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A B S T R A C T

Multicomponent refractory alloys have the potential to operate in high-temperature environments. Alloys with 
heterogeneous/composite microstructure exhibit an optimal combination of high strength and ductility. The 
present work generates designed compositions using high-throughput computational and machine-learning (ML) 
models based on elements Mo-Nb-Ti-V-W-Zr manufactured utilizing vacuum arc melting. The experimentally 
observed phases were consistent with CALPHAD and Scheil simulations. ML models were used to predict the 
room temperature mechanical properties of the alloy and were validated with experimental mechanical data 
obtained from the three-point bending and compression tests. This work collectively showcases a data-driven, 
inverse design methodology that can effectively identify new promising multicomponent refractory alloys.

1. Introduction

The development of refractory multicomponent alloys (RMCAs) with 
high concentrations of group IV (Ti, Zr, Hf), V (V, Nb, Ta), and VI (Cr, 
Mo, W) alloying elements has gained signi昀椀cant attention due to their 
impressive combinations of properties such as high temperature 
strength, wear resistance, and thermal stability [1]. While RMCAs excel 
at temperatures exceeding 1200 çC due to their high melting tempera-
ture and strength retention, their limited ductility at room temperature 
and high density restrict their application as structural materials. To 
address this challenge, a heterogeneous composite microstructure 
comprising hard and soft phases has emerged as a practical approach to 
achieve an optimum balance of high strength and ductility [2–4]. 
However, obtaining a desired combination of properties, such as 
strength, density, ductility, thermal stability, fatigue/creep resistance, 
and oxidation resistance, for any targeted application from a single alloy 
composition remains a signi昀椀cant challenge. Recent advancements in 
non-equiatomic MCAs have expanded the compositional space for alloy 
design, offering a promising avenue for enhancing mechanical proper-
ties beyond equiatomic MCAs [5,6]. Although non-equiatomic MCAs 

provide a vast landscape for alloy design, predicting phases and prop-
erties within this space requires advanced techniques and theories. 
Recent studies have demonstrated outstanding mechanical properties in 
non-equiatomic MCAs, highlighting their potential for various 
high-temperature applications. Efforts to develop optimal materials 
with tailored properties for speci昀椀c applications are still highly desired, 
emphasizing the need for advanced predictive tools to streamline the 
material development process and reduce time, energy, and cost in-
vestments [7–9].

The convergence of experimental and computational methods, 
coupled with the rising popularity of data-driven approaches, have 
spurred the adoption of machine learning (ML) techniques in materials 
design. Leveraging vast datasets from techniques like Density Functional 
Theory (DFT) and CALculation of PHAse Diagram (CALPHAD), ML fa-
cilitates the development of surrogate models capable of predicting 
material properties based on factors such as crystal structure, compo-
sition and processing history [10–17]. One prevalent approach involves 
building surrogate models for forward design, enabling the exploration 
of chemical space to identify candidates with target properties. These 
models, often combined with optimization algorithms, streamline the 
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search for candidate materials that meet speci昀椀c criteria. In contrast, 
emerging methods, such as Variational Autoencoders (VAEs) and 
Generative Adversarial Networks (GANs) using generative models, 
enable inverse design by learning to approximate property distributions. 
This allows for the rapid generation of new material candidates in a 
single iteration, bypassing the need for iterative surrogate model 
searches in forward design approaches.

Among the RMCA literature, HfNbTaTiZr exhibits a stable micro-
structure and an optimum combination of high-temperature strength 
and ductility (>50 %) up to 1200 çC [18,19]. Later, lightweight RMCAs 
with Cr addition, such as Cr-Nb-Ti-V-Zr, were developed to improve the 
oxidation resistance and reduce density. However, the Cr in RMCAs 
promotes the formation of the Laves phase, increasing the alloys’ 

strength at the expense of ductility [20,21]. Subsequently, Mo has been 
introduced as a replacement for Cr in alloys like Mo-Nb-Ti-V-Zr and 
Mo-Nb-Ta-Ti-W, aiming to improve strength and stability at elevated 
temperatures. The addition of Zr in these alloys induces positive 
enthalpy of mixing, leading to phase separation, reduces the valence 
electron con昀椀guration (VEC) that lowers the intrinsic brittleness, and 
causes lattice distortion due to larger atomic radius. Further enhance-
ments in high-temperature strength are achieved by incorporating Mo 
and W [19,22]. In MoNbTaW-based alloys, including V and Zr, along 
with Mo and W, have been found to contribute to adequate strength and 
ductility through lattice mis昀椀t mechanisms [23].

This study generates high-entropy compositions based on the Mo-Nb- 
Ti-V-W-Zr alloy system from the ULTERA database by high-throughput 
computational and machine-learning models. The chosen compositions 
were fabricated via vacuum arc melting, and the observed phases were 
compared with CALPHAD and Scheil simulations. The mechanical 
properties such as hardness, Young’s modulus, and maximum 
compressive strength predicted using ML algorithms were validated 
with experimental data. Further, comparisons of microstructure and 
mechanical behavior were made with other RMCAs and refractory al-
loys. Our work demonstrates a practical inverse design approach for 
identifying, fabricating, and validating promising candidates of other 
multicomponent alloys.

2. Materials and methods

2.1. Surrogate models

The design of RMCAs must consider multiple potentially con昀氀icting 
property requirements, such as thermodynamic and mechanical de-
scriptors, along with density and cost that affect their application. 
Thermodynamic descriptors include the ideal entropy of mixing (ΔSmix), 
which identi昀椀es the added stability with an increasing number of con-
stituents when present in equimolar fractions, and the D parameter, 
which is the ratio of surface energy versus unstable stacking fault en-
ergy, indicates ductility. Mechanical parameters include fracture 
toughness, compressive strength (CS) at room temperature (RT), and 
hardness. Each property requires different testing apparatuses; some of 
these tests are destructive, making it time-consuming and expensive to 
obtain all the relevant measurements. Apart from being used for forward 
design, surrogate models can provide a rapid and cost-effective alter-
native to extensive experimental or computational validation. There-
fore, for this study, we have utilized surrogate models for each 
descriptor, which broadly fall under these categories, namely heuristic, 
phenomenological, and data-driven ML models, and are explained in the 
supplementary section S1. We have utilized ML surrogate models to 
predict the hardness and CS of the MCAs. The datasets used for training 
the ML surrogate models in this study were taken from the ULTERA 
Database, a curated database developed as a part of the ULTIMATE 
program of the U.S. Department of Energy (DOE) [24].

Input data for training the hardness surrogate model was restricted to 
RT tests in an as-cast (AC) state. This yielded a training dataset of 649 
unique experimental property data points (643 from previously 

published work from the ULTERA Database + 6 new MoNbW alloys 
from our previous work [25]). The ML model used was an imple-
mentation of the Multi-Layer Perceptron (MLP) regressor from the 
sklearn python package, using standardized input features and hardness 
values. The compositions were represented as a 103-dimensional vector 
array (the composition vector), with each vector component carrying 
the atomic fraction of one of the 昀椀rst 103 elements from the periodic 
table. The decision was motivated by results from a previous study that 
indicated that the transfer learning features, like General and Trans-
ferrable Deep Learning (GTDL) from Feng et al., do not outperform 
atomic fractions as inputs [26,27]. The MLP’s hyperparameters were 
tuned using grid search and 10-fold cross-validation of the entire 
training dataset. The 10 models from cross-validation were then used to 
obtain the average prediction and uncertainty.

We used an MLP regressor to predict the compressive strength of an 
alloy, using the composition vector, processing conditions, phases, and 
test temperature (in Kelvin) as the input features. The processing con-
dition was represented as binary categories of either as-cast or heat- 
treated depending on the postprocessing of the alloy. The phase of the 
alloys was also categorized into one of the three classes: pure single- 
phase solid solution, a mixture of solid solutions/intermetallics, or 
amorphous. The processing conditions and the phase were then con-
verted to one-hot encoded vectors, and the temperature was concate-
nated to the composition vector. An additional feature selection was 
performed to reduce the number of features being used as input to the 
model. For this purpose, the 21 selected features from the list of 118 
initial features include a) the atomic fractions for elements Al, Co, Cr, Fe, 
Mn, Mo, Nb, Ni, Ta, Ti, V, W, Zr; b) the test temperature; c) two binary 
features to indicate the manufacturing process - one for hot rolling (HR), 
and another for spark plasma sintering (SPS); d) a binary feature to 
indicate the sample condition – as cast or annealed; e) three binary 
features to suggest the observed phase - BCC, FCC, or intermetallics (IM); 
f) a binary feature that indicates if the sample forms a single-phase solid 
solution.

The dataset used for training the CS surrogate model was obtained 
from the ULTERA database [24]. It contains 726 
composition-processing-structure-property data points, with 326 unique 
compositions. Like before, the model’s hyperparameters were selected 
using grid search and 10-fold cross-validation, and the predictions from 
the 10 models from cross-validation were used to obtain the mean and 
standard deviation in CS.

2.1.1. Synthetic dataset
Deep learning models like GANs typically require a large training 

dataset (approximately 104-106 data points). However, most materials 
science datasets are much smaller in scale since generating large 
amounts of data from experiments and simulations is expensive and 
time-consuming. Since these smaller datasets should not be used directly 
for deep learning, an alternative would be to construct and use a larger 
dataset by combining the design of experiments and surrogate models. 
Therefore, in this study, we constructed a synthetic dataset of MCA 
compositions formed by combining the 9 refractory elements (Cr, Hf, 
Mo, Nb, Ta, Ti, V, W, and Zr) in different proportions (with a minimum 
step of 1 %) to form binaries to senary systems. While the composition 
space formed from these elements would constitute ~311 alloys, the 
constructed synthetic dataset has ~800,000 compositions, which is less 
than 0.0003 % coverage of the compositional space. The properties of 
the synthetic compositions were calculated using the surrogate models 
discussed in the previous section.

2.1.2. Inverse design using conditional Generative Adversarial Networks 
(cGANs)

GANs can learn a mapping between complex, high-dimensional 
design space to a simple, lower-dimensional latent space that captures 
the underlying data distribution in the original space. The GAN archi-
tecture consists of two deep neural networks (DNNs) that are trained in 
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tandem – a generator (G) that creates realistic-looking synthetic/arti昀椀-
cial samples from random noise drawn from a normally distributed 
latent space and a discriminator that learns to distinguish between 
samples from the real domain or generator. In particular, the conditional 
variant of GANs, called conditional GANs or cGANs, are theorized to be 
especially applicable for inverse design due to their capability to control 
the output of the generator by using some auxiliary information (or 
conditioning vector) as additional input to the generator and the 
discriminator. Modifying the architecture ensures that the generator 
obtains the context to learn a multi-model mapping from the input to the 
output domain.

In continuation of our previous work, where we demonstrated that a 
cGAN can be used for the inverse design [25], here we aim to design 
MCAs that simultaneously satisfy multiple design criteria using the 
synthetic dataset. We are particularly interested in MCAs with an opti-
mum combination of density and strength. Therefore, we applied a 
cGAN with 4 fully connected layers (3 hidden layers + 1 output layer) 
conditioned on seven properties of interest: ΔSmix, fracture toughness, D 
parameter, price, density, CS, and hardness. While there are no explicit 
criteria that need to be satis昀椀ed for ΔSmix, hardness, or cost, including 
them in the conditioning allows the manipulation of the output from the 
cGAN. For instance, it would also be desirable if the alloy was designed 
to be as affordable as possible. The empirical probability distribution of 
the standardized property values was used to sample the conditioning 
values. The input to the generator is an 11-dimensional vector (4 cor-
responding to the random noise + 7 corresponding to the properties), 
with the output being a 9-dimensional composition vector. Each 
component of the composition vector corresponds to the atomic fraction 
of a particular element in the design space. The learning rates of both the 
generator and the discriminator were set to 10−3. The models were 
implemented and trained using the Pytorch Python package. Incorpo-
rating additional features to the cGAN conditioning is ef昀椀cient but only 
requires retraining the model.

2.2. Alloy synthesis

The designed Mo-Nb-Ti-V-W-Zr samples were fabricated using vac-
uum arc melting (VAM) (MAM-1, Edmund Buehler, GmbH). Wires of W, 
Mo, and Nb, Ti foils and V, Zr granules (all >99.8 %, Sigma Aldrich) 
were weighed stoichiometrically as Mo13Nb47Ti3V13W7Zr17 (alloy A) 
and Mo20.3Nb27.8Ti6.5V24.1W6.2Zr15.1 (alloy B) with a total mass of 15 g. 
To ensure complete mixing and homogeneity, the ingots were over-
turned and re-melted 10 times with an arc holding time of 1 min/ 
melting cycle. The as-cast ingots had a lustrous surface with a diameter 
between 15 and 18 mm and a thickness of 7–9 mm. The as-cast ingots 
were further annealed at 1400 çC for 48 h by sealing them in a quartz 
tube under vacuum (~10−5 mbar), followed by furnace cooling.

2.3. Structural and mechanical characterization

The crystal structure of coupon samples was con昀椀rmed using X-ray 
diffraction (XRD, PANalytical X-ray Diffractometer, Malvern Panalytical 
Ltd.) with Cu Kα radiation and a Bragg–Brentano con昀椀guration over a 2θ 

range between 30 and 80ç. Instrumental broadening was corrected using 
a silicon standard reference material. The lattice parameter of the as-cast 
alloys was analyzed using the Nelson-Riley (N. R.) function [28]. The 
microstructures of the alloys were characterized by 昀椀eld emission 
scanning electron microscopy (FESEM, FEI Verios G4, Thermo Fisher 
Scienti昀椀c), energy dispersive spectroscopy (EDS, Oxford Aztec), and 
electron backscattered diffraction (EBSD, FEI Apero S, Thermo Fisher 
Scienti昀椀c). The EBSD analysis was carried out with a step size of 0.4 mm 
using Oxford Aztec Crystal software with an equivalent circle diameter 
method for grain size analysis and TruPhase (Oxford Aztec) for phase 
analysis. The Vickers microhardness of the RMCAs was measured (Leco 
V-100-C1, Leco Corporation) using a load of 500 g with a dwell time of 
10 s. The average value of ten measurements was reported for each 

sample.
Room temperature compression and three-point bending tests were 

performed using an axial mechanical load frame (MTS Criterion 43, 
Criterion 45, MTS Systems). For three-point bending, at least two thin 
bars were extracted for each composition from pucks using wire EDM 
and were subsequently mechanically polished, with dimensions of 1.5 
mm × 1 mm × 15 mm. The length between the outer pins was 12 mm, 
and the crosshead displacement rate was 0.0050 mm/s, resulting in a 
strain rate at the outer 昀椀ber at the center of the sample of 2× 10−4 s−1. 
For the bending tests, digital image correlation con昀椀rmed that all 
macroscopic deformation was linear-elastic. Therefore, the bending 
strength, critical failure strain, and elastic modulus were calculated 
using the Euler-Bernoulli beam theory. For compression tests, a rect-
angular cuboid of 4 × 4 × 6 mm3 was used, with a strain rate of 4×

10−4 s−1, and two samples were tested for each composition.
The RT nanoindentation (NI) experiments were carried out on a 

Hysitron TI 950 TriboIndenter (Bruker Corporation, Billerica, Massa-
chusetts, USA) with a Berkovich indenter to obtain the individual phase/ 
region hardness. Accelerated property mapping (XPM) was acquired 
from a matrix of 10 × 10 indents (5 μm spacing between consecutive 
indents). Tests were performed under constant load mode with a peak 
load of 5000 μN (0.5 s loading, 0.2 s holding, and 0.5 s unloading). 
Poisson’s ratio of 0.3 was assumed to obtain the elastic and shear 
modulus from the measured reduced modulus.

2.4. CALPHAD-based thermodynamic calculation and scheil simulation

We used the CALPAHD approach to predict equilibrium phases and 
solidi昀椀cation behavior using Thermo-Calc software [29,30] in combi-
nation with the TCHEA database. The employed thermodynamic data-
base of the Mo-Nb-Ti-V-W-Zr system was combined from previous works 
[31–43], which includes the BCC, HCP, LAVES (C15), and liquid phases. 
Both equilibrium calculations and Scheil model simulations were per-
formed for the two designed alloys. Equilibrium calculations minimize 
the Gibbs energy for the system of interest. The Scheil solidi昀椀cation 
model was 昀椀rst introduced by Gulliver and Scheil [44]. The model 
considers the following assumptions: 1) perfect mixing of liquid with 
in昀椀nite diffusivity; 2) no diffusion in the solid phase; and 3) local 
equilibrium between liquid and solid at the solid/liquid interface.

3. Results and discussion

3.1. Composition identi昀椀cation from ML

The trained generator was tasked with generating multiple candidate 
compositions with the desired property values (with value for ΔSmix ~ 
1.5R, an arbitrarily chosen low cost, and an arbitrarily chosen high value 
of the hardness), out of which the composition Mo3Nb6Ti30V3W27Zr30 
was selected based on the predictions of the surrogate models. However, 
unmelted W regions were observed during arc melting. Given the high 
content of W, one possible way to mitigate this issue was to reduce the 
amount of W in the composition. As W content is not a part of the 
conditioning properties, it is not trivial to induce the generator to 
generate new compositions with W content within a speci昀椀c range. In 
contrast, it is possible to perform operations in the latent space to 
manipulate the generator’s output and derive a composition with the 
necessary content of W [27,45]. A multi-objective optimization using 
the pymoo python package was used, where a local optimization 
reduced W content while maximizing UTS at 1200 çC, fracture tough-
ness, and hardness while minimizing price. Constraints included the 
atomic fractions summing to unity and density ~ 8–10 g cm−3. Upon 
optimization, the composition Mo20.3Nb27.8Ti6.5V24.1W6.2Zr15.1 was 
obtained.

Apart from generating compositions from the cGAN, a forward 
search was also performed on the synthetic dataset with the necessary 

L. Raman et al.                                                                                                                                                                                                                                  Materials Science & Engineering A 918 (2024) 147475 

3 



search conditions, as described in Section 2.1.1. Based on the search, we 
were able to select the composition Mo13Nb47Ti3V13W7Zr17 from the 
shortlisted candidates. The compositions Mo13Nb47Ti3V13W7Zr17 and 
Mo20.3Nb27.8Ti6.5V24.1W6.2Zr15.1 are designated as Alloy A and B, 
respectively. A summary of the predicted properties for the alloys A and 
B using the surrogate models is shown in Table 1.

3.2. Microstructure

The XRD pattern of the as-cast and annealed alloys A and B exhibit 
two BCC solid solutions and a secondary Laves phase, as shown in Fig. 1
(a). The BCC1 phase of the alloys A and B is Zr-rich, with a lattice 
parameter of 0.3615 nm and 0.3549 nm, respectively, whereas the BCC2 
phase is W-rich, with a lattice parameter of 0.3266 nm and 0.3204 nm, 
respectively. Both the alloys have similar phases, and the difference in 
the lattice parameters can be attributed mainly to the differences in the 
Mo, Nb, and V concentrations, which shift the peaks (corresponding to 
the BCC phases of alloy B) to higher angles, indicating a reduced lattice 
parameter.

The phases detected through XRD were correlated with SEM anal-
ysis, as shown in Fig. 1(b). The microstructure of annealed samples 
exhibits dendritic (D) and interdendritic (ID) regions due to the differ-
ence in the melting point of the elements. The high melting point ele-
ments, such as Mo and W, segregate in the D regions, whereas the 
relatively low melting point element Zr concentrates in the ID region. 
Correlating Figs. 1(b) and 2(a), it is indicative that the grey region 
(indicated by blue arrow) surrounding the dark ID region (indicated by 
yellow arrow) is rich in Nb and V. The dark ID region is Zr-rich, corre-
sponding to the BCC1 phase, whereas the matrix (bright region indicated 
by red arrow) is Zr-depleted, corresponding to the BCC2 phase. The 
composition of different regions of alloys A and B, quanti昀椀ed using SEM- 
EDS analysis, is given in Fig. 2(b).

Moreover, the BCC2 phase consists of a homogenous distribution of 
Zr-rich 昀椀ne precipitates (Fig. 1(b), consistent with the Nb-Mo-Zr-based 
alloys [46]. The distribution of different phases, along with the IPF 
map and elemental mapping for alloys A and B obtained from EBSD 
analysis, is shown in Fig. 3. The microstructure of alloys A and B is 
similar with the presence of similar phases, which differs in their lattice 
parameter due to the variation in their composition. The volume fraction 
of the phases obtained from SEM analysis is given in supplementary 
section S2.

3.3. Thermodynamic equilibrium and non-equilibrium scheil predictions

The preceding microstructural analysis shows that alloys A and B 
comprise two BCC solid solutions with a secondary Laves phase. Fig. 4
displays the equilibrium phase fraction predictions of the two designed 
alloys, A and B, as functions of temperature. Alloy A exhibits liquid, 
HCP, C15, and two BCC phases (BCC#1 and BCC#2) in the equilibrium 
calculation, while alloy B predominantly consists of liquid, two BCC 
phases, and the C15 phase. The phase transformation temperatures for 
both alloys are summarized in Supplementary section S3. For alloy A, 
both equilibrium and Scheil simulations indicate the formation of only 
the BCC#2 phase during solidi昀椀cation.

On the other hand, for alloy B, the equilibrium simulation suggests 

the formation of the BCC#2 phase, while the Scheil simulation indicates 
the formation of the C15 phase at around 1200 çC. Alloy A displays 
higher phase transition temperatures in the start temperature from 
liquid to the BCC#2 phase (TL) and completion from liquid to the BCC#2 
phase (TS). As temperature decreases, the BCC#2 phase partially 
transforms into BCC#1 phase at 1215 çC in alloy A, followed by a 
transformation into HCP and C15 phases at 615 çC and 550 çC, 
respectively. Conversely, in alloy B, the BCC#2 phase partially trans-
forms into the C15 phase at 1205 çC before transforming into C15 and 
BCC#1 at 830 çC. The higher fraction of C15 phase in alloy B aligns with 
the SEM experimental 昀椀ndings. Fig. 4(c) shows the equilibrium and 
Scheil solidi昀椀cation simulation of alloys A and B. It is observed that the 
range of equilibrium solidi昀椀cation is much narrower than that of Scheil 
solidi昀椀cation, resulting in the formation of the BCC#2 phase.

Moreover, it is essential to note the solidi昀椀cation sequence in both 
alloys. The BCC#2 phase (W-rich) solidi昀椀es 昀椀rst, followed by BCC#1(Zr- 
rich) and C15 Laves phase in both the alloys, which is consistent with the 
experimental observation of W-rich dendrites and Zr-rich interdenrites. 
The phase composition of the alloys at different temperatures is 
mentioned in Supplementary section S3.

3.4. Phase formation criteria

The alloys studied are multiphase in nature with a dendritic micro-
structure. The experimentally observed phases are consistent with the 
CALPHAD predictions. Both the alloys show the presence of two BCC 
phases and a Laves phase. CALPHAD and Scheil simulations indicate 
that the alloys have a wide solidi昀椀cation range of approximately 800 çC. 
In both alloys, the high temperature BCC solid solution dissociates into 
low temperature BCC solid solution and a C15 Laves phase. Similar 
observations are reported for MoxNbTiVyZr RMCAs [47]. The presence 
of Zr results in an increased segregation tendency with strong segrega-
tion of Zr in the ID regions due to its positive ΔHmix. The calculated 
empirical parameters for phase formation criteria in MCAs are also used 
to explore phase evolution. The values of various parameters such as 
entropy of mixing, enthalpy of mixing, omega parameter, size differ-
ence, atomic packing factor, electronegativities (Allen, ΔχA and Pauling, 
ΔχP) and VEC are as given in Table 2.

Different interactions between the alloying elements are responsible 
for the phase separation. The hexanary Mo-Nb-Ti-V-W-Zr system con-
tains 昀椀fteen binary and twenty ternary systems. Among the binaries, Ti- 
V, Nb-V, Ti-V, Ti-Mo, and W-V exhibit a miscibility gap, and interaction 
of Zr with the other elements results in the HCP + C15 Laves phase. 
These binary and ternary interactions re昀氀ect in the higher-order hexa-
nary system and result in the separation of the high-temperature BCC 
phase into BCC and Laves phase at temperatures below 1200 çC. Both 
alloys show the formation of two disordered BCC phases. One is rich in 
Zr, lean in Nb (BCC2), and another is rich in Nb and depleted in Zr 
(BCC1), consistent with CALPHAD predictions. Moreover, the Laves 
phase formation in these alloys can be attributed to the atomic radius 
difference between V and Zr, which is the largest among the alloying 
elements. From Table 2, the atomic packing parameter and the elec-
tronegativity parameter also indicate the formation of the Laves phase 
along with BCC solid solutions.

3.5. Mechanical properties

3.5.1. Vickers hardness: correlation between experiment and prediction
The predictions from the ML models were assessed and compared to 

the experimental results. A lower value of RMSE and a higher value of R2 

indicate that the model’s predictions were more aligned with the 
measured values. The 10-hardness model ensemble had a mean RMSE of 
0.76 GPa and an R2 score of 0.84. The experimental Vickers hardness of 
the alloys A and B were measured to be 5.1 and 5.3 GPa, respectively. 
The ML predicted values were estimated at approximately 4.07 ± 0.28 
and 6.04 ± 0.19 GPa, respectively, close to the experimental values. 

Table 1 
Predicted properties of designed alloys A and B obtained from surrogate models.

Alloy ΔSconf 
(J/K)

D 
parameter 
(−)

Price 
($/g)

Density 
(g/cm3)

Hardness 
(GPa)

CYS 
(GPa)

A 1.48R 2.97 84.9 7.76 4.07 ±
0.19

1.63 
± 0.12

B 1.66R 2.61 133.3 8.32 6.04 ±
0.19

1.77 
± 0.11
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Fig. 1. (a) X-ray diffractogram of the alloys A and B in the as-cast and annealed condition showing the presence of two BCC solid solution and Laves phases and (b) 
SEM-BSE microstructure of alloys A and B after annealing. The blue, red, and yellow arrows indicate the grey, bright (D), and dark (ID) regions, respectively. 1400-FC 
in (a) denotes the sample annealed at 1400 çC for 48 h, followed by furnace cooling. (For interpretation of the references to color in this 昀椀gure legend, the reader is 
referred to the Web version of this article.)

Fig. 2. Elemental mapping showing the distribution of various elements and EDS composition of different regions observed in Fig. 1(b) of alloys A(a-b) and B(c-d).
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While the ensemble captured the expected order of higher hardness 
(Alloy B > A), the absolute values differed. The porosity in the annealed 
alloys resulted in lower compressive yield values. Incorporating porosity 

as a feature in the algorithm can improve the ML predictions.

Fig. 3. SEM microstructure (a,d), the corresponding phase map (b,e), and IPF map (c,f) of alloys A and B, respectively.

Fig. 4. (a–b) Phase fraction plot of alloys A and B (c) Solidi昀椀cation sequence of the alloys using Scheil simulation.
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3.5.2. Room temperature three-point bend test and compression test
The Young’s modulus of both alloys ranged from 120 to 150 GPa, and 

the mean 昀氀exural strength for alloys A and B were 440 and 340 MPa, 
respectively, as shown in Fig. 5(a). The critical elastic strain of the alloys 
A and B is 0.36 % ± 0.08 % and 0.26 % ± 0.05 %, respectively. The 
room temperature engineering stress-strain curves under compression 
are shown in Fig. 5(b). In both alloys, spallation was observed during 
compression. Alloy A exhibited better performance than alloy B, as 
indicated by the spallation location in Fig. 5(b). The microstructure 
shows the presence of pores, which are the main contributing factors to 
the low strength of these alloys (Supplementary sections S4 and S5). It is 
hypothesized that secondary processing techniques such as hot isostatic 
pressing would aid in closing the pores as well as breaking down the 
dendritic microstructure.

The CS ensemble model’s RMSE (root mean square error) and R2 

scores are 0.34 GPa and 0.59, respectively. The predicted room tem-
perature CS values for alloys A and B are 1630 ± 120 MPa and 1770 ±
110 MPa respectively, while the experimental values were observed to 
be between 1078-1404 MPa and 436–734 MPa, respectively. While the 
predictions using the simple descriptors mentioned in Section 2.1 might 
be a reasonable starting point, there is potential to reduce the disparity 
between the model and experiments by including more descriptive 
features. For instance, instead of binary features, CS may be better 
estimated by considering the volume fractions of the phases present in 
the sample. Additionally, performance can be improved by using 

advanced ML techniques like multi-task learning.

3.5.3. Hardness and modulus of the phases
Nanoindentation identi昀椀ed the contribution of each phase towards 

the overall mechanical strength through accelerated property maps 
(XPM), which provided the spatial distribution of hardness and modulus 
over the desired area of interest. Regions with all the phases were chosen 
for the NI study. The XPM of the alloys A and B are given in Fig. 6. The 
blue and red colors indicate the lower and upper limits of the values. The 
mean hardness and modulus of the various phases were calculated from 
their loading-unloading pro昀椀les from the NI data and are given in 
Table 3. For both alloys, the bright region (BCC2 phase) in the SEM 
image has relatively low hardness and high modulus, which indicates 
that the BCC2 phase, although stiffer, is more amenable to plastic 
deformation. The interface between the dark region (BCC1 phase) and 
the bright region (BCC2 phase, grey phase) has intermediate hardness 
and modulus, indicating a strong interface. The hardness and modulus 
values of both alloys are higher than the values reported for (Ti44-V28- 
Nb14-Zr14)98.5Mo1.5 [53]. This difference can primarily be attributed to 
the contribution of elements such as Mo and W.

3.5.4. Comparison of mechanical data of Mo-Nb-Ti-V-W-Zr with state-of- 
the-art RMCAs

The bending strength of the alloys A and B was 440 and 340 MPa, 
respectively, and the elastic modulus ranged from 120 to 150 GPa. Ti-Zr- 
Nb-Mo alloys exhibit higher bending strength and lower elastic modulus 
than those reported in this study [54]. The compressive yield strength of 
alloy A is similar to other RMCAs in Table 4. Although failure under 
compression may be challenging to identify, the failure stress was 
recognized at the instant spallation was observed; the mean compressive 
strength corresponding to spallation for alloys A and B were 1404 and 
436 MPa, respectively, as indicated in Fig. 5(b). Alloy B exhibited lower 
strength and was more prone to spallation due to porosity. From Table 4, 
it can be inferred that alloy A has a preferable combination of 
hardness-strength and a lower density than MoNbTaW. Further, the 
ductility of these alloys can be improved via secondary processing 
conditions.

4. Conclusions

In this study, a multiphase RMCA with desired properties is designed 
using a data-driven alloy design approach. Mo13Nb47Ti3V13W7Zr17 
(alloy A) and Mo20.3Nb0.278Ti6.5V24.1W6.2Zr15.1 (alloy B) show a hier-
archical microstructure with 2 BCC solid solutions and a Laves phase, 
consistent with the CALPHAD and Scheil predictions. The BCC 2 phase 

Table 2 
Phase formation criteria for alloys A and B.

Parameters Alloy 
A

Alloy 
B

Inference Ref

Entropy of mixing 
(ΔSmix, R is gas 
constant)

1.48 R 1.66 R Solid solution when 
ΔSmix > 1.5R

[48]

Enthalpy of mixing 
(ΔHmix, kJ/mol)

−2.95 −3.55 Solid solution when −
15 f ΔHmix f 5

[48]

Omega parameter Ω =

TmΔSmix
|ΔHmix |

10.69 9.77 Solid solution when Ω > 1.1 [49]

Atomic size difference 
(δ, %)

5.46 5.76 Solid solution when 
1 f δ f 6

[48]

Atomic packing 
parameter (γ)

1.19 1.19 Solid solution + IM/TCP 
formation when γ > 1.175

[50]

Electro- 
negativity

ΔχA 
(%)

5.6 6.31 TCP formation when ΔχP >
0.133 and ΔχA > 6 %

[51]

ΔχP 0.24 0.25
Valence electron 

concentration (VEC)
5 5.04 BCC when VEC <6.87 [52]

Fig. 5. (a) The elastic modulus, maximum stress under tension, and elastic strain obtained from room temperature three-point bend test. (b) Engineering stress-strain 
curve for compression. The dots represent when spalling on the surfaces 昀椀rst became visible.
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(Zr depleted) has lower hardness and higher modulus than the BCC 1 
phase, and the interface is relatively strong with intermediate properties 
between the BCC 1 and BCC 2 phases. Although the compressive yield 
strength of the alloys is not in complete agreement with the predicted 
values, an overall optimum density-strength combination of refractory 
alloys is achieved, indicating the excellent adaptability of the alloy 
design approach to other multicomponent systems. We envisage that 
integrating data-driven inverse design with experimental approaches 
will establish a new trajectory in advancing high-entropy refractory 
alloys. This holistic approach holds great promise for addressing the 

Fig. 6. Cross-sectional SEM micrograph of alloys A and B along with the corresponding hardness and modulus maps. The red box indicates the regions from which 
the hardness and modulus maps were taken. (For interpretation of the references to color in this 昀椀gure legend, the reader is referred to the Web version of 
this article.)

Table 3 
Hardness and modulus values of different phases obtained from NI-XPM.

Alloy Property/Phases BCC1 BCC2 Interface
A Hardness (GPa) 9.6 ± 1.18 7.1 ± 0.4 8.4 ± 0.1

Modulus (GPa) 170.2 ± 13.6 181.1 ± 7 165.5 ± 7.3
B Hardness (GPa) 9.6 ± 1.5 7.8 ± 0.2 7.4 ± 0.7

Modulus (GPa) 172 ± 7.7 197 ± 6 192.7 ± 5.3

Table 4 
Summary of room temperature mechanical properties of a few RMCAs from the literature.

Alloys Density (g/cm3 Phases Hardness (GPa) Compressive yield strength (MPa) % el. Ref
ZrxNbMoTaW 12.24a 2BCC – 1354–1589 5–15 [55]
HfMoNbTaTiZr 9.96a BCC – 1512 12 [56]
HfNbTaTiZr 9.91a BCC – 929 >50
HfMoTaTiZr 10.24a BCC – 1600 4
HfMoNbTiZr 8.62a BCC – 1351 20
HfMoNbTaZr 11.05a BCC – 1524 16
HfMoNbTaTi 10.65a BCC – 1369 27
Nb-Mo-Zr-Al 7.56–8.58 BCC + HCP + Al3Zr5 – 587–1240 ​ [46]
MoNbVW 11.1 BCC 6 ± 0.2 1243 ± 49 ​ [57]
MoNbVTi 7.4 BCC 4 ± 0.1 1210 ± 36 ​
Mo30Nb30V30Ti10 7.9 BCC 4 ± 0.2 1441 ± 39 ​
MoNbVWTi 9.8 BCC 5 ± 0.1 1289 ± 42 ​
NbTiVZr 6.52 BCC 3.29 ​ ​ [20]
NbTiV2Zr 6.34 3BCC 2.99 ​ ​ [21]
Ti2VNbMoZrx 6.7 2BCC 4.1 1287–1421 27–30 [58]
TiMoNbZrx 7.46a BCC 3.9–5 1109–1314 8–12 [59]
TiZrNbMoVx 7.2a 2BCC – 1500 10–12 [60]
HfNbTaTiZr 9.9a BCC – 929 ​ [61]
HfNbTaTiZrW 11.46a 2BCC – 1550 26.3 [62]
HfNbTaTiZrMoW 11.28a 2BCC – 1637 15.5
NbTiVZr 6.43 BCC – 967 >50 [63]
MoNbTaTiW 11.84a BCC – 1343 14 [64]
MoNbTaTiVW 10.88a BCC – 1515 11
MoNbTaW 12.36 BCC 4.26 1058 2.6 [65]
MoNbTaVW 13.75 BCC 5.23 1246 1.7
Wx(TaVZr)100-x 10–11.8 BCC + HCP + Laves 5.6–6.4 1680–1985 1.2–3.2 [66]
Mo13Nb47Ti3V13W7Zr17 7.76 2BCC + Laves 5.1 1078–1404 2–5 Present work
Mo20.3Nb27.8Ti6.5V24.1W6.2Zr15.1 8.32 2BCC + Laves 5.3 436–734 1–2 Present work
a Density of the alloys is calculated using the rule of mixtures.
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pressing challenges in high-temperature materials science and engi-
neering, ultimately driving advancements in various industrial and 
technological sectors.
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