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Abstract

We investigate how a fast radio burst (FRB) emitted near a magnetar would propagate through its surrounding
dipole magnetosphere at radii r=10"—10° cm. First, we show that a GHz burst emitted in the O-mode with
luminosity L > 10 ergs™' is immediately damped for all propagation directions except a narrow cone along the
magnetic axis. Then, we examine bursts in the X-mode. GHz waves propagating near the magnetic equator behave
as magnetohydrodynamic (MHD) waves if they have L > 10*° ergs~'. The waves develop plasma shocks in each
oscillation and dissipate at r ~ 3 x 108 L4’21/ * cm. Waves with lower L or propagation directions closer to the
magnetic axis do not obey MHD. Instead, they interact with individual particles and require a kinetic description.
The kinetic interaction quickly accelerates particles to Lorentz factors 10°~10 at the expense of the wave energy,
which again results in strong damping of the wave. In either propagation regime, MHD or kinetic, the dipole
magnetosphere surrounding the FRB source acts as a pillow absorbing the radio burst and reradiating the absorbed
energy in X-rays. These results constrain the origin of observed FRBs. We argue that the observed FRBs avoid
damping because they are emitted by relativistic outflows from magnetospheric explosions, so that the GHz waves
do not need to propagate through the outer equilibrium magnetosphere surrounding the magnetar.

Unified Astronomy Thesaurus concepts: X-ray transient sources (1852); Neutron stars (1108); Magnetars (992);

Radiative processes (2055); Radio bursts (1339); Plasma astrophysics (1261)

1. Introduction

Fast radio bursts (FRBs) are among the most mysterious
astrophysical phenomena. They are detected at GHz frequen-
cies from large cosmolo?cal distances. The bursts have huge
luminosities up to ~10* ergs™' and millisecond durations
(Petroff et al. 2019).

The short durations suggest that FRBs are generated by
compact objects. In particular, magnetars are natural candi-
dates, as they are well known as prolific X-ray bursters (Kaspi
& Beloborodov 2017). Evidence for the magnetar-FRB
association has been provided by the detection of millisecond
GHz bursts from SGR 1935+2154, a known magnetar in our
Galaxy (Bochenek et al. 2020; The CHIME/FRB Collabora-
tion et al. 2020), although the bursts were weaker than the
cosmological FRBs. The radio bursting mechanism is not
established (see Lyubarsky 2021; Zhang 2023 for a review).

Useful constraints on the FRB origin can be found by
examining propagation of radio waves through the plasma
magnetosphere surrounding magnetars. In particular, if the
GHz source sits in the ultrastrong inner magnetosphere (which
confines and powers the source), then the observed emission
must be able to escape through the surrounding outer
magnetosphere. Can the radio wave actually escape?

Two linear polarization modes are possible for electro-
magnetic waves in the magnetosphere: the O-mode and the
X-mode (Arons & Barnard 1986). As shown in Section 2,
FRBs emitted in the O-mode experience immediate damping.
For the X-mode, the propagation problem is more subtle, and it
is solved in the remaining Sections 3-7. Hereafter, by “radio
waves,” we mean the X-mode electromagnetic waves.
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A dangerous region for the X-mode wave is where the
background dipole magnetic field By, decreases to ~Ej (the
wave amplitude). In particular, the calculation of the plasma
response to a sine radio wave with Ey > By, shows its strong
damping (Beloborodov 2021, 2022, hereafter B22). The wave
quickly accelerates plasma particles up to the radiation-reaction
limit, and the particles radiate the received energy in the
gamma-ray band. Effectively, the plasma scatters the radio
wave to gamma rays, and then its energy converts to an
avalanche of e pairs. This calculation did not address how the
oscillating wave reached the outer magnetosphere where
Bys < Ey, but demonstrated that if it did then it would not
survive.

The present paper investigates the full evolution of radio
waves emitted at small radii (where By, > Ej) and propagating
to the outer region where By, < Ej. At small radii, the X-mode
wave has no problem with propagation —it is well described as
a vacuum electromagnetic wave superimposed on the dipole
background. This description fails where By,/E, decreases to
~1. Here, the electromagnetic invariant B> — E* approaches
zero, and a dramatic transition occurs in the wave evolution.

Kinetic plasma simulations of this transition show that the
wave launches shocks in the background plasma (Chen et al.
2022b). One can demonstrate the formation of shocks and track
their evolution using the MHD framework (Beloborodov 2023,
hereafter Paper I). The MHD description holds for waves of
sufficiently low frequencies, and then the X-mode radio wave
behaves as a compressive MHD mode, called “fast magneto-
sonic.” PaperI focused on kHz magnetosonic waves and
showed that they evolve into monster radiative shocks, with
Lorentz factors exceeding 10°.

Remarkably, MHD description also holds for GHz radio
waves of sufficiently high-power L > Lyjyp. As shown in the
present paper, Lyyp happens to be in the range relevant for
FRB luminosities, and its value Lypp(6) depends on the wave
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propagation angle 6 relative to the magnetic dipole axis. In
particular, near the magnetic equator, the condition L > Lyp
is satisfied by typical extragalactic FRBs. This fact allows us to
solve for the wave propagation in the equatorial region using
the MHD framework. Then, we examine waves around the
magnetic axis, where Lyyp > L, and a kinetic description is
required. We find that in both regimes, MHD and kinetic, the
GHz waves are damped.

2. Damping of O-modes

We will investigate propagation of waves from a putative
GHz source through the surrounding ™ dipole magnetosphere.
The source sits sufficiently close to the magnetar, where B, far
exceeds the amplitude E, of emitted waves,

Ey < Bbg. €))

This requires a source radius r < 3 x 10% ulf?L;"* cm,
where p is the dipole moment of the magnetosphere, and
L = cr?E3/2 is the emitted wave power. The condition in
Equation (1) corresponds to the local magnetospheric energy
density Bbzg / 87 exceeding the wave energy density EOZ/ 87, as
expected in any scenario picturing an FRB source confined in
the magnetosphere and powered by the magnetosphere. The
dipole magnetosphere forms the background for the emitted
waves. Its most important property is the huge magnetization
parameter oy, = Bbzg /47r,0bgc2 > 1, where py, is the plasma
mass density.

2.1. Review of Wave Modes

Consider a harmonic wave described by its wavevector k,
frequency w =271, amplitude E, and polarization. The
frequency and amplitude determine the dimensionless strength
parameter,

a0 = E0 23 5 105 i 'L uy !, 2)
mcw

The oscillating wave fields E,, = E and B,, = B — By, satisfy
the induction equation 9,B,, = — cV X E:

wBy = ck x E. 3)

The electric charge density and current density in the wave are
determined by the Maxwell equations,

4np, =ik - E, 47j = ick x By, + iwE. 4)

As long as the Larmor frequency of plasma particles wy far
exceeds w, they respond to the wave through the guiding center
motion, including the E x B drift with velocity vp=
cE x B/B*> (whose contribution to the electric current is
JD ="VDPe)-

Linear wave modes in the limit of oy, — ooand
wp/w— oo have been examined by Arons & Barnard (1986).
The modes have two possible polarizations: E oscillates either
along vector n =k x By, (X-mode) or perpendicular to n (O-
mode). Both modes have a group speed nearly equal to the
speed of light, vgr/c ~ 1 — Uggl. For the X-mode, k-E =0
implies p, =0 and jp =0. The X-mode excites a negligible
electric current and propagates as in a vacuum despite the
presence of plasma, with the dispersion relation w = ck. By
contrast, the O-mode may have a component of E parallel to
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By, (which will be denoted Ej) and drive strong plasma
response. This section focuses on the O-modes.

In the limit of a low plasma density (vacuum), the O-mode
would have

Ej=Esina (O-mode in vacuum), (@)

where « is the angle between k and B,,. We will assume
a=0.> In the presence of ¢* plasma, charged particles can
freely slide along the magnetic field lines and tend to screen Ej.
Therefore, the O-mode dispersion relation w(k) (Arons &
Barnard 1986) depends on the plasma density n or the
corresponding plasma frequency,

2 \172
Vp:ﬂ:(ﬂ) ~ 0.9 n{> GHz, (©)

27 ™

where m is the electron/positron mass. A typical e* density
distribution around magnetars is n(r) ~ 10 ;> cm ™ (Belo-
borodov 2020). It implies wy, > w at radii r < 10° cm.

If plasma succeeds in screening, E; =0, the O-modes
become relativistic Alfvén waves of ideal MHD, which satisfy
E-B=0 and E-j=0. At 0,,> 1, the Alfvén waves have
By, ~E and w(k)~ ckj. Their group velocity vy = Vw is
parallel to By, so Alfvén waves are ducted along the magnetic
field lines and cannot escape the closed magnetosphere. One
can also show that the oscillating electric current supporting the
Alfvén wave is parallel to By, and given by

jx ~ X Esina. (7)
47

The condition for small-amplitude O-modes to behave as
Alfvén waves with E; =0 is w, > w. However, this screening
condition holds only for waves with a, < 1.* For waves with
ao > 1, the screening j = j depends not only on w,/w but also
on the wave amplitude E,. This occurs because ja o< Ey while
the maximum speed c limits the electric current to j < cen, so j
is no longer proportional to E,. O-modes with w < w,, behave
as Alfvén waves at small amplitudes E,, and become ‘“charge
starved” at sufficiently large E, when j, > enc. Note that this
can happen even when Ey< B, Charge starvation was
previously discussed for Alfvén waves excited by neutron star
quakes (Thompson & Blaes 1998; Bransgrove et al. 2020;
Kumar & Bosnjak 2020; Chen et al. 2022a; Kumar et al. 2022).
GHz O-modes enter charge starvation much easier than kHz

waves, as one can see from

ljalmax _ wEpsina  w?

Ko = ~ = — apsina. ®)

ecn drecn wf,

Using ay from Equation (2) and the typical w, from
Equation (6), one finds that the strong GHz O-modes have
the starvation parameter x> 1 unless « is nearly zero (i.e.,
k|| By, which is not sustainable in a curved Byg). Note that the
regime of xy, > 1 does not always imply that the wave develops
a strong Ej: numerical experiments with Alfvén waves

3 The case of a=0 is degenerate: the O-mode behaves as an X-mode.

However, sustaining « =0 along the ray is possible only for waves
propagating exactly along the magnetic dipole axis.

The screening condition for O-modes with ag < 1 is derived from the
nonrelativistic plasma response to the unscreened E: a harmonic wave of E
generates ¢~ velocities vHi = tieE)/mw = Ficagsina and creates current
j= ieanH/mw = ingH/47rw. If j > ja, the assumption of unscreened E;
becomes inconsistent, i.e., £ is screened. This occurs if w, > w.
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launched into a uniform background with x> 1 show that
they remain Alfvén waves—they sustain j, by advecting and
compressing a charge-separated plasma (Chen et al. 2022a).
However, in a nonuniform background (the dipole magneto-
sphere), the Alfvén waves are sheared, and their wavevector
becomes increasingly oblique to By, i.e., angle v grows with
time (Bransgrove et al. 2020; Chen et al. 2022a). Then, the
plasma advected by the wave can become insufficient to sustain
Ja and a strong E develops.

Entering the unscreened regime with Ej~ Esina is a
necessary condition for the O-mode escape; otherwise, the
wave is ducted along the closed magnetic field lines. Therefore,
in the remainder of this section, we focus on O-modes that have
developed the unscreened E|. Their dispersion relation is
similar to vacuum electromagnetic waves, and like the
X-modes, they can have v, /tBy,, so they are no longer ducted
along By,. This condition is necessary, but not sufficient for the
O-mode escape, as escape also requires the waves to avoid
damping.

2.2. Energy Losses of Unscreened O-modes

The escape of unscreened O-modes is hindered by their
damping: the wave experiences energy losses because of
particle acceleration by the E). The E} oscillates with amplitude
Ej sin e and accelerates the plasma particles in each oscillation
up to the Lorentz factor

v & apsin . ©)

The particles with high v emit radiation at the expense of the
electromagnetic energy of the O-mode. The power radiated by
each particle &, is determined by its motion in the wave and
may be evaluated as follows.

The accelerated particles remain strongly magnetized in the
inner magnetosphere, since their Larmor frequency wy = wg/~y
far exceeds the wave frequency w. The motion of magnetized
particles is a combination of sliding along B with velocity 3
and drifting perpendicular to B with 3, =E X B /B2 (other,
slower drifts of the guiding center will be neglected below).
Since the O-mode magnetic field By, =B — By, oscillates
perpendicular to By, the direction of B is tilted by the
oscillating angle v given by tan 1) = By /Byps. So, the direction
of By|IB oscillates in the Bye—B,, plane with frequency w and
amplitude g = arctan(Ey/Byg) ~ Eo/By,. The oscillation
amplitude of 3, is of the same order or smaller, depending
on «a. As a result, the particle velocity vector 3 periodically
deviates from By, by an angle ~1)y, and the particle executes a
curved orbit in each wave oscillation, with a characteristic
curvature radius

c CBbg

Fo~ —— ~

wiy wEy

(10)

The power of curvature radiation emitted by the relativistic
particle (Landau & Lifshitz 1975) is

. 2c e2+4 22 EZ .
& = cerwy Niwzaé—osm“a. an

2 2
3r; 3c be

This power is enormous, and the wave may avoid losses only if
« is small, which is sustainable only near the magnetic dipole
axis. The corresponding constraint on the propagation direction
defines a narrow escape cone as shown below.
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Plasma with density n emits energy with rate n&,, and so, the
wave experiences irreversible loss of energy on the timescale
E02 3¢ opg

— ~ s 12
8mné,  4r,wla sin*a (12)

fdamp =

where r, = ez/mcz. The efficiency of damping can be seen by
comparing the wave travel time r/c with Zgmp.

Consider a wave with a radial wavevector k at angle 6
relative to the magnetic dipole axis. The angle o between k and
B, satisfies 2tana =tanf for a dipole By, Using
Equation (2), we find at 6§ < 1

Claamp  3m*c*w?oper?
~Y

r re3 1604

13)

The escape condition ctump/r 2 1 gives an upper limit for the
luminosity of the escaping O-mode,
V3 mcw(opgr)'/?
3/2
r /292

LO) < (14
For magnetars in a persistent (nonbursting) state, one expects
abgr3 ~ 10 cm? as a typical value (Paper I). Such values of
opg would allow the escape of O-mode with luminosity L
within a cone of 6 < 0.08 1/19/ 2 L;zl/ 2, The corresponding
maximum solid angle for escape is

, 3 \/2
Bmax _ Omax 35 o3 Vo[ T | (5
. 2 L\ 103 cm?

This constraint is strongest for FRBs with the highest L 2>
10¥ ergs™' and for lowest frequencies (v~ 0.1 GHz is the
lowest observed in FRBs so far).

The value of oy entering the limit in Equation (15) has been
normalized to an optimistically large value. Its actual value can
be dramatically reduced by e creation that accompanies
curvature emission by the accelerated particles. Note that the
spectrum of curvature emission declines exponentially at
frequencies above w.= (3/ 2)7c /¥e, so the characteristic
energy of emitted photons is

fiwe ~ Emﬂad” sin’av. (16)
2 By
If hw, 2 mc?, a huge number of curvature photons convert to
e pairs via photon—photon collisions. It is easy to verify that
this process gives plasma density sufficient to put the O-mode
back into the Alfvén wave regime (the wave is no longer
charge starved), preventing its escape.

Thus, a necessary condition for O-mode escape is
hw, < mc*. The wave needs to avoid the avalanche of copious
e* creation by the photons in the far exponential tail of
curvature emission, which requires hw, §O.1mc2. This gives
the constraint

< 2(0.1mc? Bg 13 N iy
0SS —|———— ~ 0.05 AT (17)
ap Jw EQ Vy ’L42

One now finds the maximum solid angle for O-mode escape
from a source sitting at a radius r < 108 cm,

2/3
6Qmax _ G%nax ~ 10—3 L (18)
2 2 V3/3Lf2/3
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This constraint is independent of the background plasma
density pp, (or the corresponding o). It becomes particularly
tight for the brightest FRBs with L>10* ergs™' and the
highest frequencies observed in FRBs so far, v = 5-8 GHz.

3. Radio Waves in MHD Regime

The remaining sections will focus on propagation of
X-modes. They propagate freely with negligible coupling to
the magnetospheric plasma when Ey < Bp,. The X-modes
experience no damping until nonlinear effects develop. These
effects appear where linear propagation would violate the
condition E* < B,

3.1. Formulation of the Problem

Suppose a GHz wave packet is emitted near the magnetar
and then expands to larger radii » where the magnetosphere is
initially unperturbed. We are interested in the evolution of the
packet at r~ 10°~10° cm where E* approaches B”> and the
linear vacuum-like propagation ends. These radii are still well
inside the light cylinder Ry c = ¢/ ~ 10'° cm, so rotation of
the magnetosphere is slow, {0r < ¢, and may be neglected. The
unperturbed magnetosphere here may be described as a dipole
By,.

%’he unperturbed outer magnetosphere in front of the wave is
populated with mildly relativistic electrons and positrons (their
speeds are reduced by drag exerted by the magnetar radiation;
see Beloborodov 2013). Then, the energy density of the
background plasma is comparable to its rest mass—density
Poec”. This density enters the definition of the magnetization
parameter,

Bb2g - 2 _ M2
37

D= ——W—, 19
47 Nimc? (19)

7o 4rppgc® 1
where m is the electron mass, and p is the magnetic dipole
moment of the magnetar. The dimensionless parameter
N = rpy,/m is approximately constant with radius r; its
typical expected value is A"~ 1037 (Beloborodov 2020).

We will consider a wave packet far from its source. It
occupies a thin shell ér/r<1 and has a nearly radial
wavevector k, so the packet behaves locally as part of an
axisymmetric wave (0,~0). Magnetosonic waves have a
toroidal electric field E||k X By,, and we define

= —E¢, (20)

using the normalized basis e,, ey, e of the spherical coordinate
system r, 0, ¢ with the polar axis along the magnetospheric
dipole moment p. Our calculation will track the propagation of
the spherically expanding wave packet. As a concrete example,
we will consider a radio wave launched with an initial sine
profile

E(€) = Epsin(w¢), O<é=t—L1 <7 1)
C

The packet has a short duration 7 < 1 ms, and we are interested

in its propagation at radii r>> cT.

As long as the magnetospheric particles exposed to the wave
remain magnetized, i.e., their Larmor frequency far exceeds the
wave frequency w, the radio wave obeys MHD and can be
thought of as a fast-magnetosonic wave (the validity of MHD
description will be discussed in detail in Section 6). Particle
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motion in the MHD wave can be thought of as the drift of the
Larmor orbit. The e drift velocity 3. has a charge-symmetric
(MHD) component 3 and a small antisymmetric component
+8, (polarization drift), which sustains the electric current
J=enf3,. There is no need for explicit calculations of these
drifts in response to the electromagnetic wave. Instead, MHD
describes the evolution of fields E and B by treating the plasma
as a perfectly conducting fluid, which satisfies E +v X
B/c=0. The fluid is described by its velocity v =8¢ and
mass density p=mn. The unperturbed static background
corresponds t0 E =0, B =By,, v=0, and p = py,.

At small radii, where Ey/Bp, < 1, the wave propagates
without deformation. It has the speed vyave / c=1-— aggl ~ 1,
and the MHD wave is equivalent to a vacuum electromagnetic
wave superimposed on By,,. The linear propagation ends where
the linear superposition hits the condition E*=B? which
corresponds to v — ¢ (Paper I). In the equatorial plane, this
occurs at radius R, where Ey = By, /2,

2\1/4 172
R.= [ ~247 x 108 ”?34
8L Ly

cm. (22)

Here, L = cr?E§/2 is the wave power.

We wish to find the nonlinear evolution of the electro-
magnetic wave as it crosses radius R. Note that the evolution
occurs at a very high magnetization parameter oy, In
particular, at R, one finds

1/2y 3/4

0 = ong(R) ~ 6.4 x 108 133 242 23)

N3z
Numerical examples shown below will assume a magnetar with
a typical magnetic dipole moment = 10°* G cm® and plasma
density parameter N = 107,

3.2. Nonlinear Wave Equation

Before describing the full problem of GHz waves in a hot
plasma (heated by shocks), we start with waves in a cold
plasma. This gives a quick introduction to the calculation
method using characteristics.

The nonlinear evolution equation for magnetosonic waves
with a spherical wave front (far from the source) is derived in
Paper 1. At all polar angles 6, the wave excites a pure toroidal
current j while sustaining zero charge density, p, = 0. Plasma
motion in the wave obeys the momentum and energy
equations,

pc? du =j xB, pczd—ry =E.j, (24)
dt dt
where u =13, v = (1 — 32"/, and the time derivative is
taken along the fluid streamline: d/dt=0,+v- V. Conserva-
tion of particle number (neglecting ¢* creation and annihila-
tion) is stated by the continuity equation,

O F*=0n+V - () =0, (25)

where u® = (v, u) is the fluid four-velocity, F* = 7iu® is the
four-flux of particle number, and 7 = n/v is the proper
density.

We are interested here in wave packets with many
oscillations and a short length c¢7 < r. It is convenient to use
coordinates (¢, &, 0, ¢), so that the fast oscillation is isolated in
the single coordinate £ =t — r/c (and variations with ¢ and r at
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fixed ¢ are slow). The continuity equation in the short-wave
limit gives

F& = (c — v,)n = const = cny,, (26)

and energy conservation can be cast into the following form
(Paper I):

r0ry + BoOyy
r(l — 3,

Here, the derivative 0, is taken at fixed &, 6 (i.e., along the
radial ray r = ct 4 const), and the derivative O, is taken at
fixed f, 6. The second term in the square brackets is small
compared to Oy unless  approaches a{,ﬁ (Paper I). This
typically does not occur in GHz waves, which develop less
extreme y compared to kHz waves (as explained below), and
so, the energy equation simplifies to

O(r’E?) = —4mripy,c® Ogy. (28)

0,(r’E?) = —471'r2,0bgc2 ¢y + ] 27

It describes the coupled evolution of E(t, £, 8) and (t, &, 0) for
the waves propagating in the MHD regime.

We now focus on waves in the equatorial plane (6 = 7/2),
assuming equatorial symmetry. Waves at different polar angles
will be investigated in Section 5.

3.3. Equatorial Waves

In the equatorial wave, the plasma oscillates with a radial
drift speed 3=E x B/B*= (,e,, since vo="0 by symmetry.

Besides E = — E;, we will use the following notation:
v, E
B = By, =1 =_. 29
0 . T3 (29)

Equation (26) gives the plasma compression factor in short
waves, n = (1 — B)ny,g. The magnetic field is frozen in the fluid
and compressed by the same factor,
n B
—=L= = (30)

Npg Pog bg

All MHD quantities in the equatorial wave can now be
expressed in terms of (, including the electric field,

6Bbg
1-8
Substituting Equation (31) into Equation (28) and using
dy=~"[3d3, one obtains

E=3B= 31

20 O, 4c 2
_2Obg GV D¢y = U—bgﬁ. (32)
(= L— 3
A convenient MHD variable is the compression of proper
density p = p/+y relative to its background value py,g,

k=P _ B _ o _ |1+5 33)
pbg Bbg O'bg 1_6

where p and B are measured in the fluid rest frame, and
o = B*/4npc?. Equation (32) rewritten in terms of x becomes

20be K30,k + Ock = 2c Obg K2 (K* — 1). (34)
r
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Using the method of characteristics, we express this equation as

il = -, (35)
dt ct r
where the derivative is taken along curves C* (characteristics)
determined by the ratio of the coefficients of 9,£ and 0,k in
Equation (34),

de

= 36
dt 20bg K (36)

The characteristics £, (f) can also be described by their radial
speed B, =c 'dr, /dt=1—d¢, /dt.

Recall that Equations (35) and (36) are obtained assuming
cold plasma. Appendix A gives a more formal derivation using
the stress-energy tensor of electromagnetic field 4+ plasma, and
shows that Equation (35) also holds when the cold approx-
imation is relaxed, i.e., the plasma is allowed to be
relativistically hot. The shape of C' characteristics in this
more general case is described by

de. 1
dt  29k2

37

where 7, is the magnetosonic Lorentz factor defined in
Appendix A. Its value in a hot plasma is given by (see
Appendix A.5)

1 1 1

Here, ¢ = (pc? + U,)/pc? is the dimensionless specific plasma
energy (including rest mass and thermal energy); k=3 if
thermal motions of plasma particles are isotropic in the fluid
frame, and k=2 if the thermal velocities are confined to the
plane perpendicular to B. As shown below, the plasma is
heated in shocks, which are mediated by Larmor rotation, and
so, heating occurs in the plane perpendicular to B. It is
uncertain whether the plasma becomes isotropic far down-
stream of the shock; therefore, we allow both possibilities k = 2
and k= 3.

For waves in a cold plasma e=1 and 'y = 0 = KOpg. In
this case, Equation (37) is reduced to Equatlon (306).

3.4. Bending of Characteristics

Shocks form because the C* characteristics in spacetime are
bent from straight lines, leading to collisions between them.
This bending is described by d¢, /dt = 0, and one can see from
Equation (37) that it is strongest when x is small. Note that
k=~ + B) = [y(1 — B)]'is smallest where 3 approaches
—1 (i.e., the plasma drifts with a max1mum Lorentz factor Vrmax
toward the star), which occurs where E* approaches B*.

As explained in PaperI (and in Section 4.3 below), v, .. and
Kmin ~ (2'ymx)*1 are set by the ratio of the electromagnetic
energy in one wave oscillation, L/v, to the plasma rest mass in
the magnetosphere, ~4w Amc?. This ratio scales with the wave
frequency as v~ ', and here one can see the first big difference
between GHz and kHz waves: ~, . is much lower in GHz
waves. In particular, v stays far below ~;, and s« > 1 holds
across the wave. This implies that the C' characteristics
propagate with d€,/dt< 1 (see Equation (37)), i.e., their



THE ASTROPHYSICAL JOURNAL, 975:223 (29pp), 2024 November 10

speeds dr,/dr stay close to c¢. Thus, the bending of
characteristics is a small parameter.

This feature of GHz waves allows one to easily find the
evolution of « along C*. Using dr = (1 — d¢,_/dt)"'dr/c and
d¢,/dt < 1, we find from Equation (35),

de_ _ (o _ - s
b G )[1+O( dt)]. 39)

This equation implies that the radial dependence of x along
each C' has the functional shape,

k=14 2Kr?, (40)

where K = const. The constant X is different on different C™ and
set by the initial profile of the wave. Using E=[(B=
BBpg/(1 — () and substituting (3 = (% — 1)/(5* + 1), we obtain
the solution for E along C*,

LY (41)

r

It is the same as in a vacuum wave, E r~'. We conclude that
the presence of plasma influences the GHz wave propagation
by slightly changing the shape of C* characteristics while the
evolution of E(r) along each C* remains unchanged from the
vacuum solution.

Note that the small bending of characteristics, d€, /dt < 1,
can strongly deform the oscillations with wavelength A < r.
This occurs when the small deviation of C* from straight lines,
ory ~ c(d¢, /dnt < r, reaches a fraction of \. Then, character-
istics collide, forming a discontinuity of the MHD quantities—
a shock.

3.5. Coupling of Wave Evolution to Thermal Balance

Next, we note another essential difference between kHz and
of GHz waves. In kHz waves, the monster shocks have ultrafast
radiative losses. As a result, it turns out sufficient to use the
cold approximation €= 1, which gives 73 R 0 = KOpg. By
contrast, for GHz waves, the plasma cooling time exceeds the
wave oscillation period. This leads to accumulation of a large ¢
along the wave train. It affects 7, and the wave evolution
becomes coupled to the plasma thermal balance. Thus, the
wave problem requires a self-consistent solution for x(t, £) and
e(t, &). The evolution of (¢, &) is governed by heating in shocks
and synchrotron cooling, as described below.

3.6. Shock Heating

The plasma speed ( is discontinuous at the shock, as the
upstream and downstream characteristics bring to the shock
different values of 3: B, = (34 (hereafter subscripts “u” and “d”
refer to the immediate upstream and immediate downstream of
the shock). The Lorentz factor of the upstream plasma relative
to the downstream plasma, ', is related to the shock
compression factor ¢ = p,/p, = ka/ku (Appendix B):

Tt = 7070(1 — BuBo) = %(q + g, 42)

In Appendix B, we describe the shock jump conditions and
derive the plasma energy per unit mass immediately
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downstream of the shock:

b+ B2~ Gk~ Dg* + 2k — Dg® + k+ 1
B Gk — Dg*+k+ 1

. 43

&d

2
[+ Dg? + 3k — 1]g, — 44 =D
2¢ey
where k = 3 for isotropic plasma, and k =2 when particles are
heated only in the plane perpendicular to B. Note that radiative
losses do not affect the shock jump conditions, as the plasma
cools on a timescale much longer than the Larmor time that sets
the shock width (the opposite regime occurs in kHz waves; see
Paper I).
The jump conditions also determine the shock speed,

b=

SRS

k+ e, — ey — [(k+ Deg — g
| g, kD MRV IR
k ovgriy(g= — 1)
For relativistic shocks with g > 1, this simplifies to
2(k — De k+ De, — et
l_ﬁsh% ( ’;)3(1’ zCI[( ) u u]. (45)
k opgryq 3k—1

3.7. Radiative Losses

The shock-heated plasma gradually loses energy to synchro-
tron emission. Thermal evolution of the plasma behind a shock
obeys the first law of thermodynamics along the fluid
streamline:

dg:_[;)di

— —ds,=pdink — ds, (46)
pc

where P, is the plasma pressure,
B 1

=2 = _(¢ — e, 47)
P pc k
mc’de, is the energy loss due to synchrotron emission,
52
dey = LB (2 pyai, (48)
mc 2k

and df = dt/~ is the proper time of the fluid element. We here
approximated the particle distribution function in the fluid
frame as monoenergetic (each particle has the Lorentz factor
4, = €). Then, using the relations B = rBy, and di = rd¢
along the fluid streamline, we obtain the equation for £(¢),

2 _ orBA K32 — 1
13 ldln[{— Tbg ( )

ke 2mkmc

dE = d£7 (4’9)

which can be integrated numerically along a given wave profile
k().

Energy emitted in the lab frame is dE; = y degnc® per particle.
The number of particles passing through the wave per unit time is
47TI‘2(pbg /m)c (we have multiplied by 47 to define the isotropic
equivalent). Energy E; radiated per particle is distributed over £ in
the wave as dE,/d¢=ymcds,/d¢. This gives the following
distribution of the synchrotron power over ¢:

T 4,302 _ ]
dLs _ orpiyk’(e ) (50
dé 2mkmD r’

Solutions for MHD quantities along characteristics described

by Equations (35) and (37), with local ~ calculated under the
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adiabatic assumption (Equation (38)), become inaccurate if the
plasma radiates a significant fraction of its energy € during one
wave oscillation. We will monitor for this condition, which
limits the applicability of our simulation method. Note that the
solution may hold even when radiative losses have a strong net
effect on the wave. For instance, the GHz wave packet with
30,000 oscillations (simulated below) eventually loses most of
its energy to synchrotron emission; however, it is approxi-
mately adiabatic in each oscillation. Radiative losses impact
that enters Equation (37) through ~,; however, the local fast-
magnetosonic speed remains approximately adiabatic and
determined by the local € according to Equation (38).

3.8. Numerical Implementation

One advantage of using characteristics, compared with grid-
based MHD solvers, is the ability to track waves in a plasma
with any large magnetization parameter o. In addition, low
computational costs of tracking characteristics allow one to
follow radio bursts with a large number of oscillations N.

The calculation starts at small radii where By, far exceeds the
wave electric field E, and the plasma oscillates with small
|8] < 1, which implies a negligible modulation of plasma
density, |k — 1| < 1. In this inner zone, the C* characteristics
propagate with speed 3, =1 — O(Uggl), and so, each
characteristic keeps a constant coordinate £=1—r/c=¢,.
The initial wave profile E(&;) is well defined in this inner zone
of nearly vacuum propagation with E o 7~ '. It is conveniently
described by the function

VE()

K() = rE = Ko sin(w¢)), Ky= —. 51)
I 1t

When launching the wave, we set up an initially uniform grid
in & of size N, and then use the NV, characteristics to track the
wave evolution. Typically, 500 characteristics per wave
oscillation are sufficient (convergence has been verified by
varying N_).

At each time step df, the displacement d¢, of each
characteristic & is determined by d¢,/dt (Equation (37)),
which is controlled by the evolving values of x(t, &) and e(t, &;)
on C'. The compression k(t, &) evolves according to
Equation (35), and the plasma specific energy (¢, &) is found
by integrating the ordinary differential Equation (49) in £ when
scanning through the array of N, characteristics.” The down-
stream energy &4 of each shock is found from the jump
conditions (Section 3.6). The propagation speed of each shock
is determined by Equation (44).

After each time step, the code examines the updated
positions or the characteristics and any existing shocks, and
determines which characteristics terminate at the shocks. The
code also constantly watches for any new crossings of
characteristics to detect formation of new shocks. We use an
adaptive time step to resolve any fast evolution in MHD
quantities near R,.. We have also implemented substeps in the
leading oscillation of the wave, which is coldest and reaches
the lowest «, leading to more demanding time step require-
ments. Note also that the density of characteristics dN,/d¢

5 Recall that we consider short-wave packets, so that the plasma crosses the

wave faster than the wave evolves. Then, the profile of £(£) can be calculated at
fixed r=const. This approximation loses accuracy in low-power waves, which
have extremely fast evolution at R, (the model with L = 10% erg s~! shown
below); however, this weakly affects the final result.
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Figure 1. Evolution of the wave power L with radius r, for wave packets with
initial L = 1040, 1042, and 10 erg s~ In the sample numerical models, the
waves have frequency v = 0.3 GHz; similar results hold for waves in a broad
range of GHz frequencies. Total Poynting flux L (isotropic equivalent) is
shown by black curves. Its oscillating component L, (blue curves) is of main
interest for FRBs. The calculations have been performed assuming k =3
(isotropic plasma, dotted curves) and k = 2 (thermal motions perpendicular to
B; solid curves). Shocks form at radius r, indicated by the red dot; it is slightly
smaller than R, (see text). Green dot marks the heating transition radius Ry
(Equation (67)).

drops ahead of shocks, where « is lowest, and the high d¢, /dt
results in stretching the array of C* in £ To maintain sufficient
spatial resolution everywhere in the wave, we use adaptive
mesh refinement in & without changing the total number of 500
active (not terminated) characteristics in each oscillation. These
technical tricks allow one to significantly speed up the
simulation and trace the evolution of long wave trains. Sample
wave trains presented below have N=3 x 10* oscillations,
traced on a grid with N, = 500N = 1.5 x 10’ characteristics.
The wave evolution should conserve the total energy
(electromagnetic + plasma + synchrotron losses), which
provides a simple test. The simulations passed this test.

4. MHD Results for Equatorial Waves

Two models are discussed in detail below: waves with initial
power L=10* ergs™' and L= 10" ergs™'. Both simulated
waves have frequency v=w/27r=0.3 GHz and duration
7=0.1 ms. In addition, we will briefly discuss an example of
waves with even higher initial power L = 10* erg s'. Figure 1
shows the evolution of the wave power with radius found in the
three simulations.

4.1. ModelI: L = 10%* ergs™!

As one can see in Figure 1, the wave experiences strong
damping near radius R, ~ 2.5 x 10* cm. The development of
shocks in each oscillation results in plasma heating and
synchrotron losses, reducing the wave energy by a factor of
~10 between R, and 2R,. Then, the electromagnetic packet
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Figure 2. Evolution of the wave profile E(&) in Model I (L = 10*? ergs ,
v = 0.3 GHz, isotropic plasma). The snapshots were taken when the packet
reached r/R, =0.9, 1.5, 2.6, and 29. For clarity, only the leading 10
oscillations are shown. Electric field E is normalized to the amplitude Ey* that
the wave would have if it propagated in vacuum.
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Figure 3. Evolution of the plasma compression profile x(£) in Model I (same
model and snapshot times as in Figure 2). The vertical jump observed in each
oscillation is a shock.

evolves into a smooth, almost uniform, Poynting flux with
unchanged duration 7=0.1 ms and strongly damped oscilla-
tions. The wave power L, that is carried by the alternating
component of the electromagnetic field with frequency v is
reduced below 10~ of its original value.

The evolution of the wave profile is shown in Figure 2.
Showing the entire profile with 3 x 10* oscillations would be
impractical, so we limited the figure to the first 10 oscillations
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Figure 4. Evolution of the plasma internal energy £(¢) in Model I (same
snapshot times as in Figure 3). The larger number of oscillations (200) are
shown to demonstrate the heating by the shock train and the saturation of ¢
when synchrotron cooling offsets shock heating in each oscillation.
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Figure 5. Evolution of a typical shock (measured 1000 oscillations from the
leading edge of the wave train) in Model I. All curves begin at the shock
formation radius r.~ 0.998R,. The shown parameters are the shock
compression factor g, downstream specific energy &4, and specific dissipated
energy Egiss- In addition, the figure shows Larmor frequency of the plasma
particles wp, normalized to the wave frequency w; wy, oscillates in the wave, and
the figure shows the evolution of its minimum value.

in the packet; this is sufficient to see the evolution. It has three
phases:

(1) Cold oscillations at r < Ry. As the plasma flows through
the wave, it performs N =7v small-amplitude, harmonic
oscillations with frequency v, and exits behind the packet.
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This simple behavior ends when the packet reaches
r. =~ 0.998R. Then, caustics form, launching shocks in each
oscillation. The shocks appear at the oscillation phases where E
is close to its minimum (E ~ —F;) and k < 1.

(2) Main dissipation phase at r 2 R«. The shocks reach a
maximum strength at r= 1.1R,. The shock in the first
oscillation of the wave train is strongest (because it has a cold
upstream), reaching the compression factor g = rg/fy ~ 102
(Figure 3). Subsequent shocks down the wave train occur in the
plasma already heated in the leading shocks (Figure 4);
therefore, they have smaller g. Figure 5 shows the evolution of
a typical shock located 1000 oscillations away from the leading
edge of the wave.

The oscillation of plasma compression x (Figure 3)
modulates the plasma temperature by adiabatic heating/cool-
ing, and in addition, there is dissipative compression at each
shock. In general, dissipation breaks periodicity: as the plasma
moves through the wave train, it can accumulate heat &g
gained in each of the N shocks. However, synchrotron losses
offset the gradual growth of ¢ and make the wave train
approximately periodic, with € oscillating about a flat &
(Figure 4). The value of & = 10% is determined by the
heating=cooling balance, as described in Section 4.3.2 below.

(3) Evolution toward a uniform Poynting flux at r > R,. By
the time the packet reaches r = 2R, the shocks have erased the
low-x regions, and the plasma oscillations now have a small
Lorentz factor v~ 1 throughout the wave. The shock strength
becomes subrelativistic, I',,; ~ 1. The electric field E oscillates
with a decreasing amplitude about a positive average value
E ~ 0.3E,. At r 2> 30R,., E(€) becomes nearly uniform across
the entire wave.

We conclude that the oscillating GHz wave is absorbed in
the magnetosphere. Part of its energy and momentum (~10%)
is used to eject the outer magnetospheric layers, forming the
Poynting flux that continues to expand freely. Most of the
absorbed wave energy (~90%) converts to synchrotron
emission from the heated plasma.

The simulation also demonstrates the gradual steepening of
the wave profile at the leading edge of the packet. This leads to
the formation of a strong forward shock when the packet
reaches Rp~7 x 10° cm. It is consistent with the analytical
expectation (Paper I)

8ca 1/6
Rp = “1 R.~7 x 10® cm. (52)
wWRy

The forward shock is the leading edge of the Poynting flux
ejected from the magnetosphere, i.e., the wave packet
effectively has become an ultrarelativistic blast wave that
continues to expand into the external medium. The blast has
thickness c¢7 and carries ~10% of the original wave energy.

4.2. Model II: L = 10 ergs™’

The main difference of the low-power wave is seen from
Figure 1: it is damped in a narrow range of radii ér when the
wave packet approaches R, ~7.8 x 10® cm. Shocks and
damping develop somewhat before R, at r. =~ 0.943R,.. The
final outcome is that about 95% of the wave energy is radiated
away in synchrotron X-rays, and the remaining 5% forms a
smooth Poynting flux of duration 7, with no GHz oscillations.

The evolution of the wave profile is qualitatively similar to
Model I. There are two main quantitative differences: (1) The
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shocks are weaker (Figure 6), which implies a lower dissipated
fraction egi5s/€q in each shock. (2) The plasma passing through
the wave develops a much higher temperature (¢ reaches
~2 x 10?; see Figure 7). This occurs because dissipation takes
place at a larger R, where the magnetic field is weaker, and
synchrotron cooling is much slower. This leads to 45 ~ 200
during the main dissipation phase, much higher than in Model I
(compare Figures 8 and 5). Therefore, the wave damping
occurs much faster.

Our numerical method loses accuracy when radiative losses
during one oscillation become comparable to the plasma energy
(then, the speed of characteristics [ significantly deviates from
its adiabatic value). This does not occur in Model II. Model I is
less accurate, in particular near the dissipation onset, when the
plasma radiates in one oscillation ~30% of its thermal energy,
in balance with heating e4;ss/c4 ~ 0.3 (Figure 5).

4.3. Analytical Description

The wave behavior shown by the numerical models can be
understood analytically and described by approximate
formulae. An important dimensionless parameter of the
problem is

WR , mc*Nv
= T —

¢ ~8 x 102 NysLg've.  (53)

c oy

As shown in Paper I, the plasma exposed to waves with (< 1
develops Lorentz factor v~ ¢~ ' at r~ R.,. The parameter ( is
tiny in powerful kHz waves investigated in Paper I, and GHz
waves have less extreme (. Our first sample model
(v=0.3GHz and L=10* ergs™') has (~2.4 x 1072 The
second model (¥=0.3GHz and L = 10* erg sfl) has (> 1,
which creates only mildly relativistic plasma motions in the
wave. Note also that the plasma speed is related to compression
# (Equation (33)), which implies v = (x* + 1)/2k.

4.3.1. Shock Formation

The caustic forms quickest on characteristics with K <0,
which develop the smallest . The first shock forms in the first
(leading) oscillation in the initially cold plasma. It occurs at
coordinate &, with plasma compression factor k. at time ¢, all
of which can be derived analytically. For waves with ( < 1, the
result is (Paper I)

V¢ 3r . 164¢

C
R~ , wl ~ — + + —, 54
Y § 2 284 Rw >4)
cte ¢ 8JC ¢ c?
=l +— (55)
R, 3424 24/ Rw  4R2W?

Note that (> ¢/wR, in the GHz waves. In particular, for the
0.3-GHz wave with L=10** ergs™', we find ct.,/R, — 1 ~ —
¢/ 3424 =~ —1.6 x 1073, in agreement with the numerical
simulation. Note also that Model II is in the opposite regime,
¢ > 1. In this case, the caustic forms without a strong drop in .

Similar shocks develop in each oscillation of the wave train
and eventually dissipate the wave energy into heat, most of
which is radiated away.
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Figure 6. Oscillations of the plasma compression x(§) in Model I
(L=10"ergs™!, v=03 GHz, isotropic plasma). Three snapshots are
shown, when the wave packet reached r/R, = 0.946R., 1, 2.6. The figure
shows the leading 100 oscillations (the simulated packet has 3 x 10*
oscillations).
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Figure 7. Evolution of the plasma internal energy (§) in Model II (same
snapshot times as in Figure 6). The larger number (600) of oscillations are
shown to demonstrate the heating by the shock train and the saturation of ¢
when synchrotron cooling offsets shock heating in each oscillation.

4.3.2. Thermal Balance in the Shock-heated Wave Train

Each shock in the wave train heats the plasma passing
through the wave. Without synchrotron cooling, the plasma
specific entropy would monotonically grow with £ from the
leading edge of the shock train toward its end. This growth
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Figure 8. Evolution of a typical shock (measured 1000 oscillations from the
leading edge of the wave train) in Model II. The shocks appear at
r. ~ 0.943R,, and the figure focuses on the narrow range 6r where the wave
energy is dissipated. The shown parameters are the shock compression factor ¢,
downstream specific energy ¢4, and specific dissipated energy e In addition,
the figure shows Larmor frequency of the plasma particles wy, normalized to the
wave frequency w; wy oscillates in the wave, and the figure shows the evolution
of its minimum value.

occurs over many oscillations and gradually pushes the specific
energy ¢ to so high values that synchrotron cooling Q ox &
becomes important. Indeed, one can see in Figures 4 and 7 that
at large £ the growth of (&) stops. Thus, the plasma passing
through the wave enters a thermal balance: shock heating in
each oscillation is offset by synchrotron cooling.

The thermal balance may be stated by equating the specific
energy dissipated at the shock e4i5s to the synchrotron losses
(Equation (49)) integrated over one oscillation,

$

27/ w

orBpy k(e — 1)

dé =¢ iss-
2mkmc ¢ ¢

(56)

The shock dissipates energy eqiss = €q — €ad, Where 4 i given
by Equation (43), and sad:q“'su accounts for adiabatic
heating by shock compression ¢ with adiabatic index a. The
plasma flowing through the train of many shocks sustains
e>1 and =14k '. Equation (43) for e4 then simplifies,
and we find its dissipation part:

Ediss [Bk — 1)612 + k+ 1] ql/k

= Sdis _ (e > 1).
&= *k+ D+ Gk— g -

(57)
At large g > 10, g approaches unity. In the opposite weak-
shock limit, an expansion in ¢ — 1 gives
_Gk— Dk -1)
- 1243

Gq—1 (@-1<1). (58
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Synchrotron losses peak downstream of each shock, and we
estimate the thermal balance in Equation (56) as

orB2 Kk3e2
TTPbe MR | (59)
2mkme w
This gives
2mkmce w
&q ~ g(Q)ﬁ- (60)
O-TBbng

This balance determines ¢ that can be sustained by shocks with
compression factors g against radiative losses. Note that ;g S
a small fraction of g4 for ¢ < 5, and that ¢ oscillates in the wave
within a modest range ¢, < € < g4 (Figures 4 and 7).

In Equation (60), one can use Bbzg = BX2 /x" where x =r/R,,
B? = 1i2/R® = ;' (8L/c)*/%, and L is the initial power of the
wave (before the dissipation). Then, we obtain

1.7kgx® mc>/? vu

PRI 61)

&d Hg
The main dissipation occurs near R,, at x~0.94-0.95 for
L=10" ergs™' and at x~ 1.3-1.5 for L= 10" ergs~'. The
two waves also have different shock strengths, g ~?2 and 5,
which give kg~ 0.2 and 1.2, respectively. The value of
kq~ 1.5-1.8 is close to the peak « in the oscillation. Using
these values, one can see that the estimate for Equation (61)
well explains €4 observed in the simulation: we find g4 ~ 200
for L=10* erg s ! (Figure 5), and g4~ 3 X 10° for L=
10% ergs™' (Figure 8).

4.3.3. Duration of the Main Dissipation Phase

As one can see in Figure 1, the main dissipation phase of the
powerful wave, L= 10" ergs™', extends over a significant
range of radii ér ~R,. By contrast, the weaker wave with
L=10" ergs™' dissipates quite suddenly near R.., in a narrow
range or < R.

The length ér is related to the number of particles passing
through the wave, N ~ 4w N(6r/r). This number (and hence
or) can be estimated using energy conservation. The wave
energy contained in one oscillation is L/v, and each particle
receives energy eaissmc’ from the shock. Hence, the number of
particles it takes to damp the wave is

L L
5~/\/damp ~ 5 = PR (62)
EdissMc~ vV geqme~ v
and the corresponding damping length is
iy orl .

¥ 20kg2x®m2c%/ 2 Nv?’

where we substituted ¢4 from Equation (60). In particular, for
the wave with L=10% ergs™', this estimate gives
O damp/ T ~ 2 X 1073, consistent with the simulation results
(Figure 8). Equation (63) holds if 6rgamp/R« < 1. Note that
(5rdamp/RX grows with L and saturates at ~1 for waves with

large L (as in ModelI) or low v.

4.3.4. Validity of MHD Description

The MHD description of waves fails when the particles
become unmagnetized, i.e., their Larmor timescale becomes
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comparable to the fluid dynamical timescale measured in the
fluid rest frame. The demagnetization can happen in kHz waves
when they accelerate the plasma to huge Lorentz factors
(Paper I). In GHz waves, the fluid Lorentz factors are modest,
but demagnetization may occur for a different reason: the
ultrarelativistic temperature of the plasma increases its Larmor
timescale.

In both presented simulations, the MHD requirement
wL &~ wp/e > w holds throughout the evolution of the wave.
The ratio wy /w is shown in Figures 5 and 8. For waves with a
lower power L < 10* ergs™' and the same v = 0.3 GHz, the
condition wy, > w would become violated.

One can estimate wy = eByp,/emc during the main dissipation
phase using € ~ g4 given by Equation (61):

eor LY7*
9
2617743722

wL 83/4H(31

w 6mgx® m

(64)

where we used By, = p(xR)> = x3u1/2(8L/c)*/4. In
particular, for the wave with »=0.3 GHz and L= 10%
erg s ! (Model II) with isotropic plasma (k=3), one can
substitute the numerical factors g ~ 0.1 and x” ~ 0.6 evaluated
above. The result is approximately consistent with the
minimum wy /w ~ 7 observed in the simulation (Figure 8).

4.4. Extremely Powerful Waves

GHz waves with power L>> 10 ergs~' develop radiative
shocks at R, in the sense that the plasma behind each shock is
radiatively cooled on a timescale shorter than the wave period.
This leads to nearly periodic dynamics as the plasma moves
through the wave train: shock heating in each oscillation is
followed by immediate strong cooling. The wave train remains
approximately periodic until it reaches the “heating radius” Ry,
where synchrotron cooling weakens enough, so that the
shocked plasma retains a significant fraction of the received
heat before it crosses one wave period and becomes heated
again in the next shock. At radii r > Ry, the plasma begins to
accumulate heat in the wave train, and then reaches a thermal
balance (heating = cooling) at enthalpy ¢ far exceeding the
enthalpy gained in a single shock; this thermal balance was
described in Section 4.3.2.

Figures 9 and 10 show an examfle model where the wave
has a high initial power L=10" ergs™' (and the same
frequency as in the other presented models, v = 0.3 GHz). The
simulation followed the evolution of the wave train with 1000
oscillations; however, Figure 9 displays only its small leading
part of 10 oscillations, for clarity. One can see that at r ~ R
the wave develops a periodic train of radiative ultrarelativistic
shocks. Upstream of each shock the wave profile develops a
plateau of E ~ —Bi,,/2 (which corresponds to E*~ B%), and the
plateau width quickly grows to Wy~ w™'. The plateau forms
because the MHD evolution “shaves off” the excess of E to
respect E> < B?, as explained in detail in PaperI. The plasma
accelerates as it crosses the plateau, then decelerates at the
shock, and then radiates the heat received from the shock. The
cycle repeats in each oscillation, and the wave train remains
approximately periodic until it reaches radius Ry,. In this sample
model, we find R, ~ 2R,..

An analytical estimate for the radius R}, is found by matching
the results derived at r < R, and r > R),. At radii r < R}, the
plasma in each oscillation has a negligible memory of shock
heating in previous oscillations; the particles periodically gain a
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Figure 9. Same model as in Figure 2 except that here the wave has a higher
power L =10* erg s~'. One can see the periodic plateaus in the snapshot at
r = 1.5R.. The transition to slow cooling occurs around R}, ~ 2R, ; then, the
periodic plateaus disappear, and the GHz wave experiences strong damping,
especially in its extended part farther down the oscillation train (not included in
the figure).
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Figure 10. Evolution of the plasma internal energy profile £(&) in the wave
shown in Figure 9. The larger number of oscillations (30) are included in the
figure to show the saturation of ¢ near the heating=cooling balance when the
wave propagates to r > R, ~ 2R...

Lorentz factor 7, =~ and radiate the received energy away.
The particles gain energy where E> ~ B2, i.e., at the g)lateau of
E(§) ~ E, = —By,y/2. The plateau evolution E, o<~ controls
the energy loss of the electromagnetic wave, which in turn
determines the energy gain of the plasma as it crosses the
plateau (Paper I), so particles crossing the plateau of width

12

Beloborodov
W, ~ ¢/w gain the Lorentz factor

Yo~ — o (r S Ry). (65)
wr
This energy is thermalized in the shock (and quickly radiated
away) in each oscillation.
At radii r 2 Ry, the plasma energy per g)article is set by the
heating=cooling balance (Equation (60)),

2mmce w

Ve ~ (r 2 Ry). (66)

O'TBbzg
Here, we took into account that the shocks are strong in the
extremely powerful waves, ¢>> 1, which implies g(q)~ 1.

Now, one can evaluate the transition radius R, by matching
Equations (65) and (66),

() 2
82m2 2 N> N13410V19/5

Only waves with sufficiently high power L (and/or lower

frequency v) form shocks in the fast-cooling regime Ry, > R,.,

and their profiles E(§) develop the plateaus as they propagate
between R, and Ry,. The condition R, > R, is satisfied when

(68)

cm. (67)

L> Ly~ 1.5 x 107 300 erg s\,

Such waves experience moderate energy losses (<50%)
between R, and R;. At radii r> Ry, synchrotron cooling
becomes slower than the wave oscillation, and then the GHz
oscillations become nearly erased, similarly to the weaker
waves with L < L, (Figure 1). In summary, the GHz burst is
strongly damped near R, if L < L, and near Ry, if L > L.

5. Shock Formation outside the Equatorial Plane

Consider a spherical wave front expanding through the
dipole magnetosphere. It has a radial wavevector k. Note that
By Lk only in the equatorial plane § = /2. The angle «
between By, and k is given by

BY 1
tano = —brg = —tan.

bg

(69)

Shock formation is expected at radius r.(f), which can be
found from the condition E* = B* with E and B evaluated for
the wave propagation in a vacuum (Paper 1):

4 — 3sin219)l/2 . sin'/20

=R——". (70)
S1n &

r(0) =R
40 X( sin

The density parameter of the magnetosphere at 6 = /2 is
defined similarly to that in the equatorial plane,

No = riug(r, 0). (71)

We have added subscript “0” to highlight a possible variation
of density with 6. It may be estimated assuming an
approximately uniform ¢* loading in the inner magnetosphere,
where By, > 107 G (Beloborodov 2013, 2020). The created
pairs outflow along By, with mildly relativistic speeds and

® We omit a numerical factor O(1) set by the plasma dimensionality

parameter (k = 2 or 3) and the average compression factor x ~ 1.4-1.7 around
the wave crest where main cooling occurs.
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annihilate when they approach the equatorial plane. This

picture implies
Ny  sinf
Npg OC Byg, - =

N

iy (72)
sin &

5.1. Plasma Velocity Profile in the Wave

The simplicity of equatorial waves described in the previous
sections is due to the simple relation between the wave electric
field E and the plasma speed (3, which allows one to formulate
the energy Equation (28) for a single unknown function. In the
equatorial wave, the plasma executes the radial E x B drift
with 3= E/B = E/(By, + E). By contrast, outside the equator-
ial plane, the oblique By, implies that the wave will move the
plasma in both r and 6. Furthermore, in addition to the E x B
drift, the plasma can slide along the oblique B. Despite this
complication, one can still find analytically the relation
between 3 and E across the wave profile.

The MHD condition E* < B implies the existence of a “drift
frame” K (moving with velocity Bp=E x B /Bz) in which
E = 0. In this frame, the plasma has a pure sliding motion along
B with some speed 3 and Lorentz factor 5 = (1 — Bz)fl/ 2,
Transformation of the plasma four-velocity u® = (v, u) from
frame /C to the lab frame gives

v=49Yp, u=u+ Aup, (73)

where

B E x B

YD = /—B2 — E2 > up = B /—B2 — E2 > (74)

and B = /B’ + Bj. Equation (73) shows the decomposition
of u into components parallel and perpendicular to B: w = #@
and u, = Aup.

The relation between the plasma Lorentz factor
v = (1 + @%)!/? and the wave electric field E will be found
if we solve for #(E). This can be done using
~dB __ dBy

— X Uy —,

dt (73

d d

—(@B)=—W -B)=u

dt( ) dt( )
where the derivative d/dt is taken along the fluid streamline,
and we used B - du/dt = 0 (implied by Equation (25)). The last
(approximate) equality in Equation (75) makes use of
dB,/dt < dBy/dt, which holds for short waves. Indeed, the

derivative,
a8 ~~ dBy , (76)
dt dt

is dominated by the fast oscillation of the wave field
B,, =B — B, on top of the slowly varying By, and B,, in a
short wave satisfies’

B, < B!~ E. (77)

7 Vector potential A,, for a short axisymmetric wave satisfies 0;Ay, > 0,Ay ¢,
which implies B!, < BY and B! ~ E (Paper I). The small difference B,, — E is
not negligible only in terms with the large derivative J¢in particular,
O¢(E — By) = O;By|¢ + E/r, as follows from induction equation
OE =—cV X B,,.
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Relations BdB/dt ~ BydBy/dt and iig = iiBy/B give
. dB dBy _ . dE

; ~ iy 7 ~ 1y Z (78)
Using these relations, we find from Equation (75)
B % = %(ﬁB) — ﬁ‘j{—lf =~ (ug — ﬁ@)% ~ ﬁué‘i—f, (79)
and hence,
di ~ _LB&% d_E (80)
dt B2/B2 — E2 dt
This gives a differential equation for i#(E) or Y(E):
4y _di _ EByg dE . @)
@ 7 (Bl + 2BYE + EV[B + 2BLE

It can be integrated with By, ~ const across the short-wave
profile,

o E/Bu,
@+ =1=-["" s 2d, (82)
0
where z = E/By,, tan o = ng/ng, and
- EBy, By zcosa
 BJB2—E2 (14 2zsina + )1 + 2zsina
(83)

Note that z — —(2sina)~! corresponds to E*— B> In this
limit, we find

when E? — B2

v == (84)
sin

The obtained i(E) determines y(E) and u(E) according to

Equation (73). This solution describes the plasma velocity

profile in a short wave in the oblique B,.

5.2. Shock Formation

As long as the plasma oscillating in the wave stays cold (i.e.,
until shock formation), the wave evolution obeys
Equation (28), which states (0,E); in terms of (O¢7);. One
can use the relation between E and y found in Section 5.1 to
express O,F in terms of O,y, and then Equation (28) becomes a
differential equation for ~(z, &),

Oy 2cE?

— + 2mppc? Oy = , (85)
r
where function f(E, By,) is given by (see Appendix C),
(B2, + Bl,E)y* — aB!,Bv?
f= g d £ . (86)

B4’~}/2

Equation (85) is the generalization of Equation (32) to polar
angles 6 = 7/2. It contains 6 as a parameter and will show how
the wave develops caustics at each 6. Its characteristics &, (f)
are determined by the coefficients of J,y and 0y,

dg,

dr (87)

= 2’]prg sz’
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and the evolution of ~ along characteristics is given by

|
dt |+ r

2
2E7, (88)

In the equatorial plane, these equations reproduce the results of
the previous sections. Then, f= Bbg'y3/B3 = (m3B|,2g)", and
d¢, /dt is reduced to Equation (36) while (dv/dt)c+ becomes
equivalent to Equation (35) (taking into account the relation
= (k> + 1)/2k).

The evolution equation for rE along C* has the form (see

Appendix C)
3
— ol 2|
Obg

Thus, waves with 7 < opg satisfy rE ~ const along the
characteristics. This feature was demonstrated in the previous
sections at § = /2, and it also holds outside the equatorial
plane.

Shocks appear at caustics in the flow of characteristics. The
caustic location r.(f) and the plasma Lorentz factor at the
caustic v.(0) are calculated in Appendix C. The calculation can
be completed analytically for waves with (< 1 and (> 1. In
these two limits, we find

1d(rE)
E dt

(89)

C+

1 (<1
T~ ina }/° 90
- (% s1'ng) C> 1 (90)
sin
1/2
VJ3/2
e <1
Ve R ({sin@sina] ¢ oD

1 (> 1

where a(f) is given by Equation (69), and the parameter ( is
defined in the equatorial plane (Equation (53)).

6. Transition to the Kinetic Regime
6.1. Shock Heating and Demagnetization of Particles

Shock heating of the plasma to €>> 1 reduces the Larmor
frequency wy = wp/e = eByy/mce. If wy, becomes comparable
to w, the MHD description of the wave fails. Then, a kinetic
description will be required, where particles individually
interact with the wave. In Section 4.3.4, we estimated wy /w
in the equatorial waves. Below, we evaluate this ratio in waves
outside the equatorial plane, and find the boundary between the
two damping regimes (kinetic versus MHD shocks) on the L0
plane.

The plasma internal energy ¢ is controlled by the balance
between synchrotron cooling (averaged over one oscillation)
and shock heating. This thermal balance is described in
Section 4.3.2 for waves in the equatorial plane, and a similar
balance can be stated at 6= 7/2. In particular, we can use
Equation (60) to evaluate €. The choice of k=2 versus k=3
weakly affects the numerical coefficient in Equation (60); for
definiteness, below, we assume isotropic plasma (k=3). We
will also use k4 ~ 1 because in the transition regime of interest
Ky 1s close to unity (see Figure 6 for Model II, which comes
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close to the MHD /kinetic transition). Then, we find

echng

w  6mm*ciuig

WL

92)

where the numerical factor g = €4;5s/4 depends on the shock
compression factor g. For the perpendicular shocks at 6 = 7/2,
g(q) is stated in Equation (57). Note also that g(f) =~ 1 holds for
waves with ( < 1, which develop relativistic shocks during the
main damping phase.

The plasma response to the wave may be described as MHD
drift if the full Larmor period 27/wy is shorter than the
timescale for a large change of the field, which we take as 1/4
of the wave period. Thus, we roughly estimate that the
transition between the MHD and kinetic regimes occurs at
wp/w ~ 4. This corresponds to

m%c2w?

1/3
Bug ~ Byimp ~ 4(g ) ~2 x 107g"333 G, (93)

eort
The same condition may be stated as

. 173
wg ~ Z(g - wz) ,

Te

(94)

where 7, = ¢” /mcz. Damping of the wave through MHD
shocks begins when caustics form (at radius r () given by
Equation (90)), and most of the damping occurs at r ~ r.. The
approximate condition for the wave to be damped in the MHD

regime at a given polar angle 6 is
Bpg(r) > Byup  (shock damping). 95)

In particular, waves with ¢ < 1 have r. ~ r, (Equation (90))
and g ~ 1, and then, we find

Bbg(rc) ~

Bwyup

(L)3/4 sin’a ( eor )'/3
c Jpsing \m2c2w?)

where we used Equation (70) for r,.. One can see that the MHD
regime By,(r.) > Byup holds at a given angle 0 if the wave
power L exceeds a critical value Lyyp,

(96)

s D

479 .
mzczwz) /9 sin2/30

Lyup(0) ~ CM2/3( sin® %0

eor
sin?/30 erg

40,,2/3,8/9
~2 x 10%u3t vy 873

. o7
sin®Pa s
At small polar angles § < 1, one can use « ~ /2 and see that
Ly o 672 The MHD damping condition L > Lyp(f) may
also be written as a condition on 6 for a given L: 6 > Oyp(L).
For example, waves with frequency v=1GHz and power
L=10" ergs™' will experience shock damping in the MHD
regime at polar angles 6 > Oyyp ~ 0.3 (Figure 11).

6.2. Charge Starvation?

Another condition for wave propagation in the MHD regime
is a sufficiently high plasma density, n>j/ec, capable of
sustaining electric current j demanded by MHD. The electric
current in an axisymmetric wave is toroidal, j = (0, 0, j;), and
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Figure 11. Two regions in the L-sin § parameter space: wave damping in the
MHD regime (through shocks) and in the kinetic regime (through stochastic
particle acceleration). Their approximate boundary Lypp(6) [or Omup(L)] is
plotted here for waves with frequency v =1GHz propagating in the
magnetosphere with dipole moment ;= 10% G ecm®. The scaling of Lyyyp(6)
with v and p is given in Equation (97).

satisfies the relation

. dy dvy
—Ej, = pc? =L = pc2(1 — B,)—. 98
Jp = pet— - = P 1 =5 i (98)
For waves with 7° < Opg, ONE can use dy/d&~ ¢y, so
S med =00 5, (99)

enc eE

In particular, consider waves in the equatorial plane with
(< 1. They accelerate the plasma to large +. Large Ogy
develops at caustic formation with §~ — 1 and y growing to
Ve A2 24/ N 172 in the narrow interval 6~ Cl/ 2 /w, which gives

|0cy| ~ 241/4 % (100)

A similar gradient of -y is sustained later ahead of the developed
shock, when the upstream ~y approaches its maximum ~~ ¢
while the width of the preshock acceleration region grows to
S~ w! (see Paper I). Using Equation (100), we obtain a
rough estimate for the current density during the MHD
evolution of the wave:

Jo 10

wpw(’

(101)
enc

where we used E~ Bp,/2 near R, and wg= eBp,/mc. We
conclude that charge starvation does not prevent the MHD

15

Beloborodov

evolution if
C Oy

<0.1. (102)

wpRy«
Using oy = w%/wi, one can also rewrite this condition as

cwp / wf,RX < 0.1. The same condition for shock formation was
found in kinetic simulations of magnetosonic waves (Chen
et al. 2022b).

If the wave had only one oscillation, with a single shock, it
would heat the plasma up to € ~ (! at the peak of the shock
strength. Then, the MHD condition wy 2 4w would be similar
to j/enc < 1 derived above. In a wave train with many shocks,
the plasma is heated to e>> (' Therefore, the condition
wp. 2 4w examined in Section 6.1 becomes more demanding
than j/enc < 1, i.e., MHD applicability is limited by demagne-
tization of heated particles rather than by charge starvation.

7. Damping in the Kinetic Regime

Radio waves propagating at a polar angle ¢ with power
isotropic equivalent L(f) < Lypp(6) cannot be damped by
shocks, because the magnetospheric particles become unmag-
netized in the wave, i.e., reach wp ~w, before the wave
experiences significant losses. The demagnetization transition
occurs close to the radius r, with the background gyrofre-
quency wg(r) = (ep/mer?)sin 6/sin cv. The transition happens
when shock heating increases the plasma internal energy e
(thermal Lorentz factor) to

wp(r)  wp(R) sinfa

w w  sin'/29°
The breaking of MHD description (i.e., breaking of the drift
description of plasma response to the oscillating electro-
magnetic field) implies that the condition E* < B? is no longer
enforced. The part of the wave developing E* > B is no longer
“shaved off” by the shock as described in Paper I, because the
shocks dissolve when wy ~ w.

Subsequent evolution will further energize plasma particles
as described below, leading to w, < w (note that damping of a
small fraction of the wave energy is sufficient for plasma
heating to wi. < w). In a wave with L < Lyyp, radiative losses
are negligible at the transition w; ~ w (g is below the radiative
ceiling); however, losses will become important with increas-
ing particle energies, leading to efficient radiative damping of
the wave. The main damping will develop in the regime of
wp, < w, away from the cyclotron resonance wp = w.

When the wave exits the MHD regime at r~r, and
continues its propagation to r > r,, with the intact sine profile
(which includes parts with E* > B?), it interacts with the plasma
very differently from the MHD regime. As shown in B22,
magnetospheric particles exposed to the train of wave
oscillations experience quick stochastic acceleration. This
process is convenient to view in frame X’ boosted along By,
so that the wavevector k’ becomes perpendicular to
ng = Bbg.8 This frame moves along By, with speed

Ex ™~ (103)

8 In this frame, plasma has no bulk motion perpendicular to By, after

averaging over Larmor rotation. Note that in the kinetic regime, wp < w,
averaging over Larmor rotation also removes the wave oscillation, as the wave
period is smaller than the Larmor period. (By contrast, in the MHD regime,
wr, > w, the fluid velocity is defined on scales smaller than w~ ! and oscillates
with the wave period.)
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Or = cos & and Lorentz factor

1
sin a

V= (104)
Hereafter, all quantities with primes are measured in frame X'.
Note that

W' =wsina, a§= ao, ng = By, (105)

where ag = eEy/mc w. The transition radius r, corresponds to
2E; = Byg or ag = wp/2w'.

The particle interaction with the radio wave affects the four-
velocity component u| perpendicular to By,;. Indeed, in frame
K, particles experience no force component along By, smce
E' 1 By and B'||By,. As stochastic acceleration pumps u/, it
tends to increase the particle pitch angle relative to By,s. At the
same time, radiative losses reduce all components of u’, as the
relativistic particle radiates along u’. Thus, the continued
pumping of u; combined with persistent radiative losses will
drive the particle pitch angle toward 7/2 in frame K'. Note also
that 4/ ~ u| for the ultrarelativistic particle.

The description of particle acceleration by the wave in B22
applies in frame X’. Stochastic acceleration may be viewed as
diffusion in +" with a diffusion coefficient

/a3w/ 2/3
DW'L(VWO ) : (106)
B
where w] = wg/7’, and
eB i
s = 2% 18 x 103 42 00 g o)

mc rg sinq

The mean expectation for the energy gain rate is given by

(omitting a numerical factor ~1)
<7,> D ag wl/ 3w
~ /473

In a quasisteady state, stochastic acceleration becomes offset
by radiative losses (which are Lorentz-invariant),

w'? <’Y/2>'

Then, the mean expectation for the particle Lorentz factor ()

12/3
(108)

2re 2

<;Yem> = —4ay (109)
3¢

may be estimated by balancing (7) with (5, ),

3/10 1/10
C wp

() ~ ( ,) (—,) :
Tow w

Its value for GHz waves is a few times 10*. One can also check
the condition (7/) > v, = (agw'/wp)'/? that is expected in
stochastic acceleration (see B22). Note that (') oc #3/19, and
Y, = ao(rx)/ J2 is constant with radius. After some algebra,
we find (at 0 < Oyp < 1)

() Onip Y (O ) 3/10

Y N(O.O6) ( 0 ) (7) '

The direct calculation of unmagnetized particle motions in
the wave demonstrates that they quickly develop chaos,

forming a quasisteady distribution around (v’). B22 showed
that the distribution extends from ~-y, up to the radiation-

(110)

(111)
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reaction limit,

/ e V[ g\
YRRL ~ 7 -
r.w'ag w
_ c 3/8 4 I/S(rx)g,/g
r,w' ao(r) r '

For typical FRB parameters, Vg, /(v)~ a few.
The characteristic timescale for particle acceleration to (') is

(112)

I Sl A o 0 A (113)
=) T e
which gives
77107 ,\1/10
w’ta’cw(—c,) (i) ag>. (114)
row wg

The Lorentz-invariant quantity N,.. = w't,../27 is the number
of wave oscillations that the plasma should cross to approach
the quasisteady (') (see Figure 4 in B22). The value of
ag = eEy/mcw may be expressed as

Cwp(B) e 2%e (L)3/4 sin
2w r mept?w\ e sin'/26
L}*  sin
~9 x 104 S22 I8 K (115)
552 ve sin'/20 r
Then, we find
1y 0.1 PJ%/ZO o/ sin21/209 ((p \7/10 (116)
*Hace ' LA sin*Sa \ 5 '

The wave train in a typical FRB with duration 7~ 0.1-1 ms has
N=wr/21 ~ 10°-10° >> N,e.. So, after the transition to the
kinetic regime (which occurs near r), particles exposed to the
wave almost immediately develop a quasisteady distribution
with the mean expectation (') (Equation (110)), and continue
to move through the wave train with (v').

The quasisteady particle distribution established in the wave
reflects the balance between stochastic acceleration and
radiative losses. The radiative losses are irreversible and occur
at the expense of the electromagnetic wave energy. The rate of
energy loss per particle (Equation (109)) in the quasisteady
distribution is

(117)
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As the plasma crosses the wave train, it radiates the following
energy per particle (measured in the lab frame):

A& .
26 ~ <'Yem> Tcrosss

(118)
mc

where ... 1S the time it takes the plasma to cross the wave

train of duration 7. The crossing time is determined by the

radial component of the fluid velocity,

B% = Brcosa = cos’a. (119)

This velocity describes the average radial motion of the
magnetospheric plasma exposed to the wave (assuming a static
B,,; the acceleration of background magnetic field lines gives a
small correction, as explained below). The fluid speed relative
to the wave front is 1 — G% = sina, and so

T
2

~

(120)

tCl’OSS . *

sin“q

As the spherical wave propagates a radial distance dr, it

interacts with 6N ~ 47Ny ér/r of magnetospheric particles.

The number of particles sufficient to damp the wave is
O Ngamp = L7 /AE,, and we find

. 1/5
ONgamp LT 27r2 sin? o [ r2w? /
Ny N AE, or Ny cAwp

13/5 4/5 . 2

1y g sin
~3x 1073 22 R (121)

(53 Ny sin®/30

where we used L/al = mc w??%/2r, and substituted

Ny = Nsinf/sina (Equation (72)). One can see that
O Ngamp < Ny for the relevant radii r 2 r., which implies
quick damping of the wave near 7.

One caveat in the above calculation is that at 6§ <1 the
plasma may fail to cross the entire wave train on the wave
expansion timescale r/c. This happens where fq.oss > 7/c,
which corresponds to o < Qrress ~ (¢7/1)!/2. For the typical
parameters, Qoss~ 0.1. Thus, near the magnetic axis, the
plasma becomes “stuck” in the wave train and surfs its leading
part instead of crossing it. The damping process cannot be
completed without plasma filling the entire wave train, and so,
one might conclude that the wave will escape in the cone of
0~ 20 < 2Qcross-

However, there is an additional process that efficiently fills
the wave train with plasma. The accelerated particles surfing
the leading part of the wave emit gamma rays, which freely
propagate across the wave train and load it with ¢ pairs via
photon—photon collisions. This process triggers an e ava-
lanche (Beloborodov 2021).

It is easy to verify that the spectrum of curvature photons
emitted by the accelerated particles extends to the gamma-ray
band. The characteristic frequency of curvature photons in
frame X' is given in B22,

Wl & 2a0y?W. (122)
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Particles with the average (y') (Equation (110)) radiate photons
of a characteristic frequency

3/5
(Wh) ~ 2a0(£) (W'wp)/5. (123)

re
At r~r,, one can substitute ag =~ wp/2w’ (Equation (115))
and find the characteristic photon energy,
/ 9/10
€c(r) = <@> ~ 10354;4.—~
mc? 1347/ sin3/30

. 8/5
sin®/Par (124)

This gives €.(r) ~ 30 — 100 at polar angles where wave
damping occurs in the kinetic regime. It is not far from the
maximum ¢/, estimated in B22 for the most energetic particles
in the distribution, near the radiation-reaction limit ypr,’,

1/4
1 rew%ao
~ T ’
ar\ e

where o= e2/ﬁc ~ 1/137. In particular, at r =~ r,, one can use
ao(r) ~ wp/2w' to get

fiw,

mc?

(125)

RRL

fiw, ~ a§/4(4r6w’)1/4 ~ 500 L492/16 sin «v
me? |ppL oy c 134 v/ ? sin3/80

(126)

The curvature radiation spectrum emitted by each particle
extends to lower energies with the power-law index 1/3.
Therefore, a significant fraction of the radiated power is in the
MeV range, where photons collide and convert to ¢* with a
large cross section ~0.lop. Using estimates similar to
Beloborodov (2021), one can verify that this process converts
a significant fraction of the wave energy into secondary e™
pairs, loading the wave with a large number of particles, far
exceeding the initial Earticle number in the background
magnetosphere. The e™ loading of the wave implies its
inevitable damping.

Our choice of frame K’ neglected the fact that the wave exerts
pressure on the background magnetosphere, driving its bulk
acceleration and compression (see Beloborodov 2021). This
additional effect slightly changes the fluid rest frame used to
calculate stochastic particle acceleration (in this frame, Eég =0,
and the plasma motion vanishes after averaging over Larmor
rotation). This effect is moderate at radii of interest, r ~ r.(6),
where the wave becomes damped and  deposits
radial momentum into the magnetosphere. Near radius
R, =r,(7/2), the deposition of wave momentum £/c¢ into the
magnetosphere results in its bulk acceleration to speed
By~ E/RBY, ~ Tc/8R, ~ 1072 for typical parameters. At
small 6, bulk acceleration is stronger. However, at all polar angles,
the damping radius r~r,(f) corresponds to Eg ~ Byg/2, ie.,
damping occurs where the wave energy density in frame K’ is
comparable to Bbzg / 8. Therefore, at r ~ r,, the wave is at best
capable of mildly relativistic bulk acceleration and moderate
compression of the background magnetic field. The corresponding
change of frame K’ will not change our conclusion that GHz
waves are efficiently damped by stochastically accelerating
particles.

Qu et al. (2022) argued that near the magnetic dipole axis the
wave damping should be considered on open magnetic field
lines with the background magnetospheric plasma flowing with
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a Lorentz factor g 2 10°. They suggested that the high Vog
would render the damping mechanism inefficient and that radio
bursts could escape in a broad solid angle around the magnetic
axis. This possibility is, however, problematic:

(1) The solid angle 62 where damping develops on open
field lines is not broad. Damping of waves near the magnetic
axis begins at r..(0) ~ 2R,/ '/ The open field lines occupy
0 < Oppen (r) = (r/ Ric)'/?2. One can see that damping develops
on the open field lines for waves propagating at angles
0 < (2R./Ric)*/>. The corresponding solid angle is

8/5
60 ~ l(&) ~ 1072 P850 L 25, (127)

2\ R.c

where P is the magnetar rotation period in seconds. This
estimate assumes Ry c > R, which is satisfied for P2 0.1 s.
The population of observed local magnetars have periods
P=2-12s (Kaspi & Beloborodov 2017), as expected from
their fast spindown due to the strong fields. Hyperactive
magnetars proposed as sources of repeating FRBs have ages
t~10°s and periods P ~ 1 s (Beloborodov 2017).

(2) Assuming a large 7, ~ 10°-10* would be reasonable for
open field lines in ordinary (rotation-powered) pulsars, but not
in magnetars. The ¢* plasma in the outer magnetosphere, on
both open and closed field lines, experiences drag exerted by
resonant scattering of dense radiation flowing from the
magnetar (Beloborodov 2013). Therefore, the e® flow in the
outer magnetosphere is expected to be mildly relativistic. The
speed and density of e on the open field lines of magnetars are
estimated in Beloborodov (2020).

(3) Particles tend to forget their prewave motion in the
magnetosphere once they become exposed to the wave. As
shown above, particles interacting with the wave in the kinetic
regime (wp < w) quickly establish a quasisteady momentum
distribution, with stochastic motions becoming perpendicular to
By, in frame K’ defined by the condition k" L Bég = By,.

Qu et al. (2022) also argued that the wave pressure on the
magnetosphere could stretch out the magnetospheric field lines,
making them more radial, so that the angle between By, and the
wavevector k is reduced, potentially helping the wave to
escape. In fact, the wave pressure cannot significantly change
the direction of By, in the wave. Note that near the damping
surface r.() the wave pressure perpendicular to By, is
comparable to Bbzg / 8w, so the background field resists strong
changes. Furthermore, even a much stronger wave pressure
would be unable to stretch radially the magnetic field lines
inside the spherical wave packet, because its thickness is far
smaller than radius, c7 < r.

8. Discussion
8.1. Summary of Main Results

Our main conclusion is that FRBs are efficiently damped in
the static dipole magnetosphere surrounding the magnetar at
radii 10%cm < r <R c~ 10" cm.

We first discussed O-mode GHz waves. They can propagate
across the magnetic field lines (and so have a chance to escape
the closed magnetosphere) when the plasma density is low, so
that it does not screen the wave electric field component E;
parallel to By,. However, in this regime, E accelerates particles
to high energies, and the wave experiences immediate radiative
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losses with an avalanche of ¢™ creation. An O-mode FRB could
escape only if it is beamed within a cone around the magnetic
axis where losses are small. The escape cone is constrained by
Equations (15) and (18).

X-mode GHz waves with power L become damped near the
surface defined by

_ n2
r(0) ~ 2.5 x 10842 L'/ /% cm,  (128)

where p is the magnetic dipole moment of the magnetar.
Damping develops because the wave approaches the condition
E?~B? which leads to particle energization. We have
investigated this process in detail and found that it develops
in two different regimes near the magnetic axis and near the
equator. Our estimate for the boundary fyyp(L) between the
two regimes is shown in Figure 11.

(1) In the equatorial region sin § > sin fyp, the entire wave
evolution is well described by MHD. The MHD solution
demonstrates that at r~r, the wave train develops shocks in
each oscillation. The resulting shock train heats the plasma to an
ultrarelativistic temperature (specific internal energy ¢ ~ 10°-10%)
at which heating becomes offset by synchrotron cooling. We have
followed the wave evolution with a detailed simulation in the
equatorial plane (6 = 7/2) and also described it analytically. The
results show nearly complete damping of the GHz oscillations
(Figure 1). The alternating component of the electromagnetic field
gets suppressed by a factor of ~107>, and the wave train becomes
transformed into a smooth and weak electromagnetic pulse of the
same duration, with the oscillating component wiped out. We
have also examined the MHD evolution at 6 = 7/2 (where By, is
oblique to the wave propagation direction) and verified that it
leads to similar shocks.

Our method for solving this MHD problem employed
characteristics C*. It allows one to find the solution with realistic
parameters of the magnetosphere (where magnetization oy, can
exceed 10%; see Equation (19)). We also exploited the fact that the
wavelength \ = ¢/v is far shorter than radius r (the variation scale
of By,), and the wave duration 7 < 1 ms satisfies 7 < r/c at radii
of interest. This feature facilitates the solution, as it gives a simple
integral along C~ across the wave.

(2) In the polar regions sin # < sin fyup, the wave damping
also begins with MHD shocks developing at r,.. However,
here, the shock heating quickly ends because the heated
particles become unmagnetized in the wave, i.e., their Larmor
frequency wp drops below the wave frequency w. This
transition happens before significant damping, with the
practically intact wave profile E(r—r/c). As the wave
continues to propagate to r>r,, it develops regions of
E*>B? in each oscillation, triggering stochastic particle
acceleration described in B22: magnetospheric particles
exposed to the GHz wave train develop a quick random walk
in energy.” As a result, the particles are forced into a
quasisteady energy distribution (with “thermal” Lorentz factors

9 At the same time, the wave controls the plasma bulk flow: the sliding with

the Lorentz factor 7 ~ (sin a)’! along the oblique Byg, as described in
Section 7. The bulk flow may also be viewed as a result of the wave
ponderomotive force along By,. This force changes sign if the plasma bulk
Lorentz factor exceeds 7, so the bulk flow is forced to have . Same result is
found with the more detailed approach of B22, by solving the particle equation
of motion in the wave and finding the particle trajectory.
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10°-10%), in which stochastic acceleration is balanced by
radiative losses, quickly draining the wave energy. This
damping effect of the wave—particle interaction may also be
formulated as a large particle cross section for scattering the
GHz wave to the gamma-ray band, oy 2 1080T (B22). The
gamma rays emitted by the accelerated particles produce
copious secondary e pairs, which fill the entire radio wave and
assist its damping.

In both kinetic and MHD regimes, the magnetosphere at
r 2 R, effectively acts as a pillow absorbing the wave, with
most of the wave energy converted to hard radiation and a
residual fraction feeding a low-energy magnetic explosion,
ejecting the outer layers of the magnetosphere.

8.2. Comparison with kHz Waves

The strong GHz radio waves (X-modes) evolve at r 2 r,
differently from kHz waves studied in PaperI.

(a) In the MHD propagation regime, radio waves accelerate
the plasma to a bulk Lorentz factor v o< v~ ', which differs by
~10° between kHz and GHz waves. The moderate ~ in the
GHz waves leads to moderately strong relativistic shocks,
different from the monster shocks described in Paper L.

(b) The number of oscillations in the GHz wave train is
N = 7/v =1051/1 ms)vy"'. Shocks develop in each oscilla-
tion and their large number produce a huge cumulative
damping effect on the wave, nearly completely erasing the
GHz oscillations. By contrast, in kHz waves, the monster
shocks erase half of each oscillation.

(c) Radiative cooling of the shock-heated plasma in GHz
waves typically occurs on a timescale longer than the wave
period. In particular, at r = R, cooling is slow for waves with
power L below L; given in Equation (68). In this case, a
thermal balance is established in the wave packet only when
the cumulative heating by multiple shocks enhances the plasma
temperature, reducing its cooling timescale. By contrast, in kHz
waves, each monster shock radiates the dissipated energy
almost instantaneously.

(d) The critical wave power LMI?D(G) for the transition to
the kinetic regime scales as Dl (Equation (97)). The
transition is relevant for GHz waves and irrelevant for kHz
waves. MHD fails in powerful kHz waves differently: when
the plasma is accelerated to extremely high Lorentz factors,
its motion transitions to the two-fluid regime as explained in
Paper L.

8.3. Mechanism of Observed FRBs

An observed FRB power L requires a source with energy
density U~ L/47r’cy where < 1 is the efficiency of GHz
emission. The energy density around a magnetar is
U(r) ~ 11 /87r°, and so, the condition U > L/47mr’c requires
a source of size r < (cu?/2L)"/*. Tt is tempting to picture a
compact GHz source confined inside the ultrastrong magneto-
sphere (e.g., Lu et al. 2020). However, our results imply trouble
for this scenario: the condition r < (cu?/2L)'/* is practically
the same as r<< R,, and we find that the emitted waves
experience strong damping when they try to escape through the
outer magnetosphere at r 2> R,. Damping occurs in both
propagation regimes (MHD and kinetic).

Therefore, emission of observed FRBs must involve
violent events that first relocate energy from radii r < R
to outside the magnetosphere, where GHz waves can be
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released. This is accomplished by magnetospheric explo-
sions, which produce ultrarelativistic ejecta. The explosion
transports a large magnetic energy &£ far outside the
magnetosphere, e.g., £ ~ 10* erg is expected in repeating
FRBs from hyperactive, flaring magnetars (Beloboro-
dov 2017). It has been shown that the blast wave from the
explosion can emit a GHz burst with energy
Emp ~ (107* — 1075 & and submillisecond duration as radii
r~1AU (Beloborodov 2017, 2020). The emission is
generated by the well-studied mechanism of “shock maser
precursor” (e.g., Sironi et al. 2021). A variation of the blast
wave model involving a slow ion wind ahead of the
explosion is discussed in Metzger et al. (2019) and
Beloborodov (2020). In addition, Thompson (2023) recently
proposed that the blast wave may emit radio waves via
another mechanism if it expands into a turbulent medium (a
preexplosion magnetar wind carrying a spectrum of
perturbations).

Ejecta from powerful magnetospheric explosions may
themselves carry magnetosonic fluctuations with radio fre-
quencies.'” At large radii, the fluctuations may decouple and
leave the ejecta as free waves, forming a GHz burst. A model
of this type was proposed by Lyubarsky (2020) and further
investigated by Mahlmann et al. (2022). These works invoked
the explosion interaction with the current sheet near the light
cylinder as a source of ejecta fluctuations.

Another possibility for FRB production is the precursor
emission from the magnetospheric monster shocks described in
Paper 1. The precursor will ride on top of the parent kHz wave
that forms the monster shock, not in a static dipole magneto-
sphere, and therefore, it could escape from small radii. This
possibility is further discussed elsewhere.

Observational diagnostics for FRB models include the burst
spectra, temporal structure, and polarization (see for example a
recent discussion of polarization in Qu & Zhang 2023). The
observed properties can be changed by the burst propagation
through the magnetar wind (Sobacchi et al. 2022) and the
surrounding nebula (Margalit & Metzger 2018; Gruzinov &
Levin 2019; Vedantham & Ravi 2019). The propagation effects
will need to be disentangled from the intrinsic emission
properties before conclusions can be made regarding the
source.

When this paper was completed, the author became aware of
the work by Golbraikh & Lyubarsky (2023), who find the
inability of FRBs to escape the magnetosphere using different
considerations, by analyzing nonlinear = wave-wave
interactions.
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Appendix A
Characteristics in Relativistic MHD

A.1. MHD Stress-energy Tensor

MHD fluid is described by the plasma mass density p, velocity v = ¢3, magnetic field B, and electric field E. Throughout this
Appendix, we will use the units of ¢ =1. The stress-energy tensor 7" of the MHD fluid includes contributions from the
electromagnetic field (7{") and plasma (7}""). Explicit expressions for 7" in terms of E, B and for 7}'" in terms of p, v are given

below. Energy and momentum conservation in MHD is expressed by

2 1 1 1 v 2
T = ﬁ o(J=¢T,) — ET‘)‘ﬁﬁugaﬂ = —Qn, ™ =T/ + TV, (A1)

where the semicolon denotes covariant derivative, g, is the spacetime metric, and g = detg, ;. Q" represents radiative losses of the

plasma. The losses typically have the form Q" = — Qu ”3 where u” = (v, v03) is the plasma four-velocity.
The electromagnetic stress-energy tensor is Tf‘m =F O‘/‘Ff / 4 — gaﬂl*;wF/“’ / 16w (e.g., Landau & Lifshitz 1975),

F,,=08,A,—0,A, F,F"" =2B*— E®, and A, is the four-potential of the electromagnetic field. We express all field components
in the normalized basis (e,, ey, e;) in Minkowski space with coordinates x"' = (1, r, 6, ¢). This gives

E* + B? EsBy EyB, 0
8w 47 4r
_E;By E*-B}+Bj _ ByB, 0
T = 4 8T 4;7)‘ . (A2)
EG/’BV 7BrBG E? + Br — B9 0
drr drnr 872
2 _ g2
0 0 0 BB
87r? sin® 0
The stress-energy tensor of the plasma treated as an ideal (isotropic) fluid has the form
Tl;ﬂ/ — HPM“MV + g’U‘VP, (A3)

where P, is the plasma pressure, and H, is its relativistic enthalpy density (including the fluid rest mass density p). Heating by
Larmor-mediated shocks can result in a two-dimensional plasma, with e™ thermal speeds 3, L B. Then, one can calculate Tli“’ as

follows. First, find the (diagonal) stress-energy tensor in the fluid rest frame K by viewing the plasma as a collection of cold e*
streams with different u/ and proper densities dp I

i ~ ”eﬂ“ep
Ve

where (...) means averaging over the distribution of u/". The stress-energy tensor in the lab frame is v = A}jA}jTg"’ where A7 is the
Lorentz matrix for the boost from the fluid frame to the lab frame. This gives the general 7" for plasmas with any anisotropy; in the

isotropic case, it is reduced to Equation (A3).
To avoid unnecessary distraction, our derivation of MHD characteristics will assume isotropic plasma. However, looking at the
derivation, one will see that only the 7,  components of the plasma stress-energy tensor 7" affect the final result, so only radial

pressure B, = Tpﬁ enters the wave propagation problem. The calculation of 7" for anisotropic plasma in the equatorial plane gives
the ¢, r components of 7)"" of the same form as in Equation (A3), with B, = Tpﬁ instead of isotropic pressure. Therefore, the final

equations for characteristics hold for anisotropic plasma. The only important effect of anisotropy is that it changes the plasma
equation of state—the relation between energy density and radial pressure. This relation enters through ~,, which is given in
Section A.5.

A.2. Equatorial Waves

We now focus on the wave dynamics in the equatorial plane 6 = 7/2. By symmetry, B, =0 and vy =0 at = w/2. We will use the
following notation:

E=-E, B = By. (AS)
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These definitions imply E> = E* and B> =B*at = /2; E and B may be positive or negative. The plasma four-velocity has the form

E 1 B? 71'
u* = (v, u,0,0), u=n0, =0,=—=, ~r= = (9:_). A6
Oy ) W, B=p 3 TR BB 5 (A6)
In the equatorial plane, there are two relevant components of the dynamical equation T%)) = —Qu* with ;1 =1, r. Instead of these
two components, we will use two projections:
w, T = Q,  (u;uy, + gZH)T’;",,” =0. (A7)

The vanishing of B, and v, in the equatorial plane implies T/ = T’ = 0. However, their 6-derivatives are not zero and will enter the
conservation laws. For instance, divergence of the Poynting flux V - (E x B)/4x includes a term with 9yB, = 0, as B, changes sign

across the equatorial plane.
For the plasma stress-energy tensor (Equation (A3)), one finds

w, Th, = —Hpuy, — w'0,(Hy — B), (uuy, + g, )T}, = —Hpu"0,y — w’0,F, + O/h, (A8)

The term u"0,(H, — P,) may be written as the sum of adiabatic part H,u"d,Inp and radiative part —Q. Note that u, T}, = Q
regardless of the presence of T/ in the system. This condition states the first law of thermodynamics (and for a cold flow, it is
reduced to conservation of the plasma rest mass). The divergence of four-velocity is

1 1 1
uh = ——9,(J—gu") = 0y + —=0,(r’u) + — Opu (0:—), A9
o= g TR = 00 500+ Dt (A9)
where the component uy is taken in the normalized basis (e,, €y, €;).

Next, consider the electromagnetic stress-energy tensor 7{" (Equation (A2)). The direct calculation yields at § = 7/2:

, JB? — E? E , E B 24
uquéLV - ——ﬂ_(a,B + 8rE + 7), (ulu# + gl/l)’[‘fl;tl/ - —E(&E + 6rB + 7 + 7)- (AIO)

The identity 9,V x A =V x J,A implies 0,8 + 0,E + E/r =0 and u,, T}, = 0. For our purposes, it will be convenient to rewrite 7"’
using the effective pressure Py and the effective inertial mass density Hy defined by
2 2 2 52
p=B_-E _B y_B _,p (A1)
8m 8m 47
This allows one to cast the #,r components of 7}" in the form similar to ideal fluid:

T = v*Hy — Pr, T{ = ~yuH;, T{" = u’H; + P (A12)
Other relevant components of T} are

EB, s BB, . H;

T — _ R . T = —_T0 Al3
ET T T T T4y 0T £ (Al3)
Then, we find in the equatorial plane
my Hfu
w, T{) = —Hy (Oyy + Opu) — w0, (Hy — Pp) — —, (Al14)
r

Hiuy  E 9B,
+ —

r 47r
Note that Hru, + u"0,(Hy — P) = H; (JH;u"),, = (B/47)(Bu").,. For short waves, the flow oscillation is nearly plane parallel,
and the equations may be simplified: magnetic flux freezing gives B o p, and the continuity equation implies (Bu")., = 0; in the

(utu/,t + gz#)Tf};yV = _Hfuuau'y - Wl’aypf + 0P — (A15)

same approximation, one can use u*0,(H; — ) = H;u"0,In p.
The substitution of Equations (A8), (A14), and (A15) into Equation (A7) gives

. H
—H @y + Op) — w0, (H — Py — B 2 0y 4+ dyuy) = 0, (A16)
r r
~HU Oy — o+ op — By EVB o, (A17)
r r
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where

P =P+ P, H = H; + H, (A18)
We will use dy= fdu to express all derivatives of u” in terms of derivatives of u = ~3. Equations (A16) and (A17) also contain
derivatives of P and H — P. One can retain only derivatives of P by defining
uto, P B dP
wd,(H—P) d(H—P)
where differential d is taken along the worldline of a fluid element. The quantity 3, (and the characteristics C* below) will be defined
in the adiabatic approximation, Q ~ 0. Then, Equations (A16) and (A17) become

B = (A19)

u  H
H(B0 -+ 0p0) + 2 OWP + 0,P) = S 20 u - g, (A20)
: r r
H, B 0yB,
H (O + Bwu) + 7(BO,P + 0,P) = — L 4 222 (A21)
r 4mry
We multiply Equation (A20) by (3, and add/subtract it from Equation (A21). This yields
1+ O+P H; (8@3, ) ﬁsHp
1+ Oin |—— + — | = — | — — 1 2u + Oguy), A22
( 5s5)( e ﬂsH) 5 F 665 | F WH( u + Opug) (A22)
where we used the identity
g L8 (A23)
v 1-p
and defined
_ _ BE B
0y = 0, + 540,, =— A24
L =0, + Pt Pe=17 B3 (A24)

The radial speed (. in the lab frame corresponds to propagation with speed +(; relative to the fluid. The derivatives 0, are taken
along the characteristics C™. The characteristics are defined as the curves r+(2) that satisfy dr./dt = (..

Equation (A22) is the MHD generalization of equations given by Johnson & McKee (1971) and McKee & Colgate (1973), which
were derived for one-dimensional relativistic hydrodynamics. It is easy to verify that their hydrodynamical equations are recovered in
the limit of a weak electromagnetic field E, B — 0. In this limit, H;/H, =0, H,/H =1, and Opuy =0 if the flow is spherically
symmetric. Then, Equation (A22) becomes Equation (II.b.20) in McKee & Colgate (1973). We are interested in the opposite, field-
dominated, regime H ~ H;> H,,

A.3. Magnetically Dominated Limit (H;>>H,,)

In the magnetically dominated regime, one can simplify the MHD equations. Equation (A22) becomes

L0, 0P) oy 2 ofth
r(liﬂﬁs)(ailn 5 j:ﬁsH) 1 ¥ - +O(Hf), (A25)

where on the right-hand side (r.h.s.) we used 1 — 3, = O(H,/H;). We also find

H, - H,\ ]|
0L _0:Pfy o of )| omB|1 1 o 22|, (A26)
ﬂsH Hf Hf Hf ]
where we used Hy = 2P = B* /4m. Thus, Equation (A22) simplifies to
-1 dyB,/B + O(H,/H, | H
Ot = T B+ 04B,/B + O(Hy/ f), J.=1n ﬂ:l:lnB 1+O(_p)], (A27)
r(1 £+ 56, 1-p | Hy

In the denominator, we did not use the expansion 1 + 33, = 1 + 8 + O(H,/Hy), because 1 + § can approach zero during the wave
evolution. The numerator is never close to zero, since JgB, has a finite negative value.

A.4. Short Waves

We are interested in short wave packets with wavelength A many orders or magnitudes shorter than r. The wave electromagnetic
potential A,, =A — A, is related to the wave magnetic field B,, =B — By, by rBff, = —0,(rAy) and rB;, = JyA,,. In short waves,
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D,Ay > 1 '0yAy, and so B], < BY. This implies B, ~ Bj, and

O9B, ~ — 2By, (0 — g) (A28)

Then, only derivatives J. are left in Equation (A27), i.e., the problem is reduced to ordinary differential equations. This enables
simple integration for J, along C™.

The C™ characteristics propagate radially inward, and cross the short wave packet on a timescale 7 <°* < r. Therefore, the change
of J_ across the wave is small, |AJ_/J_| < 1, i.e., J_ is approximately uniform across the wave and weakly changed from its value
in the unperturbed background just ahead of the wave, J °¢ ~ —In By,. This gives the following relations:

3 B
J.=—InBy, = J;=Ink?+ InBy,, w=l _ 140 p_ Pu

s = . (A29)
Bbg 1 - /6 1 - 6

The relation B = By,/(1 — () states the compression of the magnetic field in the lab frame by the factor (1 — £)"". Plasma density is
compressed by the same factor (Equation (26)), consistent with magnetic flux freezing: B/p = By,/ ppe. Magnetic flux freezing also
implies /0y, = K, Where 0 = Hy/p.

The equation for J, evolution along C* (Equation (A27)) and the definition of C* (0r = 3.) give two coupled equations for 3(¢)
and r() along C*:

1+ 3 28+ O(Hy/Hy) a1 -5
-8 r(+88) 1+ 66
where we used 0, In By, = —30, /r. These equations still contain the fast-magnetosonic speed 3, which is close to unity. Setting
Bs =1 would correspond to force-free electrodynamics (FFE). It is the small term 1 — (G, ~ (Z'yf)*l = O(H, / Hy) that controls the

MHD correction to FFE, and it is retained in the leading order in Equation (A30). In particular, it controls the deviation of 3, from
unity, bending the C* characteristics from straight lines in spacetime. This is the main effect responsible for the deformation of the
wave profile. When 1 — 3, <1 (satisfied in GHz waves), one can simplify 1 + 35, ~ 1 + 3 in the denominators in Equation (A30).
Retaining [, in the denominators is required in kHz waves (see Paper 1) because in that case 3, significantly decreases below unity
and even changes sign.

Substituting 5= (k? — 1)/(%2 + 1), one can state Equation (A30) in terms of x. Using 'yf -1~ fyf, we obtain

Oy In s Or=0=1- I =59, (A30)

1 — K2 2
8+ln/§] == —2, 8+r = 1- —2 (A31)
r[1+ 2wk Qyr) +1
For a cold plasma ”yf = 0 = Kopg (see below), and then, Equation (A31) reproduce Equations (43), (45) in Paper L
A.5. Fast-magnetosonic Speed
From the definition of §; (Equation (A19)), one finds
— d(H, — 2P,

Lz:l_ﬁgzd(H 2P) _ dH ) ’ (A32)
7; d(H—P)  d(P+ Hy — B

where we used Hy = 2P;. It is convenient to express 7y, in terms of o = H/p, where p = p/~y is the proper rest mass density of the
plasma. For a cold plasma, H, = p and P, =0, and Equation (A32) gives
g

=1 + o, = . A33
o B Tt o (A33)

For a hot plasma,

H,=p+ U, + B, (A34)
where Uy, is the thermal energy density (measured in the fluid frame). Note that Py, here is the plasma pressure in the radial direction;
this fact becomes important if the plasma is anisotropic.

A useful analytical expression for +, can be derived in the limit of Hy/H,, > 1, which corresponds to ;> 1. Then, Equation (A32)
simplifies to

1 d(de; 21%)[1 N O(%)] (A35)
72 "
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It can be rewritten using the magnetic flux freezing condition for short waves, B/p = Byg/py,, Which implies

dInP, dInB 1 p d
22 0 o S =LEGrUu-B) (>0 (A36)
dnp dlnp o H: dp

It can be further simplified using the equation of state that relates U, and the radial pressure P,. For a hot plasma with monoenergetic
particles, this relation is

U 1 P+ U
11)2—*’(1 +—), e=lT 2 (A37)
k € p

where k = 2 if the thermal velocity distribution is two dimensional (confined to the plane perpendicular to B), and k = 3 if the plasma

is isotropic. For a Maxwellian plasma, the same expression holds at all € with better than 5% accuracy. Equation (A36) now becomes

1 I 1 1 d
—zzi(k—1)5+—+(k—1——2) = (A38)
vs  kHp € e)dInp
When radiative losses are small during each wave oscillation, one can use the adiabatic law d (U,/p) = —F,d (1/p) along the plasma

streamline. Plasma compression in a short wave is one dimensional (in the radial direction), so only the radial pressure P, enters the
adiabatic law. It gives

de 1 1 1 p [ 1
=RB=—|le——| = —S=-—— k2—15+—] s> 1). A39
P ( ) 2 KH ( et s> D (A39)
Appendix B
Jump Conditions for Perpendicular Shocks

Jump conditions are formulated in the shock rest frame. In this section, it will be denoted by K’, and quantities measured in frame
K" are denoted with a prime. Indices “u” and “d” will refer to the plasma in the immediate upstream and immediate downstream of
the shock. The jump conditions state the continuity of particle flux F’ = 7/, energy flux """, and momentum flux 7"'"'. Magnetic
flux freezing B o 71 implies that proper density p = mii and magnetization parameter o = B /4mp o< p jump at the shock by the
same factor (denoted as ¢). The continuity of F’ yields

mF' = u} py = ul py, A _y &.
oy Pa

(BI)

The ultrarelativistic motion of the shock relative to the plasma implies |u| > |uj| > 1. Since we know the evolution of p = KPbg

along each C™ in the simulation, the shock compression factor g(f) will be known if we keep track which characteristics C,” and C;"
terminate at the shock at time 7. Note also that g = 4/ k,. The colliding characteristics C," and C;" also define the Lorentz factor of
the upstream relative to the downstream, I';e; = Yy7a(1 — B,04). It can be expressed in the shock frame as Iy = (uf/uj + ul/uy)/2
(using |u], |ufl > 1), which gives '\ = (g + qil)/Z.

The ¢'r’ and r'r' components of the total stress-energy tensor (plasma + electromagnetic field) have the ideal-fluid form, same as in
the lab frame (Equations (A3) and (A12)) but with the fluid four-velocity measured in frame X', u®’ = (7', u’, 0, 0). The continuity
of F/, T"" and T""" gives

Tz/r' Tr'r’ Pd p o
— A~ — A - — u u
mF' Vaha = Yuha, mF taha + uj * 2u} = el uj * 2u} , ®2

ad

where p = B,/p and h=¢ + p + 0. We wish to find the downstream specific energy 4 in terms of the upstream parameters and the
shock compression factor g. We use the continuity of 7" to express hq = hy7/, /7', and Equation (B1) to exclude o4 = go, and
u; = ul/q. Then, the continuity of """ gives

1 ! 1o,
Pa = (_ - ;yu/ )u/lzl hy — (CI - _)i + & (B3)
q 9 q)?2 q

The ratio 7] /v/; can be expressed in terms of ¢ = u/uj and u;. The calculation simplifies for magnetically dominated shocks, since

we can use |u|, |uj| > 1 and expand 'y;/wé = g1 + ;D21 + u/g* /2 in the small parameter u’~2 < 1. We expand up to the
second-order terms ~u'~4; this is needed because larger terms get canceled with the term (¢ — ¢~ "oy, /2 in Equation (B3). As a result,
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we find

2 _
24py = (@* — Dew + @+ Dp, — Bg> + Dy, = 0D

4u’? B

In the relation hq = hy7/, /7, it is sufficient to expand ~/ /), up to the linear order in u'~2. This gives, after cancelation of two large

terms proportional to oy,

ea +pg = qEu + p, — 29). (BS)
Note that p and € are not independent—they are related by the equation of state p = (e — 571)/k (Equation (A37)). Therefore,
Equations (B4) and (B5) form a closed set for two unknowns €4 and 1. We use Equation (B5) to express 1) in terms of 4, substitute it
into Equation (B4), and obtain a quadratic equation for &4:

2

[Gk — 1)g® + k + 113 — {[(k+ D + 3k — 1]y + -1

u

}qed—l—qz—l = 0. (B6)

One should choose the larger root of the quadratic equation, as this branch satisfies ¢4 =¢, at g =1.
Next, we find the shock speed in the lab frame [y, using the relation Gy, = (8, — BL)/(1 — (,06%). It gives

(1 _ ﬁu)(l + 5{1) 1 — ﬁu 1
R~ 1 NN —
e 0 S (B7)

l_ﬁsh:

where we used 1 + 3, ~ 1/2u'2 < 1 + 3,. Using the definition of ¢ (Equations (B4) and (B5)), we find

1 — B &~ 2y M) (BS)

f— & + —
(g — 1) n%mtﬁi“ oy

Here, one can substitute i, 2 0, = KyOpg > €y +py and p = (€ — 571) /k to obtain the final expression (Equation (44)) for 1 — Gy, in
terms of k,, €y, ¢, and the found 4.

Note also that the shock four-velocity relative to the upstream is equal to —u and related to (3, by Equation (B7). The shock four-
velocity relative to the downstream equals —uj = —u/q. In the case of a cold upstream ¢, =1 and ¢>> 1, the above relations
give u'} = 0,3k — 1)/[4(k — 1)].

Appendix C
Wave Propagation and Shock Formation outside the Equatorial Plane

C.1. Equations for ~N(t, €) and E(t, €)

At a given polar angle 6, the coupled oscillation of (¢, £) and E(z, £) in a cold GHz wave (before shock heating) is described by
Equation (28). One can use it to obtain a wave equation containing only derivatives of v and no derivatives of E. This can be
accomplished using the relation between E and - found in Section 5.1. As a first step, express 0,E in terms of 0/yp using

E? E?
2
7D B> — E*> B2 +2BE

We take 0;|¢ of both sides, use 0,Bpy = —3cBp, /r, and find (in this section, we do not use the units of ¢ =1 and so retain c in all

equations)

EOE— B* dp 3cE?
t .

= (C2)
B BRE b v

Here, we substitute

D = M, (C3)
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which follows from v = 4. It remains to evaluate 0,5. Note that 7 is a function of angle a and E/B,,, (Equation (82)), and c(f) is

constant in J,7, so we find

< - EBy,
%y _ 0@ _ a{Bi) = vp0F = —~di B‘”’ (8,E + 3C—E) (C4)

~ T 3
it o bg r

The substitution of Equations (C3) and (C4) into Equation (C2) gives

Oy 3cE? (Byg + BpyE)Y® — aBy,BY’
E@,E:%— — where f= —2 gB4’”yz £

(C5)
Substituting this result into Equation (28), we obtain the equation for (7, &) stated in the main text (Equation (85)).

The derivation of the equation for w = rE involves rewriting dvy/d¢ on the r.h.s. of Equation (28) in terms of 9,w and dcw. We here
outline the steps of the derivation, omitting the algebra details, and give the final result. For waves with 7° < Opg, it is reduced to a
simple statement: w ~ const along C*. The formal derivation can start from v = 9+, use the expressions for dyp/d¢ and dy/d¢ in
terms of dE/d¢ and dB/d€, and substitute d/d¢ = O¢ + (1 — 3,718, + (v/r)Dp] for the derivative along the fluid streamline.
BOB = By0¢By + B,0¢B, can be expressed in terms of the derivatives of E (or w) using the induction equation 9,B|, = —cV x EJ|,
rewritten in coordinates (f, £). The final result is

B2 3
ld(VE) _ bg (CEzf— r’y%W) -0 ’Y_ , (C6)
E dt ct 20’ng2 Obg
where
YE? i iBy, 5
W= ﬁ[CEB" — o, + BOE Sme)] + L 5y - — (&E + ﬁaeE) - E(a,B + E&,B) .
B3| rB rBsin 6 B*(1 — 3,) vYpB r B r
C.2. Shock Formation
The ratio of Equations (87) and (88) that govern the C* flow gives
ds,  mmc nwgr  mwme N wme Ny
=T = = = =& + — 1), C7
7 o e §=b+ om0 (&)

where we substituted E ~ K /r along C* (which holds for waves with v’ < 0Obg) and used the initial condition y=1 at §; = §;. The
stated relation between &, and + holds along each C". Note that the plasma Lorentz factor v = 47, is a known function of E and

By, and E = pK(&;)/r. Thus, one can express &, in terms of &, r, and 6.
Vacuum wave propagation would correspond to &, = & and r = c(t — &) along C". The MHD correction £, — & may be evaluated
using iteration, by substituting the vacuum solution for 7,

P = e = c(t — §). (C8)
Then, the r.h.s. of Equation (C7) becomes a known function of & and ¢ (and 6, which is constant along C™).
The deformation of the C* flow with time, which eventually leads to shocks, is described by (9& +/0&):. Viewing «y as a composite
function Y[E(t, &), Bye(t — &)], we can write

Oy oy OE oy OBy, Oy uk  puK Oy 3cBy,
Tl & : - L2 (C9)
o6 |, OE g, 0§ | OBy, - o5 |, OE g, \'r r OBy, - r
Here, K = dK /d;, and (0/0E)g,, can be found from Equations (81) and (C1),
v
M| g C10
OF |y, f (C10)
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where fis defined in Equation (C5). For short waves, the term containing K is dominant in Equation (C9), and the other terms are
negligible. Thus, we find

o0&, wme NpK
L =1+ ———[E¥—-2(v— DI Cll1
% | o 1B =20 = 1) (C11)
A caustic appears on C that first reaches the condition (O¢ +/0&); = 0. It can be found by calculating time #,(&;) at which
(0, /0&), vanishes, and then identifying the characteristic £; with the minimum #,. The result will also determine the caustic time
te = t,(§) and the plasma Lorentz factor at the caustic .. The calculation can be done numerically. Below, we derive the result

analytically in two limits, 7.>> 1 and 7. — 1 < 1.

C.2.1. Caustics with ~\.> 1

The limit of v>> 1 corresponds to yp > 1 and E* — B>. Note that the ratio /Vp = 7 remains finite: ! &~ sin . Equation (77)
implies

B — E? ~ By, + 2BL,E. (C12)
Hence, E> — B? corresponds to B ~ —E ~ Bbzg/ 2Bb€g. In this limit, the function f given in Equation (C5) simplifies:

- (Bbzg + ngE)"y3 ~ 2’}/3 sinza

E*f X ~ P ~2y3sinta (y>> 1), (C13)
and Equation (87) simplify to
dy ~ 4c ~3sin*a ’ dg, ~ 43 sinﬁa' (Cl4)
dt e+ r dt Obg

Waves with 73 < 0y have d¢, /dt < 1, which implies df =~ dr/c, so Equation (C14) can be integrated for (r),

1
2

) r ) e —r
~ 8sin*a In = = 8x sin*a, x== , (C15)
r Ty

where we used In[(1 + x)!] = x + O(x?) for x< 1, which corresponds to y>> 1. A substitution of the obtained ~(r) and
r=c(t — &) into Equation (C7) gives a cubic equation for r(z, &;). Its solution verifies that r,,. — r < r, — r when 'y3 <K Opg, and so,
one can use r = ry,. (Equation (C8)) in x, i.e.,

re—c(t—§&)

L

X =

(C16)

The integration constant r, in Equation (C15) defines the radius where v would diverge; however, the characteristic will become
terminated at the shock before reaching r=r,. The radius r.(&) can be found for each C* with K<O from
B? — E? ~ B}, + 2B,E = 0 using rE = pK:

in
rBA +2BL K = 0 = ri=—-—07 C17
be bg /! 2K sina €17
Substituting Equation (C13) into Equation (C11) and noting that E*f >> 2(y — 1) when v>> 1, we find
9 N
S 3 _ 2mme NyK~3 sin a (C18)
3 " K>
The C* characteristic reaches (3¢, /9¢;), = 0 when
253
3 WK
= C19
K 2mme NyK sin*a (€19)
Using the obtained solution for v(x) (Equation (C15)), we find that (0§, /0¢;), = 0 is reached at time
2 \2/3
T Ty mme Ny K
WE) =&+ = — . C20
&)=< c 27/3cK2( 2 sina ) (€0
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The minimum of #, can be found from dt,/d&; = 0. Using 2dr,/r, = —dK/K (Equation (C17)), we obtain

dr, 1 _ (t— &K o mme Np 23 Kk — 3K* 1)
. , dg; 2K 24/3¢\ 2 sin*ax 3Kk
Here, (t — £)K /2K =~ r,K/2cK >> 1, and the condition dt,/d& = 0 becomes
2/3 .0 ..
1343 mme Ny 3K — KK
21K = (qu o Ve . (C22)

This equation determines the Lagrangian coordinate &; of the caustic in the C" flow with a given K(&). In particular, for a wave with

an initial sine profile, K = K sin(w¢,), it gives

2/3 2/3

Nyw 1 1 wme Np w

cos?/3(wE) = e W [— + cos?(w C)] ~—|——— . (C23)
¢ V2 12K sin2a 3 ¢ 3\ V212K ¢ sinfa

The last (approximate) equality took into account the condition 7. > 1 (E =~ — B), which implies that £ is close to the minimum of
the sine profile of K(¢;), and so cos(w&;) < 1. The obtained &; determines K (&) = wKj cos(w;), and then, from Equation (C19),

we find the plasma Lorentz factor at the caustic,

174 272 172 1/4
e A (3) LO_ ~ G/ (C24)
2 mme Ny w sin’a J¢sinf sin o

In the last equality, we substituted Nj given by Equation (72) and used the parameter ¢ = /ﬂKOZ / mmc /N defined in the equatorial
plane (Equation (53)). At 6= /2, Equation (C24) reproduces v, = (2k)~! given in Equation (54) and derived in PaperI. The
obtained extension to 6= 7/2 shows that 7, increases outside the equatorial plane. Recall that this result was derived assuming
7. > 1. This regime holds for waves with ( < 1, as one can see from Equation (C24).

C.2.2. Caustics with . — 1 < 1

The C* flow with v — 1 < 1 can be described using an expansion in variable z = E/Bh,, |z| < 1. From Equations (82) and (C12),
we find

i=0z), 9=1+ 0%, B=Bp[l+ zsina+ O?)]. (C25)

This determines Op = E/B, ~p, and

2
Y= =1+ (1 = 2esina) + 06, (C26)
Then, Equation (86) gives

E%f = z2(1-3zsina) + O(zY). (C27)

Substituting these expansions into Equation (C11), we obtain

2,
9§

wme NpK - mme NgK sin*a
———— Psina=1—- ———

— l —
12K3 12 sin’¢

rS. (C28)

t

Here, we substitute z = E /By, = 1K /rBy, = r’K sina/sin 6 and find that 0, /O¢; vanishes when the characteristic reaches the
radius

2 .53 1/6
i sin”0 ) . (C29)

mme NyK sin* o

rv(fi) = (
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The caustic appears where r, is minimum, i.e., where K (&) reaches its maximum K = wK, (which occurs at & = 0). Thus, we find

that the caustic appears when the wave reaches the radius

u? sin® 0

1/6
e = — .
mme Ny wK sin* o

Using the definition of ¢ (Equation (53)), r,. (Equation (70)),
N (Equation (72)), and K, ' = 2R?, one can rewrite r. as
stated in Equation (90).
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