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1. Introduction

Let E � R
n, n ∈ N, be a nonempty set. We are interested in the Muckenhoupt Ap

properties of the weights

w(x) = wα,E(x) = dist(x, E)−α, x ∈ R
n,

where α ∈ R. Previously, these properties have been studied, for instance, in [1–4,8,12]. 

It is known, by [4, Corollary 3.8(b)], that if the set E is porous, then wα,E belongs to 

the Muckenhoupt class A1 if and only if 0 ≤ α < n − dimA(E); here dimA(E) is the 

Assouad dimension of E. Since dimA(E) < n if and only if E ⊂ R
n is porous (see e.g. [11, 

Section 5]), it follows in particular that for each porous set E ⊂ R
n there exists some 

α > 0 such that wα,E is an A1 weight.

The results in [4] do not apply for nonporous sets, but the bound 0 ≤ α < n −dimA(E)

for admissible α might suggest that wα,E cannot be an A1 weight for any α > 0 if E ⊂ R
n

is not porous, since then dimA(E) = n. However, Vasin showed in [13] that if E is a 

subset of the unit circle T ⊂ R
2, then the weight wα,E belongs to the class A1(T ), 

for some α > 0, if and only if E is weakly porous; see Section 3 for the definition and 

commentary concerning this condition.

The definition of weak porosity in [13] is rather specific to the one-dimensional case. 

Our first goal in this paper is to extend both this condition and the related characteriza-

tion of the A1 property of the weight dist(·, E)−α. The underlying ideas are in principle 

similar to those in Vasin [13], but the higher dimensional case requires several nontriv-

ial modifications. In particular, we use dyadic definitions and tools, including a type of 

dyadic iteration, that lead to efficient and natural proofs.

Our first main result can be stated as follows.

Theorem 1.1. Let E � R
n be a nonempty set. Then dist(·, E)−α ∈ A1, for some α > 0, 

if and only if E is weakly porous.

One consequence of Theorem 1.1 is that if E � R
n is weakly porous, then dist(·, E)−α

is locally integrable for some α > 0. This implies that the upper Minkowski dimension 

of E ∩B(x, r) is strictly less than n for every x ∈ R
n and r > 0; see Remark 6.8 for more 

details.

Theorem 1.1 is quantitative in the sense that α and the constants in the A1 and 

weak porosity conditions only depend on each other and n. More precise dependencies 

are given in Lemma 4.1 and Lemma 5.3, which prove the necessity and sufficiency in 

Theorem 1.1, respectively.

A closely related question is to quantify the precise range of exponents α ∈ R for 

which the weight wα,E(x) = dist(x, E)−α belongs to the Muckenhoupt class Ap for a 

given 1 ≤ p < ∞. If E ⊂ R
n is porous, then it follows from [4, Corollary 3.8] that 

wα,E ∈ A1 if and only if 0 ≤ α < n − dimA(E), and wα,E ∈ Ap, for 1 < p < ∞, if and 

only if
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(1 − p)(n − dimA(E)) < α < n − dimA(E).

In this paper we obtain the following extension of [4, Corollary 3.8] for weakly porous sets, 

given in terms of the Muckenhoupt exponent Mu(E) that we introduce in Definition 6.1. 

For a porous set E ⊂ R
n it holds that Mu(E) = n − dimA(E), see Section 6 for details.

Theorem 1.2. Assume that E ⊂ R
n is a weakly porous set. Let α ∈ R and define w(x) =

dist(x, E)−α for every x ∈ R
n. Then

(i) w ∈ A1 if and only if 0 ≤ α < Mu(E).

(ii) w ∈ Ap, for 1 < p < ∞, if and only if

(1 − p) Mu(E) < α < Mu(E). (1)

If we omit the special case α = 0, in which the connection to the geometry of E is 

lost, then in part (i) of Theorem 1.2 the assumption that E is weakly porous is actually 

superfluous, and we have the following full characterization.

Theorem 1.3. Assume that E ⊂ R
n is a nonempty set. Let α ∈ R \ {0} and define 

w(x) = dist(x, E)−α for every x ∈ R
n. Then w ∈ A1 if and only if 0 < α < Mu(E).

By combining Theorems 1.1 and 1.3, we see that E is weakly porous if and only if 

Mu(E) > 0; cf. Corollary 6.6 and Remark 6.7 for related comments.

Theorem 1.3 raises the question whether also (1) could provide a full characterization 

of wα,E ∈ Ap when α �= 0 and 1 < p < ∞. In Section 8 we show that this is not the case, 

by giving a nontrivial construction of a set E ⊂ R
n which is not weakly porous (whence 

Mu(E) = 0) but still wα,E ∈ Ap for all 0 < α < 1 and all 1 < p < ∞. This set illustrates 

the delicate interplay between the Muckenhoupt conditions and the distance functions, 

and also gives a novel type of an example of weights which are in Ap for all 1 < p < ∞
but not in A1. Nevertheless, a full characterization of sets E ⊂ R

n for which wα,E ∈ Ap

for some (or all) 1 < p < ∞ remains an open question.

Another interesting consequence of Theorem 1.2 is the following strong self-

improvement property of Ap-distance weights for weakly porous sets: if α ≥ 0 and 

E is weakly porous, then wα,E ∈ Ap for some 1 < p < ∞ (i.e. wα,E ∈ A∞) if and only 

if wα,E ∈ A1. The example in Section 8 shows that this is not true for general sets.

The outline for the rest of the paper is as follows. In Section 2 we introduce notation 

and recall some definitions and properties of dyadic decompositions and Muckenhoupt 

weights. Weakly porous sets are defined in Section 3, where we also examine some of 

their basic properties. Theorem 1.1 is proved in Sections 4 and 5. Section 6 contains 

the definition of the Muckenhoupt exponent and the proofs of Theorems 1.2 and 1.3, 

together with some related results. In Section 7, we give an example of a weakly porous 

set E ⊂ R
n which is not porous and compute explicitly the Muckenhoupt exponent of 
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E. Finally, in Section 8 we construct the set E ⊂ R which is not weakly porous, but still 

wα,E ∈ Ap for all 0 < α < 1 and 1 < p < ∞.

2. Preliminaries

Throughout this paper, we consider Rn equipped with the Euclidean distance and the 

n-dimensional Lebesgue (outer) measure. The diameter of a set E ⊂ R
n is denoted by 

diam(E) and |E| is the Lebesgue (outer) measure of E. If x ∈ R
n, then dE(x) = dist(x, E)

denotes the distance from x to the set E, and dist(E, F ) is the distance between the sets 

E and F , that is,

dist(E, F ) = inf{|x − y| : x ∈ E, y ∈ F}.

The open ball with center x ∈ R
n and radius r > 0 is

B(x, r) = {y ∈ R
n : |x − y| < r}.

In this paper, we only consider cubes which are half-open and have sides parallel to 

the coordinate axes. That is, a cube in Rn is a set of the form

Q = [a1, b1) × · · · × [an, bn),

with side-length �(Q) = b1 − a1 = · · · = bn − an. For x ∈ R
n and r > 0, the cube with 

center x and side length 2r is

Q(x, r) =
{

y ∈ R
n : −r ≤ yj − xj < r for all j = 1, . . . , n

}
. (2)

Clearly,

|Q(x, r)| = (2r)n and diam(Q(x, r)) = (2
√

n)r.

The dyadic decomposition of a cube Q0 ⊂ R
n is

D(Q0) =

∞⋃

j=0

Dj(Q0),

where each Dj(Q0) consists of the 2jn pairwise disjoint (half-open) cubes Q, with side 

length �(Q) = 2−j�(Q0), such that

Q0 =
⋃

Q∈Dj(Q0)

Q

for every j = 0, 1, 2, . . .. The cubes in D(Q0) are called dyadic cubes (with respect to 

Q0) and they satisfy following properties:
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(D1) Let j ≥ 1 and Q ∈ Dj(Q0). Then there exists a unique dyadic cube πQ ∈ Dj−1(Q0)

satisfying Q ⊂ πQ. The cube πQ is called the dyadic parent of Q, and Q is called 

a dyadic child of πQ.

(D2) Every dyadic cube Q ∈ D(Q0) has 2n dyadic children.

(D3) Nestedness property: P ∩ Q ∈ {P, Q, ∅} for every P, Q ∈ D(Q0).

A locally integrable function w in R
n, with w(x) > 0 for almost every x ∈ R

n, is 

called a weight in Rn.

Definition 2.1. A weight w in Rn belongs to the Muckenhoupt class A1 if there exists a 

constant C such that

−
ˆ

Q

w(x) dx ≤ C ess inf
x∈Q

w(x), (3)

for every cube Q ⊂ R
n. The smallest possible constant C in (3) is called the A1 constant 

of w, and it is denoted by [w]A1
.

Above, we have used the notation

−
ˆ

A

w(x) dx =
1

|A|

ˆ

A

w(x) dx

for the mean value integral over a measurable set A ⊂ R
n with 0 < |A| < ∞.

For 1 < p < ∞, the class Ap is defined as follows.

Definition 2.2. A weight w in Rn belongs to the Muckenhoupt class Ap, for 1 < p < ∞, 

if there exists a constant C such that

−
ˆ

Q

w(x) dx

⎛
¿ −
ˆ

Q

w(x)
1

1−p dx

À
⎠

p−1

≤ C (4)

for every cube Q ⊂ R
n. The smallest possible constant C in (4) is called the Ap constant 

of w, and it is denoted by [w]Ap
.

We recall that the inclusions A1 ⊂ Ap ⊂ Aq hold for 1 ≤ p ≤ q. Also, it is immediate 

that w ∈ Ap, for 1 < p < ∞, if and only if w1−p′ ∈ Ap′ , and then [w1−p′

]Ap′ = [w]
1/(p−1)
Ap

. 

Here p′ = p
p−1 is the conjugate exponent of 1 < p < ∞. See [6, Chapter IV] for an 

introduction to the theory of Muckenhoupt weights.

The following elementary property will be useful in Section 6.

Lemma 2.3. Let w ∈ Ap for some 1 < p < ∞. If wβ ∈ A1 for some β > 0, then w ∈ A1.
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Proof. Let q ≥ p be large enough so that s = 1
q−1 ≤ β and w ∈ Aq. Then we have 

ws ∈ A1 as well, thanks to Jensen’s inequality. The Aq condition on a cube Q ⊂ R
n for 

w yields

−
ˆ

Q

w ≤ [w]Aq

⎛
¿ −
ˆ

Q

w
1

1−q

À
⎠

1−q

= [w]Aq

⎛
¿ −
ˆ

Q

w−s

À
⎠

−1/s

≤ [w]Aq

⎛
¿ −
ˆ

Q

ws

À
⎠

1/s

≤ [w]Aq

(
[ws]A1

ess inf
Q

ws

)1/s

= [w]Aq
[ws]

1/s
A1

ess inf
Q

w,

and thus w ∈ A1. �

3. Weakly porous sets

Recall that a set E ⊂ R
n is porous if there exists a constant c > 0 such that for every 

x ∈ R
n and r > 0 there exists y ∈ R

n satisfying B(y, cr) ⊂ B(x, r) \ E. Equivalently, E

is porous if and only if there is a constant c > 0 such that for all cubes Q0 ⊂ R
n there 

is a dyadic subcube Q ∈ D(Q0) such that Q ∩ E = ∅ and |Q| ≥ c|Q0|.
In [13] Vasin defined weak porosity in the unit circle T ⊂ R

2 as follows: a set E ⊂ T

is weakly porous, if there are constants c, δ > 0 such that if I ⊂ T is an arbitrary arc, 

then

∑
|Jk| ≥ c|I|,

where the sum is taken over all (pairwise disjoint) subarcs Jk ⊂ I that contain no points 

of E and satisfy |Jk| ≥ δ|J |, where J ⊂ I is a lengthwise largest subarc without points 

of E. The subarcs that do not intersect E are called free arcs.

We consider an extension of the above definition to Rn.

Definition 3.1. Let E ⊂ R
n be a nonempty set.

(i) When P ⊂ R
n is a cube, a dyadic subcube Q ⊂ D(P ) is called E-free if E∩Q = ∅. We 

denote by M(P ) ∈ D(P ) a largest E-free dyadic subcube of P , that is, �(M(P )) ≥
�(R) if R ∈ D(P ) is an E-free dyadic subcube of P . Such a cube need not be unique, 

but we fix one of them.

(ii) The set E ⊂ R
n is weakly porous, if there are constants 0 < c, δ < 1 such that for 

all cubes P ⊂ R
n there exist N ∈ N and pairwise disjoint E-free cubes Qk ∈ D(P ), 

k = 1, . . . , N , such that |Qk| ≥ δ|M(P )| for all k = 1, . . . , N and

N∑

k=1

|Qk| ≥ c|P |. (5)
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Instead of dyadic cubes, also general subcubes of P could be used in the definition of 

weak porosity. However, the dyadic formulation is convenient from the point of view of 

our proofs. Notice also that inequality (5) can be written as

∣∣∣∣∣
N⋃

k=1

Qk

∣∣∣∣∣ ≥ c|P |,

since the cubes Q1, . . . , QN are pairwise disjoint. Hence, the weak porosity of a set E

can roughly be described as follows: for every cube P , the union of those disjoint E-free 

subcubes that are not too small (compared to the largest E-free cube in P ) has measure 

comparable to that of P .

The following properties are easy to verify using the definition of weak porosity:

• If E ⊂ R
n is porous, then E is weakly porous.

• E ⊂ R
n is weakly porous if and only if the closure E is weakly porous.

• If E ⊂ R
n is weakly porous, then |E| = 0. This is a consequence of the Lebesgue 

differentiation theorem.

• Weak porosity implicitly implies that for every cube P ⊂ R
n there exists an E-free 

dyadic subcube Q ∈ D(P ).

Let E ⊂ R
n be a nonempty set. Given a cube P ⊂ R

n and δ > 0, we write

F̂δ(P ) = {Q ∈ D(P ) : |Q| ≥ δ|M(P )| and Q ∩ E = ∅}.

We denote by Fδ(P ) the maximal subfamily of the cubes in F̂δ(P ). That is, each R ∈
F̂δ(P ) is contained in some cube Q ∈ Fδ(P ) and if Q ∈ Fδ(P ), then Q is not strictly 

contained in another cube in F̂δ(P ). Observe that the cubes in Fδ(P ) are pairwise 

disjoint, since two dyadic cubes are either disjoint, or one of them is strictly contained 

in the other one. The weak porosity of E can now be formulated in terms of the sets Fδ, 

since E is weakly porous if and only if there are constants 0 < c, δ < 1 such that

∑

Q∈Fδ(P )

|Q| ≥ c|P | for all cubes P ⊂ R
n. (6)

Indeed, it is clear that (6) implies weak porosity of E. Conversely,

c|P | ≤
N∑

k=1

|Qk| ≤
∑

Q∈Fδ(P )

N∑

k=1

1Qk⊂Q|Qk| ≤
∑

Q∈Fδ(P )

|Q|,

whenever c, δ, P and Qk, k = 1, . . . , N , are as in Definition 3.1 (ii).

Part (ii) of the next lemma will be important when proving that weak porosity implies 

the A1-property for dist(·, E)−α, for some α > 0; see the proof of Lemma 5.2.



8 T.C. Anderson et al. / Journal of Functional Analysis 287 (2024) 110558

Lemma 3.2. Assume that E ⊂ R
n is weakly porous set, with constants 0 < c, δ < 1. Then 

the following statements hold.

(i) Assume that Q ⊂ R are two cubes such that E ∩Q �= ∅ and |M(Q)| < 4−nδ|M(R)|. 
Then

|Q| ≤ (1 − 2−nc)|R|.

(ii) Assume that Q ⊂ R are two cubes such that |R| = 2n|Q|. Then there exists a 

number k = k(n, c) ∈ N such that

|M(R)| ≤ 4nkδ−k|M(Q)|.

(iii) Assume that Q ⊂ R are two cubes. Then there exist constants C = C(n, c, δ) and 

σ = σ(n, c, δ) > 0 such that

|M(R)| ≤ C

(
�(R)

�(Q)

)σ

|M(Q)|.

Proof. We first remark that the dyadic grids D(Q) and D(R) need not be compatible, 

and this is taken into account in the arguments below.

First we show (i). Fix S ∈ Fδ(R). We claim that the center xS ∈ R of S belongs to 

R \ Q. Assume the contrary, namely, that xS ∈ Q. Since S is E-free and Q intersects E, 

there exists an E-free dyadic cube T ∈ D(Q) such that �(T ) ≥ �(S)/4. It follows that

|M(Q)| ≥ |T | ≥ 4−n|S| ≥ 4−nδ|M(R)|.

This is a contradiction, since |M(Q)| < 4−nδ|M(R)| by assumption. We have shown 

that xS ∈ R \ Q, and therefore there exists a cube S′ ⊂ S \ Q such that |S′| = 2−n|S|. 
Since {S′ : S ∈ Fδ(R)} is a pairwise disjoint family of cubes contained in R \ Q, we 

obtain that

|R| − |Q| = |R \ Q| ≥
∑

S∈Fδ(R)

|S′| = 2−n
∑

S∈Fδ(R)

|S|.

By weak porosity, the last term above is bounded below by 2−nc|R|, and reorganizing 

the terms gives (1 − 2−nc)|R| ≥ |Q| as claimed in (i).

Next we show (ii). If E ∩ Q = ∅, then

|M(R)| ≤ |R| = 2n|Q| ≤ 4nδ−1|Q| = 4nδ−1|M(Q)|.

In this case, we may take k = 1. In the sequel we assume that E ∩ Q �= ∅. Choose 

k = k(n, c) such that 2n/k < 1
1−2−nc . Then there exists a finite sequence
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Q = R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ Rk = R

of cubes such that |Ri| · |Ri−1|−1 = 2n/k. Observe that

2n = (2n/k)k =

k∏

i=1

|Ri|
|Ri−1| =

|Rk|
|R0| =

|R|
|Q| .

Fix 1 ≤ i ≤ k. We have ∅ �= E ∩ Q ⊂ E ∩ Ri−1 and Ri−1 ⊂ Ri. Moreover,

(1 − 2−nc)|Ri| = (1 − 2−nc)2n/k|Ri−1| < |Ri−1|

and therefore the contrapositive of part (i) implies that

|M(Ri−1)| ≥ 4−nδ|M(Ri)|

for all i = 1, 2, . . . , k. This allows us to conclude that

|M(R0)| ≥ 4−nδ|M(R1)| ≥ (4−nδ)2|M(R2)| ≥ · · · ≥ (4−nδ)k|M(Rk)|.

The desired conclusion follows, since R0 = Q and Rk = R.

Finally, we prove (iii). An easy computation shows that R ⊂ λQ, for λ = 3�(R)/�(Q). 

Here λQ denotes the cube with the same center as Q and side-length equal to λ�(Q). 

Then, for

m = 1 +

⌊
log2

(
3�(R)

�(Q)

)⌋
,

we have that R ⊂ 2mQ. Hence |M(R)| ≤ C(n)|M(2mQ)|. Denote by C1 = 4nkδ−k the 

constant in (ii). Then, by iterating (ii) we obtain

|M(2mQ)| ≤ Cm
1 |M(Q)| ≤ C

1+log2

(
3�(R)
�(Q)

)

1 |M(Q)|

= C(n, c, δ)

(
�(R)

�(Q)

)σ

|M(Q)|,

where σ = σ(n, c, δ). The claim (iii) follows by combining the above estimates. �

Example 3.3. Unlike for porous sets, inclusions do not preserve weak porosity: there are 

sets F ⊂ E such that E is weakly porous but F is not. For instance, Z is clearly a weakly 

porous subset of R, but N ⊂ Z is not a weakly porous subset of R. Indeed, assume for 

the contrary that N is weakly porous in R with constants 0 < c, δ < 1. Consider cubes 

Qj = [0, 2j), j ∈ N. Observe that Qj ⊂ Rj = [−2j , 2j). Lemma 3.2 (ii) implies that there 

is a constant C = C(c, δ) > 0 such that 2j =|M(Rj)|≤ C|M(Qj)| = C. By choosing j

large enough, we get a contradiction.
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4. A1 implies weak porosity

This section and the following Section 5 contain the proof of Theorem 1.1. We begin 

by proving the necessity part of the equivalence in the theorem, that is, if dist(·, E)−α

is an A1 weight, then E is a weakly porous set. The straight-forward proof illustrates in 

a nice way the connection between the A1 condition and the definition of weak porosity.

Lemma 4.1. Let E ⊂ R
n be a nonempty set, let α > 0, and write w(x) = dist(x, E)−α

for all x ∈ R
n. If w ∈ A1, then E is weakly porous with constants depending on n, α

and [w]A1
.

Proof. Since dist(·, E) = dist(·, E) and E is weakly porous if and only if E is weakly 

porous, quantitatively, we may assume that E is closed. Assume that w ∈ A1 and fix 

0 < δ < 1 to be chosen later. Let P ⊂ R
n be a cube and write � = �(M(P )) for the 

sidelength of M(P ).

Observe that the set E is of measure zero, since w is locally integrable and w(x) = ∞
in E. Since E is closed, for every x ∈ P \ E we have dist(x, E) > 0 and therefore there 

exists an E-free dyadic cube Q ∈ D(P ) such that x ∈ Q. As a consequence, we can write 

P \ E as a disjoint union of maximal E-free dyadic cubes Q ∈ D(P ). Let x ∈ P \ E

such that x �∈ ⋃Q∈Fδ(P ) Q. Then the maximal E-free dyadic cube Q ∈ D(P ) containing 

x satisfies

|Q| < δ|M(P )| = δ�n.

Since πQ ∈ D(P ) is not E-free, we have

dist(x, E) ≤ diam(πQ) < δ1/n2
√

n�.

It follows that

�−α < C(n, α)δα/n dist(x, E)−α

for every x ∈ (P \ E) \ ⋃Q∈Fδ(P ) Q. By integrating, and using the fact that E is of 

measure zero, we obtain

�−α
|P \⋃Q∈Fδ(P ) Q|

|P | ≤ C(n, α)δα/n 1

|P |

ˆ

P \
⋃

Q∈Fδ(P ) Q

dist(x, E)−α dx

≤ C(n, α)δα/n −
ˆ

P

dist(x, E)−α dx

≤ C(n, α)δα/n[w]A1
ess inf

x∈P
dist(x, E)−α.
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Denote by y the center of M(P ) ⊂ P . Then

ess inf
x∈P

dist(x, E)−α ≤ dist(y, E)−α ≤ 2α�(M(P ))−α = 2α�−α.

Simplifying, we get

|P | −
∑

Q∈Fδ(P )

|Q| =

∣∣∣∣P \
⋃

Q∈Fδ(P )

Q

∣∣∣∣ ≤ C(n, α)δα/n[w]A1
|P |.

It remains to choose δ = δ(n, α, [w]A1
) > 0 so small that C(n, α)δα/n[w]A1

< 1, and 

condition (6) follows. �

5. Weak porosity implies A1

Next, we turn to the sufficiency part of the equivalence in Theorem 1.1, that is, the 

weak porosity of E implies that dist(·, E)−α is an A1 weight; see Lemma 5.3. The proof 

applies an iteration scheme, which is built on an efficient use of the dyadic definition 

of weak porosity; see the proof of Lemma 5.2. The following sets Fk
δ and Gk

δ will be 

important in the iteration.

Fix a weakly porous closed set E ⊂ R
n with constants 0 < c, δ < 1 and a cube 

P0 ⊂ R
n. Recall that Fδ(P0) is the maximal subfamily of the collection

F̂δ(P0) =
{

Q ∈ D(P0) : |Q| ≥ δ|M(P0)| and Q ∩ E = ∅
}

.

We will need also the complementary family Gδ(P0), which is defined to be the maximal 

subfamily of the collection

Ĝδ(P0) =

{
P ∈ D(P0) : P ⊂ P0 \

⋃

Q∈Fδ(P0)

Q

}
.

Due to the lattice properties of dyadic cubes, we have |Q| ≥ δ|M(P0)| for all Q ∈ Gδ(P0). 

Indeed, such a cube Q ∈ Gδ(P0) cannot be contained in any cube belonging to Fδ(P0), 

but, on the other hand, the dyadic parent πQ ∈ D(P0) of Q must intersect some R ∈
Fδ(P0). Consequently R � πQ, and

|Q| = 2−n|πQ| ≥ |R| ≥ δ|M(P0)|.

We let G0
δ = {P0}, F1

δ = Fδ(P0), G1
δ = Gδ(P0),

F2
δ =

⋃

R∈G1
δ

Fδ(R), G2
δ =

⋃

R∈G1
δ

Gδ(R),

and in general, for k = 3, 4, . . ., we define
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Fk
δ =

⋃

R∈Gk−1
δ

Fδ(R), Gk
δ =

⋃

R∈Gk−1
δ

Gδ(R).

Lemma 5.1. Assume that E ⊂ R
n is a weakly porous closed set with constants 0 < c, δ <

1. Let P0 ⊂ R
n be a cube, and let sets Fk

δ , for k = 1, 2, . . ., be as above. Then

P0 \ E =

∞⋃

k=1

⋃

Q∈Fk
δ

Q.

Proof. Let x ∈ P0 \ E. Because E is closed, there exists a dyadic cube Q ∈ D(P0) such 

that x ∈ Q and Q ∩ E = ∅. We claim that Q ⊂ ⋃∞
k=1

⋃Fk
δ . Suppose, for the sake 

of contradiction, that Q is not a subset of this union. Because Q �⊂ ⋃F1
δ , there exists 

R1 ∈ G1
δ containing Q. Now Q �⊂ ⋃Fδ(R1), as Q �⊂ ⋃F2

δ . Thus there exists R2 ∈ Gδ(R1)

containing Q, and again, Q �⊂ ⋃Fδ(R2). Repeating this argument, for every k we obtain 

cubes

R1 ⊃ R2 ⊃ · · · ⊃ Rk ⊃ Q

with Rj ∈ Gδ(Rj−1) and such that Q �⊂ ⋃Fδ(Rk). Also, because each Rj is strictly 

contained in Rj−1, we must have |Rj | ≤ 2−n|Rj−1|. Then Q satisfies

|Q| < δ|M(Rk)| ≤ δ|Rk| ≤ δ

2n(k−1)
|R1| ≤ δ

2nk
|P0|.

Letting k → ∞, we derive a contradiction. �

Lemma 5.2. Assume that E ⊂ R
n is a weakly porous closed set with constants 0 < c, δ <

1. Let P0 ⊂ R
n be a cube and let sets Fk

δ , for k = 1, 2, . . ., be as above. Then there are 

constants 0 < γ = γ(c, δ, n) < 1
n and C = C(c, δ, n) > 0 such that

∞∑

k=1

∑

Q∈Fk
δ

|Q|1−γ ≤ C|P0||M(P0)|−γ .

Proof. Let 0 < γ < 1
n , whose exact value will be fixed later; we remark that both 

inequalities γ > 0 and γ < 1
n are needed in Lemma 5.3 below. By the definition of Fk

δ , 

we obtain

∑

Q∈Fk
δ

|Q|1−γ ≤
∑

R∈Gk−1
δ

∑

Q∈Fδ(R)

δ−γ |M(R)|−γ |Q|

≤ δ−γ
∑

R∈Gk−1
δ

|M(R)|−γ |R|,
(7)

for every k = 1, 2, . . ..



T.C. Anderson et al. / Journal of Functional Analysis 287 (2024) 110558 13

Next, we show by induction that

∑

R∈Gk−1
δ

|M(R)|−γ |R| ≤ ((1 − c)(σδ)−γ)k−1|M(P0)|−γ |P0| (8)

for every k ∈ N. If k = 1, this is immediate since Gk−1
δ = {P0}.

Then we assume that (8) holds for some k ∈ N. Fix R ∈ Gk−1
δ and let P ∈ Gδ(R). 

Since P is a maximal dyadic cube in R \⋃Q∈Fδ(R) Q and Fδ(R) �= ∅ by weak porosity, 

the dyadic parent πP intersects a cube Q in Fδ(R).

Since πP, Q ∈ D(R), we have πP ⊂ Q or Q ⊂ πP by the nestedness property (D3) 

of dyadic cubes. Clearly πP ⊂ Q is not possible, as this would lead to the contradiction 

P ⊂ πP ⊂ Q ⊂ ⋃
Q′∈Fδ(R) Q′. Therefore Q ⊂ πP . By Lemma 3.2 (ii), there exists a 

constant σ = σ(c, δ, n) > 0 such that

|M(P )| ≥ σ|M(πP )|.

Using also the definition of Fδ(R), we get

|M(P )| ≥ σ|M(πP )| ≥ σ|Q| ≥ σδ|M(R)|.

On the other hand, since E is weakly porous, we have by (6) that

∑

P ∈Gδ(R)

|P | =

(
|R| −

∑

Q∈Fδ(R)

|Q|
)

≤ (1 − c)|R|.

Applying the two estimates above and the induction hypothesis (8) for k, we obtain

∑

P ∈Gk
δ

|M(P )|−γ |P | ≤
∑

R∈Gk−1
δ

∑

P ∈Gδ(R)

(σδ)−γ |M(R)|−γ |P |

≤ (σδ)−γ
∑

R∈Gk−1
δ

|M(R)|−γ
∑

P ∈Gδ(R)

|P |

≤ (σδ)−γ
∑

R∈Gk−1
δ

|M(R)|−γ(1 − c)|R|

≤ (1 − c)(σδ)−γ((1 − c)(σδ)−γ)k−1|M(P0)|−γ |P0|
≤ ((1 − c)(σδ)−γ)k|M(P0)|−γ |P0|.

This proves (8) for k + 1, and thus the claim holds for every k ∈ N, by the principle of 

induction.

Now choose γ = γ(c, δ, n) ∈ (0, 1/n) to be such that (1 − c)(σδ)−γ < 1. Observe that

∞∑

k=1

((1 − c)(σδ)−γ)k−1 = C(c, σ, δ, γ) = C(c, δ, n) < ∞.
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Hence, by using also (7) and (8), we have

∞∑

k=1

∑

Q∈Fk
δ

|Q|1−γ ≤
∞∑

k=1

δ−γ
∑

R∈Gk−1
δ

|M(R)|−γ |R|

≤
∞∑

k=1

δ−γ((1 − c)(σδ)−γ)k−1|M(P0)|−γ |P0|

≤ δ−γ |M(P0)|−γ |P0|
∞∑

k=1

((1 − c)(σδ)−γ)k−1

≤ C(c, δ, n)|P0||M(P0)|−γ . �

Lemma 5.3. Assume that E ⊂ R
n is a weakly porous set with constants 0 < c, δ < 1. Then 

there are constants 0 < α = α(c, δ, n) < 1 and C = C(n, c, δ) such that dist(·, E)−α ∈
A1(Rn) and [dist(·, E)−α]A1

≤ C.

Proof. Observe that the closure E is also weakly porous. Since dist(·, E) = dist(·, E), we 

may assume in the sequel that E is a weakly porous closed set. Throughout this proof 

C denotes a constant that can depend on n, c and δ. Let 0 < γ = γ(n, c, δ) < 1
n be as 

in Lemma 5.2. Fix a cube P0 ⊂ R
n, and assume first that P0 is not an E-free cube. Let 

sets Fk
δ , for P0 and k = 1, 2, . . ., be defined as above.

Since γn < 1, we have for every E-free cube Q the estimate

ˆ

Q

dist(x, E)−γn dx ≤
ˆ

Q

dist(x, ∂Q)−γn dx = C(γ, n)�(Q)n−γn = C|Q|1−γ . (9)

In particular, the upper bound γn < 1 implies that the second integral in (9) is finite. 

Bearing in mind that |E| = 0, using Lemma 5.1 and combining (9) with Lemma 5.2, we 

obtain

−
ˆ

P0

dist(x, E)−γn dx =
1

|P0|

ˆ

P0\E

dist(x, E)−γn dx =
1

|P0|

∞∑

k=1

∑

Q∈Fk
δ

ˆ

Q

dist(x, E)−γn dx

≤ C

|P0|

∞∑

k=1

∑

Q∈Fk
δ

|Q|1−γ ≤ C|M(P0)|−γ .

Let x ∈ P0\E. Since E is closed, the point x is contained in a maximal E-free dyadic cube 

Q ∈ D(P0). Recall that P0 is not E-free, and so Q is a strict subcube of P0. Furthermore 

πQ is not E-free due to maximality of Q. This implies that

dist(x, E) ≤ diam(πQ) = 2 diam(Q) = 2
√

n �(Q) ≤ 2
√

n �(M(P0)).
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Hence,

ess inf
x∈P0

dist(x, E)−γn ≥ (2
√

n)−γn�(M(P0))−γn = C(n, c, δ)|M(P0)|−γ ,

and we conclude that

−
ˆ

P0

dist(x, E)−γn dx ≤ C ess inf
x∈P0

dist(x, E)−γn. (10)

It remains to consider the case where P0 is an E-free cube. We study two situations 

separately. If dist(P0, E) < 2 diam(P0), then we have dist(x, E) ≤ 3 diam(P0) for every 

x ∈ P0, and so

ess inf
x∈P0

dist(x, E)−γn ≥ (3 diam(P0))
−γn ≥ C|P0|−γ .

Using (9), together with this observation, we obtain

−
ˆ

P0

dist(x, E)−γn dx ≤ C|P0|−γ ≤ C ess inf
x∈P0

dist(x, E)−γn. (11)

Finally, we consider the case dist(P0, E) ≥ 2 diam(P0). If x, y ∈ P0, then

dist(x, E) ≥ dist(y, E) − |x − y| ≥ dist(y, E) − diam(P0)

≥ dist(y, E) − 1
2 dist(P0, E) ≥ 1

2 dist(y, E).

Hence,

dist(x, E)−γn ≤ C ess inf
y∈P0

dist(y, E)−γn

for all x ∈ P0, and so

−
ˆ

P0

dist(x, E)−γn dx ≤ C ess inf
y∈P0

dist(y, E)−γn. (12)

By combining estimates (10), (11), and (12), we see that dist(·, E)−γn ∈ A1(Rn), and 

this proves the theorem with α = γn. �

6. Muckenhoupt exponent

In this section, we introduce the concept of Muckenhoupt exponent and explore its 

connections to weak porosity and the Ap properties of distance weights, for 1 ≤ p < ∞. 

In particular, we prove Theorems 1.2 and 1.3 at the end of this section.
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For a bounded set A ⊂ R
n and r > 0, we let N(A, r) denote the minimal number 

of open balls of radius r that are needed to cover the set A. Recall that the Assouad 

dimension dimA(E) of E ⊂ R
n is then the infimum of λ ≥ 0 such that

N
(
E ∩ B(x, R), r

)
≤ C

(
R

r

)λ

for every x ∈ E and 0 < r < R. Equivalently, dimA(E) = n − codimA(E), where the 

Assouad codimension codimA(E) is the supremum of α ≥ 0 such that

|Er ∩ B(x, R)|
|B(x, R)| ≤ C

(
R

r

)−α

(13)

for every x ∈ E and 0 < r < R. Here

Er = {y ∈ R
n : dist(y, E) < r}

is the open r-neighborhood of E. See e.g. [9, (3.11)] for more details concerning this 

equivalence, which also follows from Lemma 6.2.

It is well-known that a set E ⊂ R
n is porous if and only if dimA(E) < n, or equivalently 

codimA(E) > 0, as was already pointed out in the introduction. See e.g. [11, Section 5]

or [10, Theorem 10.25] for details. The following Muckenhoupt exponent can be seen 

as a refinement of the Assouad codimension: for porous sets these two agree but the 

Muckenhoupt exponent can be nonzero also for nonporous sets; see the comment after 

Definition 6.1.

Definition 6.1. Let E ⊂ R
n.

(i) If B(x, r) is a ball in Rn, we denote by hE(B(x, r)) the supremum of all t > 0 such 

that B(y, t) ⊂ B(x, r) \ E for some y ∈ B(x, r). If there is no such number t > 0, 

then we set hE(B(x, r)) = 0.

(ii) If hE(B(x, R)) > 0 for every x ∈ E and R > 0, then the Muckenhoupt exponent

Mu(E) is the supremum of the numbers α ∈ R for which there exists a constant C

such that

|Er ∩ B(x, R)|
|B(x, R)| ≤ C

(
hE(B(x, R))

r

)−α

(14)

for every x ∈ E and 0 < r < hE(B(x, R)) ≤ R. If hE(B(x, R)) = 0 for some x ∈ E

and R > 0, then we set Mu(E) = 0.

Observe that hE(B(x, R)) ≤ R/2 if x ∈ E. It is clear from the definition that Mu(E) ≥
0 for all sets E ⊂ R

n, since (14) always holds with α = 0 if hE(B(x, R)) > 0. If E ⊂ R
n is 
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porous, then cR ≤ hE(B(x, R)) ≤ R/2 for all x ∈ E and R > 0, showing that Mu(E) =

codimA(E). On the other hand, if E ⊂ R
n is not porous, then codimA(E) = 0 ≤ Mu(E), 

and thus always codimA(E) ≤ Mu(E). This inequality is strict if and only if E is weakly 

porous but not porous since the weak porosity of E is characterized by Mu(E) > 0, 

see Corollary 6.6. As an example, it is straightforward to see that codimA(Z) = 0 and 

Mu(Z) = 1. See also Section 7 for other examples of such sets.

In Lemma 6.3 below we give for the Muckenhoupt exponent an alternative characteri-

zation, which resembles the definition of the Assouad dimension. The following estimate 

will be applied in the proof of Lemma 6.3.

Lemma 6.2. Let E ⊂ R
n, x ∈ E and 0 < r < R. Then

C1(n)N
(
E ∩ B(x, R/2), r

)
≤ |Er ∩ B(x, R)|

rn
≤ C2(n)N

(
E ∩ B(x, 2R), r

)
.

Proof. Let {B(xi, r)}N
i=1 be a cover of E ∩B(x, 2R), with N = N

(
E ∩B(x, 2R), r

)
. Then

Er ∩ B(x, R) ⊂
N⋃

i=1

B(xi, 2r),

and thus

|Er ∩ B(x, R)| ≤ C(n)N(2r)n = C2(n)rnN
(
E ∩ B(x, 2R), r

)
.

This proves the second inequality in the claim.

Conversely, let {B(xi, r)}N
i=1 be a cover of E ∩B(x, R/2) such that xi ∈ E ∩B(x, R/2)

for all i = 1, . . . , N and the balls B(xi, r/2) are pairwise disjoint (such a cover can be 

found by choosing {xi}N
i=1 to be a maximal r-net in E ∩B(x, R/2), see [7, p. 101]). Then

Er ∩ B(x, R) ⊃
N⋃

i=1

B(xi, r/2),

and thus

|Er ∩ B(x, R)| ≥ C(n)N(r/2)n ≥ C1(n)rnN
(
E ∩ B(x, R/2), r

)
.

This proves the first inequality in the claim. �

Lemma 6.3. Let E ⊂ R
n be such that hE(B(x, R)) > 0 for every x ∈ E and R > 0. Then 

Mu(E) is the supremum of the numbers α ≥ 0 for which there exists a constant C such 

that

N
(
E ∩ B(x, R), r

)
≤ C

(
R

r

)n(
hE(B(x, R))

r

)−α

(15)
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for every x ∈ E and 0 < r < hE(B(x, R)) ≤ R.

Proof. Assume first that α ≥ 0 is such that (15) holds for every x ∈ E and 0 < r <

hE(B(x, R)) ≤ R with a constant C1. Let x ∈ E and 0 < r < hE(B(x, R)) ≤ R. Then 

0 < r < hE(B(x, R)) ≤ hE(B(x, 2R)) ≤ R < 2R, and by Lemma 6.2 and (15) we have

|Er ∩ B(x, R)|
|B(x, R)| ≤ C(n)

(
r

R

)n

N
(
E ∩ B(x, 2R), r

)

≤ C1C(n)

(
r

R

)n(
2R

r

)n(
hE(B(x, 2R))

r

)−α

≤ C(n, C1)

(
hE(B(x, R))

r

)−α

.

Thus α ≤ Mu(E).

By the definition of Muckenhoupt exponent, we always have Mu(E) ≥ 0. If Mu(E) = 0

and (15) holds for α ≥ 0, the preceding computation shows that α = 0 as well, and 

the result follows. Then assume that 0 ≤ α < Mu(E) and let x ∈ E and 0 < r <

hE(B(x, R)) ≤ R. By Lemma 6.2 and (14), for α and a constant Cα, we have

N
(
E ∩ B(x, R), r

)
≤ C(n)

|Er ∩ B(x, 2R)|
rn

≤ C(n)Cα

(
2R

r

)n(
hE(B(x, 2R))

r

)−α

≤ C(n, Cα)

(
R

r

)n(
hE(B(x, R))

r

)−α

.

Since this holds for every 0 ≤ α < Mu(E), we conclude that Mu(E) is indeed the 

supremum of α for which (15) holds for all x ∈ E and 0 < r < hE(B(x, R)) ≤ R. �

Next, we turn to the relations between the Muckenhoupt exponent and A1 weights. 

Lemma 6.4 and Theorem 6.5 together characterize the property dist(·, E)−α ∈ A1, for 

α �= 0, in terms of the Muckenhoupt exponent of E; see the proof of Theorem 1.3 after 

the proof of Theorem 6.5.

Lemma 6.4. Let E ⊂ R
n be a nonempty set and let α ∈ R be such that dist(·, E)−α ∈ A1. 

Then 0 ≤ α ≤ Mu(E).

Proof. Assume first that α < 0. Let x ∈ E and r > 0. Then

−
ˆ

Q(x,r)

dist(y, E)−α dy ≤ C ess inf
y∈Q(x,r)

dist(y, E)−α = 0;
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here the cube Q(x, r) is as in (2). Thus dist(y, E)−α = 0 for almost every y ∈ Q(x, r), 

which is a contradiction since dist(·, E)−α is a weight. Hence α ≥ 0.

The claim holds if α = 0, and so we may assume that α > 0. Then hE(B(x, R)) > 0

for every x ∈ E and R > 0. Indeed, otherwise there exists a ball B(x, R) such that 

dist(y, E) = 0 for every y ∈ B(x, R), and therefore dist(·, E)−α is not locally integrable. 

This is again a contradiction since dist(·, E)−α is a weight.

Let x ∈ E and 0 < r < hE(B(x, R)) ≤ R, and write F = Er ∩ B(x, R). Let C1 be the 

constant in the A1 condition (3) for dist(·, E)−α. Observe from B(x, R) ⊂ Q(x, R) that

hE(B(x, R)) ≤ ess sup
y∈Q(x,R)

dist(y, E),

and hence

ess inf
y∈Q(x,R)

dist(y, E)−α ≤ hE(B(x, R))−α.

Since dist(y, E) < r for every y ∈ F and F ⊂ B(x, R) ⊂ Q(x, R), using the A1 condi-

tion (3) we obtain

|F | ≤ rα

ˆ

F

dist(y, E)−α dy ≤ rα

ˆ

Q(x,R)

dist(y, E)−α dy

≤ C1rα|Q(x, R)|hE(B(x, R))−α = C(n, C1)Rn

(
hE(B(x, R))

r

)−α

.

Thus

|Er ∩ B(x, R)|
|B(x, R)| =

|F |
|B(x, R)| ≤ C(n, C1)

(
hE(B(x, R))

r

)−α

,

and the claim Mu(E) ≥ α follows. �

Theorem 6.5. Let E ⊂ R
n be a nonempty set and assume that 0 ≤ α < Mu(E). Then 

dist(·, E)−α ∈ A1.

Proof. It suffices to show that there exists a constant C > 0 such that

−
ˆ

B(x,r)

dist(y, E)−α dy ≤ C ess inf
y∈B(x,r)

dist(y, E)−α (16)

for all x ∈ E and r > 0. Indeed, if dist(Q, E) < 2 diam(Q) for a cube Q ⊂ R
n, then 

the desired A1 property (3) for w = dist(·, E)−α follows easily from (16) by considering 

a ball B = B(x, r) such that x ∈ E, Q ⊂ B and |B| ≤ C(n)|Q|. On the other hand, 



20 T.C. Anderson et al. / Journal of Functional Analysis 287 (2024) 110558

if dist(Q, E) ≥ 2 diam(Q), then an argument similar to the one leading to (12) shows 

that (3) holds, and thus dist(·, E)−α ∈ A1.

Let λ > 0 with Mu(E) > λ > α, and let x ∈ E and r > 0. Observe from inequality 

Mu(E) > 0 that 0 < hE(B(x, 2r)) ≤ r. Hence, there is j0 ∈ N such that

2−j0r < hE(B(x, 2r)) ≤ 21−j0r.

Define

Fj = {y ∈ B(x, r) : dist(y, E) ≤ 21−jr} and Aj = Fj \ Fj+1,

for j ≥ j0. Since λ < Mu(E), there is a constant C1 = C1(E, λ, n) such that

|Fj |
|B(x, r)| ≤ 2n|E22−jr ∩ B(x, 2r)|

|B(x, 2r)|

≤ C1

(
hE(B(x, 2r))

2−jr

)−λ

= C12−jλ

(
hE(B(x, 2r))

r

)−λ

.

(17)

Since λ > 0 and E ∩ B(x, r) ⊂ Fj for every j ≥ j0, by letting j → ∞ we see in particular 

that |E ∩ B(x, r)| = 0. Here r > 0 is arbitrary, and thus |E| = 0.

If y ∈ B(x, r) \ E, then dist(y, E) ≤ |y − x| < r. Hence,

B(y, dist(y, E)) ⊂ B(x, 2r) \ E,

and therefore 0 < dist(y, E) ≤ hE(B(x, 2r)) ≤ 21−j0r. It follows that the union of sets 

Aj with j ≥ j0 covers B(x, r) up to the set E ∩ B(x, r), which has measure zero. If 

y ∈ Aj , then 2−jr < dist(y, E) ≤ 21−jr. In addition, Aj ⊂ Fj for every j ≥ j0. By 

combining the above observations and using (17) we obtain

−
ˆ

B(x,r)

dist(y, E)−α dy ≤ 1

|B(x, r)|

∞∑

j=j0

ˆ

Aj

dist(y, E)−α dy ≤
∞∑

j=j0

|Fj |
|B(x, r)| (2

−jr)−α

≤ C1

∞∑

j=j0

(2−jr)−α2−jλ

(
hE(B(x, 2r))

r

)−λ

≤ C1r−α

(
hE(B(x, 2r))

r

)−λ ∞∑

j=j0

(2−j)λ−α

≤ C(C1, λ, α)r−α

(
hE(B(x, 2r))

r

)−λ(
hE(B(x, 2r))

r

)λ−α

≤ C(C1, λ, α)hE(B(x, 2r))−α

≤ C(C1, λ, α) ess inf
y∈B(x,r)

dist(y, E)−α.
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This shows that (16) holds, and the claim follows. �

Recall that Theorem 1.3 states, for a nonempty set E ⊂ R
n and α �= 0, that 

dist(·, E)−α ∈ A1 if and only if 0 < α < Mu(E). We are now ready to prove this.

Proof of Theorem 1.3. If 0 < α < Mu(E), then dist(·, E)−α ∈ A1 by Theorem 6.5. 

Conversely, assume that dist(·, E)−α ∈ A1. Since α �= 0 by assumption, Lemma 6.4

implies that α > 0. By the self-improvement of A1 weights (see [6, pp. 399–400]), there 

exists s > 1 such that dist(·, E)−sα ∈ A1. Thus we obtain from Lemma 6.4 that 0 < α <

sα ≤ Mu(E). �

Since dist(·, E)0 ∈ A1 holds for all (nonempty) sets E ⊂ R
n (under the interpretation 

that 00 = 1), Theorem 1.3 implies that

Mu(E) = sup{α ≥ 0 : dist(·, E)−α ∈ A1}

for all nonempty sets E ⊂ R
n. On the other hand, by Theorem 1.1 we have dist(·, E)−α ∈

A1, for some α > 0, if and only if E is weakly porous. This, together with Theorem 1.3, 

gives the following corollary.

Corollary 6.6. A nonempty set E ⊂ R
n is weakly porous if and only if Mu(E) > 0.

Using Theorem 1.3 and Corollary 6.6, we can prove Theorem 1.2, as follows.

Proof of Theorem 1.2. Since E is weakly porous, we have Mu(E) > 0 by Corollary 6.6. 

Therefore, the equivalences in both (i) and (ii) hold if α = 0, and so we may assume 

from now on that α �= 0. In this case the claim in (i) follows directly from Theorem 1.3.

In part (ii), let 1 < p < ∞ and assume first that w ∈ Ap. Because E is weakly porous, 

Lemma 5.3 provides us with some σ > 0 for which dist(·, E)−σ ∈ A1(Rn). If α > 0, 

we can use Lemma 2.3 with β = σ/α to deduce that w = dist(·, E)−α ∈ A1. Then 

Theorem 1.3 implies Mu(E) > α, and so (1) holds. On the other hand, if α < 0, then 

we have

dist(·, E)
−
(

−α
p−1

)
= w1−p′ ∈ Ap′ ,

where −α
p−1 > 0. Hence the previous case, for a positive power and the class Ap′ , shows 

that

(1 − p′) Mu(E) < 0 <
−α

p − 1
< Mu(E), (18)

which is equivalent to (1).

Conversely, assume that (1) holds for some α �= 0. If α > 0, then w = dist(·, E)−α ∈
A1 ⊂ Ap by Theorem 1.3. Finally, if α < 0, we observe that (1) is equivalent to (18), 
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where −α
p−1 > 0. Thus we may apply the preceding case for the exponent −α

p−1 > 0 and the 

class Ap′ to conclude that dist(·, E)α/(p−1) ∈ Ap′ . Hence w = dist(·, E)−α ∈ Ap, proving 

part (ii). �

Remark 6.7. Note that in part (i) of Theorem 1.2 the explicit assumption that E is 

weakly porous is needed in the necessity part, since for α = 0 the claim w ∈ A1 holds 

for all (nonempty) sets E ⊂ R
n. However, if α > 0, then we know by Theorem 1.1 that 

w ∈ A1 can only hold if E is weakly porous, which in turn is equivalent to Mu(E) > 0.

In part (ii) the case α = 0 again shows that (1) is not necessary for w ∈ Ap, for 

general sets E ⊂ R
n. Moreover, if we do not assume weak porosity of E, then even 

in the case α �= 0 the requirement (1) is not necessary for w ∈ Ap. This follows from 

Theorem 8.1, which gives a set E ⊂ R with Mu(E) = 0, i.e. E is not weakly porous, 

such that dist(·, E)−α ∈ Ap for all 0 < α < 1 and all 1 < p < ∞.

Remark 6.8. When E ⊂ R
n is a bounded set, the upper Minkowski (or box) dimension

dimM(E) is the infimum of all λ ≥ 0 for which there is a constant C such that

N(E, r) ≤ Cr−λ (19)

for every 0 < r < diam(E). Note that (19) is equivalent to the condition that there is 

a constant C such that |Er| ≤ Crn−λ for every 0 < r < diam(E); this follows from 

Lemma 6.2.

If a set E ⊂ R
n is weakly porous and 0 < α < Mu(E), then dist(·, E)−α ∈ A1 by 

Theorem 1.3, and so 
´

B(x,R)
dist(y, E)−α dy < ∞ for every x ∈ E and R > 0. Hence, if 

x ∈ E and R > 0, then it holds for all 0 < r < diam(E ∩ B(x, R)) ≤ 2R that

|(E ∩ B(x, R))r| ≤ rα

ˆ

B(x,3R)

dist(y, E)−α dy ≤ C(x, R, E)rn−(n−α).

Thus

dimM(E ∩ B(x, R)) ≤ n − α < n.

Since this holds for all 0 < α < Mu(E), we obtain dimM(E ∩ B(x, R)) ≤ n − Mu(E). In 

particular, if E ⊂ R
n is bounded, then 0 ≤ Mu(E) ≤ n − dimM(E).

On the other hand, the condition that dimM(E ∩ B(x, R)) ≤ c < n for every x ∈ E

and R > 0 is not sufficient for the weak porosity of E. For instance, if E ⊂ Z ⊂ R is not 

weakly porous (e.g. E = N), then we have dimM(E ∩ B(x, R)) = 0 < 1 = n for every 

x ∈ E and R > 0 since E ∩ B(x, R) is a finite set.

See also [14] and the references therein for much more elaborate connections between 

Minkowski dimensions and the integrability of distance functions.
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Fig. 1. The set E, with n = 2 and γ = 0.7.

7. Example of a weakly porous set

The notions of weak porosity and Muckenhoupt exponent are interesting only if there 

are (plenty of) weakly porous sets which are not porous. Below we construct a family 

of such sets in Rn and determine the Muckenhoupt exponents for different values of the 

parameter γ > 0. These sets are inspired by the often used one-dimensional example 

{j−γ : j ∈ N} ∪ {0} ⊂ R. For instance, in [5, Section 6] such sets were applied to 

illustrate the so-called Assouad spectrum.

Theorem 7.1. Let n ∈ N and γ > 0. Then the set

E =

∞⋃

j=1

∂B
(
0, j−γ

)
∪ {0} ⊂ R

n

is weakly porous with Mu(E) = min{1, nγ
1+γ }.

The origin is included in E in order to have a compact set, but for our purposes this 

does not make any essential difference. See Fig. 1 for an illustration of the set E.

By considering the balls B(0, j−γ) as j → ∞, it is straightforward to verify that E

is not porous, and hence dimA(E) = n. Moreover, special cases of the computations in 

the proof of Theorem 7.1 below can be used to show that dimM(E) = max{n − 1, n
1+γ }, 

and so in combination with Theorem 7.1 we obtain for the set E the identity Mu(E) =

n − dimM(E); compare to Remark 6.8.
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For the proof of Theorem 7.1, we define St = ∂B(0, t) and At
s = B (0, t) \ B (0, s) for 

every 0 ≤ s ≤ t, where we use the notation B(0, 0) = ∅. We begin with the following 

lemma.

Lemma 7.2. Let B = B(x, R) ⊂ R
n be a ball such that x ∈ St, with t = j−γ for some 

j ∈ N, and B ∩ E = B ∩ St. Then (14) holds for B if and only if α ≤ 1. Moreover, if 

α ≤ 1, then the constant in (14) for B can be chosen to depend on n, γ and α only.

Proof. We have hE(B) = R/2, and given 0 < r < hE(B), the set Aj−γ +r
j−γ −r ∩ B satisfies

(2r) inf
b∈[t−r,t+r]

Hn−1
(
Sb ∩ B

)
≤ |Aj−γ+r

j−γ−r ∩ B| ≤ (2r) sup
b∈[t−r,t+r]

Hn−1
(
Sb ∩ B

)
, (20)

where Hn−1 is the normalized Hausdorff measure in Rn. For each b ∈ [t −r, t +r], the set 

Sb ∩ B is a hyperspherical cap within the sphere Sb, whose angle αb satisfies, by virtue 

of the law of cosines, that cos(αb) = b2+t2−R2

2bt . Therefore

sin
(αb

2

)
=

(
R2 − (b − t)2

4bt

)1/2

.

For a sufficiently small constant c(γ), we have that r ≤ c(γ)hE(B) implies αb � C(γ) 
(

R
2t

)

for every b ∈ [t − r, t + r]; here and below a � C(∗)b means that C(∗)−1b ≤ a ≤ C(∗)b. 

This leads us to

Hn−1
(
Sb ∩ B

)
� C(n, γ)bn−1 (αb)

n−1 � C(n, γ)bn−1

(
R

2t

)n−1

� C(n, γ)Rn−1, (21)

for every b ∈ [t − r, t + r]. The sets A
(j−1)−γ

(j−1)−γ−r ∩ B and A
(j+1)−γ+r
(j+1)−γ ∩ B (meaning 

A
(j−1)−γ

(j−1)−γ −r = ∅ in the case j = 1) are also contained in Er ∩ B, but their measures are 

controlled by C(n, γ)|Aj−γ+r
j−γ−r ∩ B|. Bearing in mind this observation and (20) and (21), 

we obtain

(
hE(B)

r

)α |Er ∩ B|
|B| ≤ C(n, γ, α)Rα−nr−α|Aj−γ+r

j−γ−r ∩ B| ≤ C(n, γ, α)
( r

R

)1−α

.

If α ≤ 1, the last term is bounded by C(n, γ, α). On the other hand, if α > 1, then (20)

and (21) yield

(
hE(B)

r

)α |Er ∩ B|
|B| ≥ c(n, γ, α)Rα−nr1−αRn−1 ≥ c(n, γ, α)

( r

R

)1−α

,

and the last term tends to infinity as r → 0. �
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Proof of Theorem 7.1. First we show that (14) holds for every α with 0 < α <

min{1, nγ
1+γ }. This implies that Mu(E) ≥ min{1, nγ

1+γ } > 0, and thus E is weakly porous, 

by Corollary 6.6.

Fix 0 < α < min{1, nγ
1+γ } and let B = B(x, R) ⊂ R

n be a ball with x ∈ E, and let 0 <

r < hE(B). We suppose first that B is contained in B(0, 1). Let k be the largest number 

in N and N be the smallest number in N ∪ {∞} such that B ⊂ B (0, k−γ) \ B (0, N−γ). 

We interpret N−γ = 0 and B (0, N−γ) = ∅ when 0 ∈ B. It is clear that N ≥ k + 2, 

since the center x of B belongs to E. In the case N = k + 2 we have x ∈ S(k+1)−γ

, and 

(14) follows immediately from Lemma 7.2. Hence we may assume that N ≥ k + 3. Also, 

observe that

hE(B) ≤ 1
2

(
k−γ − (k + 1)−γ

)
≤ γ

2 k−γ−1 (22)

and

R ≥ 1
2

(
(k + 1)−γ − (N − 1)−γ

)
≥ γ

2 (N − k − 2)(N − 1)−γ−1. (23)

Now we study two cases.

(i) Suppose dist({0}, B) > diam(B). We have the estimates

(k + 1)−γ ≤ sup
x∈B

|x| ≤ dist({0}, B) + diam(B) ≤ 2 dist({0}, B) ≤ 2(N − 1)−γ ,

and so N − 1 ≤ C(γ)(k + 1). Then we have

|Er ∩ B| ≤
N∑

j=k

|Aj−γ+r
j−γ−r ∩ B| ≤ C(n)

N∑

j=k

rRn−1 ≤ C(n)(N − k + 1)rRn−1.

The previous observation, together with (22) and (23), leads us to

(
hE(B)

r

)α |Er ∩ B|
|B| ≤ C(n, γ)k−(1+γ)α r1−αR−1(N − k + 1)

≤ C(n, γ)k−(1+γ)α r1−α(N − 1)1+γ

≤ C(n, γ)k−(1+γ)α r1−α(k + 1)1+γ

≤ C(n, γ)
(
rk1+γ

)1−α
.

The last term is bounded by a constant C(n, γ, α) because α ≤ 1 and r ≤ C(γ)k−1−γ .

(ii) Now suppose dist({0}, B) ≤ diam(B). Then we have

(2k)−γ ≤ (k + 1)−γ ≤ dist({0}, B) + diam(B) ≤ 2 diam(B),
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and hence k−γ ≤ 21+γ diam(B). Given 0 < r < hE(B), denote by j0 ∈ N the smallest 

number for which

2r ≥ j−γ
0 − (j0 + 1)

−γ ≥ C(γ)(j0 + 1)−γ−1.

Notice that k < j0 and, by the definition of j0, we also have

r ≤ (j0 − 1)−γ − j−γ
0 ≤ C(γ)(j0 − 1)−γ−1 ≤ C(γ)j−γ−1

0 .

This observation permits us to write

|Er ∩ B| ≤ |B ∩ Ak−γ

k−γ −r|+|B(0, j−γ
0 + r) ∩ B| +

j0−1∑

j=k+1

|Aj−γ+r
j−γ−r ∩ B|

≤ C(n)

((
j−γ

0 + r
)n

+

j0−1∑

j=k

r
(
j−γ + r

)n−1
)

.

Using the inequalities 0 < α < min{1, nγ
1+γ }, k−γ ≤ C(γ)R, c(γ)j−1−γ

0 ≤ r ≤ C(γ)j−1−γ
0 , 

and hE(B) ≤ C(γ)k−1−γ , we obtain

(
hE(B)

r

)α |Er ∩ B|
|B| ≤ C(n, γ)knγ−(1+γ)αr−α

((
j−γ

0 + r
)n

+

j0−1∑

j=k

r
(
j−γ + r

)n−1
)

≤ C(n, γ)knγ−(1+γ)αr−α

(
j−nγ

0 +

j0−1∑

j=k

r
(
j−γ + r

)n−1
)

≤ C(n, γ)

((
kj−1

0

)nγ−(1+γ)α
+ knγ−(1+γ)α

j0−1∑

j=k

r1−α
(
j−γ + r

)n−1
)

≤ C(n, γ) + C(n, γ)knγ−(1+γ)α

j0−1∑

j=k

j−(1−α)(1+γ)
(
j−γ + j−1−γ

)n−1

≤ C(n, γ) + C(n, γ)knγ−(1+γ)α
∞∑

j=k

j−1−nγ+(1+γ)α ≤ C(n, γ, α),

where the last inequality follows by comparing the series to 
´∞

k
t−1−nγ+(1+γ)α dt, bearing 

in mind that α < nγ
1+γ . The cases (i) and (ii) together show that (14) holds when B ⊂

B(0, 1).

Now suppose that B = B(x, R) is not contained in B(0, 1). In the case r ≥ 1−2−γ

2 we 

use the fact that n − α > 0 to estimate

(
hE(B)

r

)α |Er ∩ B|
|B| ≤ C(n)|Er|r−αRα−n ≤ C(n)|B(0, r + 1)|r−αRα−n
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≤ C(n, γ)
( r

R

)n−α

≤ C(n, γ, α).

In the sequel, we will assume that r < 1−2−γ

2 .

If x ∈ E \ S1, then R ≥ hE(B) ≥ c(γ)R ≥ c(γ) and

|Er ∩ B| ≤ |Er ∩ B(0, 1)| + |Er \ B(0, 1)| ≤ |Er ∩ B(0, 1)| + C(n)r.

Therefore

(
hE(B)

r

)α |Er ∩ B|
|B| ≤ C(n)(r + |Er ∩ B(0, 1)|)r−αRα−n

≤ C(n, γ, α)Rα−n ≤ C(n, γ, α),

where the second inequality follows by using the above case (ii) with B = B(0, 1). If 

x ∈ S1 and R ≥ 1−2−γ

2 , then we can repeat the preceding argument to show that (14)

holds, and finally, if x ∈ S1 and R < 1−2−γ

2 , then (14) holds by Lemma 7.2.

Next we show that Mu(E) ≤ min{1, nγ
1+γ }. The bound Mu(E) ≤ 1 follows from 

Lemma 7.2. Let α > nγ
1+γ and consider the ball B = B(0, 1). Then hE(B) = 1−2−γ

2 =

C(γ). Given 0 < r < 1
100 , let j0 ∈ N be the smallest number for which 2r ≥ j−γ

0 −
(j0 + 1)−γ . Then r is comparable to c(γ)j−1−γ

0 and the annuli {Aj−γ+r
j−γ−r}j0

j=1 are pairwise 

disjoint. For sufficiently small r, we thus have

(
hE(B)

r

)α |Er ∩ B|
|B| ≥ c(n, γ, α)r−α

j0−1∑

j=2

((
j−γ + r

)n −
(
j−γ − r

)n)

≥ c(n, γ, α)r1−α

j0−1∑

j=2

(
j−γ − r

)n−1

≥ c(n, γ, α)r1−αj0

(
(j0 − 1)−γ − r

)n−1

≥ c(n, γ, α)r1−αj0

(
j−γ

0 − j−γ−1
0

)n−1

≥ c(n, γ, α)r1−αj
1−γ(n−1)
0

≥ c(n, γ, α)j
(1−α)(−1−γ)
0 j

1−γ(n−1)
0

= c(n, γ, α)j
(1+γ)α−nγ
0 .

The last term goes to infinity as r → 0, since α > nγ
1+γ . Hence (14) does not hold if 

α > nγ
1+γ , showing that Mu(E) ≤ nγ

1+γ . �
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Fig. 2. First steps of the construction of the set E.

8. Ap-distance set that is not weakly porous

In this section we construct a set E ⊂ R such that dist(·, E)−α ∈ Ap \ A1 for all 

0 < α < 1 and all 1 < p < ∞; see Theorem 8.1. Recall that we abbreviate dE = dist(·, E).

Let E0 = {0, 1} and write tn = 1 − 1
2n for every n ∈ N. Then, for every n ∈ N, the 

set En is defined as En = En−1 ∪ E1
n−1 ∪ E2

n−1, where:

• E1
n−1 is a translation of En−1 dilated by the factor tn and whose first point is the last 

point of En−1,

• E2
n−1 is a translation of En−1 whose first point is the last point of E1

n−1.

Finally, we define E+ =
⋃∞

n=0 En and E = E+∪(−E+). Here −E+ is the reflection of E+

with respect to the origin. We let Qn, Q1
n, and Q2

n denote the smallest intervals containing 

En, E1
n, and E2

n respectively, for every n ∈ N ∪ {0}. See Fig. 2 for an illustration of the 

first steps of the construction.

During the rest of this section, we prove the following theorem for the set E.

Theorem 8.1. Let E ⊂ R be as constructed above. Then it holds for all 0 < α < 1 and 

all 1 < p < ∞ that dist(·, E)−α ∈ Ap \ A1. In particular, the set E is not weakly porous 

and Mu(E) = 0.

Proof. Let 0 < α < 1 and 1 < p < ∞. We show in Lemma 8.4 that dist(·, E)−α /∈ A1, 

and the claim dist(·, E)−α ∈ Ap follows from Lemma 8.7. Since dist(·, E)−α /∈ A1 for 

every α > 0, the set E is not weakly porous by Theorem 1.1, and thus Corollary 6.6

implies that Mu(E) = 0. �

We say that a closed interval I is an edge of E if the endpoints of I are two consecutive 

points of E. For every n ∈ N ∪ {0}, the following properties hold:

• Each of the intervals Qn, Q1
n, and Q2

n has 3n edges of E, of which the middle ones 

for n ≥ 1 have lengths equal to t1t2 · · · tn, t1t2 · · · tntn+1, and t1t2 · · · tn, respectively.



T.C. Anderson et al. / Journal of Functional Analysis 287 (2024) 110558 29

• Each of the intervals Qn and Q2
n contains translated copies of the intervals Q0, . . . , Qn

distributed in a palindromic manner: both Qn and Q2
n contain from left to right as 

well as from right to left intervals Q∗
0 ⊂ Q∗

1 ⊂ · · · ⊂ Q∗
n that are translated copies of 

Q0 ⊂ Q1 ⊂ · · · ⊂ Qn, respectively.

• Each interval Q1
n contains from left to right as well as from right to left intervals 

tn+1Q∗
0 ⊂ tn+1Q∗

1 ⊂ · · · ⊂ tn+1Q∗
n that are translated copies of Q0 ⊂ Q1 ⊂ · · · ⊂ Qn

dilated by tn+1.

• dE = dEn
on Qn.

• |Qn| = (2 + tn)|Qn−1| for every n ∈ N.

Lemma 8.2. For every n ∈ N and every β > −1, we have

−
ˆ

Qn

dE(x)β dx =
2 + t1+β

n

2 + tn
−
ˆ

Qn−1

dE(x)β dx.

Proof. Let n ∈ N and β > −1. By the construction of E and the definition of Qn, we 

obtain

ˆ

Qn

dβ
E =

ˆ

Qn

dβ
En

=

ˆ

Qn−1

dβ
En−1

+

ˆ

Q1
n−1

dβ
E1

n−1
+

ˆ

Q2
n−1

dβ
E2

n−1

=
(
2 + t1+β

n

) ˆ

Qn−1

dβ
En−1

=
(
2 + t1+β

n

) ˆ

Qn−1

dβ
E .

The claim follows from the above identity and the equation |Qn| = (2 + tn)|Qn−1|. �

Lemma 8.3. For every 0 < α < 1 and 1 < p < ∞, there exists N0 ∈ N, only depending 

on α and p, for which

log

(
2 + t1−α

n

2 + tn

)
≥ α

12n
and log

⎡
⎣
(

2 + t1−α
n

2 + tn

)(
2 + t

1+ α
p−1

n

2 + tn

)p−1
⎤
⎦ ≤ α2p

18(p − 1)n2

for every n ≥ N0.

Proof. Consider the functions

f(t) = log

(
2 + t1−α

2 + t

)
, g(t) = log

⎡
⎣
(

2 + t1−α

2 + t

)(
2 + t1+ α

p−1

2 + t

)p−1
⎤
⎦

for t > 0. These functions satisfy f(1) = 0, f ′(1) = −α
3 , g(1) = g′(1) = 0 and g′′(1) =

2α2p
9(p−1) . Let ε ∈ (0, 1/2) be small enough so that |t − 1| ≤ ε implies
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|f(t) − f(1) − f ′(1)(t − 1)| ≤ α

6
|t − 1|

and

|g(t) − g(1) − g′(1)(t − 1) − 1
2g′′(1)(t − 1)2| ≤ α2p

9(p − 1)
|t − 1|2.

Taking N0 ∈ N large enough so that N0 ≥ 1/(2ε) it follows that |1 − tn| ≤ ε for every 

n ≥ N0, and so the above estimates yield

f(tn) ≥ α

12n
and g(tn) ≤ α2p

18(p − 1)n2
. �

Lemma 8.4. For every 0 < α < 1, the weight d−α
E does not belong to A1.

Proof. Let N0 be the constant in Lemma 8.3 with, say, p = 2; the value of p is irrelevant 

here. Applying repeatedly Lemma 8.2, we obtain, for every n ∈ N,

−
ˆ

Qn

d−α
E =

(
n∏

k=1

2 + t1−α
k

2 + tk

)
−
ˆ

Q0

d−α
E ≥

(
n∏

k=N0

2 + t1−α
k

2 + tk

)
−
ˆ

Q0

d−α
E .

By the first inequality of Lemma 8.3, we have

log

(
n∏

k=N0

2 + t1−α
k

2 + tk

)
=

n∑

k=N0

log

(
2 + t1−α

k

2 + tk

)
≥

n∑

k=N0

α

12k
,

and it follows that

−
ˆ

Qn

d−α
E ≥ exp

(
n∑

k=N0

α

12k

)
−
ˆ

Q0

d−α
E .

Since the harmonic series diverges, we see that limn→∞ −
´

Qn
d−α

E = ∞. On the other 

hand, each Qn contains edges of E of length equal to 1, and thus ess infQn
d−α

E = 2α. 

We conclude that d−α
E /∈ A1. �

Lemma 8.5. For every 0 < α < 1 and 1 < p < ∞, there exists a constant Ĉ = Ĉ(α, p) > 0

such that

−
ˆ

QN

dE(x)−α dx

⎛
¿ −
ˆ

QN

dE(x)
α

p−1 dx

À
⎠

p−1

≤ Ĉ

for every N ∈ N ∪ {0}.
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Proof. For N = 0 the claim is clear. Assume that N ≥ 1. By Lemma 8.2,

−
ˆ

QN

d−α
E

⎛
¿ −
ˆ

QN

d
α

p−1

E

À
⎠

p−1

=

(
N∏

n=1

2 + t1−α
n

2 + tn

)(
N∏

n=1

2 + t
1+ α

p−1
n

2 + tn

)p−1

−
ˆ

Q0

d−α
E

⎛
¿ −
ˆ

Q0

d
α

p−1

E

À
⎠

p−1

=

N∏

n=1

(
2 + t1−α

n

2 + tn

)(
2 + t

1+ α
p−1

n

2 + tn

)p−1

−
ˆ

Q0

d−α
E

⎛
¿ −
ˆ

Q0

d
α

p−1

E

À
⎠

p−1

.

Let N0 = N0(α, p) ∈ N be as in Lemma 8.3. Then

log

N∏

n=1

(
2 + t1−α

n

2 + tn

)(
2 + t

1+ α
p−1

n

2 + tn

)p−1

≤
N0−1∑

n=1

log

⎡
⎣
(

2 + t1−α
n

2 + tn

)(
2 + t

1+ α
p−1

n

2 + tn

)p−1
⎤
⎦+

N∑

n=N0

α2p

18(p − 1)n2
,

where the right-hand side is bounded from above by a constant C1 = C1(α, p) indepen-

dent of N . Hence,

−
ˆ

QN

d−α
E

⎛
¿ −
ˆ

QN

d
α

p−1

E

À
⎠

p−1

≤ eC1 −
ˆ

Q0

d−α
E

⎛
¿ −
ˆ

Q0

d
α

p−1

E

À
⎠

p−1

,

and the claim follows. �

Lemma 8.6. For every 0 < α < 1 and 1 < p < ∞, there exists a constant C = C(α, p) > 0

such that

−
ˆ

Q

dE(x)−α dx

⎛
¿ −
ˆ

Q

dE(x)
α

p−1 dx

À
⎠

p−1

≤ C (24)

for every interval Q ⊂ [0, +∞).

Proof. Observe that Q ⊂ QN for some N ∈ N. When Q contains at most 4 points of 

E, it is straightforward to see that the distance dE satisfies (24) for Q and with some 

constant C1 only depending on α and p. This includes the case where Q is contained in 

Q1.

We prove by induction on N that dE satisfies (24) for every interval Q ⊂ QN with the 

constant C = max{12pĈ, C1}, where Ĉ is the constant in Lemma 8.5. The case N = 1

has already been proved since C ≥ C1. Hence, we assume that the claim holds for all 

n = 1, . . . , N − 1, and we need to verify the claim for all intervals Q contained in QN .
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The case where Q ⊂ QN−1 follows from the induction hypothesis. Thus we may and 

do assume that Q is not contained in QN−1. We do a case study.

(i): Q is contained in one of the intervals Q1
N−1, Q2

N−1. In the first case, the interval 

Q ⊂ Q1
N−1 can be written as Q = tN Q∗, where Q∗ is a translation of an interval Q̂

contained in QN−1. Then |Q| = tN |Q̂| and 
´

Q
dβ

E = t1+β
N

´

Q̂
dβ

E for every β > −1. This 

gives

−
ˆ

Q

d−α
E

⎛
¿ −
ˆ

Q

d
α

p−1

E

À
⎠

p−1

=

⎛
⎜¿t−α

N −
ˆ

Q̂

d−α
E

À
⎟⎠

⎛
⎜¿t

α
p−1

N −
ˆ

Q̂

d
α

p−1

E

À
⎟⎠

p−1

= −
ˆ

Q̂

d−α
E

⎛
⎜¿ −
ˆ

Q̂

d
α

p−1

E

À
⎟⎠

p−1

≤ C,

where the last inequality holds by the induction hypothesis. In the second case we have 

Q ⊂ Q2
N−1, and inequality (24) follows from the induction hypothesis since Q is now 

translation of an interval Q̂ contained in QN−1.

(ii): Q intersects both QN−1 and Q2
N−1. This implies that Q contains Q1

N−1, and so

|Q| ≥ |Q1
N−1| = tN |QN−1| =

tN

2 + tN
|QN | ≥ 1

6
|QN |.

Using this estimate together with Lemma 8.5, we obtain

−
ˆ

Q

d−α
E

⎛
¿ −
ˆ

Q

d
α

p−1

E

À
⎠

p−1

≤

⎛
¿ 6

|QN |

ˆ

Q

d−α
E

À
⎠
⎛
¿ 6

|QN |

ˆ

Q

d
α

p−1

E

À
⎠

p−1

≤ 6p −
ˆ

QN

d−α
E

⎛
¿ −
ˆ

QN

d
α

p−1

E

À
⎠

p−1

≤ 6pĈ.

(iii): Q contains one of the intervals QN−1, Q1
N−1, Q2

N−1. In this case |Q| ≥
tN |QN−1| ≥ 1

6 |QN |. Using that Q ⊂ QN , the desired estimate follows as in the case (ii).

(iv): Assume that Q ∩QN−1 �= ∅ �= Q ∩Q1
N−1 but Q ∩Q2

N−1 = ∅. By the construction 

of QN−1, we can find m ∈ {−1, 0, . . . , N − 2} so that Q∗
m ⊂ Q ∩ QN−1 ⊂ Q∗

m+1, where 

Q∗
m and Q∗

m+1 are translations of Qm and Qm+1 respectively, and we use the notation 

Q∗
−1 = ∅. This implies |Q ∩QN−1| ≥ |Qm|. Similarly, by the construction of Q1

N−1, there 

exists n ∈ {−1, 0, . . . , N − 2} so that tN Q∗
n ⊂ Q ∩Q1

N−1 ⊂ tN Q∗
n+1, where Q∗

n and Q∗
n+1

are translations of Qn and Qn+1, respectively, and so |Q ∩ Q1
N−1| ≥ tN |Qn|. Now define 

M = max{m, n}. If M = −1, then Q intersects at most 2 edges of E, and the desired 
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estimate follows with the constant C1 from the beginning of the proof. If M ≥ 0, then 

we have Q ∩ QN−1 ⊂ Q∗
M+1 and Q ∩ Q1

N−1 ⊂ tN Q∗
M+1, and so

ˆ

Q

dβ
E ≤

ˆ

QM+1

dβ
E + t1+β

N

ˆ

QM+1

dβ
E =

(
1 + t1+β

N

) ˆ

QM+1

dβ
E ≤ 2

ˆ

QM+1

dβ
E ,

for every β > −1. On the other hand,

|Q| = |Q ∩ QN−1| + |Q ∩ Q1
N−1| ≥ |Qm| + tN |Qn|

≥ tN |QM | =
tN

2 + tM+1
|QM+1| ≥ |QM+1|

6
.

This leads us to

−
ˆ

Q

d−α
E

⎛
¿ −
ˆ

Q

d
α

p−1

E

À
⎠

p−1

≤ 12p −
ˆ

QM+1

d−α
E

⎛
⎜¿ −
ˆ

QM+1

d
α

p−1

E

À
⎟⎠

p−1

≤ 12pĈ,

where the last inequality follows from Lemma 8.5.

(v): Assume that Q ∩Q1
N−1 �= ∅ �= Q ∩Q2

N−1 but Q ∩QN−1 = ∅. Recall that Q2
N−1 is a 

translation of QN−1 that contains, from left to right, translated copies Q∗
0 ⊂ Q∗

1 ⊂ · · · ⊂
Q∗

N−2 ⊂ Q∗
N−1 of Q0 ⊂ Q1 ⊂ · · · ⊂ QN−2 ⊂ QN−1, respectively. In addition, Q1

N−1

contains, from right to left, translated copies tNQ∗
N−1 ⊃ tN Q∗

N−2 ⊃ · · · ⊃ tN Q∗
1 ⊃ tN Q∗

0

of QN−1 ⊃ QN−2 ⊃ · · · ⊃ Q1 ⊃ Q0 dilated by tN . Now, the argument is identical to the 

case (iv). �

Lemma 8.7. Let 0 < α < 1 and 1 < p < ∞, and let C = C(α, p) be the constant in 

Lemma 8.6. Then

−
ˆ

Q

dE(x)−α dx

⎛
¿ −
ˆ

Q

dE(x)
α

p−1 dx

À
⎠

p−1

≤ 2pC (25)

for every interval Q ⊂ R, and so d−α
E ∈ Ap.

Proof. Given an interval Q ⊂ R, we write Q+ = Q ∩ [0, +∞) and Q− = Q ∩ (−∞, 0]. 

Let Q∗ be the largest of the intervals Q+ and −Q−, that is, Q∗ ∈ {Q+, −Q−} and 

Q+ ∪ −Q− ⊂ Q∗. Here −Q− denotes the reflection of Q− with respect to the origin. 

Because E is symmetric with respect to the origin, we can write

ˆ

Q

d−α
E =

ˆ

Q+

d−α
E +

ˆ

Q−

d−α
E =

ˆ

Q+

d−α
E +

ˆ

−Q−

d−α
E ≤ 2

ˆ

Q∗

d−α
E .
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The same argument shows that 
´

Q
d

α
p−1

E ≤ 2 
´

Q∗ d
α

p−1

E . Because |Q| ≥ |Q∗| and Q∗ is 

contained in [0, ∞), we can use Lemma 8.6 to conclude that

−
ˆ

Q

d−α
E

⎛
¿ −
ˆ

Q

d
α

p−1

E

À
⎠

p−1

≤ 2p −
ˆ

Q∗

d−α
E

⎛
¿ −
ˆ

Q∗

d
α

p−1

E

À
⎠

p−1

≤ 2pC. �
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