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1. Introduction

Let E C R™, n € N, be a nonempty set. We are interested in the Muckenhoupt A4,
properties of the weights

w(x) = Wo,g(z) = dist(z, E) ™, x € R",

where « € R. Previously, these properties have been studied, for instance, in [1-4,8,12].
It is known, by [4, Corollary 3.8(b)], that if the set E is porous, then w, g belongs to
the Muckenhoupt class A; if and only if 0 < a < n — dima (E); here dimy (E) is the
Assouad dimension of E. Since dimy (E) < n if and only if E C R™ is porous (see e.g. [11,
Section 5]), it follows in particular that for each porous set £ C R™ there exists some
a > 0 such that w,, g is an A; weight.

The results in [4] do not apply for nonporous sets, but the bound 0 < o < n—dimy (E)
for admissible ov might suggest that wq, g cannot be an A; weight for any oo > 0 if £ C R
is not porous, since then dima (F) = n. However, Vasin showed in [13] that if F is a
subset of the unit circle T C RZ2, then the weight Wq, belongs to the class A;(T),
for some o > 0, if and only if F is weakly porous; see Section 3 for the definition and
commentary concerning this condition.

The definition of weak porosity in [13] is rather specific to the one-dimensional case.
Our first goal in this paper is to extend both this condition and the related characteriza-
tion of the A; property of the weight dist(-, £)~“. The underlying ideas are in principle
similar to those in Vasin [13], but the higher dimensional case requires several nontriv-
ial modifications. In particular, we use dyadic definitions and tools, including a type of
dyadic iteration, that lead to efficient and natural proofs.

Our first main result can be stated as follows.

Theorem 1.1. Let E C R™ be a nonempty set. Then dist(-, E)~® € Ay, for some a > 0,
if and only if E is weakly porous.

One consequence of Theorem 1.1 is that if E C R™ is weakly porous, then dist(-, F)~“
is locally integrable for some « > 0. This implies that the upper Minkowski dimension
of EN B(x,r) is strictly less than n for every € R™ and r > 0; see Remark 6.8 for more
details.

Theorem 1.1 is quantitative in the sense that « and the constants in the A; and
weak porosity conditions only depend on each other and n. More precise dependencies
are given in Lemma 4.1 and Lemma 5.3, which prove the necessity and sufficiency in
Theorem 1.1, respectively.

A closely related question is to quantify the precise range of exponents o € R for
which the weight w, g(z) = dist(z, )~ belongs to the Muckenhoupt class A, for a
given 1 < p < co. If E C R™ is porous, then it follows from [4, Corollary 3.8] that
We,g € Ay if and only if 0 < o < n — dima(E), and wa g € Ay, for 1 < p < o0, if and
only if
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(1 —=p)(n—dima(E)) < a <n—dima(E).

In this paper we obtain the following extension of [4, Corollary 3.8] for weakly porous sets,
given in terms of the Muckenhoupt exponent Mu(E) that we introduce in Definition 6.1.
For a porous set E C R™ it holds that Mu(FE) = n — dima (E), see Section 6 for details.

Theorem 1.2. Assume that E C R™ is a weakly porous set. Let o € R and define w(zx) =
dist(z, E)~¢ for every x € R™. Then

(i) w e Ay if and only if 0 < a < Mu(E).
(i1) we Ay, for 1 <p < oo, if and only if

(1-p)Mu(E) < o < Mu(E). (1)

If we omit the special case @ = 0, in which the connection to the geometry of F is
lost, then in part (i) of Theorem 1.2 the assumption that E is weakly porous is actually
superfluous, and we have the following full characterization.

Theorem 1.3. Assume that E C R™ is a nonempty set. Let « € R\ {0} and define
w(z) = dist(z, E)~ for every x € R™. Then w € Ay if and only if 0 < o < Mu(E).

By combining Theorems 1.1 and 1.3, we see that E is weakly porous if and only if
Mu(E) > 0; cf. Corollary 6.6 and Remark 6.7 for related comments.

Theorem 1.3 raises the question whether also (1) could provide a full characterization
of wa,p € Ap when a # 0 and 1 < p < oo. In Section 8 we show that this is not the case,
by giving a nontrivial construction of a set £ C R™ which is not weakly porous (whence
Mu(E) = 0) but still wa, 5 € Ap forall 0 < o < 1 and all 1 < p < co. This set illustrates
the delicate interplay between the Muckenhoupt conditions and the distance functions,
and also gives a novel type of an example of weights which are in A4, for all 1 < p < oo
but not in A;. Nevertheless, a full characterization of sets £ C R" for which w,.r € 4,
for some (or all) 1 < p < oo remains an open question.

Another interesting consequence of Theorem 1.2 is the following strong self-
improvement property of A,-distance weights for weakly porous sets: if @ > 0 and
E is weakly porous, then w, g € A, for some 1 < p < 0o (i.e. wa,p € As) if and only
if wy g € A;1. The example in Section 8 shows that this is not true for general sets.

The outline for the rest of the paper is as follows. In Section 2 we introduce notation
and recall some definitions and properties of dyadic decompositions and Muckenhoupt
weights. Weakly porous sets are defined in Section 3, where we also examine some of
their basic properties. Theorem 1.1 is proved in Sections 4 and 5. Section 6 contains
the definition of the Muckenhoupt exponent and the proofs of Theorems 1.2 and 1.3,
together with some related results. In Section 7, we give an example of a weakly porous
set £ C R™ which is not porous and compute explicitly the Muckenhoupt exponent of
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E. Finally, in Section 8 we construct the set £ C R which is not weakly porous, but still
Wa,p € Ap forall0 <a<land 1<p< 0.

2. Preliminaries

Throughout this paper, we consider R™ equipped with the Euclidean distance and the
n-dimensional Lebesgue (outer) measure. The diameter of a set E C R™ is denoted by
diam(FE) and |E| is the Lebesgue (outer) measure of E. If x € R™, then dg(x) = dist(x, E)
denotes the distance from z to the set F, and dist(E, F') is the distance between the sets
FE and F, that is,

dist(E, F) =inf{lz —y|:z € E, y € F}.
The open ball with center x € R™ and radius r» > 0 is
B(z,r)={yeR": |z —y| <r}.

In this paper, we only consider cubes which are half-open and have sides parallel to
the coordinate axes. That is, a cube in R™ is a set of the form

Q = [a/17b1) X X [anabn)7

with side-length ¢(Q) = by —a; = -+ = b, — a,. For z € R™ and r > 0, the cube with
center x and side length 2r is

Qz,r) = {yGR" - Ly — <rforallj:1,...,n}. (2)
Clearly,
|Q(x,7)| = (2r)" and diam(Q(x,7)) = (2v/n)r.

The dyadic decomposition of a cube Qg C R is
D(Qo) = | D;(Qu),
j=0

where each D;(Qo) consists of the 2/™ pairwise disjoint (half-open) cubes Q, with side
length £(Q) = 2794(Qy), such that

Q= |J @
Q€ED;(Qo)

for every j = 0,1,2,.... The cubes in D(Qq) are called dyadic cubes (with respect to
Qo) and they satisfy following properties:
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(D1) Let j > 1and @ € D;j(Qo). Then there exists a unique dyadic cube 7Q € D;_1(Qo)
satisfying @ C w@Q. The cube 7@ is called the dyadic parent of @, and @ is called
a dyadic child of 7Q.

(D2) Every dyadic cube @ € D(Qp) has 2™ dyadic children.

(D3) Nestedness property: PN Q € {P,Q,0} for every P,Q € D(Qo).

A locally integrable function w in R™, with w(z) > 0 for almost every = € R", is
called a weight in R"™.

Definition 2.1. A weight w in R™ belongs to the Muckenhoupt class A; if there exists a
constant C' such that

g[w(m) de < C eiseiélfw(x), (3)

for every cube Q C R™. The smallest possible constant C in (3) is called the A; constant
of w, and it is denoted by [w]4, .

Above, we have used the notation

][w(x) dx = ﬁ!w(x) dx

A

for the mean value integral over a measurable set A C R™ with 0 < |4] < oo.
For 1 < p < o0, the class A, is defined as follows.

Definition 2.2. A weight w in R™ belongs to the Muckenhoupt class 4,, for 1 < p < oo,
if there exists a constant C' such that

p—1

][w(x) dx ][w(:r)ﬁ dx <C (4)

Q Q

for every cube Q C R™. The smallest possible constant C in (4) is called the A, constant
of w, and it is denoted by [w]4,.

We recall that the inclusions 41 C A, C A, hold for 1 < p < gq. Also, it is immediate
that w € Ay, for 1 < p < oo, if and only if wl=r e A, , and then [wl_p/}Ap, = [w]z/p(pfl).

Here p’ = % is the conjugate exponent of 1 < p < oo. See [6, Chapter IV] for an
introduction to the theory of Muckenhoupt weights.

The following elementary property will be useful in Section 6.

Lemma 2.3. Let w € A, for some 1 < p < oco. If wP € Ay for some 3> 0, then w € Aj.
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Proof. Let ¢ > p be large enough so that s = ﬁ < p and w € A,;. Then we have
w® € A; as well, thanks to Jensen’s inequality. The A, condition on a cube Q C R™ for

w yields
1—q —1/s 1/s
][w < [w]a, ][wﬁ = [w]a, ][w_s < [w]a, ][ws
Q Q Q Q

1/s
< [w]a, ([wS]A1 enginf ws) = [w]a, [ws]xs enginf w,

and thus w € A;. O
3. Weakly porous sets

Recall that a set E C R"™ is porous if there exists a constant ¢ > 0 such that for every
z € R™ and r > 0 there exists y € R™ satisfying B(y, cr) C B(z,r) \ E. Equivalently, F
is porous if and only if there is a constant ¢ > 0 such that for all cubes Qg C R™ there
is a dyadic subcube Q € D(Qg) such that @ N E = () and |Q| > ¢|Qo-

In [13] Vasin defined weak porosity in the unit circle T C R? as follows: a set £ C T
is weakly porous, if there are constants ¢,d > 0 such that if I C T is an arbitrary arc,
then

S Ikl = e,

where the sum is taken over all (pairwise disjoint) subarcs Ji C I that contain no points
of E and satisfy |Ji| > §|.J|, where J C I is a lengthwise largest subarc without points
of E. The subarcs that do not intersect E are called free arcs.

We consider an extension of the above definition to R™.

Definition 3.1. Let £ C R™ be a nonempty set.

(i) When P C R™ is a cube, a dyadic subcube Q C D(P) is called E-free if ENQ = 0. We
denote by M(P) € D(P) a largest E-free dyadic subcube of P, that is, {(M(P)) >
{(R) if R € D(P) is an E-free dyadic subcube of P. Such a cube need not be unique,
but we fix one of them.

(ii) The set E C R™ is weakly porous, if there are constants 0 < ¢,d < 1 such that for
all cubes P C R"™ there exist N € N and pairwise disjoint E-free cubes Qy € D(P),
k=1,...,N, such that |Qg| > 6|JM(P)| for all k =1,..., N and

N
> 1Qk| = c|P. (5)

k=1
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Instead of dyadic cubes, also general subcubes of P could be used in the definition of
weak porosity. However, the dyadic formulation is convenient from the point of view of
our proofs. Notice also that inequality (5) can be written as

> c|P|,

N
U @
k=1

since the cubes @1, ...,QyN are pairwise disjoint. Hence, the weak porosity of a set F
can roughly be described as follows: for every cube P, the union of those disjoint E-free
subcubes that are not too small (compared to the largest E-free cube in P) has measure
comparable to that of P.

The following properties are easy to verify using the definition of weak porosity:

o If E C R™ is porous, then F is weakly porous.

« E C R" is weakly porous if and only if the closure E is weakly porous.

o If E C R™ is weakly porous, then |E| = 0. This is a consequence of the Lebesgue
differentiation theorem.

e Weak porosity implicitly implies that for every cube P C R" there exists an F-free
dyadic subcube @ € D(P).

Let E C R™ be a nonempty set. Given a cube P C R™ and § > 0, we write
Fs(P)={Q e D(P) : |Q| > |M(P)| and QN E = 0}.

We denote by F5(P) the maximal subfamily of the cubes in j-'\g(P). That is, each R €
fg(P) is contained in some cube @ € F5(P) and if @ € Fs(P), then @ is not strictly
contained in another cube in .%;(P) Observe that the cubes in F35(P) are pairwise
disjoint, since two dyadic cubes are either disjoint, or one of them is strictly contained
in the other one. The weak porosity of F can now be formulated in terms of the sets Fj,
since F is weakly porous if and only if there are constants 0 < ¢,§ < 1 such that

Z |Q| > ¢|P| for all cubes P C R™. (6)
QEFs(P)

Indeed, it is clear that (6) implies weak porosity of E. Conversely,

N N
Pl <Y Q< Y Y lowel@l< > QL

k=1 QEFs(P) k=1 QEFs(P)

whenever ¢, §, P and Qk, k= 1,..., N, are as in Definition 3.1 (ii).
Part (ii) of the next lemma will be important when proving that weak porosity implies
the Aj-property for dist(-, E)~%, for some « > 0; see the proof of Lemma 5.2.
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Lemma 3.2. Assume that E C R"™ is weakly porous set, with constants 0 < ¢,0 < 1. Then
the following statements hold.

(i) Assume that Q C R are two cubes such that ENQ # () and IM(Q)| < 4~ "5| M(R)].
Then

QI < (1—-27"¢)|R|.

(i) Assume that Q C R are two cubes such that |R| = 2"|Q|. Then there exists a
number k = k(n,c) € N such that

IM(R)| < 4™ IM(Q)].

(iii) Assume that Q C R are two cubes. Then there exist constants C = C(n,c,d) and
o =o(n,c,d) >0 such that

U(R)\’
M= (G M@
Proof. We first remark that the dyadic grids D(Q) and D(R) need not be compatible,
and this is taken into account in the arguments below.
First we show (i). Fix S € Fs(R). We claim that the center zs € R of S belongs to
R\ Q. Assume the contrary, namely, that zg € Q. Since S is E-free and @ intersects E,
there exists an E-free dyadic cube T' € D(Q) such that ¢(T) > £(S)/4. Tt follows that

IM(Q) = |T| = 47"|S| = 476 M(R).

This is a contradiction, since |M(Q)| < 47"6|M(R)| by assumption. We have shown
that xg € R\ @, and therefore there exists a cube S’ C S\ @ such that |S’| = 27"|S|.
Since {S” : S € Fs(R)} is a pairwise disjoint family of cubes contained in R\ Q, we
obtain that

IR —1QI =|R\QI> > |§=2"" > |sl.

SeF;5(R) SeF;5(R)

By weak porosity, the last term above is bounded below by 27 "¢|R|, and reorganizing
the terms gives (1 —27"¢)|R| > |Q)] as claimed in (i).
Next we show (ii). If ENQ = 0, then

IM(R)| < |R| =2"|Q| <407 1|Q| = 4"~ |M(Q)|-

In this case, we may take & = 1. In the sequel we assume that £ N Q # (. Choose

k = k(n, c) such that 2"/* < ﬁ Then there exists a finite sequence
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Q:ROCR1CR2C-'-CRk=R

of cubes such that |R;| - |R;_1|~' = 2/*. Observe that

k
Rl R IR
@ =1 %= 1"l ~ 12

Fix1<i<k. Wehave D 2ENQ C ENR;_1 and R;_; C R;. Moreover,
(1—27"¢)|R;| = (1 —27"¢)2"*|R;_1| < |Ri_1]
and therefore the contrapositive of part (i) implies that
IM(R;—1)| = 47"5|M(Ry)|
for all t =1,2,...,k. This allows us to conclude that
[M(Ro)| > 47| M(R1)| = (47"6)* I M(Rp)| > -+ = (47"0) | M(Ry)].

The desired conclusion follows, since Ry = @ and Ry = R.
Finally, we prove (iii). An easy computation shows that R C AQ, for A = 34(R)/4(Q).
Here MA@ denotes the cube with the same center as @ and side-length equal to M(Q).

Then, for
mere o ()

we have that R C 2™Q. Hence |[M(R)| < C(n)|M(2™Q)|. Denote by C; = 4™*§~* the
constant in (ii). Then, by iterating (ii) we obtain

1+4log,

M) < crm@) < o= ) )

— C(n.c.5) (ﬁg) M@,

where o = o(n, ¢, d). The claim (iii) follows by combining the above estimates. O

Example 3.3. Unlike for porous sets, inclusions do not preserve weak porosity: there are
sets F' C E such that F is weakly porous but F' is not. For instance, Z is clearly a weakly
porous subset of R, but N C Z is not a weakly porous subset of R. Indeed, assume for
the contrary that N is weakly porous in R with constants 0 < ¢,d < 1. Consider cubes
Q; =10,27), j € N. Observe that Q; C R; = [—27,27). Lemma 3.2 (ii) implies that there
is a constant C' = C(c,§) > 0 such that 29 =|M(R;)|< C|M(Q;)| = C. By choosing j
large enough, we get a contradiction.
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4. A, implies weak porosity

This section and the following Section 5 contain the proof of Theorem 1.1. We begin
by proving the necessity part of the equivalence in the theorem, that is, if dist(-, £)™¢
is an Ay weight, then F is a weakly porous set. The straight-forward proof illustrates in

a nice way the connection between the A; condition and the definition of weak porosity.

Lemma 4.1. Let E C R™ be a nonempty set, let o > 0, and write w(z) = dist(z, E) ™
for all x € R™. If w € Ay, then E is weakly porous with constants depending on n, «
and [w] 4, -

Proof. Since dist(-, F) = dist(-, F) and E is weakly porous if and only if E is weakly
porous, quantitatively, we may assume that E is closed. Assume that w € A; and fix
0 < 0 < 1 to be chosen later. Let P C R™ be a cube and write £ = ¢(M(P)) for the
sidelength of M(P).

Observe that the set E is of measure zero, since w is locally integrable and w(z) = oo
in E. Since F is closed, for every x € P\ FE we have dist(z, E) > 0 and therefore there
exists an FE-free dyadic cube @ € D(P) such that z € (). As a consequence, we can write
P\ E as a disjoint union of maximal E-free dyadic cubes @ € D(P). Let x € P\ FE
such that = ¢ UQG]‘-J(P) Q. Then the maximal E-free dyadic cube @ € D(P) containing
x satisfies

QI < SIM(P)| = o™
Since 7@ € D(P) is not E-free, we have
dist(z, E) < diam(7Q) < 6'/"2/nt.
It follows that
(7% < C(n,a)d%/™ dist(x, )~

for every x € (P \ E) \ UQefé(P) Q). By integrating, and using the fact that F is of
measure zero, we obtain

1P\ Ugersp) @

670(
|P|

1
< C’(n,a)éa/”m / dist(z, E)~“dx
P\UQG}'(S(P) Q
< C(n,a)éa/"][dist(ac, E)y “dz

P

< C(n, a)8*™[w] 4, essinf dist(z, £) ™.
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Denote by y the center of M(P) C P. Then

essinf dist(x, E)™* < dist(y, E) ™% < 2Y%(M(P))™* =2%¢~“.

zEP

Simplifying, we get

Ty |Q|=]P\ U Q\sc*(n,a)é“/“[wmm.
(P)

QEFs(P) QEeFs(P

It remains to choose § = d(n,a, [w]a,) > 0 so small that C(n,a)6*/"[w]a, < 1, and
condition (6) follows. O

5. Weak porosity implies A,

Next, we turn to the sufficiency part of the equivalence in Theorem 1.1, that is, the
weak porosity of F implies that dist(-, E)~“ is an A; weight; see Lemma 5.3. The proof
applies an iteration scheme, which is built on an efficient use of the dyadic definition
of weak porosity; see the proof of Lemma 5.2. The following sets .7-"(;“ and Q(’f will be
important in the iteration.

Fix a weakly porous closed set £ C R™ with constants 0 < ¢, < 1 and a cube
Py C R™. Recall that Fs5(Fp) is the maximal subfamily of the collection

Fs(Po) = {Q € D(Py) : |Q| > 6| M(Py)| and Q N E = 0}.

We will need also the complementary family Gs(P,), which is defined to be the maximal
subfamily of the collection

Gs(Py) = {P eD(R) : Pch\ | Q}.
QEFs(Po)

Due to the lattice properties of dyadic cubes, we have |Q| > 6| M (Py)| for all Q € Gs(Fy).
Indeed, such a cube @ € G5(Py) cannot be contained in any cube belonging to Fs(Fp),
but, on the other hand, the dyadic parent 7Q € D(FP) of Q must intersect some R €
Fs(Po). Consequently R C 7@, and

|Q = 27"7Q| > |R| > | M(F)|.
We let gg = {PO}a ‘inl = ‘Fé(pO)v g(% = g5(P0)7

F=U m®., &G=1] 6,

Reg} Reg}

and in general, for k = 3,4, ..., we define
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FF= U m®, &GG-= | w6®r.

Regk—! Regi™!

Lemma 5.1. Assume that E C R™ is a weakly porous closed set with constants 0 < ¢,§ <
1. Let Py C R™ be a cube, and let sets .7-"§, for k=1,2,..., be as above. Then

PO\EZG U e

k=1QeF}

Proof. Let € Py \ E. Because F is closed, there exists a dyadic cube @ € D(FPy) such
that + € Q and @ N E = §. We claim that @ C ;—, UF¥. Suppose, for the sake
of contradiction, that @ is not a subset of this union. Because @ ¢ |JF}, there exists
R; € G} containing Q. Now Q ¢ |J Fs(R1), as Q ¢ |J FZ. Thus there exists Ry € G5(R1)
containing @, and again, Q ¢ |J F5(R2). Repeating this argument, for every k we obtain
cubes

RiDRy;yD---DR,DQ

with R; € Gs(R;—1) and such that @ ¢ |JF5(Rk). Also, because each R; is strictly
contained in R;_, we must have |R;| <27"|R;_1|. Then @ satisfies

6 é
Q[ < | M(Ry)| < d|Ry| < W\Rﬂ < W\Po\-

Letting k£ — oo, we derive a contradiction. O

Lemma 5.2. Assume that E C R™ is a weakly porous closed set with constants 0 < ¢,§ <
1. Let Py C R™ be a cube and let sets .7-"§, for k=1,2,..., be as above. Then there are
constants 0 < v = y(¢,0,n) < % and C = C(e,d,n) > 0 such that

oo

ST IQIMTY S ClR|IM(Py) 7.

k=1QeF}
Proof. Let 0 < v < %, whose exact value will be fixed later; we remark that both
inequalities v > 0 and 7y < % are needed in Lemma 5.3 below. By the definition of ]—'(? ,
we obtain

YR > YT aTMMBR)R)
QeF} ReGE—1 QeFs(R)

<67 3 IMB)[IRI

Regi™!

for every k=1,2,....
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Next, we show by induction that

> MBI TR < (1 =) (08) ) HM(P)| | Pyl (8)
Regh™!

for every k € N. If k = 1, this is immediate since G¥ ! = {Py}.

Then we assume that (8) holds for some k € N. Fix R € Gy~ and let P € Gs(R).
Since P is a maximal dyadic cube in R\ Ugc 7, (r) @ and Fs(R) # (0 by weak porosity,
the dyadic parent 7P intersects a cube @ in Fs5(R).

Since 7P, @ € D(R), we have 7P C Q or Q C 7P by the nestedness property (D3)
of dyadic cubes. Clearly 7P C @ is not possible, as this would lead to the contradiction
P cnaP CQC Ugerr @ Therefore Q C 7P. By Lemma 3.2 (ii), there exists a
constant o = o(c, d,n) > 0 such that

(M(P)| = o| M(7P)].
Using also the definition of F5(R), we get
IM(P)| = o|M(7P)| = 0|Q| = a6| M(R)].

On the other hand, since F is weakly porous, we have by (6) that

> 1pl=(1r- X 1@l) < -l

Pegs(R) QEFs(R)

Applying the two estimates above and the induction hypothesis (8) for k, we obtain

Do IM@PITIPIS Y Y (08) IM(R)T|P

Pegk Regj~' Pegs(R)
<(e0) Y MBI Y|P
Regi™! Pegs(R)
< (087 Y M@ -0o)R|
Regt™!

< (1=)(00) (1 = e)(06) ) HM(Po)| 7| Rl
< (1= e)(a0) ) IM(Po)[ 7| Pol.
This proves (8) for k + 1, and thus the claim holds for every k € N, by the principle of

induction.
Now choose v = (¢, 0,n) € (0,1/n) to be such that (1 —¢)(cd)~7 < 1. Observe that

NE

(1 =¢)(od) M 1 =Cle,0,8,7) = C(c,6,n) < 0.

k=1
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Hence, by using also (7) and (8), we have
oo

Z SR <N 6 > IM®B)| IR

k=1 Qe]—‘k k=1 Reg(’;*l

37((1 = e)(08) ™) THM(Po)[ 7| Pl

p'%g

E
Il
-

< 0T IM(P)| T (Ro| Y (1 = €)(08) )
k=1
< C(c,6,n)| Pl M(Po)| ™. O

Lemma 5.3. Assume that E C R"™ is a weakly porous set with constants 0 < ¢,§ < 1. Then
there are constants 0 < a = a(c,0,n) < 1 and C = C(n,c,d) such that dist(-, E)~* €
A1 (R™) and [dist(-, E)~*]4, <C.

Proof. Observe that the closure E is also weakly porous. Since dist(-, F) = dist(-, E), we
may assume in the sequel that E is a weakly porous closed set. Throughout this proof
C' denotes a constant that can depend on n, ¢ and §. Let 0 < v = y(n, ¢, d) < l be as
in Lemma 5.2. Fix a cube Py C R", and assume first that P, is not an E-free cube Let
sets ]:5, for Py and k= 1,2,..., be defined as above.

Since yn < 1, we have for every E-free cube () the estimate

/dist(x,E)fV" dx < /dist(x, 0Q) " dx = C(v,n)l(Q)" "™ =C|QI*™.  (9)
Q Q

In particular, the upper bound yn < 1 implies that the second integral in (9) is finite.
Bearing in mind that |E| = 0, using Lemma 5.1 and combining (9) with Lemma 5.2, we

obtain
1

][dist(a:,E)’V" dr = — / dist(z, E)" """ dx = Z Z /dlst x, B)" " dx

| Pol |P0| gt
Po PO\E QeFEQ

C < 1

? D> IRIMT < CIM(Py) T

k= lQe]-‘k

Let x € Py\ E. Since E is closed, the point z is contained in a maximal E-free dyadic cube
Q € D(Py). Recall that Py is not E-free, and so @Q is a strict subcube of Py. Furthermore
7@ is not E-free due to maximality of ). This implies that

dist(z, E) < diam(7Q) = 2diam(Q) = 2v/nl(Q) < 2v/nl(M(P)).
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Hence,

essinf dist(x, E) 77" > (2¢/n) " U(M(Py)) "™ = C(n, ¢, 8)|M(Py)| 7,

x€ Py

and we conclude that

][dist(ac, E)y""™de < C eszglf dist(x, E)™". (10)
z€ Py
Py

It remains to consider the case where Py is an E-free cube. We study two situations
separately. If dist(FPp, F) < 2diam(F), then we have dist(z, ) < 3diam(FPy) for every
z € Py, and so

ess}jnf dist(z, E)77" > (3diam(Py)) " > C|Py| 7.
[ASH i)
Using (9), together with this observation, we obtain

][dist(m,E)_'m de < C|P|7" < C eszglfdist(ac, E)y=™. (11)

xT

Po ’
Finally, we consider the case dist(Fy, E) > 2diam(FPy). If z,y € Py, then

dist(x, E) > dist(y, E) — |x — y| > dist(y, E) — diam(FP,)

> dist(y, E) — 3 dist(Pp, E) > £ dist(y, E).

Hence,

dist(z, E)™7" < Cessinf dist(y, £) ™"
yePo

for all x € Py, and so

][dist(a:, E)""™dx < Cess 1ian dist(y, E)™"™. (12)
y€ro
Po

By combining estimates (10), (11), and (12), we see that dist(-, E)™" € A;(R"), and
this proves the theorem with o = yn. O

6. Muckenhoupt exponent

In this section, we introduce the concept of Muckenhoupt exponent and explore its
connections to weak porosity and the A, properties of distance weights, for 1 < p < oco.
In particular, we prove Theorems 1.2 and 1.3 at the end of this section.
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For a bounded set A C R™ and r > 0, we let N(A,r) denote the minimal number
of open balls of radius r that are needed to cover the set A. Recall that the Assouad
dimension dimp (F) of E C R™ is then the infimum of A > 0 such that

R\
N(ENnB(z,R <C|—
e <e(2)
for every x € E and 0 < r < R. Equivalently, dima (F) = n — codimp (F), where the
Assouad codimension codimp (E) is the supremum of o > 0 such that

|E, N B(z, R)| R\
B R)| SC(r) (13)

for every € E and 0 < r < R. Here
E, ={y e R":dist(y, F) <7}

is the open r-neighborhood of E. See e.g. [9, (3.11)] for more details concerning this
equivalence, which also follows from Lemma 6.2.

It is well-known that a set E C R™ is porous if and only if dimu (E) < n, or equivalently
codimy (E) > 0, as was already pointed out in the introduction. See e.g. [11, Section 5]
or [10, Theorem 10.25] for details. The following Muckenhoupt exponent can be seen
as a refinement of the Assouad codimension: for porous sets these two agree but the
Muckenhoupt exponent can be nonzero also for nonporous sets; see the comment after
Definition 6.1.

Definition 6.1. Let £ C R".

(i) If B(x,r) is a ball in R™, we denote by hg(B(x,r)) the supremum of all ¢ > 0 such
that B(y,t) C B(z,r) \ E for some y € B(z,r). If there is no such number ¢ > 0,
then we set hg(B(z,r)) = 0.

(ii) If hg(B(z,R)) > 0 for every x € E and R > 0, then the Muckenhoupt exponent
Mu(FE) is the supremum of the numbers o € R for which there exists a constant C'
such that

\ETDB(x,RM hE(B(m,R)) e
B.R)| SC( . ) (1)

for every x € E and 0 < r < hg(B(x,R)) < R. If hg(B(z, R)) = 0 for some x € F
and R > 0, then we set Mu(E) = 0.

Observe that hg(B(z, R)) < R/2if x € E. It is clear from the definition that Mu(E) >
0 for all sets E C R™, since (14) always holds with o = 0if hg(B(z,R)) > 0.If E C R™ is
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porous, then ¢cR < hg(B(z,R)) < R/2 for all x € E and R > 0, showing that Mu(E) =
codimp (E). On the other hand, if E C R™ is not porous, then codima (E) = 0 < Mu(E),
and thus always codimy (E) < Mu(E). This inequality is strict if and only if F is weakly
porous but not porous since the weak porosity of F is characterized by Mu(E) > 0,
see Corollary 6.6. As an example, it is straightforward to see that codima(Z) = 0 and
Mu(Z) = 1. See also Section 7 for other examples of such sets.

In Lemma 6.3 below we give for the Muckenhoupt exponent an alternative characteri-
zation, which resembles the definition of the Assouad dimension. The following estimate
will be applied in the proof of Lemma 6.3.

Lemma 6.2. Let ECR", x € E and 0 <r < R. Then

< |E. N B(z, R)|

TTL

Ci(n)N(E N B(z,R/2),7) < Cy(n)N(E N B(z,2R),7).

Proof. Let {B(xz;,7)}/L, be a cover of ENB(z,2R), with N = N(ENB(z,2R),r). Then

N
E,.NB(x,R) C U B(x;,2r),

=1

and thus
|E, N B(z,R)| < C(n)N(2r)" = Co(n)r"N(E N B(x,2R), 7).

This proves the second inequality in the claim.

Conversely, let {B(x;,7)}, be a cover of ENB(x, R/2) such that z; € ENB(z, R/2)
for all i = 1,..., N and the balls B(x;,r/2) are pairwise disjoint (such a cover can be
found by choosing {z;}¥_; to be a maximal r-net in EN B(x, R/2), see [7, p. 101]). Then

N
E, N B(xz,R) > | Bai, r/2),

i=1

and thus
|E, N B(z,R)| > C(n)N(r/2)" > Ci(n)r"N(E N B(z, R/2),7).
This proves the first inequality in the claim. O

Lemma 6.3. Let E C R™ be such that hg(B(x, R)) > 0 for every x € E and R > 0. Then
Mu(E) is the supremum of the numbers a > 0 for which there exists a constant C such
that

N(ENB(z,R),r) < C<§>H<M>_a (15)

r r
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for every x € E and 0 < r < hg(B(z,R)) < R.

Proof. Assume first that oo > 0 is such that (15) holds for every x € F and 0 < r <
hg(B(z,R)) < R with a constant Cy. Let x € E and 0 < r < hg(B(z,R)) < R. Then
0<r<hg(B(z,R)) < hg(B(z,2R)) < R < 2R, and by Lemma 6.2 and (15) we have

|Er N B(z, R)|
|B(z, R)|

r

< C(n) (EYN(E N B(z,2R),7)

<aom(5) (28" (Petktem)

ha(Ble, )Y

r

SC(H,Cl)<

Thus a < Mu(E).

By the definition of Muckenhoupt exponent, we always have Mu(E) > 0. If Mu(E) =0
and (15) holds for a@ > 0, the preceding computation shows that o = 0 as well, and
the result follows. Then assume that 0 < o < Mu(E) and let z € E and 0 < r <
hg(B(z,R)) < R. By Lemma 6.2 and (14), for o and a constant C,,, we have

|E, N B(z,2R)|
Tn

@)"(hﬂB(MR)))‘“

T r

< C(mca)(E)"(M)_”,

N(ENnB(z,R),r) < C(n)

< C(n)Ca<

r r

Since this holds for every 0 < a < Mu(E), we conclude that Mu(E) is indeed the
supremum of « for which (15) holds for all x € E and 0 < r < hg(B(z,R)) < R. O

Next, we turn to the relations between the Muckenhoupt exponent and A; weights.
Lemma 6.4 and Theorem 6.5 together characterize the property dist(-, E)~® € Ay, for
a # 0, in terms of the Muckenhoupt exponent of E; see the proof of Theorem 1.3 after
the proof of Theorem 6.5.

Lemma 6.4. Let E C R™ be a nonempty set and let « € R be such that dist(-, E)~ € A;.
Then 0 < o < Mu(E).

Proof. Assume first that « < 0. Let z € F and r > 0. Then

dist(y, £)"*dy < C essinf dist(y, E)~* = 0;
Q) yeQ(z,r)
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here the cube Q(z,r) is as in (2). Thus dist(y, E)~* = 0 for almost every y € Q(x,r),
which is a contradiction since dist(-, E)~ is a weight. Hence a > 0.

The claim holds if & = 0, and so we may assume that o > 0. Then hg(B(xz,R)) > 0
for every x € F and R > 0. Indeed, otherwise there exists a ball B(z, R) such that
dist(y, E) = 0 for every y € B(z, R), and therefore dist(-, F) ™ is not locally integrable.
This is again a contradiction since dist(-, E)~¢ is a weight.
Let x € Fand 0 < r < hg(B(z,R)) < R, and write F' = E, N B(xz, R). Let C; be the

constant in the A; condition (3) for dist(-, E)~%. Observe from B(z, R) C Q(x, R) that

hg(B(z,R)) < esssup dist(y, E),
yeQ(z,R)

and hence

essinf dist(y, )™ < hg(B(x, R))™“.
essinf dist(y, )~ < hi(B(z, )

Since dist(y, E) < r for every y € F and F C B(z, R) C Q(z, R), using the A; condi-
tion (3) we obtain
|F| < ro‘/dist(y,E)_‘X dy <r® / dist(y, E)~“dy

F Q(z,R)

< C1r|Q(a, R (B(e, R) ™ = cmm#(wy.

Thus

E.NB@R)|  |F )
Bar| B ’C“(

and the claim Mu(E) > a follows. O

Theorem 6.5. Let E C R™ be a nonempty set and assume that 0 < a < Mu(E). Then
diSt(',E)_a €A,

Proof. It suffices to show that there exists a constant C' > 0 such that

yEB(z,T)

][ dist(y, E) " dy < C essinf dist(y, E)™“ (16)
B(z,r)

for all z € E and r > 0. Indeed, if dist(@, F) < 2diam(Q) for a cube @ C R™, then
the desired Ay property (3) for w = dist(-, E) ™ follows easily from (16) by considering
a ball B = B(x,r) such that z € E, Q C B and |B| < C(n)|Q]. On the other hand,
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if dist(Q, F) > 2diam(Q), then an argument similar to the one leading to (12) shows
that (3) holds, and thus dist(-, E)™® € A;.
Let A > 0 with Mu(E) > A > a, and let x € E and r > 0. Observe from inequality
Mu(E) > 0 that 0 < hg(B(z,2r)) < r. Hence, there is jo € N such that
2700r < hp(B(x,2r)) < 2 9or,
Define
Fj={y € B(xz,r) : dist(y,E) <2'7r} and A; =F;\ Fj;1,

for j > jo. Since A < Mu(E), there is a constant C; = C1(E, \,n) such that

Fj| _ 2"|Bpms, 0 B(z,20)]

Bwn S 1B
hg(B 2 A he(B(x.2 SN (17)
<c (W) _ Cyo (W) |

Since A > 0 and EN B(x,r) C F; for every j > jo, by letting j — 0o we see in particular
that |E N B(z,7)| = 0. Here r > 0 is arbitrary, and thus |E| = 0.
If y € B(z,7) \ E, then dist(y, E) < |y — z| < r. Hence,

B(y,dist(y, E)) C B(xz,2r) \ E,

and therefore 0 < dist(y, E) < hg(B(z,2r)) < 217Jr. It follows that the union of sets
Aj with j > jo covers B(z,r) up to the set E N B(z,r), which has measure zero. If
y € Aj, then 277r < dist(y, E) < 2'7Jr. In addition, A; C F} for every j > jo. By
combining the above observations and using (17) we obtain

_ 1 < - L2 PN
dist(y, B) %dy < ———— E /dist(y7E) “dy < E —L—(27Ip)"
][ |B(z,7)| — — |B(x,r)|
B(w,r) =304, J=Jo

< i (2-7r) 2= <hE(B(fB,2?"))> Y

< 01:10(W> - i (277)r-e
< (Cl,A,oé)r—a<M)‘A <M)MX

C
S C(Clv Aa Oé)hE(B($, 2T) -
C

)
(C1, A, ) essinf dist(y, E)™“.
yEB(z,r)
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This shows that (16) holds, and the claim follows. O

Recall that Theorem 1.3 states, for a nonempty set £ C R"™ and a # 0, that
dist(-, E)~® € A; if and only if 0 < a < Mu(FE). We are now ready to prove this.

Proof of Theorem 1.3. If 0 < o < Mu(E), then dist(-, E)~* € A; by Theorem 6.5.
Conversely, assume that dist(-, )~ € A;. Since @ # 0 by assumption, Lemma 6.4
implies that a > 0. By the self-improvement of A; weights (see [6, pp. 399-400]), there
exists s > 1 such that dist(-, E)7%* € A;. Thus we obtain from Lemma 6.4 that 0 < o <
sa <Mu(E). O

Since dist(-, F)° € A; holds for all (nonempty) sets E C R™ (under the interpretation
that 0° = 1), Theorem 1.3 implies that

Mu(E) = sup{a > 0: dist(-, E) ™ € A;}

for all nonempty sets £ C R™. On the other hand, by Theorem 1.1 we have dist(-, E)~% €
Ay, for some a > 0, if and only if F is weakly porous. This, together with Theorem 1.3,
gives the following corollary.

Corollary 6.6. A nonempty set E C R™ is weakly porous if and only if Mu(E) > 0.
Using Theorem 1.3 and Corollary 6.6, we can prove Theorem 1.2, as follows.

Proof of Theorem 1.2. Since F is weakly porous, we have Mu(E) > 0 by Corollary 6.6.
Therefore, the equivalences in both (i) and (ii) hold if & = 0, and so we may assume
from now on that a # 0. In this case the claim in (i) follows directly from Theorem 1.3.

In part (ii), let 1 < p < oo and assume first that w € A,. Because E is weakly porous,
Lemma 5.3 provides us with some o > 0 for which dist(-, E)~7 € A;(R™). If o > 0,
we can use Lemma 2.3 with 8 = o/a to deduce that w = dist(-, E)~® € A;. Then
Theorem 1.3 implies Mu(E) > a, and so (1) holds. On the other hand, if @ < 0, then
we have

dist( B)"#3) — v e 4,

where p%)‘l > 0. Hence the previous case, for a positive power and the class A, shows
that

(1—p)Mu(E) <0< p_Ta1 < Mu(E), (18)

which is equivalent to (1).
Conversely, assume that (1) holds for some « # 0. If & > 0, then w = dist(-, E)~* €
Ay C A, by Theorem 1.3. Finally, if o < 0, we observe that (1) is equivalent to (18),
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where p_Tai > 0. Thus we may apply the preceding case for the exponent p_To‘l > 0 and the
class A, to conclude that dist(-, £)*/®=1 € A,,. Hence w = dist(-, E)~® € A,, proving
part (ii). O

Remark 6.7. Note that in part (i) of Theorem 1.2 the explicit assumption that E is
weakly porous is needed in the necessity part, since for & = 0 the claim w € A; holds
for all (nonempty) sets E C R™. However, if a > 0, then we know by Theorem 1.1 that
w € Aj can only hold if F is weakly porous, which in turn is equivalent to Mu(E) > 0.

In part (ii) the case a = 0 again shows that (1) is not necessary for w € A,, for
general sets E C R™. Moreover, if we do not assume weak porosity of E, then even
in the case a # 0 the requirement (1) is not necessary for w € A,. This follows from
Theorem 8.1, which gives a set £ C R with Mu(E) = 0, i.e. E is not weakly porous,
such that dist(-,E) " € A, forall 0 < e < landall 1 <p < co.

Remark 6.8. When E C R" is a bounded set, the upper Minkowski (or box) dimension
dimy(F) is the infimum of all A > 0 for which there is a constant C' such that

N(E,r) < Cr=> (19)

for every 0 < r < diam(F). Note that (19) is equivalent to the condition that there is
a constant C such that |E.| < Cr"= for every 0 < r < diam(E); this follows from
Lemma 6.2.

If a set E C R™ is weakly porous and 0 < a < Mu(E), then dist(-, E)~* € A; by
Theorem 1.3, and so fB(z)R) dist(y, E)~“dy < oo for every € E and R > 0. Hence, if
z € E and R > 0, then it holds for all 0 < r < diam(E N B(z, R)) < 2R that

(BN B(z, R),| < r° / dist(y, E)~ dy < C(z, R, E)r"=(n—o).

B(z,3R)

Thus
dimy(EN B(x,R)) <n—a<n.

Since this holds for all 0 < a < Mu(FE), we obtain dimy (E N B(z, R)) <n — Mu(E). In
particular, if £ C R™ is bounded, then 0 < Mu(E) < n — dimy;(E).

On the other hand, the condition that dimy(E N B(x, R)) < ¢ < n for every x € E
and R > 0 is not sufficient for the weak porosity of E. For instance, if E C Z C R is not
weakly porous (e.g. E = N), then we have dimy(E N B(x, R)) = 0 < 1 = n for every
x € E and R > 0 since EN B(z, R) is a finite set.

See also [14] and the references therein for much more elaborate connections between
Minkowski dimensions and the integrability of distance functions.
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Fig. 1. The set E, with n = 2 and v = 0.7.

7. Example of a weakly porous set

The notions of weak porosity and Muckenhoupt exponent are interesting only if there
are (plenty of) weakly porous sets which are not porous. Below we construct a family
of such sets in R™ and determine the Muckenhoupt exponents for different values of the
parameter v > 0. These sets are inspired by the often used one-dimensional example
{77 : j € N}U{0} C R. For instance, in [5, Section 6] such sets were applied to
illustrate the so-called Assouad spectrum.

Theorem 7.1. Let n € N and v > 0. Then the set
E=|JoB(0,j7")u{0o} cR"
j=1

ny

is weakly porous with Mu(FE) = min{1, T )

The origin is included in E in order to have a compact set, but for our purposes this
does not make any essential difference. See Fig. 1 for an illustration of the set E.

By considering the balls B(0,577) as j — oo, it is straightforward to verify that E
is not porous, and hence dimp (F) = n. Moreover, special cases of the computations in
the proof of Theorem 7.1 below can be used to show that dimy (E) = max{n — 1, feeg 3
and so in combination with Theorem 7.1 we obtain for the set E the identity Mu(E) =
n — dimy (E); compare to Remark 6.8.
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For the proof of Theorem 7.1, we define St = 9B(0,t) and A% = B (0,t) \ B(0,s) for
every 0 < s < ¢, where we use the notation B(0,0) = (. We begin with the following

lemma.

Lemma 7.2. Let B = B(z, R) C R™ be a ball such that x € S*, with t = j~7 for some
j €N, and BNE = BN St Then (14) holds for B if and only if a < 1. Moreover, if
a <1, then the constant in (14) for B can be chosen to depend on n, v and « only.

Proof. We have hg(B) = R/2, and given 0 < r < hg(B), the set A] A ' N B satisfies

(2r) inf  H"TN(S'NB) < |ATTTABI<(2r) sup H'TH(S'NB), (20)
bE[t—r t+r] J bE[t—r t+7]

where H"~! is the normalized Hausdorff measure in R™. For each b € [t —r,t+7], the set

SN B is a hyperspherical cap within the sphere St whose angle «y, satisfies, by virtue
2

of the law of cosines, that cos(ap) = % Therefore

n (%) = (B0 ™

For a sufficiently small constant c(v), we have that r < ¢(y)hg(B) implies oy, ~ C(v) (£)
for every b € [t — r,t + 7]; here and below a ~ C(*)b means that C(x)7!b < a < C( )b.
This leads us to

H*L(SP N B) =~ C(n, )b (ap)" " = C(n, 7)o"} (R

n—1
~ n—1
) =char e

for every b € [t — r,t + r]. The sets A(J 3 +_, N B and AEJIB 7+T N B (meaning

AU — () in the case j = 1) are also contained in F, N B, but their measures are

G-1)"7—r
controlled by C(n, 'y)|AJﬂ . N B|. Bearing in mind this observation and (20) and (21),
we obtain

he(B)\“ |E, N B| _ Y4 r\l-a
< o — n « < _ X
(P22 ) B < om0 Bl < Gl (7)

If o <1, the last term is bounded by C(n,~, «). On the other hand, if o > 1, then (20)
and (21) yield

a 11—«
<hE7§B)> |E7|‘E|B| > C(TL,’)’,O[)Ra_n’rl_aRn_l > c(n,'y,a) (%) ,

and the last term tends to infinity as r — 0. O
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Proof of Theorem 7.1. First we show that (14) holds for every a with 0 < a <
min{1, & e T} This implies that Mu(E) > min{1, &= FEe L1 > 0, and thus E is weakly porous,
by Corollary 6.6.

Fix 0 < o <min{1, 5 } and let B = B(x, R) C R" be a ball with z € F, and let 0 <
r < hg(B). We suppose first that B is contained in B(0, 1). Let k be the largest number
in N and N be the smallest number in N U {oo} such that B € B (0,k7)\ B (0, N~7).
We interpret N=7 = 0 and B (0, N~7) = () when 0 € B. It is clear that N > k + 2,
since the center z of B belongs to E. In the case N = k 4+ 2 we have z € S®+tD ™" and
(14) follows immediately from Lemma 7.2. Hence we may assume that N > k + 3. Also,
observe that

and
R23((+1)7 = (N =1)7) 2 J(N —k=2)(N = 1) (23)

Now we study two cases.

(i) Suppose dist({0}, B) > diam(B). We have the estimates

(k+1)77 < sup|z| < dist({0}, B) + diam(B) < 2dist({0},B) < 2(N —1)7"
r€B

and so N — 1 < C(v)(k + 1). Then we have

N
|E,NB| <Y A B < Cn ZTR"1<C (n)(N —k+ 1)rR" 1.
j=k

The previous observation, together with (22) and (23), leads us to

(hE(B)) IET n B| S C(n,’Y)k_(1+’Y)a Tl_aR_l(N _ k‘—i— 1)

r
C’(n,’y)k_(1+7)a rl_a(N — 1)1+7
< O,k 4D ek 4 1)1
C(n,v) (rkl'*"y)lfa )

The last term is bounded by a constant C(n,~, a) because a < 1 and 7 < C(y)k=177.
(if) Now suppose dist({0}, B) < diam(B). Then we have

(2k)™7 < (k+1)77 < dist({0}, B) 4+ diam(B) < 2diam(B),
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and hence k=7 < 217 diam(B). Given 0 < r < hg(B), denote by jo € N the smallest
number for which

2r 24" = (Go+1)" = CMGo+1) "
Notice that k < jp and, by the definition of jj, we also have
r<(o—1)7" =4  <CH)Go—1)"" <Oy

This observation permits us to write

Jo—1
|E,NB| < [BNAJ_|[4B(0,j," +r)N B[+ > |41 0Bl
j=k+1
" jo—1 o
<o+« S r e
j=k

Using the inequalities 0 < o < min{1, L}, k=7 < C(7)R, e(y)jg 7 <r < C(y)jg 7,

and hp(B) < C(y)k~177, we obtain

) T~y

ey Jo—1
(hE(B)) |ETQB‘ §C<n7,y)knfy—(1+"/)ar—a< ’Y_;'_T + Z —’y+r 1)

r B
jo—1 )
< C(n,y)k™~ 47— (jnv+ Z V—H")Tk )
j=k
(147) Jo—1 L
< C(n, )((kj_l)m B el N (s )
j=k
Jjo—1
< C(n,v) + C(n,y)k™ e Z —(1—a)(1+7) (i T 7) -1
j=k

< C(n,7) + C(n,y)k 7~y " =m0 < O(n, ),
j=k

where the last inequality follows by comparing the series to f koo t=1=mr+047a gt bearing
in mind that o < The cases (i) and (ii) together show that (14) holds when B C
B(0,1).

Now suppose that B = B(z, R) is not contained in B(0,1). In the case r > l_gﬂ we
use the fact that n — a > 0 to estimate

(hE£B>) E]£B| < C(n)|Elr R < C(m)[B(0,r + -2 R~

1+’>’
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r

<0 (5

R)H“ < C(n,y,0).

In the sequel, we will assume that r < %

If z € E\S!, then R> hg(B) > c(v)R > c(y) and

|E-NB|<|E-NB(0,1)|+ |E-\ B(0,1)] < |E.NB(0,1)] + C(n)r.

Therefore

hE(B) a|ETmB‘ —a pa—n
( . ) B < C(n)(r + |E, N B(0,1)))r “R

S C(”? 77 a)Rain S C(n’ ,—Y7 a)?

where the second inequality follows by using the above case (ii) with B = B(0,1). If

x € S'and R > 1_gﬂ, then we can repeat the preceding argument to show that (14)
holds, and finally, if z € S* and R < 1*2_7 , then (14) holds by Lemma 7.2.

Next we show that Mu(E) < mm{l, e 711, The bound Mu(F) < 1 follows from
Lemma 7.2. Let a > 7%= and consider the ball B = B(0,1). Then hg(B) = =2 =
C(7). Given 0 < r < 15,

(jo+1)~7. Then r is comparable to ¢(y)j, '~ and the annuli {AJ,7 T}J0 | are pairwise

let jo € N be the smallest number for which 2r > j57

disjoint. For sufficiently small r, we thus have

r

<hE(B)> |E7£|B| > c(n,y,a)r™@ Z (G +r)" =G ="

> e(ny,@)r = Y (G )

j=2
. . _ —1
c(n, v, a)rt =g ((jo — 1) —r)"
1—a - —y  —y—1 n—l
c(n,y,)r " %jo (Jo | — Jo

> c(n,y, a)r' =gy Y

> ¢(n, v, @)} (1—a)(—1— ’Y)é y(n—1)
= ¢(n,", a)jéprv)a*m.

The last term goes to infinity as » — 0, since @ > =L. Hence (14) does not hold if

1+4+~"
o> ?, showing that Mu(F) < l’fw. O
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Fig. 2. First steps of the construction of the set E.

8. A,-distance set that is not weakly porous

In this section we construct a set £ C R such that dist(-, E)™* € A4, \ A; for all
0<a<landalll < p < oo;see Theorem 8.1. Recall that we abbreviate dg = dist(+, E).

Let Ey = {0,1} and write ¢, = 1 — 5~ for every n € N. Then, for every n € N, the
set E, is defined as £, = E,,_1 UE! |, UFE2_,, where:

n—1»

e F!

»_1 is a translation of E,,_; dilated by the factor ¢,, and whose first point is the last

point of E,,_1,

e E?_| is a translation of FE,_; whose first point is the last point of E}

n—1-

Finally, we define E* = (.2 E,, and E = ETU(—E™). Here —E™ is the reflection of E*+
with respect to the origin. We let Q,,, QL, and @Q? denote the smallest intervals containing
E,, EL, and E2 respectively, for every n € N U {0}. See Fig. 2 for an illustration of the
first steps of the construction.

During the rest of this section, we prove the following theorem for the set E.

Theorem 8.1. Let £ C R be as constructed above. Then it holds for all 0 < o < 1 and
all 1 < p < oo that dist(-, E)™* € A, \ A1. In particular, the set E is not weakly porous
and Mu(E) = 0.

Proof. Let 0 < @ < 1 and 1 < p < co. We show in Lemma 8.4 that dist(-, E)~* ¢ Ay,
and the claim dist(-, E)~* € A, follows from Lemma 8.7. Since dist(-, E)~* ¢ A; for
every a > 0, the set E is not weakly porous by Theorem 1.1, and thus Corollary 6.6
implies that Mu(E) =0. O

We say that a closed interval [ is an edge of F if the endpoints of I are two consecutive
points of E. For every n € N U {0}, the following properties hold:

e Each of the intervals @, Q., and Q2 has 3" edges of E, of which the middle ones

n?

for n > 1 have lengths equal to tits---t,, tita - - thtny1, and tits - - - L, respectively.
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e Each of the intervals Q,, and Q? contains translated copies of the intervals Qo, . .., @,
distributed in a palindromic manner: both @Q,, and Q? contain from left to right as
well as from right to left intervals Qf C @7 C --- C @}, that are translated copies of

Qo C Q1 C -+ C @, respectively.
e Each interval Q) contains from left to right as well as from right to left intervals

th+1Q§ C tny1Q7 C -+ - C th+1Q) that are translated copies of Qo C Q1 C --- C Qn
dilated by t,,41-

o dp =dg, on Q.

o |Qn] = (2+41,)|Qn-1] for every n € N.

Lemma 8.2. For every n € N and every > —1, we have

2 t1+5
][dE(x)ﬁ dr — ;Tz ][ dp(z)’ da.

n n—1

Proof. Let n € N and 8 > —1. By the construction of F and the definition of @,,, we

obtain
8 _ 8 _ B B B
/d - /dEn - / dEnfl_‘_ / dEylb_l + / dEz,—l
Qn Qn Q-1 Ql_, Q:_,

—@+ar) [ =) [ a

n—1 n—1

The claim follows from the above identity and the equation |Q,| = (2 + t,)|Qn-1]. O

Lemma 8.3. For every 0 < a < 1 and 1 < p < oo, there exists Ny € N, only depending
on « and p, for which

14-a_\ p—1
24 tl-e ! 24t 241, " a?p
log| —2— ) >— and log <—
2+t 12n 2 +t, 2+t 18(p — 1)n2

for every n > Ny.

Proof. Consider the functions

o N\ p—1
) = 1o 24t ) = 1o 2 4 ti-e\ (245"
T8\ Ty ) dWEeER I T 21t

for t > 0. These functions satisfy f(1) =0, f'(1) = =%, g(1) = ¢’'(1) = 0 and ¢"(1) =

9%1?—2)' Let ¢ € (0,1/2) be small enough so that |t — 1| < € implies
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PO - O - F Q-1 < Zle-1
and

o’p

=51

Taking Ny € N large enough so that Ny > 1/(2¢) it follows that |1 — ¢,| < e for every
n > Ny, and so the above estimates yield

lg(t) —g(1) =g’ (V)(t = 1) — 39" ()(t - 1) t—1J%

o} a’p

Lemma 8.4. For every 0 < a < 1, the weight d~ does not belong to A;.

Proof. Let Ny be the constant in Lemma 8.3 with, say, p = 2; the value of p is irrelevant
here. Applying repeatedly Lemma 8.2, we obtain, for every n € N,

n 2 + tlfoz n 2 + tl*Oé
dfa — k dfa > k fdfot.
][E (H 2+tk>][E—<H 2+tk> B
Qn k=1 Qo k=No Qo
By the first inequality of Lemma 8.3, we have
n 11—« 11—« n
2+t 2+1; @
o (1125550 ) = 3w (B80) > 3 45
k=N 2+t v 2+t h=No 12k
and it follows that
—« . o —«
Qn k=No Qo

Since the harmonic series diverges, we see that lim, . JCQ dzp™ = oo. On the other
hand, each @, contains edges of E of length equal to 1, and thus essinfqg, dz* = 2°.
We conclude that dp* ¢ A;. O

Lemma 8.5. For every0 < a <1 andl < p < 0o, there exists a constant C= a(oz,p) >0
such that

p—1

][dE(x)’o‘ du ][dE(x)% dz <C

QN QN

for every N € N U{0}.
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Proof. For N = 0 the claim is clear. Assume that N > 1. By Lemma 8.2,

p—1 o\ p—1 p—1
d=° gt (ry 2t 2t d=e qrt
s\ ) S\ )\ =) el f
QN QN n=1 n=1 Qo Qo
_a_\ p—1 p—1
T2t (2t ]ld—a ][dﬁ
S\ 2+, 2+t, B B
n= Qo Qo

Let No = No(a,p) € N be as in Lemma 8.3. Then
N 1— 142\ Pl
05 [ 2410\ (244, 7
0
gn:l 2+ t, 2+ 1,

No—1 1—a +5% N 2
2+t 2+1tn o
S Z log + Z P 27
2+t, 2+t, = 18(p— 1)n
n=~Ng

n=1

where the right-hand side is bounded from above by a constant C; = C}(a,p) indepen-
dent of N. Hence,

p—1

p—1
][d,ga ][df gecl][d;;“ ][df :
Qo

QN QN Qo

and the claim follows. O

Lemma 8.6. For every0 < a <1 and1 < p < oo, there exists a constant C = C(«a,p) > 0
such that

p—1

][ dp(z) "~ dz ][ dp(@)Tdz| <C (24)
Q Q

for every interval @ C [0, +00).

Proof. Observe that Q C Qn for some N € N. When @ contains at most 4 points of
E, it is straightforward to see that the distance dg satisfies (24) for @ and with some
constant C; only depending on « and p. This includes the case where () is contained in
Q1.

We prove by induction on N that dp satisfies (24) for every interval Q C Qx with the
constant C' = max{lZpa, C4}, where C is the constant in Lemma 8.5. The case N = 1
has already been proved since C' > (. Hence, we assume that the claim holds for all
n=1,...,N —1, and we need to verify the claim for all intervals () contained in @ .
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The case where QQ C @ n—1 follows from the induction hypothesis. Thus we may and
do assume that @ is not contained in Qn_1. We do a case study.

(i): @ is contained in one of the intervals Q% _,, Q% _;. In the first case, the interval
Q C QL _, can be written as Q = tyQ*, where Q* is a translation of an interval @
contained in Qy—1. Then |Q| = tx[Q| and [, 47 = 1ft? Ja d? for every 8 > —1. This
gives

p—1 p—1
][d;‘ ][d;;fj - t;,o‘][dg" ti ][dgl
Q Q 1) Q
p—1
= ][dga ][df;j <c,
Q Q

where the last inequality holds by the induction hypothesis. In the second case we have
Q C Q% _,, and inequality (24) follows from the induction hypothesis since @ is now
translation of an interval @) contained in Qn_1.

(ii): @ intersects both Qny_1 and Q% _;. This implies that @ contains Q% _;, and so

Q] > |QN_1| = tn|Qn-1] =

tN 1
> — .
2+tN|QN\ > 6|QN\

Using this estimate together with Lemma 8.5, we obtain

p—1 p—1
dz fd”’l < —/d_o‘ —/d”’1

][ g P Qnl ) F Qnl ) P

Q Q Q Q

p—1

< 6P ][ 7 ][d;;fj <6°C.

QN QN

(iii): @ contains one of the intervals Qn_1, QN_;, Q%_;- In this case |Q| >
tN|Qn-1| = §|Qn/|. Using that Q@ C Qn, the desired estimate follows as in the case (ii).

(iv): Assume that QNQn—_1 # 0 # QNQL_, but QNQ%_, = 0. By the construction
of Qn—_1, we can find m € {-1,0,...,N — 2} so that @}, C QN Qn—1 C Q},;1, where
Q;, and Q7 are translations of @, and Q41 respectively, and we use the notation
Q*; = 0. This implies |QNQn_1| > |Qs|. Similarly, by the construction of Q%;_;, there
exists n € {—1,0,..., N —2} so that tyQ}, C QNQKN_; C tNQ} 1, where Q and Q7
are translations of @, and @1, respectively, and so |Q N QY _,| > tn|Qy|. Now define
M = max{m,n}. If M = —1, then @ intersects at most 2 edges of E, and the desired
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estimate follows with the constant C; from the beginning of the proof. If M > 0, then
we have Q NQn—1 C Q%41 and QN QY _; CtnQjs 4, and so

/d@g /d?Eth}V*B / d§:(1+t}v+5> / dj, <2 / dp,
Q

Qm+1 Qm+1 QMm+1 QMm+1

for every > —1. On the other hand,

QI =1QNQNn_1|+ QN QN_1| > |Qm| + tn5|Qn]

> tn|Qu| = #A;\M|QM+1| > %
This leads us to
p—1 p—1
][dga ][d;;fj <197 ][ d° ][ | <12vC,
Q Q Qm+1 Qm+1

where the last inequality follows from Lemma 8.5.

(v): Assume that QNQ%_; #0 # QNQ%_, but QNQn—1 = 0. Recall that Q3 _, is a
translation of () y_; that contains, from left to right, translated copies Qf C Q7 C --- C
QN_2 CQy_1 0 Qo C Q1 C -+ C Qn_2 C Qn_1, respectively. In addition, Q}_,
contains, from right to left, translated copies tNQN_1 D INQN_o D - D ENQ] D tNQ
of Qn_1 D Qn_2D -+ D Q1 D Qp dilated by tx. Now, the argument is identical to the
case (iv). O

Lemma 8.7. Let 0 < w < 1 and 1 < p < oo, and let C = C(«a,p) be the constant in

Lemma 8.6. Then

p—1
][dE(:c)_a da ][dE(x)ﬁ da <orC (25)

Q Q

for every interval Q C R, and so dz* € A,.

Proof. Given an interval Q C R, we write QT = Q N[0, +00) and Q~ = Q N (—o0, 0].
Let Q* be the largest of the intervals @ and —Q~, that is, Q* € {QT,—Q~} and
QT U—-Q~ C Q*. Here —@Q~ denotes the reflection of Q~ with respect to the origin.
Because E is symmetric with respect to the origin, we can write

[az= [ [ = [azee [ ae<n [
Q Q* Q- QT Q*

Q-
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The same argument shows that fQ dpt < 2]@* dp . Because |Q| > |Q*| and Q* is
contained in [0, 00), we can use Lemma 8.6 to conclude that

p—1 p—1

][dga ][dfl §2”][d;3°‘ ][dﬁ <?C. O

Q Q Q* Q*
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