shock speed,

( ) [( ) ]
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For relativistic shocks with q? 1, this simplifies to
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3.7. Radiative Losses

The shock-heated plasma gradually loses energy to synchro-
tron emission. Thermal evolution of the plasma behind a shock
obeys the first law of thermodynamics along the fluid
streamline:

˜
( )d P d

c
d p d d

1
ln , 46s sp 2

e
r

e k e= - - = -

where Pp is the plasma pressure,

˜
( ) ( )p

P

c k

1
, 47

p

2
1

r
e eº = - -

mc2dεs is the energy loss due to synchrotron emission,

˜
( ) ˜ ( )d

mc

B

k
dt

2
1 , 48s

T
2

2e
s
p
e= -

and ˜dt dt g= is the proper time of the fluid element. We here

approximated the particle distribution function in the fluid

frame as monoenergetic (each particle has the Lorentz factor

ẽg e= ). Then, using the relations B̃ Bbgk= and ˜dt dk x=
along the fluid streamline, we obtain the equation for ε(ξ),

( )
( )d
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e
e
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s k e
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which can be integrated numerically along a given wave profile

κ(ξ).
Energy emitted in the lab frame is dEs= γ dεsmc

2 per particle.
The number of particles passing through the wave per unit time is
4πr2(ρbg/m)c (we have multiplied by 4πr2 to define the isotropic
equivalent). Energy Es radiated per particle is distributed over ξ in
the wave as dEs/dξ= γmc2dεs/dξ. This gives the following
distribution of the synchrotron power over ξ:

( )
( )

dL

d kmD r

1

2
. 50

s T
4 3 2

7x
s m gk e
p

=
-

Solutions for MHD quantities along characteristics described
by Equations (35) and (37), with local γs calculated under the
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adiabatic assumption (Equation (38)), become inaccurate if the
plasma radiates a significant fraction of its energy ε during one
wave oscillation. We will monitor for this condition, which
limits the applicability of our simulation method. Note that the
solution may hold even when radiative losses have a strong net
effect on the wave. For instance, the GHz wave packet with
30,000 oscillations (simulated below) eventually loses most of
its energy to synchrotron emission; however, it is approxi-
mately adiabatic in each oscillation. Radiative losses impact ε
that enters Equation (37) through γs; however, the local fast-
magnetosonic speed remains approximately adiabatic and
determined by the local ε according to Equation (38).

3.8. Numerical Implementation

One advantage of using characteristics, compared with grid-
based MHD solvers, is the ability to track waves in a plasma
with any large magnetization parameter σ. In addition, low
computational costs of tracking characteristics allow one to
follow radio bursts with a large number of oscillations N.

The calculation starts at small radii where Bbg far exceeds the
wave electric field E, and the plasma oscillates with small
|β|= 1, which implies a negligible modulation of plasma
density, |κ− 1|= 1. In this inner zone, the C+ characteristics

propagate with speed ( )1 bg
1b s= -+
-ÿ , and so, each

characteristic keeps a constant coordinate ξ= t− r/c= ξi.
The initial wave profile E(ξi) is well defined in this inner zone
of nearly vacuum propagation with E∝ r−1. It is conveniently
described by the function

( ) ( ) ( )K
rE

K K
rE

sin , . 51i 0 i 0
0x

m
wx

m
º = º

When launching the wave, we set up an initially uniform grid

in ξi of size N+, and then use the N+ characteristics to track the

wave evolution. Typically, 500 characteristics per wave

oscillation are sufficient (convergence has been verified by

varying N+).
At each time step dt, the displacement dξ+ of each

characteristic ξi is determined by dξ+/dt (Equation (37)),
which is controlled by the evolving values of κ(t, ξi) and ε(t, ξi)
on C

+. The compression κ(t, ξi) evolves according to
Equation (35), and the plasma specific energy ε(t, ξi) is found
by integrating the ordinary differential Equation (49) in ξ when
scanning through the array of N+ characteristics.5 The down-
stream energy εd of each shock is found from the jump
conditions (Section 3.6). The propagation speed of each shock
is determined by Equation (44).

After each time step, the code examines the updated
positions or the characteristics and any existing shocks, and
determines which characteristics terminate at the shocks. The
code also constantly watches for any new crossings of
characteristics to detect formation of new shocks. We use an
adaptive time step to resolve any fast evolution in MHD
quantities near R×. We have also implemented substeps in the
leading oscillation of the wave, which is coldest and reaches
the lowest κ, leading to more demanding time step require-
ments. Note also that the density of characteristics dN dx+

drops ahead of shocks, where κ is lowest, and the high dξ+/dt
results in stretching the array of C+ in ξ. To maintain sufficient
spatial resolution everywhere in the wave, we use adaptive
mesh refinement in ξi without changing the total number of 500
active (not terminated) characteristics in each oscillation. These
technical tricks allow one to significantly speed up the
simulation and trace the evolution of long wave trains. Sample
wave trains presented below have N= 3× 104 oscillations,
traced on a grid with N+= 500N= 1.5× 107 characteristics.
The wave evolution should conserve the total energy

(electromagnetic + plasma + synchrotron losses), which
provides a simple test. The simulations passed this test.

4. MHD Results for Equatorial Waves

Two models are discussed in detail below: waves with initial
power L= 1042 erg s−1 and L= 1040 erg s−1. Both simulated
waves have frequency ν= ω/2π= 0.3 GHz and duration
τ= 0.1 ms. In addition, we will briefly discuss an example of
waves with even higher initial power L= 1043 erg s−1. Figure 1
shows the evolution of the wave power with radius found in the
three simulations.

4.1. Model I: L= 1042 erg s−1

As one can see in Figure 1, the wave experiences strong
damping near radius R×≈ 2.5× 108 cm. The development of
shocks in each oscillation results in plasma heating and
synchrotron losses, reducing the wave energy by a factor of
∼10 between R× and 2R×. Then, the electromagnetic packet

Figure 1. Evolution of the wave power L with radius r, for wave packets with
initial L = 1040, 1042, and 1043 erg s−1. In the sample numerical models, the
waves have frequency ν = 0.3 GHz; similar results hold for waves in a broad
range of GHz frequencies. Total Poynting flux L (isotropic equivalent) is
shown by black curves. Its oscillating component Lν (blue curves) is of main
interest for FRBs. The calculations have been performed assuming k = 3
(isotropic plasma, dotted curves) and k = 2 (thermal motions perpendicular to
B; solid curves). Shocks form at radius rc indicated by the red dot; it is slightly
smaller than R× (see text). Green dot marks the heating transition radius Rh

(Equation (67)).

5
Recall that we consider short-wave packets, so that the plasma crosses the

wave faster than the wave evolves. Then, the profile of ε(ξ) can be calculated at
fixed t=const. This approximation loses accuracy in low-power waves, which
have extremely fast evolution at R× (the model with L = 1040 erg s−1 shown
below); however, this weakly affects the final result.
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evolves into a smooth, almost uniform, Poynting flux with

unchanged duration τ= 0.1 ms and strongly damped oscilla-

tions. The wave power Lν that is carried by the alternating

component of the electromagnetic field with frequency ν is

reduced below 10−3 of its original value.
The evolution of the wave profile is shown in Figure 2.

Showing the entire profile with 3× 104 oscillations would be

impractical, so we limited the figure to the first 10 oscillations

in the packet; this is sufficient to see the evolution. It has three

phases:
(1) Cold oscillations at r< R×. As the plasma flows through

the wave, it performs N= τν small-amplitude, harmonic

oscillations with frequency ν, and exits behind the packet.

Figure 2. Evolution of the wave profile E(ξ) in Model I (L = 1042 erg s−1,
ν = 0.3 GHz, isotropic plasma). The snapshots were taken when the packet
reached r/R× = 0.9, 1.5, 2.6, and 29. For clarity, only the leading 10
oscillations are shown. Electric field E is normalized to the amplitude E0

vac that
the wave would have if it propagated in vacuum.

Figure 3. Evolution of the plasma compression profile κ(ξ) in Model I (same
model and snapshot times as in Figure 2). The vertical jump observed in each
oscillation is a shock.

Figure 4. Evolution of the plasma internal energy ε(ξ) in Model I (same
snapshot times as in Figure 3). The larger number of oscillations (200) are
shown to demonstrate the heating by the shock train and the saturation of ε
when synchrotron cooling offsets shock heating in each oscillation.

Figure 5. Evolution of a typical shock (measured 1000 oscillations from the
leading edge of the wave train) in Model I. All curves begin at the shock
formation radius rc ≈ 0.998R×. The shown parameters are the shock
compression factor q, downstream specific energy εd, and specific dissipated
energy εdiss. In addition, the figure shows Larmor frequency of the plasma
particles ωL normalized to the wave frequency ω; ωL oscillates in the wave, and
the figure shows the evolution of its minimum value.
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This simple behavior ends when the packet reaches
rc≈ 0.998R×. Then, caustics form, launching shocks in each
oscillation. The shocks appear at the oscillation phases where E
is close to its minimum (E≈−E0) and κ= 1.

(2) Main dissipation phase at r R×. The shocks reach a
maximum strength at r≈ 1.1R×. The shock in the first
oscillation of the wave train is strongest (because it has a cold
upstream), reaching the compression factor q= κd/κu∼ 102

(Figure 3). Subsequent shocks down the wave train occur in the
plasma already heated in the leading shocks (Figure 4);
therefore, they have smaller q. Figure 5 shows the evolution of
a typical shock located 1000 oscillations away from the leading
edge of the wave.

The oscillation of plasma compression κ (Figure 3)
modulates the plasma temperature by adiabatic heating/cool-
ing, and in addition, there is dissipative compression at each
shock. In general, dissipation breaks periodicity: as the plasma
moves through the wave train, it can accumulate heat εdiss
gained in each of the N shocks. However, synchrotron losses
offset the gradual growth of ε and make the wave train
approximately periodic, with ε oscillating about a flat ē
(Figure 4). The value of ¯ 102e » is determined by the
heating=cooling balance, as described in Section 4.3.2 below.

(3) Evolution toward a uniform Poynting flux at r? R×. By
the time the packet reaches r= 2R×, the shocks have erased the
low-κ regions, and the plasma oscillations now have a small
Lorentz factor γ∼ 1 throughout the wave. The shock strength
becomes subrelativistic, �rel∼ 1. The electric field E oscillates
with a decreasing amplitude about a positive average value
Ē E0.3 0~ . At r 30R×, E(ξ) becomes nearly uniform across
the entire wave.

We conclude that the oscillating GHz wave is absorbed in
the magnetosphere. Part of its energy and momentum (∼10%)

is used to eject the outer magnetospheric layers, forming the
Poynting flux that continues to expand freely. Most of the
absorbed wave energy (∼90%) converts to synchrotron
emission from the heated plasma.

The simulation also demonstrates the gradual steepening of
the wave profile at the leading edge of the packet. This leads to
the formation of a strong forward shock when the packet
reaches RF≈ 7× 108 cm. It is consistent with the analytical
expectation (Paper I)

⎜ ⎟⎛
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The forward shock is the leading edge of the Poynting flux

ejected from the magnetosphere, i.e., the wave packet

effectively has become an ultrarelativistic blast wave that

continues to expand into the external medium. The blast has

thickness cτ and carries ∼10% of the original wave energy.

4.2. Model II: L= 1040 erg s−1

The main difference of the low-power wave is seen from
Figure 1: it is damped in a narrow range of radii δr when the
wave packet approaches R×≈ 7.8× 108 cm. Shocks and
damping develop somewhat before R×, at rc≈ 0.943R×. The
final outcome is that about 95% of the wave energy is radiated
away in synchrotron X-rays, and the remaining 5% forms a
smooth Poynting flux of duration τ, with no GHz oscillations.

The evolution of the wave profile is qualitatively similar to
Model I. There are two main quantitative differences: (1) The

shocks are weaker (Figure 6), which implies a lower dissipated
fraction εdiss/εd in each shock. (2) The plasma passing through
the wave develops a much higher temperature (ε reaches
∼2× 103; see Figure 7). This occurs because dissipation takes
place at a larger R× where the magnetic field is weaker, and
synchrotron cooling is much slower. This leads to εdiss∼ 200
during the main dissipation phase, much higher than in Model I
(compare Figures 8 and 5). Therefore, the wave damping
occurs much faster.
Our numerical method loses accuracy when radiative losses

during one oscillation become comparable to the plasma energy
(then, the speed of characteristics βs significantly deviates from
its adiabatic value). This does not occur in Model II. Model I is
less accurate, in particular near the dissipation onset, when the
plasma radiates in one oscillation ∼30% of its thermal energy,
in balance with heating εdiss/εd∼ 0.3 (Figure 5).

4.3. Analytical Description

The wave behavior shown by the numerical models can be
understood analytically and described by approximate
formulae. An important dimensionless parameter of the
problem is

( )
R

c
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L
L8 10 . 532

2
2
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As shown in Paper I, the plasma exposed to waves with ·= 1

develops Lorentz factor γ∼ ·−1 at r∼ R×. The parameter · is

tiny in powerful kHz waves investigated in Paper I, and GHz

waves have less extreme ·. Our first sample model

(ν= 0.3 GHz and L= 1042 erg s−1
) has ·≈ 2.4× 10−2. The

second model (ν= 0.3 GHz and L= 1040 erg s−1
) has ·> 1,

which creates only mildly relativistic plasma motions in the

wave. Note also that the plasma speed is related to compression

κ (Equation (33)), which implies γ= (κ2+ 1)/2κ.

4.3.1. Shock Formation

The caustic forms quickest on characteristics with K< 0,
which develop the smallest κ. The first shock forms in the first
(leading) oscillation in the initially cold plasma. It occurs at
coordinate ξc with plasma compression factor κc at time tc, all
of which can be derived analytically. For waves with ·= 1, the
result is (Paper I)
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Note that ·? c/ωR× in the GHz waves. In particular, for the

0.3-GHz wave with L= 1042 erg s−1, we find ct R 1c - » -´

3 24 1.6 10 3z » - ´ - , in agreement with the numerical

simulation. Note also that Model II is in the opposite regime,

·> 1. In this case, the caustic forms without a strong drop in κ.
Similar shocks develop in each oscillation of the wave train

and eventually dissipate the wave energy into heat, most of
which is radiated away.
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4.3.2. Thermal Balance in the Shock-heated Wave Train

Each shock in the wave train heats the plasma passing

through the wave. Without synchrotron cooling, the plasma

specific entropy would monotonically grow with ξ from the

leading edge of the shock train toward its end. This growth

occurs over many oscillations and gradually pushes the specific
energy ε to so high values that synchrotron cooling Q∝ ε2

becomes important. Indeed, one can see in Figures 4 and 7 that
at large ξ the growth of ε(ξ) stops. Thus, the plasma passing
through the wave enters a thermal balance: shock heating in
each oscillation is offset by synchrotron cooling.
The thermal balance may be stated by equating the specific

energy dissipated at the shock εdiss to the synchrotron losses
(Equation (49)) integrated over one oscillation,

∮
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The shock dissipates energy εdiss= εd− εad, where εd is given

by Equation (43), and εad= q
α−1εu accounts for adiabatic

heating by shock compression q with adiabatic index α. The

plasma flowing through the train of many shocks sustains

ε? 1 and α= 1+ k−1. Equation (43) for εd then simplifies,

and we find its dissipation part:
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At large q? 10, g approaches unity. In the opposite weak-

shock limit, an expansion in q− 1 gives
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Figure 7. Evolution of the plasma internal energy ε(ξ) in Model II (same
snapshot times as in Figure 6). The larger number (600) of oscillations are
shown to demonstrate the heating by the shock train and the saturation of ε
when synchrotron cooling offsets shock heating in each oscillation.

Figure 6. Oscillations of the plasma compression κ(ξ) in Model II
(L = 1040 erg s−1, ν = 0.3 GHz, isotropic plasma). Three snapshots are
shown, when the wave packet reached r/R× = 0.946R×, 1, 2.6. The figure
shows the leading 100 oscillations (the simulated packet has 3 × 104

oscillations).

Figure 8. Evolution of a typical shock (measured 1000 oscillations from the
leading edge of the wave train) in Model II. The shocks appear at
rc ≈ 0.943R×, and the figure focuses on the narrow range δr where the wave
energy is dissipated. The shown parameters are the shock compression factor q,
downstream specific energy εd, and specific dissipated energy εdiss. In addition,
the figure shows Larmor frequency of the plasma particles ωL normalized to the
wave frequency ω; ωL oscillates in the wave, and the figure shows the evolution
of its minimum value.
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Synchrotron losses peak downstream of each shock, and we
estimate the thermal balance in Equation (56) as
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This balance determines ε that can be sustained by shocks with

compression factors q against radiative losses. Note that εdiss is

a small fraction of εd for q< 5, and that ε oscillates in the wave

within a modest range εu ε εd (Figures 4 and 7).

In Equation (60), one can use B B xbg
2 2 6= ´ where x= r/R×,

( )B R L c82 2 6 1 3 2m m= =´ ´
- , and L is the initial power of the

wave (before the dissipation). Then, we obtain
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The main dissipation occurs near R×, at x≈ 0.94–0.95 for

L= 1040 erg s−1 and at x≈ 1.3–1.5 for L= 1042 erg s−1. The

two waves also have different shock strengths, q≈ 2 and 5,

which give kg≈ 0.2 and 1.2, respectively. The value of

κd∼ 1.5–1.8 is close to the peak κ in the oscillation. Using

these values, one can see that the estimate for Equation (61)

well explains εd observed in the simulation: we find εd∼ 200

for L= 1042 erg s−1
(Figure 5), and εd∼ 3× 103 for L=

1040 erg s−1
(Figure 8).

4.3.3. Duration of the Main Dissipation Phase

As one can see in Figure 1, the main dissipation phase of the
powerful wave, L= 1042 erg s−1, extends over a significant
range of radii δr∼ R×. By contrast, the weaker wave with
L= 1040 erg s−1 dissipates quite suddenly near R×, in a narrow
range δr= R×.

The length δr is related to the number of particles passing
through the wave, ( )r r4d p d~þ þ . This number (and hence
δr) can be estimated using energy conservation. The wave
energy contained in one oscillation is L/ν, and each particle
receives energy εdissmc

2 from the shock. Hence, the number of
particles it takes to damp the wave is

( )
L

mc

L

g mc
, 62damp

diss
2

d
2

d
e n e n

~ =þ

and the corresponding damping length is

( )
r

r

L

kg x m c20
, 63

damp d
3

T
5 2

2 6 2 9 2 2

d k s
m n

~
þ

where we substituted εd from Equation (60). In particular, for

the wave with L= 1040 erg s−1, this estimate gives

δrdamp/r∼ 2× 10−3, consistent with the simulation results

(Figure 8). Equation (63) holds if δrdamp/R×= 1. Note that

δrdamp/R× grows with L and saturates at ∼1 for waves with

large L (as in Model I) or low ν.

4.3.4. Validity of MHD Description

The MHD description of waves fails when the particles
become unmagnetized, i.e., their Larmor timescale becomes

comparable to the fluid dynamical timescale measured in the
fluid rest frame. The demagnetization can happen in kHz waves
when they accelerate the plasma to huge Lorentz factors
(Paper I). In GHz waves, the fluid Lorentz factors are modest,
but demagnetization may occur for a different reason: the
ultrarelativistic temperature of the plasma increases its Larmor
timescale.
In both presented simulations, the MHD requirement

ωL≈ ωB/ε? ω holds throughout the evolution of the wave.
The ratio ωL/ω is shown in Figures 5 and 8. For waves with a
lower power L< 1040 erg s−1 and the same ν= 0.3 GHz, the
condition ωL? ω would become violated.
One can estimate ωL≈ eBbg/εmc during the main dissipation

phase using ε∼ εd given by Equation (61):

( )
gx

e L

m c

8

6
, 64

L
3 4

d
3

9

T
9 4

2 17 4 3 2 2

w
w

k
p

s
m n

~

where we used ( ) ( )B xR x L c8bg
3 3 1 2 3 4m m= =´
- - - . In

particular, for the wave with ν= 0.3 GHz and L= 1040

erg s−1
(Model II) with isotropic plasma (k= 3), one can

substitute the numerical factors g∼ 0.1 and x9∼ 0.6 evaluated

above. The result is approximately consistent with the

minimum ωL/ω∼ 7 observed in the simulation (Figure 8).

4.4. Extremely Powerful Waves

GHz waves with power L? 1042 erg s−1 develop radiative
shocks at R× in the sense that the plasma behind each shock is
radiatively cooled on a timescale shorter than the wave period.
This leads to nearly periodic dynamics as the plasma moves
through the wave train: shock heating in each oscillation is
followed by immediate strong cooling. The wave train remains
approximately periodic until it reaches the “heating radius” Rh

where synchrotron cooling weakens enough, so that the
shocked plasma retains a significant fraction of the received
heat before it crosses one wave period and becomes heated
again in the next shock. At radii r> Rh, the plasma begins to
accumulate heat in the wave train, and then reaches a thermal
balance (heating= cooling) at enthalpy ε far exceeding the
enthalpy gained in a single shock; this thermal balance was
described in Section 4.3.2.
Figures 9 and 10 show an example model where the wave

has a high initial power L= 1043 erg s−1
(and the same

frequency as in the other presented models, ν= 0.3 GHz). The
simulation followed the evolution of the wave train with 1000
oscillations; however, Figure 9 displays only its small leading
part of 10 oscillations, for clarity. One can see that at r≈ R×

the wave develops a periodic train of radiative ultrarelativistic
shocks. Upstream of each shock the wave profile develops a
plateau of E≈−Bbg/2 (which corresponds to E2

≈ B2
), and the

plateau width quickly grows to Wp∼ ω−1. The plateau forms
because the MHD evolution “shaves off” the excess of E2 to
respect E2

� B2, as explained in detail in Paper I. The plasma
accelerates as it crosses the plateau, then decelerates at the
shock, and then radiates the heat received from the shock. The
cycle repeats in each oscillation, and the wave train remains
approximately periodic until it reaches radius Rh. In this sample
model, we find Rh≈ 2R×.
An analytical estimate for the radius Rh is found by matching

the results derived at r< Rh and r> Rh. At radii r< Rh, the
plasma in each oscillation has a negligible memory of shock
heating in previous oscillations; the particles periodically gain a
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Lorentz factor γe≡ γε and radiate the received energy away.
The particles gain energy where E2

≈ B2, i.e., at the plateau of
E(ξ)≈ Ep=−Bbg/2. The plateau evolution Ep∝ r−3 controls
the energy loss of the electromagnetic wave, which in turn
determines the energy gain of the plasma as it crosses the
plateau (Paper I), so particles crossing the plateau of width

Wp∼ c/ω gain the Lorentz factor

( ) ( )
c

r
r R . 65e bg hg

w
s~ ø

This energy is thermalized in the shock (and quickly radiated

away) in each oscillation.
At radii r Rh, the plasma energy per particle is set by the

heating=cooling balance (Equation (60)),6

( ) ( )
mc

B
r R

2
. 66e

T bg
2 hg

p w
s

~ ù

Here, we took into account that the shocks are strong in the

extremely powerful waves, q? 1, which implies g(q)≈ 1.

Now, one can evaluate the transition radius Rh by matching

Equations (65) and (66),

⎜ ⎟⎛
¿
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Only waves with sufficiently high power L (and/or lower

frequency ν) form shocks in the fast-cooling regime Rh> R×,

and their profiles E(ξ) develop the plateaus as they propagate

between R× and Rh. The condition Rh> R× is satisfied when

( )L L 1.5 10 erg s . 68h
42

33
2 5

9
4 5 1m n> » ´ -

Such waves experience moderate energy losses (50%)

between R× and Rh. At radii r> Rh, synchrotron cooling

becomes slower than the wave oscillation, and then the GHz

oscillations become nearly erased, similarly to the weaker

waves with L< Lh (Figure 1). In summary, the GHz burst is

strongly damped near R× if L< Lh and near Rh if L> Lh.

5. Shock Formation outside the Equatorial Plane

Consider a spherical wave front expanding through the
dipole magnetosphere. It has a radial wavevector k. Note that
Bbg⊥k only in the equatorial plane θ= π/2. The angle α
between Bbg and k is given by

( )
B

B
tan

1

2
tan . 69

r

bg

bg

a q= =
q

Shock formation is expected at radius r×(θ), which can be

found from the condition E2
= B2 with E and B evaluated for

the wave propagation in a vacuum (Paper I):

⎜ ⎟⎛
¿

À
£( ) ( )r R R

4 3 sin

sin

sin

sin
. 70

2 1 2 1 2

q
q

q
q
a

=
-

=´ ´ ´

The density parameter of the magnetosphere at θ≠ π/2 is
defined similarly to that in the equatorial plane,

( ) ( )r n r, . 713
bg qºqþ

We have added subscript “θ” to highlight a possible variation

of density with θ. It may be estimated assuming an

approximately uniform e± loading in the inner magnetosphere,

where Bbg 1013 G (Beloborodov 2013, 2020). The created

pairs outflow along Bbg with mildly relativistic speeds and

Figure 9. Same model as in Figure 2 except that here the wave has a higher
power L = 1043 erg s−1. One can see the periodic plateaus in the snapshot at
r = 1.5R×. The transition to slow cooling occurs around Rh ≈ 2R×; then, the
periodic plateaus disappear, and the GHz wave experiences strong damping,
especially in its extended part farther down the oscillation train (not included in
the figure).

Figure 10. Evolution of the plasma internal energy profile ε(ξ) in the wave
shown in Figure 9. The larger number of oscillations (30) are included in the
figure to show the saturation of ε near the heating=cooling balance when the
wave propagates to r? Rh ≈ 2R×.

6
We omit a numerical factor ( )1ÿ set by the plasma dimensionality

parameter (k = 2 or 3) and the average compression factor κ ∼ 1.4-1.7 around
the wave crest where main cooling occurs.
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annihilate when they approach the equatorial plane. This

picture implies

( )n B ,
sin

sin
. 72bg bg
q
a

µ =q
þ
þ

5.1. Plasma Velocity Profile in the Wave

The simplicity of equatorial waves described in the previous
sections is due to the simple relation between the wave electric
field E and the plasma speed β, which allows one to formulate
the energy Equation (28) for a single unknown function. In the
equatorial wave, the plasma executes the radial E×B drift
with β= E/B= E/(Bbg+ E). By contrast, outside the equator-
ial plane, the oblique Bbg implies that the wave will move the
plasma in both r and θ. Furthermore, in addition to the E× B
drift, the plasma can slide along the oblique B. Despite this
complication, one can still find analytically the relation
between β and E across the wave profile.

The MHD condition E2<B2 implies the existence of a “drift
frame” ̃ (moving with velocity βD=E×B/B2) in which
Ẽ 0= . In this frame, the plasma has a pure sliding motion along

B̃ with some speed b̃ and Lorentz factor ˜ ( ˜ )1
2 1 2g b= - - .

Transformation of the plasma four-velocity uα
= (γ, u) from

frame ̃ to the lab frame gives

˜ ˜ ˜ ( )u u u, , 73D Dg gg g= = +

where

( )u
E BB

B E B B E
, , 74D

2 2
D

2 2
g =

-
=

´

-

and B B Br
2 2= + q . Equation (73) shows the decomposition

of u into components parallel and perpendicular to B: ˜u u =
and ˜u uDg=^ .

The relation between the plasma Lorentz factor
( ˜ )u1D

2 1 2g g= + and the wave electric field E will be found
if we solve for ˜( )u E . This can be done using

( ˜ ) ( · ) · ( )u B u
Bd

dt
uB

d

dt

d

dt
u

dB

dt
, 75= = » q
q

where the derivative d/dt is taken along the fluid streamline,

and we used B · du/dt= 0 (implied by Equation (25)). The last

(approximate) equality in Equation (75) makes use of

dBr/dt= dBθ/dt, which holds for short waves. Indeed, the

derivative,

( )
B Bd

dt

d

dt
, 76

w»

is dominated by the fast oscillation of the wave field

Bw≡ B− Bbg on top of the slowly varying Bbg, and Bw in a

short wave satisfies7

( )B B E. 77r
w w »q

Relations BdB/dt≈ BθdBθ/dt and ˜ ˜u uB B=q q give

˜ ˜ ˜ ( )u
dB

dt
u

dB

dt
u

dE

dt
. 78» »q

q
q

Using these relations, we find from Equation (75)

˜
( ˜ ) ˜ ( ˜ ) ˜ ( )B

du

dt

d
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uB u

dB

dt
u u
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dt
u
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dt
, 79Dg= - » - »q q

q q

and hence,
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This gives a differential equation for ˜( )u E or ˜ ( )Eg :

˜
˜

˜
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B B E E B B E2 2
. 81

r
bg

bg
2

bg
2

bg
2

bg

g
g

= = -
+ + +q q

It can be integrated with B constbg » across the short-wave

profile,

( ˜ ˜ ) ( ) ( )u I s z dzln , , 82
E B

0

bg

òg a+ = º -

where z= E/Bbg, B Btan r
bg bga = q , and

( )
( )

s
EB B

B B E

z

z z z
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.

83

r
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2 2 2 2

a
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º
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Note that ( )z 2 sin 1a - - corresponds to E2
→ B2. In this

limit, we find

˜ ( )E B
1

sin
when . 842 2g

a
= 

The obtained ˜( )u E determines γ(E) and u(E) according to
Equation (73). This solution describes the plasma velocity
profile in a short wave in the oblique Bbg.

5.2. Shock Formation

As long as the plasma oscillating in the wave stays cold (i.e.,
until shock formation), the wave evolution obeys
Equation (28), which states ( )Et¶ x in terms of ( )tg¶x . One
can use the relation between E and γ found in Section 5.1 to
express ∂tE in terms of ∂tγ, and then Equation (28) becomes a
differential equation for γ(t, ξ),

( )
f

c
cE

r
2

2
, 85

t
bg

2
2g

pr g
¶

+ ¶ =x

where function f (E, Bbg) is given by (see Appendix C),

( ) ˜

˜
( )f

B B E uB B

B
. 86

r
bg
2

bg
3

bg
2

4 2

g g

g
º

+ -q

Equation (85) is the generalization of Equation (32) to polar

angles θ≠ π/2. It contains θ as a parameter and will show how

the wave develops caustics at each θ. Its characteristics ξ+(t)

are determined by the coefficients of ∂tγ and ∂ξγ,

( )
d

dt
c f2 , 87bg
2

x
pr=+

7
Vector potential Aw for a short axisymmetric wave satisfies ∣A Atw w¶ ¶x x ,

which implies B Br
w w q and B Ew »

q (Paper I). The small difference Bw − E is
not negligible only in terms with the large derivative ∂ξ; in particular,

( ) ∣E B B E rtw w¶ - = ¶ +x x , as follows from induction equation
∂tE = −c ∇ × Bw.
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and the evolution of γ along characteristics is given by

( )
d

dt

cE

r
f

2
. 88

C

2g
=

+

In the equatorial plane, these equations reproduce the results of

the previous sections. Then, ( )f B B Bbg
3 3 3

bg
2 1g k= = - , and

dξ+/dt is reduced to Equation (36) while ( )d dt Cg + becomes

equivalent to Equation (35) (taking into account the relation

γ= (κ2+ 1)/2κ).
The evolution equation for rE along C+ has the form (see

Appendix C)
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Thus, waves with γ3= σbg satisfy rE const» along the

characteristics. This feature was demonstrated in the previous

sections at θ= π/2, and it also holds outside the equatorial

plane.
Shocks appear at caustics in the flow of characteristics. The

caustic location rc(θ) and the plasma Lorentz factor at the
caustic γc(θ) are calculated in Appendix C. The calculation can
be completed analytically for waves with ·= 1 and ·? 1. In
these two limits, we find
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where α(θ) is given by Equation (69), and the parameter · is

defined in the equatorial plane (Equation (53)).

6. Transition to the Kinetic Regime

6.1. Shock Heating and Demagnetization of Particles

Shock heating of the plasma to ε? 1 reduces the Larmor
frequency ωL= ωB/ε= eBbg/mcε. If ωL becomes comparable
to ω, the MHD description of the wave fails. Then, a kinetic
description will be required, where particles individually
interact with the wave. In Section 4.3.4, we estimated ωL/ω
in the equatorial waves. Below, we evaluate this ratio in waves
outside the equatorial plane, and find the boundary between the
two damping regimes (kinetic versus MHD shocks) on the L–θ
plane.

The plasma internal energy ε is controlled by the balance
between synchrotron cooling (averaged over one oscillation)
and shock heating. This thermal balance is described in
Section 4.3.2 for waves in the equatorial plane, and a similar
balance can be stated at θ≠ π/2. In particular, we can use
Equation (60) to evaluate ε. The choice of k= 2 versus k= 3
weakly affects the numerical coefficient in Equation (60); for
definiteness, below, we assume isotropic plasma (k= 3). We
will also use κd∼ 1 because in the transition regime of interest
κd is close to unity (see Figure 6 for Model II, which comes

close to the MHD/kinetic transition). Then, we find

( )
e B

m c g6
, 92

L T bg
3

2 2 2

w
w

s

p w
~

where the numerical factor g= εdiss/εd depends on the shock

compression factor q. For the perpendicular shocks at θ= π/2,
g(q) is stated in Equation (57). Note also that g(θ)≈ 1 holds for

waves with ·= 1, which develop relativistic shocks during the

main damping phase.
The plasma response to the wave may be described as MHD

drift if the full Larmor period 2π/ωL is shorter than the
timescale for a large change of the field, which we take as 1/4
of the wave period. Thus, we roughly estimate that the
transition between the MHD and kinetic regimes occurs at
ωL/ω∼ 4. This corresponds to
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The same condition may be stated as
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where re= e
2/mc2. Damping of the wave through MHD

shocks begins when caustics form (at radius rc(θ) given by

Equation (90)), and most of the damping occurs at r∼ rc. The

approximate condition for the wave to be damped in the MHD

regime at a given polar angle θ is

( ) ( ) ( )B r B shock damping . 95bg c MHD>

In particular, waves with ·< 1 have rc≈ r× (Equation (90))
and g∼ 1, and then, we find
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where we used Equation (70) for r×. One can see that the MHD

regime Bbg(rc)> BMHD holds at a given angle θ if the wave

power L exceeds a critical value LMHD,
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At small polar angles θ= 1, one can use α≈ θ/2 and see that

LMHD∝ θ−2. The MHD damping condition L> LMHD(θ) may

also be written as a condition on θ for a given L: θ> θMHD(L).

For example, waves with frequency ν= 1 GHz and power

L= 1042 erg s−1 will experience shock damping in the MHD

regime at polar angles θ> θMHD∼ 0.3 (Figure 11).

6.2. Charge Starvation?

Another condition for wave propagation in the MHD regime
is a sufficiently high plasma density, n> j/ec, capable of
sustaining electric current j demanded by MHD. The electric
current in an axisymmetric wave is toroidal, j= (0, 0, jf), and
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satisfies the relation

( ) ( )Ej c
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dt
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For waves with γ3= σbg, one can use dγ/dξ≈∂ξγ, so
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In particular, consider waves in the equatorial plane with
·= 1. They accelerate the plasma to large γ. Large ∂ξγ
develops at caustic formation with β≈− 1 and γ growing to
γc≈ 241/4·−1/2 in the narrow interval δξ∼ ·1/2/ω, which gives

∣ ∣ ( )24 . 1001 4g
w
z

¶ ~x

A similar gradient of γ is sustained later ahead of the developed

shock, when the upstream γ approaches its maximum γ∼ ·−1

while the width of the preshock acceleration region grows to

δξ∼ ω−1
(see Paper I). Using Equation (100), we obtain a

rough estimate for the current density during the MHD

evolution of the wave:

( )
j

enc

10
, 101

Bw wz
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where we used E≈ Bbg/2 near R× and ωB≡ eBbg/mc. We

conclude that charge starvation does not prevent the MHD

evolution if
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Using B p
2 2s w w=´ , one can also rewrite this condition as

c R 0.1B p
2w w ´ ø . The same condition for shock formation was

found in kinetic simulations of magnetosonic waves (Chen

et al. 2022b).
If the wave had only one oscillation, with a single shock, it

would heat the plasma up to ε∼ ·−1 at the peak of the shock
strength. Then, the MHD condition ωL 4ω would be similar
to j/enc< 1 derived above. In a wave train with many shocks,
the plasma is heated to ε? ·−1. Therefore, the condition
ωL 4ω examined in Section 6.1 becomes more demanding
than j/enc< 1, i.e., MHD applicability is limited by demagne-
tization of heated particles rather than by charge starvation.

7. Damping in the Kinetic Regime

Radio waves propagating at a polar angle θ with power
isotropic equivalent L(θ)< LMHD(θ) cannot be damped by
shocks, because the magnetospheric particles become unmag-
netized in the wave, i.e., reach ωL∼ ω, before the wave
experiences significant losses. The demagnetization transition
occurs close to the radius r× with the background gyrofre-
quency ( ) ( )r e mcr sin sinB

3w m q a=´ ´ . The transition happens
when shock heating increases the plasma internal energy ε
(thermal Lorentz factor) to

( ) ( )
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. 103
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The breaking of MHD description (i.e., breaking of the drift

description of plasma response to the oscillating electro-

magnetic field) implies that the condition E2
< B2 is no longer

enforced. The part of the wave developing E2
> B2 is no longer

“shaved off” by the shock as described in Paper I, because the

shocks dissolve when ωL∼ ω.
Subsequent evolution will further energize plasma particles

as described below, leading to ωL< ω (note that damping of a
small fraction of the wave energy is sufficient for plasma
heating to ωL< ω). In a wave with L= LMHD, radiative losses
are negligible at the transition ωL∼ ω ( tre is below the radiative
ceiling); however, losses will become important with increas-
ing particle energies, leading to efficient radiative damping of
the wave. The main damping will develop in the regime of
ωL< ω, away from the cyclotron resonance ωL= ω.
When the wave exits the MHD regime at r≈ r× and

continues its propagation to r> r× with the intact sine profile
(which includes parts with E2

> B2
), it interacts with the plasma

very differently from the MHD regime. As shown in B22,
magnetospheric particles exposed to the train of wave
oscillations experience quick stochastic acceleration. This
process is convenient to view in frame ¢ boosted along Bbg

so that the wavevector k¢ becomes perpendicular to
B Bbg bg¢ = .8 This frame moves along Bbg with speed

Figure 11. Two regions in the L–sin q parameter space: wave damping in the
MHD regime (through shocks) and in the kinetic regime (through stochastic
particle acceleration). Their approximate boundary LMHD(θ) [or θMHD(L)] is
plotted here for waves with frequency ν = 1 GHz propagating in the
magnetosphere with dipole moment μ = 1033 G cm3. The scaling of LMHD(θ)
with ν and μ is given in Equation (97).

8
In this frame, plasma has no bulk motion perpendicular to Bbg, after

averaging over Larmor rotation. Note that in the kinetic regime, ωL < ω,
averaging over Larmor rotation also removes the wave oscillation, as the wave
period is smaller than the Larmor period. (By contrast, in the MHD regime,
ωL? ω, the fluid velocity is defined on scales smaller than ω−1 and oscillates
with the wave period.)
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cosFb a= and Lorentz factor
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. 104Fg
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Hereafter, all quantities with primes are measured in frame ¢ .

Note that

( )B Ba asin , , , 1050 0 bg bgw w a¢ = ¢ = ¢ =

where a0≡ eE0/mc ω. The transition radius r× corresponds to

E B2 0 bg¢ = or a 2B0 w w= ¢.
The particle interaction with the radio wave affects the four-

velocity component u¢̂ perpendicular to Bbg. Indeed, in frame
¢ , particles experience no force component along Bbg, since

E Bbg¢ ^ and B Bbg¢ . As stochastic acceleration pumps u¢̂ , it
tends to increase the particle pitch angle relative to Bbg. At the
same time, radiative losses reduce all components of u¢, as the
relativistic particle radiates along u¢. Thus, the continued
pumping of u¢̂ combined with persistent radiative losses will
drive the particle pitch angle toward π/2 in frame ¢ . Note also
that ug¢ » ¢̂ for the ultrarelativistic particle.

The description of particle acceleration by the wave in B22
applies in frame ¢ . Stochastic acceleration may be viewed as
diffusion in g¢ with a diffusion coefficient
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The mean expectation for the energy gain rate is given by

(omitting a numerical factor ∼1)
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In a quasisteady state, stochastic acceleration becomes offset
by radiative losses (which are Lorentz-invariant),
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Then, the mean expectation for the particle Lorentz factor gá ¢ñ
may be estimated by balancing gá ¢ñ with emgá ñ,
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Its value for GHz waves is a few times 104. One can also check

the condition ( )a B0
3 1 2g g w wá ¢ñ > º ¢ that is expected in

stochastic acceleration (see B22). Note that r 3 10gá ¢ñ µ - , and

( )a r 20g = ´ is constant with radius. After some algebra,

we find (at θ< θMHD< 1)
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The direct calculation of unmagnetized particle motions in
the wave demonstrates that they quickly develop chaos,
forming a quasisteady distribution around gá ¢ñ. B22 showed
that the distribution extends from ∼γå up to the radiation-

reaction limit,
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For typical FRB parameters,
RRL
g g¢ á ¢ñ~ a few.

The characteristic timescale for particle acceleration to gá ¢ñ is
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The Lorentz-invariant quantity N t 2acc accw p= ¢ ¢ is the number

of wave oscillations that the plasma should cross to approach

the quasisteady gá ¢ñ (see Figure 4 in B22). The value of

a0≡ eE0/mcω may be expressed as
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Then, we find
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The wave train in a typical FRB with duration τ∼ 0.1–1 ms has

N= ωτ/2π∼ 105–106? Nacc. So, after the transition to the

kinetic regime (which occurs near r×), particles exposed to the

wave almost immediately develop a quasisteady distribution

with the mean expectation gá ¢ñ (Equation (110)), and continue

to move through the wave train with gá ¢ñ.
The quasisteady particle distribution established in the wave

reflects the balance between stochastic acceleration and
radiative losses. The radiative losses are irreversible and occur
at the expense of the electromagnetic wave energy. The rate of
energy loss per particle (Equation (109)) in the quasisteady
distribution is
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As the plasma crosses the wave train, it radiates the following

energy per particle (measured in the lab frame):

( )
mc

t , 118
e

2 em crossgD
~ á ñ



where tcross is the time it takes the plasma to cross the wave

train of duration τ. The crossing time is determined by the

radial component of the fluid velocity,

( )cos cos . 119F
r

F
2b b a a= =

This velocity describes the average radial motion of the

magnetospheric plasma exposed to the wave (assuming a static

Bbg; the acceleration of background magnetic field lines gives a

small correction, as explained below). The fluid speed relative

to the wave front is 1 sinF
r 2b a- = , and so
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t
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As the spherical wave propagates a radial distance δr, it
interacts with r r4d p d» qþ þ of magnetospheric particles.
The number of particles sufficient to damp the wave is

L edampd t= Dþ  , and we find
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where we used L a mc r r2 e0
2 2 2w= and substituted

sin sinq a=qþ þ (Equation (72)). One can see that

dampd < qþ þ for the relevant radii r r×, which implies

quick damping of the wave near r×.
One caveat in the above calculation is that at θ= 1 the

plasma may fail to cross the entire wave train on the wave
expansion timescale r/c. This happens where tcross> r/c,
which corresponds to ( )c rcross

1 2a a t< ~ . For the typical
parameters, αcross∼ 0.1. Thus, near the magnetic axis, the
plasma becomes “stuck” in the wave train and surfs its leading
part instead of crossing it. The damping process cannot be
completed without plasma filling the entire wave train, and so,
one might conclude that the wave will escape in the cone of
θ≈ 2α< 2αcross.

However, there is an additional process that efficiently fills
the wave train with plasma. The accelerated particles surfing
the leading part of the wave emit gamma rays, which freely
propagate across the wave train and load it with e± pairs via
photon–photon collisions. This process triggers an e± ava-
lanche (Beloborodov 2021).

It is easy to verify that the spectrum of curvature photons
emitted by the accelerated particles extends to the gamma-ray
band. The characteristic frequency of curvature photons in
frame ¢ is given in B22,

( )a2 . 122c 0
2w g w¢ » ¢ ¢

Particles with the average gá ¢ñ (Equation (110)) radiate photons

of a characteristic frequency
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At r≈ r×, one can substitute a 2B0 w w» ¢ (Equation (115))

and find the characteristic photon energy,

( ) ( )r
mc

L
10

sin

sin
. 124c

c

2
3 42

9 10

33
3 5

9
4 5

8 5

3 5

w
m n

a
q

¢ º á
¢
ñ ~´



This gives ( )r 30 100c
¢ ~ -´ at polar angles where wave

damping occurs in the kinetic regime. It is not far from the

maximum c
¢ estimated in B22 for the most energetic particles

in the distribution, near the radiation-reaction limit RRLg ¢,
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where αf= e2/ÿc≈ 1/137. In particular, at r≈ r×, one can use

( )a r 2B0 w w» ¢´ to get
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The curvature radiation spectrum emitted by each particle
extends to lower energies with the power-law index 1/3.
Therefore, a significant fraction of the radiated power is in the
MeV range, where photons collide and convert to e± with a
large cross section ∼0.1σT. Using estimates similar to
Beloborodov (2021), one can verify that this process converts
a significant fraction of the wave energy into secondary e±

pairs, loading the wave with a large number of particles, far
exceeding the initial particle number in the background
magnetosphere. The e± loading of the wave implies its
inevitable damping.
Our choice of frame ¢ neglected the fact that the wave exerts

pressure on the background magnetosphere, driving its bulk
acceleration and compression (see Beloborodov 2021). This
additional effect slightly changes the fluid rest frame used to
calculate stochastic particle acceleration (in this frame, E 0bg

¢ = ,
and the plasma motion vanishes after averaging over Larmor
rotation). This effect is moderate at radii of interest, r∼ r×(θ),
where the wave becomes damped and deposits
radial momentum into the magnetosphere. Near radius
R×= r×(π/2), the deposition of wave momentum c into the
magnetosphere results in its bulk acceleration to speed

R B c R8 10p
3

bg
2 2b t» » ~´ ´

- for typical parameters. At
small θ, bulk acceleration is stronger. However, at all polar angles,
the damping radius r≈ r×(θ) corresponds to E B 20 bg¢ » , i.e.,

damping occurs where the wave energy density in frame ¢ is
comparable to B 8bg

2 p. Therefore, at r∼ r×, the wave is at best
capable of mildly relativistic bulk acceleration and moderate
compression of the background magnetic field. The corresponding
change of frame ¢ will not change our conclusion that GHz
waves are efficiently damped by stochastically accelerating
particles.
Qu et al. (2022) argued that near the magnetic dipole axis the

wave damping should be considered on open magnetic field
lines with the background magnetospheric plasma flowing with
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a Lorentz factor γbg 103. They suggested that the high γbg
would render the damping mechanism inefficient and that radio
bursts could escape in a broad solid angle around the magnetic
axis. This possibility is, however, problematic:

(1) The solid angle δΩ where damping develops on open
field lines is not broad. Damping of waves near the magnetic
axis begins at r×(θ)≈ 2R×/θ

1/2. The open field lines occupy
( ) ( )r r Ropen LC

1 2q q< » . One can see that damping develops
on the open field lines for waves propagating at angles

( )R R2 LC
4 5q < ´ . The corresponding solid angle is
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where P is the magnetar rotation period in seconds. This

estimate assumes RLC? R×, which is satisfied for P 0.1 s.

The population of observed local magnetars have periods

P= 2–12 s (Kaspi & Beloborodov 2017), as expected from

their fast spindown due to the strong fields. Hyperactive

magnetars proposed as sources of repeating FRBs have ages

t∼ 109 s and periods P∼ 1 s (Beloborodov 2017).
(2) Assuming a large γbg∼ 102–103 would be reasonable for

open field lines in ordinary (rotation-powered) pulsars, but not
in magnetars. The e± plasma in the outer magnetosphere, on
both open and closed field lines, experiences drag exerted by
resonant scattering of dense radiation flowing from the
magnetar (Beloborodov 2013). Therefore, the e± flow in the
outer magnetosphere is expected to be mildly relativistic. The
speed and density of e± on the open field lines of magnetars are
estimated in Beloborodov (2020).

(3) Particles tend to forget their prewave motion in the
magnetosphere once they become exposed to the wave. As
shown above, particles interacting with the wave in the kinetic
regime (ωL< ω) quickly establish a quasisteady momentum
distribution, with stochastic motions becoming perpendicular to
Bbg in frame ¢ defined by the condition k B Bbg bg¢ ^ ¢ = .

Qu et al. (2022) also argued that the wave pressure on the
magnetosphere could stretch out the magnetospheric field lines,
making them more radial, so that the angle between Bbg and the
wavevector k is reduced, potentially helping the wave to
escape. In fact, the wave pressure cannot significantly change
the direction of Bbg in the wave. Note that near the damping
surface r×(θ) the wave pressure perpendicular to Bbg is
comparable to B 8bg

2 p, so the background field resists strong
changes. Furthermore, even a much stronger wave pressure
would be unable to stretch radially the magnetic field lines
inside the spherical wave packet, because its thickness is far
smaller than radius, cτ= r.

8. Discussion

8.1. Summary of Main Results

Our main conclusion is that FRBs are efficiently damped in
the static dipole magnetosphere surrounding the magnetar at
radii 108 cm< r< RLC∼ 1010 cm.

We first discussed O-mode GHz waves. They can propagate
across the magnetic field lines (and so have a chance to escape
the closed magnetosphere) when the plasma density is low, so
that it does not screen the wave electric field component E∥

parallel to Bbg. However, in this regime, E∥ accelerates particles
to high energies, and the wave experiences immediate radiative

losses with an avalanche of e± creation. An O-mode FRB could
escape only if it is beamed within a cone around the magnetic
axis where losses are small. The escape cone is constrained by
Equations (15) and (18).
X-mode GHz waves with power L become damped near the

surface defined by
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where μ is the magnetic dipole moment of the magnetar.

Damping develops because the wave approaches the condition

E
2
≈ B

2, which leads to particle energization. We have

investigated this process in detail and found that it develops

in two different regimes near the magnetic axis and near the

equator. Our estimate for the boundary θMHD(L) between the

two regimes is shown in Figure 11.
(1) In the equatorial region sin sin MHDq q> , the entire wave

evolution is well described by MHD. The MHD solution
demonstrates that at r≈ r× the wave train develops shocks in
each oscillation. The resulting shock train heats the plasma to an
ultrarelativistic temperature (specific internal energy ε∼ 102–103)
at which heating becomes offset by synchrotron cooling. We have
followed the wave evolution with a detailed simulation in the
equatorial plane (θ= π/2) and also described it analytically. The
results show nearly complete damping of the GHz oscillations
(Figure 1). The alternating component of the electromagnetic field
gets suppressed by a factor of∼10−3, and the wave train becomes
transformed into a smooth and weak electromagnetic pulse of the
same duration, with the oscillating component wiped out. We
have also examined the MHD evolution at θ≠ π/2 (where Bbg is
oblique to the wave propagation direction) and verified that it
leads to similar shocks.
Our method for solving this MHD problem employed

characteristics C±. It allows one to find the solution with realistic
parameters of the magnetosphere (where magnetization σbg can
exceed 108; see Equation (19)). We also exploited the fact that the
wavelength λ= c/ν is far shorter than radius r (the variation scale
of Bbg), and the wave duration τ 1 ms satisfies τ= r/c at radii
of interest. This feature facilitates the solution, as it gives a simple
integral along C− across the wave.

(2) In the polar regions sin sin MHDq q< , the wave damping
also begins with MHD shocks developing at r×. However,
here, the shock heating quickly ends because the heated
particles become unmagnetized in the wave, i.e., their Larmor
frequency ωL drops below the wave frequency ω. This
transition happens before significant damping, with the
practically intact wave profile E(t− r/c). As the wave
continues to propagate to r> r×, it develops regions of
E2
> B2 in each oscillation, triggering stochastic particle

acceleration described in B22: magnetospheric particles
exposed to the GHz wave train develop a quick random walk
in energy.9 As a result, the particles are forced into a
quasisteady energy distribution (with “thermal” Lorentz factors

9
At the same time, the wave controls the plasma bulk flow: the sliding with

the Lorentz factor ( )sinF
1g a» - along the oblique Bbg, as described in

Section 7. The bulk flow may also be viewed as a result of the wave
ponderomotive force along Bbg. This force changes sign if the plasma bulk
Lorentz factor exceeds γF, so the bulk flow is forced to have γF. Same result is
found with the more detailed approach of B22, by solving the particle equation
of motion in the wave and finding the particle trajectory.
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104–105), in which stochastic acceleration is balanced by
radiative losses, quickly draining the wave energy. This
damping effect of the wave–particle interaction may also be
formulated as a large particle cross section for scattering the
GHz wave to the gamma-ray band, σsc 108σT (B22). The
gamma rays emitted by the accelerated particles produce
copious secondary e± pairs, which fill the entire radio wave and
assist its damping.

In both kinetic and MHD regimes, the magnetosphere at
r R× effectively acts as a pillow absorbing the wave, with
most of the wave energy converted to hard radiation and a
residual fraction feeding a low-energy magnetic explosion,
ejecting the outer layers of the magnetosphere.

8.2. Comparison with kHz Waves

The strong GHz radio waves (X-modes) evolve at r r×
differently from kHz waves studied in Paper I.

(a) In the MHD propagation regime, radio waves accelerate
the plasma to a bulk Lorentz factor γ∝ ν−1, which differs by
∼106 between kHz and GHz waves. The moderate γ in the
GHz waves leads to moderately strong relativistic shocks,
different from the monster shocks described in Paper I.

(b) The number of oscillations in the GHz wave train is
( )N 10 1 ms6

9
1t n t n= = - . Shocks develop in each oscilla-

tion and their large number produce a huge cumulative
damping effect on the wave, nearly completely erasing the
GHz oscillations. By contrast, in kHz waves, the monster
shocks erase half of each oscillation.

(c) Radiative cooling of the shock-heated plasma in GHz
waves typically occurs on a timescale longer than the wave
period. In particular, at r≈ R×, cooling is slow for waves with
power L below Lh given in Equation (68). In this case, a
thermal balance is established in the wave packet only when
the cumulative heating by multiple shocks enhances the plasma
temperature, reducing its cooling timescale. By contrast, in kHz
waves, each monster shock radiates the dissipated energy
almost instantaneously.

(d) The critical wave power LMHD(θ) for the transition to
the kinetic regime scales as ν8/9 (Equation (97)). The
transition is relevant for GHz waves and irrelevant for kHz
waves. MHD fails in powerful kHz waves differently: when
the plasma is accelerated to extremely high Lorentz factors,
its motion transitions to the two-fluid regime as explained in
Paper I.

8.3. Mechanism of Observed FRBs

An observed FRB power L requires a source with energy
density U∼ L/4πr2c¸ where ¸= 1 is the efficiency of GHz
emission. The energy density around a magnetar is
U(r)∼ μ2/8πr6, and so, the condition U? L/4πr2c requires
a source of size ( )r c L22 1 4 m . It is tempting to picture a
compact GHz source confined inside the ultrastrong magneto-
sphere (e.g., Lu et al. 2020). However, our results imply trouble
for this scenario: the condition ( )r c L22 1 4 m is practically
the same as r= R×, and we find that the emitted waves
experience strong damping when they try to escape through the
outer magnetosphere at r R×. Damping occurs in both
propagation regimes (MHD and kinetic).

Therefore, emission of observed FRBs must involve
violent events that first relocate energy from radii r= R×

to outside the magnetosphere, where GHz waves can be

released. This is accomplished by magnetospheric explo-

sions, which produce ultrarelativistic ejecta. The explosion

transports a large magnetic energy  far outside the

magnetosphere, e.g., 1044~ erg is expected in repeating

FRBs from hyperactive, flaring magnetars (Beloboro-

dov 2017). It has been shown that the blast wave from the

explosion can emit a GHz burst with energy

( )10 10FRB
4 5~ -- -  and submillisecond duration as radii

r∼ 1 AU (Beloborodov 2017, 2020). The emission is

generated by the well-studied mechanism of “shock maser

precursor” (e.g., Sironi et al. 2021). A variation of the blast

wave model involving a slow ion wind ahead of the

explosion is discussed in Metzger et al. (2019) and

Beloborodov (2020). In addition, Thompson (2023) recently

proposed that the blast wave may emit radio waves via

another mechanism if it expands into a turbulent medium (a

preexplosion magnetar wind carrying a spectrum of

perturbations).
Ejecta from powerful magnetospheric explosions may

themselves carry magnetosonic fluctuations with radio fre-

quencies.10 At large radii, the fluctuations may decouple and

leave the ejecta as free waves, forming a GHz burst. A model
of this type was proposed by Lyubarsky (2020) and further
investigated by Mahlmann et al. (2022). These works invoked
the explosion interaction with the current sheet near the light
cylinder as a source of ejecta fluctuations.
Another possibility for FRB production is the precursor

emission from the magnetospheric monster shocks described in

Paper I. The precursor will ride on top of the parent kHz wave

that forms the monster shock, not in a static dipole magneto-

sphere, and therefore, it could escape from small radii. This

possibility is further discussed elsewhere.
Observational diagnostics for FRB models include the burst

spectra, temporal structure, and polarization (see for example a

recent discussion of polarization in Qu & Zhang 2023). The

observed properties can be changed by the burst propagation

through the magnetar wind (Sobacchi et al. 2022) and the

surrounding nebula (Margalit & Metzger 2018; Gruzinov &

Levin 2019; Vedantham & Ravi 2019). The propagation effects

will need to be disentangled from the intrinsic emission

properties before conclusions can be made regarding the

source.
When this paper was completed, the author became aware of

the work by Golbraikh & Lyubarsky (2023), who find the

inability of FRBs to escape the magnetosphere using different

considerations, by analyzing nonlinear wave–wave

interactions.

Acknowledgments

This work is supported by NSF AST 2009453, NASA 21-

ATP21-0056, and Simons Foundation No. 446228. The author

thanks the anonymous referee for careful reading of the paper

and useful comments.

10
The ejecta serve as a new background Bbg ∝ r

−1 for small oscillations with
amplitude E0= Bbg. Small oscillations can remain frozen in the ejecta for a
long time, as they expand from the magnetosphere with E0 ∝ Bbg ∝ r−1,
keeping E0/Bbg= 1.
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Appendix A

Characteristics in Relativistic MHD

A.1. MHD Stress-energy Tensor

MHD fluid is described by the plasma mass density ρ, velocity v= cβ, magnetic field B, and electric field E. Throughout this

Appendix, we will use the units of c= 1. The stress-energy tensor Tμ ν of the MHD fluid includes contributions from the

electromagnetic field (Tf
mn

) and plasma (Tp
mn). Explicit expressions for Tf

mn in terms of E, B and for Tp
mn in terms of ρ, v are given

below. Energy and momentum conservation in MHD is expressed by

( ) ( )T
g

gT T g Q T T T
1 1

2
, , A1; f p=

-
¶ - - ¶ = - = +n

mn
n m

n ab
m ab

m mn mn mn

where the semicolon denotes covariant derivative, gαβ is the spacetime metric, and g gdetº ab. Q
μ represents radiative losses of the

plasma. The losses typically have the form Qμ
=−Quμ, where uμ

= (γ, γβ) is the plasma four-velocity.

The electromagnetic stress-energy tensor is T F F g F F4 16f p p= -ab am
m
b ab

mn
mn (e.g., Landau & Lifshitz 1975),

Fμν= ∂μAν−∂νAμ, FμνF
μ ν
= 2(B2

− E2
), and Aμ is the four-potential of the electromagnetic field. We express all field components

in the normalized basis (er, eθ, ef) in Minkowski space with coordinates xμ= (t, r, θ, f). This gives
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The stress-energy tensor of the plasma treated as an ideal (isotropic) fluid has the form

( )T H u u g P , A3p p p= +mn m n mn

where Pp is the plasma pressure, and Hp is its relativistic enthalpy density (including the fluid rest mass density r̃). Heating by

Larmor-mediated shocks can result in a two-dimensional plasma, with e
± thermal speeds B̃eb ^ . Then, one can calculate Tp

mn as

follows. First, find the (diagonal) stress-energy tensor in the fluid rest frame ̃ by viewing the plasma as a collection of cold e
±

streams with different ˜ue
m and proper densities ˜d er g ,

˜ ( )˜ ˜
˜ ˜

T
u u

, A4e e

e
p r

g
=mn

m n

where 〈...〉 means averaging over the distribution of ˜ue
m. The stress-energy tensor in the lab frame is ˜ ˜

˜ ˜T Tp p= L Lmn
m
m
n
n mn where ˜Lm

m is the

Lorentz matrix for the boost from the fluid frame to the lab frame. This gives the general Tp
mn for plasmas with any anisotropy; in the

isotropic case, it is reduced to Equation (A3).

To avoid unnecessary distraction, our derivation of MHD characteristics will assume isotropic plasma. However, looking at the

derivation, one will see that only the t, r components of the plasma stress-energy tensor Tp
mn affect the final result, so only radial

pressure ˜ ˜P T rrp p= enters the wave propagation problem. The calculation of Tp
mn for anisotropic plasma in the equatorial plane gives

the t, r components of Tp
mn of the same form as in Equation (A3), with ˜ ˜P T rrp p= instead of isotropic pressure. Therefore, the final

equations for characteristics hold for anisotropic plasma. The only important effect of anisotropy is that it changes the plasma

equation of state—the relation between energy density and radial pressure. This relation enters through γs, which is given in

Section A.5.

A.2. Equatorial Waves

We now focus on the wave dynamics in the equatorial plane θ= π/2. By symmetry, Br= 0 and vθ= 0 at θ= π/2. We will use the

following notation:

( )E E B B, . A5º - ºf q
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These definitions imply E2
= E2 and B2

=B2 at θ= π/2; E and B may be positive or negative. The plasma four-velocity has the form

⎛¿ À£( ) ( )u u u
E

B

B

B E
, , 0, 0 , , ,

1

1 2
. A6r

2
2

2

2 2
g gb b b g

b
q

p
= = º = =

-
=

-
=a

In the equatorial plane, there are two relevant components of the dynamical equation T Qu; = -n
mn m with μ= t, r. Instead of these

two components, we will use two projections:

( ) ( )u T Q u u g T, 0. A7t t; ;= + =m n
mn

m m n
mn

The vanishing of Br and vθ in the equatorial plane implies T T 0t r= =q q . However, their θ-derivatives are not zero and will enter the

conservation laws. For instance, divergence of the Poynting flux ∇ · (E× B)/4π includes a term with ∂θBr≠ 0, as Br changes sign

across the equatorial plane.

For the plasma stress-energy tensor (Equation (A3)), one finds

( ) ( ) ( )u T H u u H P u u g T H u u P P, . A8t t tp; p ; p p p; p p pg g= - - ¶ - + = - ¶ - ¶ + ¶m n
mn

n
n m

m m m n
mn n

n
n
n

The term uμ
∂μ(Hp− Pp) may be written as the sum of adiabatic part ˜H u lnp r¶m m and radiative part −Q. Note that u T Qp; =m n

mn

regardless of the presence of Tf
mn in the system. This condition states the first law of thermodynamics (and for a cold flow, it is

reduced to conservation of the plasma rest mass). The divergence of four-velocity is

⎛¿ À£( ) ( ) ( )u
g

g u
r

r u
r

u
1 1 1

2
, A9t r; 2

2g q
p

=
-

¶ - = ¶ + ¶ + ¶ =n
n

n
n

q q

where the component uθ is taken in the normalized basis (er, eθ, ef).

Next, consider the electromagnetic stress-energy tensor Tf
mn

(Equation (A2)). The direct calculation yields at θ= π/2:

⎛¿ À£ ⎛¿ À£( ) ( )u T
B E

B E
E

r
u u g T

E
E B

B

r

A

r4
,

4

2
. A10t r t t t rf;

2 2

f; 2p p
= -

-
¶ + ¶ + + = - ¶ + ¶ + +m n

mn
m m n

mn

The identity ∂t∇× A=∇× ∂tA implies ∂tB+ ∂rE+ E/r= 0 and u T 0f; =m n
mn . For our purposes, it will be convenient to rewrite Tf

mn

using the effective pressure Pf and the effective inertial mass density Hf defined by

˜ ˜
( )P

B E B
H

B
P

8 8
,

4
2 . A11f

2 2 2

f

2

f
p p p

=
-

= = =

This allows one to cast the t,r components of Tf
mn in the form similar to ideal fluid:

( )T H P T uH T u H P, , . A12tt tr rr
f

2
f f f f f

2
f fg g= - = = +

Other relevant components of Tf
mn are

( )T
EB

r
T

BB

r
T

H
T

4
,

4
,

2
. A13t r r r

f f f
f

fp p
= - = - = = -q q

f
f

q
q

Then, we find in the equatorial plane

( ) ( ) ( )u T H u u H P
H u

r
, A14t rf; f f f

fg= - ¶ + ¶ - ¶ - -m n
mn m

m

( ) ( )u u g T H u u P P
H u

r

E B

r4
. A15t t t

r
f; f f f

fg g
g

p
+ = - ¶ - ¶ + ¶ - +

¶
m m n

mn m
m

n
n

q

Note that ( ) ( ) ( ˜ )( ˜ )H u u H P H H u B Bu4f ; f f f f ; ;p+ ¶ - = =n
n m

m
n
n

n
n . For short waves, the flow oscillation is nearly plane parallel,

and the equations may be simplified: magnetic flux freezing gives ˜ ˜B rµ , and the continuity equation implies ( ˜ )Bu 0;; =n
n in the

same approximation, one can use ( ) ˜u H P H u lnf f f r¶ - = ¶m
m

m
m .

The substitution of Equations (A8), (A14), and (A15) into Equation (A7) gives

( ) ( ) ( ) ( )H u u H P
H u

r

H

r
u u Q2 , A16t r

f pg- ¶ + ¶ - ¶ - - - + ¶ =m
m q q

( )Hu u P P
H u

r

E B

r4
0, A17t

rfg g
g

p
- ¶ - ¶ + ¶ - +

¶
=m

m
n
n

q

21

The Astrophysical Journal, 975:223 (29pp), 2024 November 10 Beloborodov



where

( )P P P H H H, . A18f p f p= + = +
We will use dγ= βdu to express all derivatives of u ν in terms of derivatives of u= γβ. Equations (A16) and (A17) also contain

derivatives of P and H− P. One can retain only derivatives of P by defining

( ) ( )
( )

u P

u H P

dP

d H P
, A19s

2b º
¶

¶ -
=

-

m
m

m
m

where differential d is taken along the worldline of a fluid element. The quantity βs (and the characteristics C± below) will be defined

in the adiabatic approximation, Q≈ 0. Then, Equations (A16) and (A17) become

( ) ( ) ( ) ( )H u u P P
H u

r

H

r
u u2 , A20t r t r

s
2

f pb
g
b

b¶ + ¶ + ¶ + ¶ = - - + ¶q q

( ) ( ) ( )H u u P P
H

r

B B

r4
. A21t r t r

rfb g b
g

p g
¶ + ¶ + ¶ + ¶ = - +

¶q

We multiply Equation (A20) by βs and add/subtract it from Equation (A21). This yields

⎜ ⎟⎛
¿

À
£

⎛
¿

À
£( ) ( ) ( )

P

H

H

rH

B

B

H

rH
u u1 ln

1

1
1 2 , A22

r
s

s

f
s

s p b b
b
b b

bb
b
g

 ¶
+
-


¶

=
¶

- + ¶q
q q



where we used the identity

( )
du

d ln
1

1
, A23

g
b
b

=
+
-

and defined

( ),
1

. A24t r
s

s

b b
b b
bb

¶ º ¶ + ¶ º



  

The radial speed β± in the lab frame corresponds to propagation with speed ±βs relative to the fluid. The derivatives ∂± are taken

along the characteristics C±. The characteristics are defined as the curves r±(t) that satisfy dr±/dt= β±.

Equation (A22) is the MHD generalization of equations given by Johnson & McKee (1971) and McKee & Colgate (1973), which

were derived for one-dimensional relativistic hydrodynamics. It is easy to verify that their hydrodynamical equations are recovered in

the limit of a weak electromagnetic field E, B→ 0. In this limit, Hf/Hp= 0, Hp/H= 1, and ∂θuθ= 0 if the flow is spherically

symmetric. Then, Equation (A22) becomes Equation (II.b.20) in McKee & Colgate (1973). We are interested in the opposite, field-

dominated, regime H≈Hf?Hp.

A.3. Magnetically Dominated Limit (Hf?Hp)

In the magnetically dominated regime, one can simplify the MHD equations. Equation (A22) becomes

⎜ ⎟ ⎜ ⎟
⎛
¿

À
£

⎛
¿

À
£( ) ( )r

P

H

B

B

H

H
1 ln

1

1
1

2
, A25s

s

bg p

f

bb
b
b b

b ¶
+
-


¶

= - - +
 ÿ

where on the right-hand side (r.h.s.) we used ( )H H1 s p fb- = ÿ . We also find

⎜ ⎟ ⎜ ⎟¤
⎣⎢

⎛
¿

À
£
⎤
⎦⎥

¤
⎣⎢

⎛
¿

À
£
⎤
⎦⎥

˜ ( )
P

H

P

H

H

H
B

H

H
1 ln 1 , A26

s

f

f

p

f

p

fb
¶

=
¶

+ = ¶ + 
ÿ ÿ

where we used ˜H P B2 4f f
2 p= = . Thus, Equation (A22) simplifies to

⎜ ⎟¤
⎣⎢

⎛
¿

À
£
⎤
⎦⎥

( )

( )
˜ ( )J

B B H H

r
J B

H

H

1

1
, ln

1

1
ln 1 . A27

r p f

s

p

f

 b
bb

b
b

¶ =
- + ¶ +


=

+
-

 +q
  

ÿ
ÿ

In the denominator, we did not use the expansion ( )H H1 1s p fbb b =  + ÿ , because 1+ β can approach zero during the wave

evolution. The numerator is never close to zero, since ∂θBr has a finite negative value.

A.4. Short Waves

We are interested in short wave packets with wavelength λ many orders or magnitudes shorter than r. The wave electromagnetic

potential Aw= A− Abg is related to the wave magnetic field Bw=B−Bbg by ( )rB rArw w= -¶q and rB Ar
w w= ¶q . In short waves,
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∂rAw? r−1
∂θAw, and so B Br

w w q . This implies B Br
r
bg» and

⎛¿ À£ ( )B B2
2

. A28r bg q
p

¶ » - =q

Then, only derivatives ∂± are left in Equation (A27), i.e., the problem is reduced to ordinary differential equations. This enables

simple integration for J± along C±.

The C− characteristics propagate radially inward, and cross the short wave packet on a timescale t rcross - . Therefore, the change

of J− across the wave is small, |�J−/J−|= 1, i.e., J− is approximately uniform across the wave and weakly changed from its value

in the unperturbed background just ahead of the wave, J Blnbg
bg» -- . This gives the following relations:

˜
( )J B J B

B

B
B

B
ln ln ln ,

1

1
,

1
. A29bg

2
bg

bg

bgk k
b
b b

= -  = + º =
+
-

=
-

- +

The relation B= Bbg/(1− β) states the compression of the magnetic field in the lab frame by the factor (1− β)
−1. Plasma density is

compressed by the same factor (Equation (26)), consistent with magnetic flux freezing: B/ρ= Bbg/ρbg. Magnetic flux freezing also

implies σ/σbg= κ, where ˜Hfs rº .

The equation for J+ evolution along C+ (Equation (A27)) and the definition of C+ (∂+r= β+) give two coupled equations for β(t)

and r(t) along C+:

( )

( )
( )

( ) ( )
H H

r
rln

1

1

2

1
, 1

1

1
1 , A30

p f

s s
s

b
b

b
bb

b
b
bb

b¶
+
-

=
+

+
¶ = = -

-
+

-+ + +
ÿ

where we used B rln 3bg b¶ = -+ + . These equations still contain the fast-magnetosonic speed βs, which is close to unity. Setting

βs= 1 would correspond to force-free electrodynamics (FFE). It is the small term ( ) ( )H H1 2s s
2 1

p fb g- » =- ÿ that controls the

MHD correction to FFE, and it is retained in the leading order in Equation (A30). In particular, it controls the deviation of β+ from

unity, bending the C+ characteristics from straight lines in spacetime. This is the main effect responsible for the deformation of the

wave profile. When 1− β+= 1 (satisfied in GHz waves), one can simplify 1+ ββs≈ 1+ β in the denominators in Equation (A30).

Retaining βs in the denominators is required in kHz waves (see Paper I) because in that case β+ significantly decreases below unity

and even changes sign.

Substituting β= (κ2− 1)/(κ2+ 1), one can state Equation (A30) in terms of κ. Using 1
s
2

s
2g g- » , we obtain

[ ( ) ] ( )
( )

r
rln

1

1 2
, 1

2

2 1
. A31

2

s
2

s
2

k
k
g k g k

¶ =
-
+

¶ = -
+

+

-

- +

For a cold plasma
s
2

bgg s ks= = (see below), and then, Equation (A31) reproduce Equations (43), (45) in Paper I.

A.5. Fast-magnetosonic Speed

From the definition of βs (Equation (A19)), one finds

( )
( )

( )

( )
( )

d H P

d H P

d H P

d P H P

1
1

2 2
, A32

s
2 s

2 p p

f p pg
b= - =

-
-

=
-

+ -

where we used Hf= 2Pf. It is convenient to express γs in terms of ˜Hfs r= , where r̃ r g= is the proper rest mass density of the

plasma. For a cold plasma, ˜Hp r= and Pp= 0, and Equation (A32) gives

( )1 ,
1

. A33s sg s b
s
s

= + =
+

For a hot plasma,

˜ ( )H U P , A34p p pr= + +
where Up is the thermal energy density (measured in the fluid frame). Note that Pp here is the plasma pressure in the radial direction;

this fact becomes important if the plasma is anisotropic.

A useful analytical expression for γs can be derived in the limit of Hf/Hp? 1, which corresponds to γs? 1. Then, Equation (A32)

simplifies to

¤
⎣⎢

⎛
¿

À
£
⎤
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( )
( )

d H P

dP

H

H

1 2
1 . A35

s
2

p p

f

p

g
=

-
+ ÿ
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It can be rewritten using the magnetic flux freezing condition for short waves, ˜ ˜B Bbg bgr r= , which implies

˜

˜

˜
˜

˜
( ˜ ) ( ) ( )

d P

d

d B

d H

d

d
U P

ln

ln
2

ln

ln
2

1
1 . A36

f

s
2

f
p p s

r r g
r
r
r g= =  = + -

It can be further simplified using the equation of state that relates Up and the radial pressure Pp. For a hot plasma with monoenergetic

particles, this relation is

⎛¿ À£
˜

˜
( )P

U

k

U
1

1
, , A37p

p p

e
e

r
r

= + º
+

where k= 2 if the thermal velocity distribution is two dimensional (confined to the plane perpendicular to B), and k= 3 if the plasma

is isotropic. For a Maxwellian plasma, the same expression holds at all ε with better than 5% accuracy. Equation (A36) now becomes

¤
⎣⎢

⎛¿ À£
⎤
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˜
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˜
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k k
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1
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. A38

s
2

f
2g

r
e

e e
e
r

= - + + - -

When radiative losses are small during each wave oscillation, one can use the adiabatic law ( ˜ ) ( ˜ )d U P d 1p pr r= - along the plasma

streamline. Plasma compression in a short wave is one dimensional (in the radial direction), so only the radial pressure Pp enters the

adiabatic law. It gives

⎛¿ À£ ¤⎣ ⎤⎦˜
˜

( ) ( ) ( )
d

d
P

k k H
k

ln

1 1 1
1

1
1 . A39p

s
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f

2
3 s

e
r

e
e g

r
e

e
g= = -  = - +

Appendix B

Jump Conditions for Perpendicular Shocks

Jump conditions are formulated in the shock rest frame. In this section, it will be denoted by ¢ , and quantities measured in frame

¢ are denoted with a prime. Indices “u” and “d” will refer to the plasma in the immediate upstream and immediate downstream of

the shock. The jump conditions state the continuity of particle flux ˜F nu¢ = ¢, energy flux T t r¢ ¢, and momentum flux T r r¢ ¢. Magnetic

flux freezing ˜ ˜B nµ implies that proper density ˜ ˜mnr = and magnetization parameter ˜ ˜ ˜B 4
2s pr rº µ jump at the shock by the

same factor (denoted as q). The continuity of F¢ yields

˜ ˜
˜

˜
( )mF u u q, . B1d d u u

d

u

d

u

r r
s
s

r
r

¢ = ¢ = ¢ = º

The ultrarelativistic motion of the shock relative to the plasma implies ∣ ∣ ∣ ∣u u 1u d ¢ > ¢ . Since we know the evolution of ˜ bgr kr=

along each C+ in the simulation, the shock compression factor q(t) will be known if we keep track which characteristics Cu
+ and Cd

+

terminate at the shock at time t. Note also that q= κd/κu. The colliding characteristics Cu
+ and Cd

+ also define the Lorentz factor of

the upstream relative to the downstream, �rel= γuγd(1− βuβd). It can be expressed in the shock frame as ( )u u u u 2rel u d d uG = ¢ ¢ + ¢ ¢
(using ∣ ∣ ∣ ∣u u, 1u d ¢ ¢ ), which gives �rel= (q+ q−1

)/2.

The t r¢ ¢ and r r¢ ¢ components of the total stress-energy tensor (plasma + electromagnetic field) have the ideal-fluid form, same as in

the lab frame (Equations (A3) and (A12)) but with the fluid four-velocity measured in frame ¢ , ( )u u, , 0, 0g= ¢ ¢a¢ . The continuity

of F¢, T t r¢ ¢, and T r r¢ ¢ gives

( )
T

mF
h h

T

mF
u h

p

u u
u h

p

u u
,

2 2
, B2

t r r r

d d u u d d
d

d

d

d

u u
u

d

u

d

g g
s s

= ¢ = ¢ = ¢ +
¢
+

¢
= ¢ +

¢
+

¢¢ ¢

¢ ¢ ¢ ¢

where ˜p Pp rº and h≡ ε+ p+ σ. We wish to find the downstream specific energy εd in terms of the upstream parameters and the

shock compression factor q. We use the continuity of T t r¢ ¢ to express h hd u u d
g g= ¢ ¢ , and Equation (B1) to exclude σd= qσu and

u u qd u¢ = ¢ . Then, the continuity of T r r¢ ¢ gives

⎜ ⎟ ⎜ ⎟⎛
¿

À
£

⎛
¿

À
£

( )p
q q

u h q
q

p

q

1 1

2
. B3d

u

2
d

u
2

u
u ug

g
s

= -
¢
¢

¢ - - +

The ratio
u d
g g¢ ¢ can be expressed in terms of q u uu d= ¢ ¢ and uu¢. The calculation simplifies for magnetically dominated shocks, since

we can use ∣ ∣ ∣ ∣u u, 1u d ¢ ¢ and expand ( ) ( )q u u1 1
u d u

2 1 2
d
2 1 2g g¢ ¢ = + ¢ + ¢- - - in the small parameter u 12 ¢- . We expand up to the

second-order terms u ;4~ ¢- this is needed because larger terms get canceled with the term (q− q−1
)σu/2 in Equation (B3). As a result,
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we find

( ) ( ) ( )
( )

( )qp q q p q
h q

u
2 1 1 3 1 ,

1

4
. B4d

2
u

2
u

2 u
2

u
2

e y y= - + + - + º
-
¢

In the relation h hd u u d
g g= ¢ ¢ , it is sufficient to expand u d

g g¢ ¢ up to the linear order in u 2¢- . This gives, after cancelation of two large

terms proportional to σu,

( ) ( )p q p 2 . B5d d u ue e y+ = + -
Note that p and ε are not independent—they are related by the equation of state p= (ε− ε−1

)/k (Equation (A37)). Therefore,

Equations (B4) and (B5) form a closed set for two unknowns εd and ψ. We use Equation (B5) to express ψ in terms of εd, substitute it

into Equation (B4), and obtain a quadratic equation for εd:

§̈
⎩

«¬­[( ) ] [( ) ] ( )k q k k q k
q

q q3 1 1 1 3 1
1

1 0. B62
d
2 2

u

2

u
d

2e e
e

e- + + - + + - +
-

+ - =

One should choose the larger root of the quadratic equation, as this branch satisfies εd= εu at q= 1.

Next, we find the shock speed in the lab frame βsh using the relation ( ) ( )1sh u u u ub b b b b= - ¢ - ¢ . It gives

( )( )
( ) ( )

u
1

1 1

1

1

1
1

1

2
, B7sh

u u

u u

u

u
u

u
2

u
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b
b b
b b

b
b

b
k
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- + ¢
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»
-
+

+ ¢ »
¢

where we used u1 1 2 1u u
2

ub b+ ¢ » ¢ + . Using the definition of ψ (Equations (B4) and (B5)), we find
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k k
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- »
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+

Here, one can substitute hu≈ σu= κuσbg? εu+ pu and p= (ε− ε−1
)/k to obtain the final expression (Equation (44)) for 1− βsh in

terms of κu, εu, q, and the found εd.

Note also that the shock four-velocity relative to the upstream is equal to uu- ¢ and related to βsh by Equation (B7). The shock four-

velocity relative to the downstream equals u u qd u- ¢ = - ¢ . In the case of a cold upstream εu= 1 and q? 1, the above relations

give ( ) [ ( )]u k k3 1 4 1d
2

us¢ = - - .

Appendix C

Wave Propagation and Shock Formation outside the Equatorial Plane

C.1. Equations for γ(t, ξ) and E(t, ξ)

At a given polar angle θ, the coupled oscillation of γ(t, ξ) and E(t, ξ) in a cold GHz wave (before shock heating) is described by

Equation (28). One can use it to obtain a wave equation containing only derivatives of γ and no derivatives of E. This can be

accomplished using the relation between E and γ found in Section 5.1. As a first step, express ∂tE in terms of ∂tγD using

( )
E

B E

E

B B E
1

2
. C1D

2
2

2 2

2

bg
2

bg

g - =
-

»
+ q

We take ∣t¶ x of both sides, use ∂tBbg=−3cBbg/r, and find (in this section, we do not use the units of c= 1 and so retain c in all

equations)

( )E E
B

B B E

cE

r

3
. C2t

t
4

bg
2

bg

D

D
3

2g
g

¶ =
+

¶
-q

Here, we substitute

˜
˜

( ), C3t
t t

D
Dg

g g g
g

¶ =
¶ - ¶
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which follows from ˜ Dg gg= . It remains to evaluate ˜tg¶ . Note that g̃ is a function of angle α and E/Bbg (Equation (82)), and α(θ) is

constant in ˜tg¶ , so we find

⎜ ⎟⎛
¿

À
£

⎛¿ À£
˜

˜
˜

˜
˜ ˜ ( )

u

u
s

E

B
u
EB

B
E

cE

r

3
. C4

t t
t t

r

t
bg

D D
2 bg

3

g
g

g g g
¶

=
¶

= - ¶  ¶ = - ¶ +

The substitution of Equations (C3) and (C4) into Equation (C2) gives

( ) ˜

˜
( )E E

f

cE

r
f

B B E uB B

B

3
, where . C5t

t
r2

bg
2

bg
3

bg
2

4 2

g g g

g
¶ =

¶
- º

+ -q

Substituting this result into Equation (28), we obtain the equation for γ(t, ξ) stated in the main text (Equation (85)).

The derivation of the equation for w= rE involves rewriting dγ/dξ on the r.h.s. of Equation (28) in terms of ∂tw and ∂ξw. We here

outline the steps of the derivation, omitting the algebra details, and give the final result. For waves with γ3= σbg, it is reduced to a

simple statement: w const» along C+. The formal derivation can start from ˜ Dg gg= , use the expressions for dγD/dξ and ˜d dg x in
terms of dE/dξ and dB/dξ, and substitute ( ) [ ( ) ]d d v r1 r t

1x b= ¶ + - ¶ + ¶x q q
- for the derivative along the fluid streamline.

B∂ξB= Bθ∂ξBθ+ Br∂ξBr can be expressed in terms of the derivatives of E (or w) using the induction equation ∣ ∣B Ecrt t¶ = -  ´
rewritten in coordinates (t, ξ). The final result is
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where

⎜ ⎟¤
⎣

⎤
⎦

¤
⎣⎢
⎛
¿

À
£
⎛¿ À£ ⎛¿ À£

⎤
⎦⎥

˜ ( )
( )

˜
˜ ˜

W
E

B

cEB

rB
B

cB E

rB

E

B

uB

B
E

v

r
E

E

B
B

v

r
B

sin

sin 1
.t

r

r

r

t t

2

3 2

bg

D

g q
q b

g
g

g
= - ¶ +

¶
+

-
- ¶ + ¶ - ¶ + ¶q q q

q
q
q

C.2. Shock Formation

The ratio of Equations (87) and (88) that govern the C+ flow gives

( ) ( )
d

d

mc n r

E

mc

K

mc

K
1 , C7

bg

2 2 2 i 2 2

x
g

p p
m

x x
p
m

g= =  = + -q q+
+

þ þ

where we substituted E≈ μK/r along C+ (which holds for waves with γ3= σbg) and used the initial condition γ= 1 at ξ+= ξi. The

stated relation between ξ+ and γ holds along each C+. Note that the plasma Lorentz factor ˜ Dg gg= is a known function of E and

Bbg, and E= μK(ξi)/r. Thus, one can express ξ+ in terms of ξi, r, and θ.

Vacuum wave propagation would correspond to ξ+= ξi and r= c(t− ξi) along C
+. The MHD correction ξ+− ξi may be evaluated

using iteration, by substituting the vacuum solution for r,

( ) ( )r r c t . C8vac ix= = -

Then, the r.h.s. of Equation (C7) becomes a known function of ξi and t (and θ, which is constant along C+).

The deformation of the C+ flow with time, which eventually leads to shocks, is described by ( )tix x¶ ¶+ . Viewing γ as a composite

function γ[E(t, ξi), Bbg(t− ξi)], we can write
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¶

Here, K dK d i
 xº , and ( )E Bbg

g¶ ¶ can be found from Equations (81) and (C1),

( )
E

Ef , C10
Bbg

g¶
¶

=
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where f is defined in Equation (C5). For short waves, the term containing K is dominant in Equation (C9), and the other terms are

negligible. Thus, we find

[ ( )] ( )
mc K

K
E f1 2 1 . C11

ti
2 3

2
x

x
p
m

g
¶

¶
= + - -q+ þ

A caustic appears on C+ that first reaches the condition ( ) 0tix x¶ ¶ =+ . It can be found by calculating time tv(ξi) at which

( )tix x¶ ¶+ vanishes, and then identifying the characteristic c
i
x with the minimum tv. The result will also determine the caustic time

( )t t c
c v i

x= and the plasma Lorentz factor at the caustic γc. The calculation can be done numerically. Below, we derive the result

analytically in two limits, γc? 1 and γc− 1= 1.

C.2.1. Caustics with γc? 1

The limit of γ? 1 corresponds to γD? 1 and E
2
→ B

2. Note that the ratio ˜Dg g g= remains finite: ˜ sin1g a»- . Equation (77)

implies

( )B E B B E2 . C122 2
bg
2

bg- » + q

Hence, E2
→ B2 corresponds to B E B B2bg

2
bg» - » q . In this limit, the function f given in Equation (C5) simplifies:
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2
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and Equation (87) simplify to
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d

dt
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4 sin
,

4 sin
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C

3 4 3 6

bg

g g a x g a
s

» »+

+

Waves with γ3= σbg have dξ+/dt= 1, which implies dt≈ dr/c, so Equation (C14) can be integrated for γ(r),

( )
r

r
x x

r r

r

1
8 sin ln 8 sin , , C15

2
4 4

g
a a» » º

- 



where we used [( ) ] ( )x x xln 1 1 2+ = +- ÿ for x= 1, which corresponds to γ? 1. A substitution of the obtained γ(r) and

r= c(t− ξ+) into Equation (C7) gives a cubic equation for r(t, ξi). Its solution verifies that rvac− r= rå− r when γ3= σbg, and so,

one can use r= rvac (Equation (C8)) in x, i.e.,

( )
( )x

r c t

r
. C16ix=

- -



The integration constant rå in Equation (C15) defines the radius where γ would diverge; however, the characteristic will become

terminated at the shock before reaching r= rå. The radius rå(ξi) can be found for each C+ with K< 0 from

B E B B E2 02 2
bg
2

bg- » + =q using rE Km= :

( )rB B K r
K

2 0
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2 sin
. C17bg

2
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2

2
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q
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+ =  = -q


Substituting Equation (C13) into Equation (C11) and noting that E2f ? 2(γ− 1) when γ? 1, we find
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K
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The C+ characteristic reaches ( ) 0tix x¶ ¶ =+ when
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K
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. C193

2 3

4g
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qþ
Using the obtained solution for γ(x) (Equation (C15)), we find that ( ) 0tix x¶ ¶ =+ is reached at time
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The minimum of tv can be found from dtv/dξi= 0. Using 2drå/rå=−dK/K (Equation (C17)), we obtain
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Here, ( )t K K r K cK2 2 1i
  x- »  , and the condition dtv/dξi= 0 becomes
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This equation determines the Lagrangian coordinate c
i
x of the caustic in the C+ flow with a given K(ξi). In particular, for a wave with

an initial sine profile, ( )K K sin0 iwx= , it gives
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The last (approximate) equality took into account the condition γc? 1 (E≈− B), which implies that
i
cx is close to the minimum of

the sine profile of K(ξi), and so ( )cos 1
i
c wx . The obtained

i
cx determines ( ) ( )K K cos

i
c

0 i
c x w wx= , and then, from Equation (C19),

we find the plasma Lorentz factor at the caustic,
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In the last equality, we substituted qþ given by Equation (72) and used the parameter K mc2
0
2z m p= þ defined in the equatorial

plane (Equation (53)). At θ= π/2, Equation (C24) reproduces ( )2c c
1g k= - given in Equation (54) and derived in Paper I. The

obtained extension to θ≠ π/2 shows that γc increases outside the equatorial plane. Recall that this result was derived assuming

γc? 1. This regime holds for waves with ·= 1, as one can see from Equation (C24).

C.2.2. Caustics with γc− 1= 1

The C+ flow with γ− 1= 1 can be described using an expansion in variable z≡ E/Bbg, |z|= 1. From Equations (82) and (C12),

we find

˜ ( ) ˜ ( ) [ ( )] ( )u z z B B z z, 1 , 1 sin . C252 4
bg

2g a= = + = + +ÿ ÿ ÿ

This determines βD= E/B, γD, and
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z

z z1
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1 2 sin . C26D

2
4g gg a= = + - + ÿ

Then, Equation (86) gives

( – ) ( ) ( )E f z z z1 3 sin . C272 2 4a= + ÿ

Substituting these expansions into Equation (C11), we obtain
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Here, we substitute z E B K rB r K sin sinbg bg
2m a qº = = and find that ∂ξ+/∂ξi vanishes when the characteristic reaches the

radius
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The caustic appears where rv is minimum, i.e., where ( )K i
 x reaches its maximum K K0

 w= (which occurs at ξi= 0). Thus, we find

that the caustic appears when the wave reaches the radius
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¿

À
£ ( )r

mc K

sin
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2 3

0
4

1 6m q
p w a

=
qþ

Using the definition of · (Equation (53)), r× (Equation (70)),

qþ (Equation (72)), and K R20
1 2=-

´ , one can rewrite rc as

stated in Equation (90).
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