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Abstract
Conservation management practices often produced positive but limited desirable

outcomes in US Southeast sandy soils, likely due to their intrinsically low clay con-

tents that constrain the soil’s capacity to preserve organic carbon (C) and nutrients.

In the field, we tested the effectiveness of a novel approach, that is, clay soil amend-

ment, to improve sandy soils. In October 2017, clay-rich soils (25% clay) were

spread at 25 metric tons ha−1 and tilled onto a sandy soil (1.9% clay) in the field,

which was further mixed by light tillage at 0- to 15-cm depth, followed by planting

winter cover crop mixtures (cereal rye, crimson clover, and winter pea). The crop

rotation was cotton and corn with cover crop mixtures planted in the winter fallow

season. Soils (0–15 cm) were collected in August 2021 and subjected to physio-

biochemical analyses. Clay amendment increased soil clay content to 3.4%, which

improved nitrogen (N) availability by 51% but inhibited the activities of C (β-D-

cellubiosidase [CB]; β-xylosidase [BX]; N-acetyl-β-glucosaminidase [NAG]) and N

(leucine aminopeptidase [LAP]) cycling enzymes, resulting in up to 78% reduction in

microbial respiration. A follow-up kinetic study on BG and LAP enzymes suggested

that clay addition can have different impacts on enzymes with diverse biological

origins through distinct mechanisms. Clay addition can potentially improve sandy

soils by stabilizing the organic inputs in soils. However, more research is required to

understand its long-term impacts making this approach practical.

1 INTRODUCTION

Sandy soils are often characterized by low cation exchange

capacity, poor nutrient and water holding capacity, meager

fertility, and low soil organic carbon (SOC) content (Huang &

Hartemink, 2020; Yost & Hartemink, 2019). Increasing SOC

Abbreviations: BX, β-xylosidase; CB, β-D-cellubiosidase; DI, deionized;

EC, electrical conductivity; EE, extracellular enzymes; LAP, leucine

aminopeptidase; MBC, microbial biomass carbon; NAG,

N-acetyl-β-glucosaminidase; PMN, potential mineralizable N; SOC, soil

organic carbon; TC, total carbon; TN, total nitrogen.
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is widely recommended to enhance the chemical, physical,

and biological properties of the managed sandy soils (Brust,

2019; Johnston et al., 2009). However, the intrinsically low

clay contents of the sandy soils can limit their capacities to

preserve and stabilize the organic inputs (Stewart et al., 2012),

which has already been demonstrated in many studies includ-

ing long-term experiments (Franzluebbers, 2020; Nash et al.,

2018; Novak et al., 2007). Despite these findings, the cur-

rent management approach to improving sandy soils largely

overlooks this existing “barrier” (i.e., low clay content in sur-

face soils) to improving soil C retention. New strategies to
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promote the stabilization of the introduced C in sandy soils

are needed and are crucial for long-term soil sustainability and

crop productivity.

Soil clay and silt contents are widely considered the

“priori” limit for soil C sequestration (Feng et al., 2014;

Stockmann et al., 2013; Van De Vreken et al., 2016). It is

believed that clay minerals can stabilize and protect SOC

through organo-mineral interactions (Baldock & Skjemstad,

2000). In addition, soil aggregates formed by clay and other

primary particles can physically protect SOC by entrap-

ment making it inaccessible to soil microorganisms and their

degradative enzymes (Dungait et al., 2012; Schmidt et al.,

2011). Ameliorating sandy soils with clay-rich soils has been

demonstrated in Australia to increase nutrient retention (Tahir

& Marschner, 2016), SOC concentration (Schapel et al.,

2018), microbial biomass C (Riaz & Marschner, 2020), and

crop yield (Hall et al., 2010). It is therefore not surprising

that clay addition has been proposed as a new management

strategy to improve sandy soils (Button et al., 2022; Tahir

& Marschner, 2016; Ye et al., 2019). However, the evidence

is still limited, and the practicality and long-term impacts

of clay addition on soil physio-biogeochemical properties

remain unknown (Button et al., 2022).

Coastal Plain soils of the southeastern United States have

high sand contents throughout the soil profile with a clay con-

tent as low as 1% in the plow layer, largely resulting from

extensive weathering of clay minerals and clay eluviation

(Markewich et al., 1990). A recent study revealed that addi-

tions of clay-rich subsoils to sandy Coastal Plain soils at 0-

to 15-cm depth improved soil aggregations, suppressed C-

cycling enzyme activities, and promoted the preservation of

labile organic C 1 year after the addition (Ye et al., 2019).

A similar study also demonstrated the reduction of micro-

bial respiration and increased C stability after the addition

of clay-rich subsoil (Nguyen & Marschner, 2014). It is clear

that clay addition has the potential to influence SOC dynamics

via its impact on soil structure and microbial activities. How-

ever, the long-term responses remain elusive as a microbial

adaptation to clay addition may occur (Olagoke et al., 2019),

especially under continuous organic inputs by crop residue

incorporation.

Direct organic inputs are known to either stimulate or

suppress the activities of extracellular enzymes (EEs), influ-

encing the transformation, decomposition, and stabilization of

the SOC (Chen et al., 2014;Mason-Jones et al., 2018; Shahbaz

et al., 2017). It is generally assumed that the EEs’ associations

with soil minerals can protect them against degradation but

may also cause enzyme deformation (Leprince & Quiquam-

poix, 1996; Quiquampoix, 1987; Secundo, 2013; Zimmerman

& Ahn, 2010). Previous studies have reported both stimula-

tory and inhibitory effects of clay on EEs activities, making

it difficult to understand how clay-mineral interaction influ-

ences SOC turnover in soils (Sheng et al., 2022). In the

Core Ideas
∙ Clay soil amendment reduced the enzymatic activ-

ities.

∙ Clay soil addition inhibited carbon and nitrogen

enzyme kinetics with distinct mechanisms.

∙ Nitrogen availability was improved with clay

amendment.

present study, we collected soil samples from an ongoing field

experiment to evaluate the impacts of clay addition on soil

properties 4 years after the implementation (Ye et al., 2019).

The objectives were to understand whether clay amendment

poses consistent impacts on soil properties and microbial

activities. Enzyme kinetics were also investigated to under-

stand how the interactions of clay minerals and EEs affect

their catalytic activities. It was hypothesized that clay soil

amendment improves soil C retention and N availability with

the suppression of degradative soil enzyme activities. This

study will lead to a foundation for precisely managing and

improving the overall soil health of the sandy soils with clay

addition and the links to sustainable agriculture.

2 MATERIALS AND METHODS

2.1 Site description, experimental setup,
and soil sampling

The experiment was carried out in the Pee Dee Research

& Education Center of Clemson University, Florence, SC

(34˚18′ N, 79˚44′ W). The soil was Ultisols (loamy, siliceous,

semiactive, thermic Grossarenic Paleudults) (USDA classifi-

cation) (USDA, 1999) with 2% clay and 89% sand content.

The average annual precipitation (2006–2020) for this area is

1272 mm with average annual high and low air temperatures

of 24˚C and 11˚C, respectively (NOAA, data available online

at https://www.ncei.noaa.gov/access/us-climate-normals/).

In October 2017, eight experimental plots (6 × 4 m) were

established, where clay treatment was randomly imposed on

half of the plots by applying clay-rich soils excavated from

subsoils (B horizon) of adjacent fields (<0.3 km). The clay-

rich soils were disposed of with a manure spreader at 25

metric tons ha−1, followed by mixing the soil (0–15 cm) with

a disc cultivator. Using clay-rich subsoils instead of pure clay

was considered to be cost-effective. On top of that the clay-

rich subsoils were evacuated from a nearby field (<3 km in

distance) with the same origins that constitute a mixture of

natural soil particles, organic matter (OM), and clay miner-

als. The control plots were set up in parallel, except that no
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clay-rich soils were applied. The applied clay-rich soils had

a pH of 5.3 ± 0.1, 25 ± 0.6% clay, and 74 ± 0.5% sand,

0.9 ± 0.1 mg kg−1 inorganic N, 0.07 ± 0.03 g kg−1 total

N, and 0.66 ± 0.00% g kg−1 total C. Three days after the

clay amendment, cover crop mixtures of cereal rye (Secale
cereale), crimson clover (Trifolium incarnatum), and winter

pea (Pisum sativum) were drill seeded at 67, 17, and 39 kg

ha−1, respectively. Since its establishment in 2017, the field

has been rotated with cotton (Gossypium spp.) and corn (Zea
mays) with the same cover crop mixtures planted in the fallow

season. The field was strip-tilled during the planting of cotton

and corn and no irrigation was applied. Fertilization and field

management were implemented according to local guidelines

(M. A. Jones et al., 2021; Plumblee, 2022).

Soil samples were collected before the corn harvest in

August 2021. Note that 8–10 soil cores were randomly col-

lected from each plot with a soil probe (AMS) (2.5 cm in

diameter, 15 cm in depth), composited, and transported on

ice to the nearby laboratory, where the samples were sieved

(2 mm) and stored at 4˚C until used.

2.2 Soil physio-biogeochemical properties

Soil moisture content was determined as mass loss after dry-

ing the soil at 60˚C until a constant weight was achieved. Soil

pH and electrical conductivity (EC) were measured with an

Orion Star A325 pH/conductivity meter (Thermo-scientific)

in deionized (DI) water (1:2 and 1:1 w/v ratio, respectively)

after being equilibrated for 30 min. Total soil C (TC) and N

(TN) were determined with a Carlo-Erba NA 1500 CNS ana-

lyzer (Haak-Buchler Instruments). Extractable inorganic N

(sum of NH4
+ and NO3

−) was determined after extracting the

soils with 1 M KCl for 1 h, followed by filtration and the col-

orimetrical analysis of NH4
+ and NO3

− (Doane & Horwáth,

2003; Verdouw et al., 1978).

Microbial respiration was measured by incubating 30 g

of fresh field soil (dry equivalent) in a closed mason jar

at room temperature (20 ± 1˚C) in the dark for 24 h, fol-

lowed by the analysis of headspace CO2 production with a

gas chromatograph (Shimadzu). The EEs activities associ-

ated with C (β-D-cellubiosidase [CB]; β-glucosidase [BG];

β-xylosidase [BX]; and N-acetyl-β-glucosaminidase [NAG])

and N (leucine aminopeptidase [LAP]) cycling were mea-

sured using the fluorescencemethod (Ye et al., 2019). In brief,

5-g field soil samples (dry equivalent) were mixed with 20mL

of DI water, shaken for 20 min in a reciprocal shaker, and set-

tled down for 10 min in a refrigerated centrifuge (Sorvall ST

16 R, Thermo Fisher Scientific). For the assay, nearly 200 μL

of samples were mixed with 50 μL of respective substrates

and incubated at room temperature in the dark for 24 h. The

incubation was triplicated along with the controls (substrates

were replaced with DI water). The EEs activity was calcu-

lated as described (Ye et al., 2019). Potential mineralizable N

(PMN) was estimated with the anaerobic incubation of fresh

soil samples at 30˚C in the dark for 7 days, followed by 1 M

KCl extraction and subsequent colorimetric analysis of NH4
+

(Cadisch et al., 1996). Microbial biomass C (MBC) was esti-

mated using the chloroform fumigation-incubation method

(Jenkinson & Powlson, 1976). The MBC was calculated as

follows:

MBC = F − CO2∕kc

where F-CO2 is the CO2-C evolved from the fumigated soil

during the incubation minus the CO2-C evolved from the non-

fumigated soils, while the kc is the conversion factor of 0.37.

2.3 Enzyme kinetics

The C-cycling enzyme BG and N-cycling enzyme LAP were

selected for the follow-up kinetic study. Approximately, 5-g

of fresh field soil samples (dry equivalent weight) was mixed

with 20 mL of DI water, 200 μL of which was incubated with

50 μL of 25, 75, 200, 500, 700, 1000, 1200, and 1500 μM sub-

strates in 96-well microplates in dark at room temperature,

respectively. For the BG, the incubation was carried out for

4 h, whereas it was 24 h for the LAP due to its low activ-

ity. Changes in fluorescence intensity were monitored at an

interval of 10 and 30 min for BG and LAP, respectively.

The Michaelis Menten constant (Km) and maximum veloc-

ity (Vmax) were determined with the Michaelis–Menten

equation:

𝑉 = 𝑉max [S]
𝐾m + [S]

where V is the reaction velocity, [S] is the substrate concen-
tration, Km is the substrate concentration at half-maximal

velocity, and Vmax is the maximal velocity of the reaction.

2.4 Cover crop biomass and crop yield

In 2020, after 3 years of clay amendment, cover crop biomass

was not collected due to the circumstances related to the

COVID-19 pandemic. Cotton yield was estimated by harvest-

ing the middle two rows of each plot. In 2021, before the

termination of the cover crop, biomass was estimated by col-

lecting aboveground plant tissues with two 0.5 m by 0.5 m

quadrants. The biomass was dried at 60˚C until a constant

weight was achieved. Dried samples were ground and ana-

lyzed for TC and TN at the Agricultural Service Laboratory of

Clemson University. Similarly, corn yield was also estimated

by harvesting the two rows of each plot in 2021.
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T A B L E 1 Analysis of variance of clay amendment impacts on

measured soil parameters.

Variables p-value
Clay content (%) 0.0069*

Soil pH 0.9513

Inorganic N 0.0293*

NH4
+-N 0.7602

NO3
--N 0.0149*

TC 0.7023

TN 0.3548

Respiration (CO2-C) 0.0278*

β-D-Cellubiosidase 0.0053*

β-Glucosidase 0.0952

β-Xylosidase 0.0011*

N-Acetyl-β-glucosaminidase 0.0330*

Leucine aminopeptidase 0.0014*

PMN 0.6409

MBC 0.5255

Abbreviations: MBC microbial biomass carbon; PMN, potential mineralizable

nitrogen; TC, total soil carbon; TN, total soil nitrogen.

*Significance at α = 0.05.

2.5 Statistical analysis

One-way analysis of variance was used to determine the effect

of clay amendment on the measured variables at α = 0.05.

Pairwise correlation analysis was carried out to show the

correlation between measured soil variables and cover crop

biomass. All analyses were performed with JMP Pro 14 (SAS

Institute), except that the enzyme kinetics were analyzed with

Sigma Plot 13.0 (Systat Software Inc).

3 RESULTS

3.1 Soil physio-biogeochemical properties

The clay amendment increased soil clay content by 80%

(Tables 1 and 2). However, the amendment did not change soil

pH, EC, TC, and TN 4 years after the application (Tables 1

and 2). Soil inorganic N (NH4
+ plus NO3

−) was dominated

by NO3-N (Tables 1 and 2). Its concentration was greater

in the clay-amended soil than in the control soil (Tables 1

and 2).

The clay amendment suppressed the activities of CB, BX,

NAG, and LAP enzymes with a similar marginal impact on

the BG enzymes (Table 1; Figure 1). Similarly, soil microbial

respiration was reduced by 78% when the clay was amended

(Table 1; Figure 2A). In contrast, no such inhibitory impacts

were found for PMN and MBC (Figure 2B,C). T
A
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F I G U R E 1 Extracellular enzyme activities in soils with

(Clay-amended) and without (Control) the amendment of clay-rich

soils. Bars indicate the mean ± SE. CB, β-D-cellubiosidase; BG,

β-glucosidase; BX, β-xylosidase; NAG, N-acetyl-β-glucosaminidase;

LAP, leucine aminopeptidase. Different letters indicate a significant

difference (p < 0.05).
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F I G U R E 2 Microbial respiration (A), organic nitrogen

mineralization potential (PMN) (B), and microbial biomass carbon

(MBC) (C) in soils (0–15 cm) with (clay-amended) and without

(control) the amendment of clay-rich soils. Bars indicate the

mean ± SE. Different letters indicate a significant difference (p < 0.05).

3.2 Enzyme kinetics

The kinetics study demonstrated that the saturation kinetics

fitted well with the Michaelis–Menten equation (Figure 3;

Table 3). The coefficient of determination (R2; used to explain

the relationship between an independent and dependent vari-

able) for the LAP for the clay-amended soils and control was

0.98 and 0.99, respectively, whereas for the BG for the clay-

amended soils and control, it was 0.79 and 0.97, respectively.

The data estimated that the Vmax for BG decreased from 0.66

to 0.17 μM g−1 h−1 when the clay was amended (Table 3).

Similarly, the Vmax for LAP decreased by 80% when the clay

was amended. The Michaelis constant Km of the BG was also

decreased by the clay amendment, whereas the constant Km
of the LAP increased after the amendment (Table 3).

3.3 Cover crop biomass and crop yield

An increase in cover crop aboveground biomass produc-

tion was observed after the clay-amended treatment in 2021

(Table 4). Total N in biomass was also higher with clay-

amendment soils (Table 4). There were no clay amendment

impacts on crop yields (Table 4).

3.4 Relation between measured variables

Microbial respiration was positively correlated to CBH, LAP,

and BX (Table 5). A similar positive correlation was also

observed between respiration and the BG-Vmax and LAP-

Vmax, respectively. However, none of the Km was correlated

to respiration. The pH, PMN, and TC had no correlation with

any of the measured variables. The NO3
−-N was found only

negatively correlated with CBH. The clay % was negatively

correlated with the measured C-cycling enzymes CBH, BG,

and BX but was not correlated with the BG-Vmax and BG-

Km. In addition, the clay % did not correlate with the NAG

and LAP but was correlated with LAP-Vmax and LAP-Km.

Positive correlations were also observed between cover crop

biomass and clay %, inorganic N and NO3
−-N concentrations,

respectively (Table 5).

4 DISCUSSION

Recent studies have demonstrated the proof-of-concept of

clay addition to improve sandy soils (Cann, 2000; Schapel

et al., 2018; Ye et al., 2019). However, relevant studies are

limited, and long-term impacts remain elusive. In the present

study, we continued to monitor the impacts of clay addi-

tion on soil biogeochemical properties in a typical sandy

Ultisol 4 years after the application. The data indicated con-

sistent inhibitory effects of clay addition to enzyme activities
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F I G U R E 3 Enzyme activity (Vo) as a function of substrate concentration (S) in soils with (clay-amended) and without (control) the

amendment of clay-rich soils.

T A B L E 3 Kinetic parameters and the coefficient of determination (R2) for the fitting model (Michaelis–Menten equation).

β-Glucosidase Leucine aminopeptidase
Vmax
(μMg−1h−1) Km (μM) R2

Vmax
(μMg−1h−1) Km (μM) R2

Clay-amended 0.17b 68b 0.79 1.48b 199a 0.98

Control 0.66a 158a 0.97 7.34a 123b 0.99

Note: Different letters indicate significant differences at α = 0.05.

Abbreviation: Vmax, maximum velocity.

T A B L E 4 Crop yield and cover crop biomass production in fields with and without clay-amendment.

Cotton lint
yield (2020)

Corn yield
(2021)

Cover crop
biomass (2020)
(kg ha−1)

Cover crop
biomass (2021)
(kg ha−1)

Cover crop C
(%)

Cover crop
N (%)

Clay-amended 668 ± 82a 6965 ± 988a N/A 1505 ± 160a 39.31 ± 0.44a 2.97 ± 0.26a

Control 609 ± 99a 7860 ± 875a N/A 855 ± 129b 38.68 ± 0.83a 2.03 ± 0.23b

Note: Values are means and standard errors (n = 4). Different small letters indicate significant differences at α = 0.05. N/A, Data not available due to the COVID-19

pandemic impacts.

(Figure 1) resulted in suppressed microbial respiration but

not organic N mineralization potential (Figure 2A,B) (sup-

porting the hypothesis). Enzyme kinetics in the present study

further suggested that the clay addition can impact enzymes

via different mechanisms.

4.1 Enzyme activities

Extracellular enzymes are excreted by microorganisms to

soils for sequestrating energy and nutrients (Burns et al., 2013;

Luo et al., 2017). The activities of those enzymes are crit-

ical for the degradation of SOC and plant detritus and are

regulated by substrate availability and other environmental

factors (Allison & Treseder, 2008; Burns et al., 2013; Fierer

et al., 2003; Finzi et al., 2006; Henry et al., 2005). In the

present study, the measured C- and N-cycling enzymes were

all suppressed by clay amendment, except the BG, which

demonstrated marginal impacts (p = 0.095). Similar clay sup-

pression on the C- and N-cycling enzymatic activities have

been reported (Olagoke et al., 2019; Rakhsh & Golchin,

2018; Ye et al., 2019). Apparently, the inhibitory impacts

were not mediated through themeasured soil chemical proper-

ties, as evidenced by their insignificant pair-wise correlations

(Table 5). It is generally assumed that such reduction was

due to the adsorption of enzymes onto clay minerals, which

subsequently blocks enzyme active sites or causes enzyme

deformation. However, the direction and magnitudes of clay
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impact on EEs may depend on the binding capacities of the

clay and the chemical structure of the enzymes (Olagoke et al.,

2019, 2020; Sheng et al., 2022). In the present study, the added

clay-rich soils (25% of clay) are dominated by kaolinite, a 1:1

clay mineral. However, the inhibitory impacts of the clay on

EEs still existed 4 years after the amendment, except for the

BG (Ye et al., 2019). Enzymes can respond differently to clay

because of their differences in chemical structure (Olagoke

et al., 2019; Sheng et al., 2022). In addition, clay adsorp-

tion can stabilize the enzymes’ structure allowing the EEs to

retain or enhance their catalytic activities, which may at least

partially explain why the BG acted differently against other

enzymes upon clay amendment (Figure 1; Table 1).

The kinetic parameter Vmax reflects the maximum rate

of activity when all enzymes are substrate saturated, while

the Km indicates the affinity of the enzyme for a substrate

(Marxa et al., 2005). A reduction in the Km value implies an

enhanced affinity of the enzyme toward the substrate. In the

present study, both BG’s Vmax and Km were reduced in the

clay-amended soils (Table 3), suggesting that the clay was an

uncompetitive inhibitor for the BG (Olagoke et al., 2019). It

is plausible that the binding increased its catalytic activities

resulting in the observed marginal clay impacts on the BG

activities (i.e., no reduction in overall activities).

The LAP activity is linked with protein degradation (N-

cycle) and is a sensitive indicator of SOC decomposition

(Allison & Jastrow, 2006; Babaev & Orujova, 2009). How-

ever, in contrast to the BG, the kinetic parameters Vmax of

LAP decreased upon clay amendment while the LAP-Km
increased (Table 3), suggesting that the clay is a mixed non-

competitive inhibitor of the LAP. According to the inhibition

kinetics theory, a mixed type of inhibition involves both com-

petitive and non-competitive processes in which the inhibitor

may either bind to the active site of the enzyme preventing the

enzyme from binding to the substrate, or bind to the enzyme at

a separate site together with or without the substrate (Shirvani

et al., 2020). The decreased Vmax with increased Km often

suggests enzyme immobilization, showing an increase in sta-

bility and a decrease in enzyme activity (Datta et al., 2017;

Sarkar & Burns, 1984). It also revealed that microorgan-

isms may have to spend more energy on enzyme production

to maintain a similar level of activities to degrade the tar-

get substrates upon clay amendment. However, the long-term

impacts of such microbial adjustment remain unknown.

4.2 Microbial respiration

In addition to suppressing the EEs activities, clay amend-

ment reduced microbial respiratory production significantly

by 78% (Figure 2A). However, the reduction was not accom-

panied by a decreased microbial biomass (Figure 2C), sug-

gesting that the impacts of clay amendment did not reduce

microbial growth but decreased microbial metabolic quo-

tient indicated by the lower ratio of CO2 production to MBC

growth and nutrient uptake by microbes (Pal & Marschner,

2016). The decrease in metabolic quotient with the increase

in soil clay content was expected to be more noticeable at

the clay contents <25% (Müller & Höper, 2004). However,

it is also plausible that the addition of soil clays reduced SOC

accessibility (i.e., substrate availability) to soil microbes and

their degradative enzymes by providing extra physiochem-

ical protections through the interactions of SOC and clay

minerals (Baldock & Skjemstad, 2000) and entrapments of

SOC in soil aggregates (Dungait et al., 2012; Schmidt et al.,

2011). After clay amendment, improved soil aggregates have

already been demonstrated in the tested soils (Ye et al., 2019).

The data highlighted the concept that clay addition can affect

soil microbial functions through various mechanisms, further

indicating the potential of clay amendment to improve the

preservation and stability of organic C in these soils.

4.3 Soil C and N

The stabilization of SOC largely depends on its spatial acces-

sibility to microbes and their associated degradative enzymes,

which is influenced by its interaction with mineral surfaces,

and entrapment into soil aggregates (Dungait et al., 2012; Kle-

ber, 2010). Intriguingly, the consistently suppressed enzyme

activities and microbial respiration did not lead to increased

TC concentrations at 0- to 15-cm depth 4 years after the clay

addition (Tables 1 and 2), likely because most of the organic

inputs (i.e., crop residues) were largely left on the ground

but not incorporated into the entire soil profile. In addition,

it has been frequently reported that organic C accumulations

were mostly observed in topsoil (0–5 cm) but not in bulk

soils in systems with conservation tillage and residue returns

(Badagliacca et al., 2018; Balkcom et al., 2013; Hubbard et al.,

2013; Luo et al., 2010; Sun et al., 2020). It is therefore possi-

ble that the lack of C inputs to the subsurface soil limited the

accumulation of SOC in bulk soils in the short term. Long-

term studies on the SOC dynamics at different soil depths are

therefore warranted.

Nitrogen is essential for crop production whose availability

is affected by various biotic and abiotic factors. In the present

study, organic N mineralization appeared to be the main N

source since no fertilization was applied during the entire

cover crop season. No changes were observed for PMN4 years

after the addition of clay-rich soils (Figure 2B), consistently

in line with previous observations (Ye et al., 2019). However,

there were higher concentrations of NO3
− and inorganic N

(NO3
− plus NH4

+) in clay-amended soils (Table 2). Despite

lacking NO3
− retention capacity, clay was found to decrease

NO3
− leaching by increasing the soils’ inherent water-holding

capacity (Dempster et al., 2012). It was therefore plausible
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that the additions of clay-rich soils reduced N leaching from

the soils, which was further supported by the insignificant

correlations of inorganic N with PMN and enzyme activities,

respectively, but a significant correlation between inorganic N

and clay % in soils (Table 5). The increased N availability may

also explain the higher cover crop biomass production and N

content in the clay-amended soils (Table 5).

4.4 Clay amendment as a novel soil
management strategy

The proof-of-concept study of clay amendment to improve

sandy soils has been well demonstrated by our pilot study and

other similar research (Button et al., 2022; Tahir &Marschner,

2016; Ye et al., 2019). In the present study, we further

demonstrated that clay amendment had consistent impacts

on suppressing soil microbial decomposition but increased N

availability 4 years after the amendment, suggesting its poten-

tial as a novel practice to restore SOC in sandy soils. However,

limited relevant studies are jeopardizing the adoption of such

practices (Button et al., 2022). One potential challenge is

the minimal amendment rates and time that are required to

improve soil physical, chemical, or biological properties. In

addition to application rates, the mineralogy and ped size

of the clay may also affect the outcomes. Excess clay addi-

tions have been found to promote the formation of soil hard

pan (Harper & Gilkes, 2004) and the destructure of the soil

structure (Dixon, 1991; Ogunniyi, J.E., 2017), both of which

affected plant growth. Despite the uncertainties, our field pilot

study indicated positive soil impacts within a year after the

application of clay-rich soils at 25 metric tons ha−1 (Ye et al.,

2019), which also effectively increased the biomass produc-

tion and N content of the winter cover crops after 4 years of

the amendment (Table 4). However, no effects on main crop

yields were observed likely due to the confounding impacts

of fertilization in the spring (Table 4). Meanwhile, clay-rich

soils are abundant and commercially available at low prices in

the US Southeast, making the clay amendment attractive and

practical in the context of improving sandy soils. However,

more research (e.g., application rates and methods and cost-

effectiveness) is needed to investigate its long-term effects on

soil physio-biochemical processes and the productivity and

sustainability of the crop systems.

5 CONCLUSION

Clay addition continued to pose inhibitory impacts on soil

microbial activities 4 years after the additions. The suppressed

activities of the CB, BX, LAP, and NAG enzymes, along

with the neutral response of the BG activities, indicated that

clay additions can deactivate the enzymes binding sites to

reduce their activities but can also stabilize the enzymes to

maintain or enhance their activities. The kinetics of the BG

and LAP further indicated that clay addition can have dif-

ferent impacts on enzymes with diverse biological origins

through distinct mechanisms. Higher inorganic N concen-

trations were observed in soils with clay additions at 0- to

15-cm depth, likely resulting from reduced NO3
− leaching.

It is apparent that clay addition has the potential to improve

sandy Coastal Plain soils by increasing SOC stability and

nutrient availability. However, more research is needed to

understand the long-term impacts on microbial communities,

SOC stability, and N dynamics while making this approach

practical.
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