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Multicomponent refractory alloys have the potential to operate in high-temperature environments. Alloys with
heterogeneous/composite microstructure exhibit an optimal combination of high strength and ductility. The
present work generates designed compositions using high-throughput computational and machine-learning (ML)
models based on elements Mo-Nb-Ti-V-W-Zr manufactured utilizing vacuum arc melting. The experimentally
observed phases were consistent with CALPHAD and Scheil simulations. ML models were used to predict the

room temperature mechanical properties of the alloy and were validated with experimental mechanical data
obtained from the three-point bending and compression tests. This work collectively showcases a data-driven,
inverse design methodology that can effectively identify new promising multicomponent refractory alloys.

1. Introduction

The development of refractory multicomponent alloys (RMCAs) with
high concentrations of group IV (Ti, Zr, Hf), V (V, Nb, Ta), and VI (Cr,
Mo, W) alloying elements has gained significant attention due to their
impressive combinations of properties such as high temperature
strength, wear resistance, and thermal stability [1]. While RMCAs excel
at temperatures exceeding 1200 °C due to their high melting tempera-
ture and strength retention, their limited ductility at room temperature
and high density restrict their application as structural materials. To
address this challenge, a heterogeneous composite microstructure
comprising hard and soft phases has emerged as a practical approach to
achieve an optimum balance of high strength and ductility [2-4].
However, obtaining a desired combination of properties, such as
strength, density, ductility, thermal stability, fatigue/creep resistance,
and oxidation resistance, for any targeted application from a single alloy
composition remains a significant challenge. Recent advancements in
non-equiatomic MCAs have expanded the compositional space for alloy
design, offering a promising avenue for enhancing mechanical proper-
ties beyond equiatomic MCAs [5,6]. Although non-equiatomic MCAs
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provide a vast landscape for alloy design, predicting phases and prop-
erties within this space requires advanced techniques and theories.
Recent studies have demonstrated outstanding mechanical properties in
non-equiatomic MCAs, highlighting their potential for various
high-temperature applications. Efforts to develop optimal materials
with tailored properties for specific applications are still highly desired,
emphasizing the need for advanced predictive tools to streamline the
material development process and reduce time, energy, and cost in-
vestments [7-9].

The convergence of experimental and computational methods,
coupled with the rising popularity of data-driven approaches, have
spurred the adoption of machine learning (ML) techniques in materials
design. Leveraging vast datasets from techniques like Density Functional
Theory (DFT) and CALculation of PHAse Diagram (CALPHAD), ML fa-
cilitates the development of surrogate models capable of predicting
material properties based on factors such as crystal structure, compo-
sition and processing history [10-17]. One prevalent approach involves
building surrogate models for forward design, enabling the exploration
of chemical space to identify candidates with target properties. These
models, often combined with optimization algorithms, streamline the
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search for candidate materials that meet specific criteria. In contrast,
emerging methods, such as Variational Autoencoders (VAEs) and
Generative Adversarial Networks (GANs) using generative models,
enable inverse design by learning to approximate property distributions.
This allows for the rapid generation of new material candidates in a
single iteration, bypassing the need for iterative surrogate model
searches in forward design approaches.

Among the RMCA literature, HfNbTaTiZr exhibits a stable micro-
structure and an optimum combination of high-temperature strength
and ductility (>50 %) up to 1200 °C [18,19]. Later, lightweight RMCAs
with Cr addition, such as Cr-Nb-Ti-V-Zr, were developed to improve the
oxidation resistance and reduce density. However, the Cr in RMCAs
promotes the formation of the Laves phase, increasing the alloys’
strength at the expense of ductility [20,21]. Subsequently, Mo has been
introduced as a replacement for Cr in alloys like Mo-Nb-Ti-V-Zr and
Mo-Nb-Ta-Ti-W, aiming to improve strength and stability at elevated
temperatures. The addition of Zr in these alloys induces positive
enthalpy of mixing, leading to phase separation, reduces the valence
electron configuration (VEC) that lowers the intrinsic brittleness, and
causes lattice distortion due to larger atomic radius. Further enhance-
ments in high-temperature strength are achieved by incorporating Mo
and W [19,22]. In MoNbTaW-based alloys, including V and Zr, along
with Mo and W, have been found to contribute to adequate strength and
ductility through lattice misfit mechanisms [23].

This study generates high-entropy compositions based on the Mo-Nb-
Ti-V-W-Zr alloy system from the ULTERA database by high-throughput
computational and machine-learning models. The chosen compositions
were fabricated via vacuum arc melting, and the observed phases were
compared with CALPHAD and Scheil simulations. The mechanical
properties such as hardness, Young’s modulus, and maximum
compressive strength predicted using ML algorithms were validated
with experimental data. Further, comparisons of microstructure and
mechanical behavior were made with other RMCAs and refractory al-
loys. Our work demonstrates a practical inverse design approach for
identifying, fabricating, and validating promising candidates of other
multicomponent alloys.

2. Materials and methods
2.1. Surrogate models

The design of RMCAs must consider multiple potentially conflicting
property requirements, such as thermodynamic and mechanical de-
scriptors, along with density and cost that affect their application.
Thermodynamic descriptors include the ideal entropy of mixing (ASmix),
which identifies the added stability with an increasing number of con-
stituents when present in equimolar fractions, and the D parameter,
which is the ratio of surface energy versus unstable stacking fault en-
ergy, indicates ductility. Mechanical parameters include fracture
toughness, compressive strength (CS) at room temperature (RT), and
hardness. Each property requires different testing apparatuses; some of
these tests are destructive, making it time-consuming and expensive to
obtain all the relevant measurements. Apart from being used for forward
design, surrogate models can provide a rapid and cost-effective alter-
native to extensive experimental or computational validation. There-
fore, for this study, we have utilized surrogate models for each
descriptor, which broadly fall under these categories, namely heuristic,
phenomenological, and data-driven ML models, and are explained in the
supplementary section S1. We have utilized ML surrogate models to
predict the hardness and CS of the MCAs. The datasets used for training
the ML surrogate models in this study were taken from the ULTERA
Database, a curated database developed as a part of the ULTIMATE
program of the U.S. Department of Energy (DOE) [24].

Input data for training the hardness surrogate model was restricted to
RT tests in an as-cast (AC) state. This yielded a training dataset of 649
unique experimental property data points (643 from previously
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published work from the ULTERA Database + 6 new MoNbW alloys
from our previous work [25]). The ML model used was an imple-
mentation of the Multi-Layer Perceptron (MLP) regressor from the
sklearn python package, using standardized input features and hardness
values. The compositions were represented as a 103-dimensional vector
array (the composition vector), with each vector component carrying
the atomic fraction of one of the first 103 elements from the periodic
table. The decision was motivated by results from a previous study that
indicated that the transfer learning features, like General and Trans-
ferrable Deep Learning (GTDL) from Feng et al., do not outperform
atomic fractions as inputs [26,27]. The MLP’s hyperparameters were
tuned using grid search and 10-fold cross-validation of the entire
training dataset. The 10 models from cross-validation were then used to
obtain the average prediction and uncertainty.

We used an MLP regressor to predict the compressive strength of an
alloy, using the composition vector, processing conditions, phases, and
test temperature (in Kelvin) as the input features. The processing con-
dition was represented as binary categories of either as-cast or heat-
treated depending on the postprocessing of the alloy. The phase of the
alloys was also categorized into one of the three classes: pure single-
phase solid solution, a mixture of solid solutions/intermetallics, or
amorphous. The processing conditions and the phase were then con-
verted to one-hot encoded vectors, and the temperature was concate-
nated to the composition vector. An additional feature selection was
performed to reduce the number of features being used as input to the
model. For this purpose, the 21 selected features from the list of 118
initial features include a) the atomic fractions for elements Al, Co, Cr, Fe,
Mn, Mo, Nb, Ni, Ta, Ti, V, W, Zr; b) the test temperature; c) two binary
features to indicate the manufacturing process - one for hot rolling (HR),
and another for spark plasma sintering (SPS); d) a binary feature to
indicate the sample condition — as cast or annealed; e) three binary
features to suggest the observed phase - BCC, FCC, or intermetallics (IM);
f) a binary feature that indicates if the sample forms a single-phase solid
solution.

The dataset used for training the CS surrogate model was obtained
from the ULTERA  database [24]. It contains 726
composition-processing-structure-property data points, with 326 unique
compositions. Like before, the model’s hyperparameters were selected
using grid search and 10-fold cross-validation, and the predictions from
the 10 models from cross-validation were used to obtain the mean and
standard deviation in CS.

2.1.1. Synthetic dataset

Deep learning models like GANs typically require a large training
dataset (approximately 10*-10° data points). However, most materials
science datasets are much smaller in scale since generating large
amounts of data from experiments and simulations is expensive and
time-consuming. Since these smaller datasets should not be used directly
for deep learning, an alternative would be to construct and use a larger
dataset by combining the design of experiments and surrogate models.
Therefore, in this study, we constructed a synthetic dataset of MCA
compositions formed by combining the 9 refractory elements (Cr, Hf,
Mo, Nb, Ta, Ti, V, W, and Zr) in different proportions (with a minimum
step of 1 %) to form binaries to senary systems. While the composition
space formed from these elements would constitute ~3! alloys, the
constructed synthetic dataset has ~800,000 compositions, which is less
than 0.0003 % coverage of the compositional space. The properties of
the synthetic compositions were calculated using the surrogate models
discussed in the previous section.

2.1.2. Inverse design using conditional Generative Adversarial Networks
(cGANs)

GANs can learn a mapping between complex, high-dimensional
design space to a simple, lower-dimensional latent space that captures
the underlying data distribution in the original space. The GAN archi-
tecture consists of two deep neural networks (DNNs) that are trained in
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tandem - a generator (G) that creates realistic-looking synthetic/artifi-
cial samples from random noise drawn from a normally distributed
latent space and a discriminator that learns to distinguish between
samples from the real domain or generator. In particular, the conditional
variant of GANSs, called conditional GANs or cGANSs, are theorized to be
especially applicable for inverse design due to their capability to control
the output of the generator by using some auxiliary information (or
conditioning vector) as additional input to the generator and the
discriminator. Modifying the architecture ensures that the generator
obtains the context to learn a multi-model mapping from the input to the
output domain.

In continuation of our previous work, where we demonstrated that a
cGAN can be used for the inverse design [25], here we aim to design
MCAs that simultaneously satisfy multiple design criteria using the
synthetic dataset. We are particularly interested in MCAs with an opti-
mum combination of density and strength. Therefore, we applied a
c¢GAN with 4 fully connected layers (3 hidden layers + 1 output layer)
conditioned on seven properties of interest: ASp;y, fracture toughness, D
parameter, price, density, CS, and hardness. While there are no explicit
criteria that need to be satisfied for ASp;y, hardness, or cost, including
them in the conditioning allows the manipulation of the output from the
cGAN. For instance, it would also be desirable if the alloy was designed
to be as affordable as possible. The empirical probability distribution of
the standardized property values was used to sample the conditioning
values. The input to the generator is an 11-dimensional vector (4 cor-
responding to the random noise + 7 corresponding to the properties),
with the output being a 9-dimensional composition vector. Each
component of the composition vector corresponds to the atomic fraction
of a particular element in the design space. The learning rates of both the
generator and the discriminator were set to 107>, The models were
implemented and trained using the Pytorch Python package. Incorpo-
rating additional features to the cGAN conditioning is efficient but only
requires retraining the model.

2.2. Alloy synthesis

The designed Mo-Nb-Ti-V-W-Zr samples were fabricated using vac-
uum arc melting (VAM) (MAM-1, Edmund Buehler, GmbH). Wires of W,
Mo, and Nb, Ti foils and V, Zr granules (all >99.8 %, Sigma Aldrich)
were weighed stoichiometrically as Moj3Nby4;TigVi3WyZr1; (alloy A)
and M020_3Nb27V8Ti6_5V24.1W6.2ZI'15.1 (alloy B) with a total mass of 15 8.
To ensure complete mixing and homogeneity, the ingots were over-
turned and re-melted 10 times with an arc holding time of 1 min/
melting cycle. The as-cast ingots had a lustrous surface with a diameter
between 15 and 18 mm and a thickness of 7-9 mm. The as-cast ingots
were further annealed at 1400 °C for 48 h by sealing them in a quartz
tube under vacuum (~107° mbar), followed by furnace cooling.

2.3. Structural and mechanical characterization

The crystal structure of coupon samples was confirmed using X-ray
diffraction (XRD, PANalytical X-ray Diffractometer, Malvern Panalytical
Ltd.) with Cu K radiation and a Bragg—Brentano configuration over a 20
range between 30 and 80°. Instrumental broadening was corrected using
a silicon standard reference material. The lattice parameter of the as-cast
alloys was analyzed using the Nelson-Riley (N. R.) function [28]. The
microstructures of the alloys were characterized by field emission
scanning electron microscopy (FESEM, FEI Verios G4, Thermo Fisher
Scientific), energy dispersive spectroscopy (EDS, Oxford Aztec), and
electron backscattered diffraction (EBSD, FEI Apero S, Thermo Fisher
Scientific). The EBSD analysis was carried out with a step size of 0.4 mm
using Oxford Aztec Crystal software with an equivalent circle diameter
method for grain size analysis and TruPhase (Oxford Aztec) for phase
analysis. The Vickers microhardness of the RMCAs was measured (Leco
V-100-C1, Leco Corporation) using a load of 500 g with a dwell time of
10 s. The average value of ten measurements was reported for each
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sample.

Room temperature compression and three-point bending tests were
performed using an axial mechanical load frame (MTS Criterion 43,
Criterion 45, MTS Systems). For three-point bending, at least two thin
bars were extracted for each composition from pucks using wire EDM
and were subsequently mechanically polished, with dimensions of 1.5
mm x 1 mm x 15 mm. The length between the outer pins was 12 mm,
and the crosshead displacement rate was 0.0050 mm/s, resulting in a
strain rate at the outer fiber at the center of the sample of 2 x 104 s~1.
For the bending tests, digital image correlation confirmed that all
macroscopic deformation was linear-elastic. Therefore, the bending
strength, critical failure strain, and elastic modulus were calculated
using the Euler-Bernoulli beam theory. For compression tests, a rect-
angular cuboid of 4 x 4 x 6 mm® was used, with a strain rate of 4 x
10~*s71, and two samples were tested for each composition.

The RT nanoindentation (NI) experiments were carried out on a
Hysitron TI 950 TriboIlndenter (Bruker Corporation, Billerica, Massa-
chusetts, USA) with a Berkovich indenter to obtain the individual phase/
region hardness. Accelerated property mapping (XPM) was acquired
from a matrix of 10 x 10 indents (5 pm spacing between consecutive
indents). Tests were performed under constant load mode with a peak
load of 5000 pN (0.5 s loading, 0.2 s holding, and 0.5 s unloading).
Poisson’s ratio of 0.3 was assumed to obtain the elastic and shear
modulus from the measured reduced modulus.

2.4. CALPHAD-based thermodynamic calculation and scheil simulation

We used the CALPAHD approach to predict equilibrium phases and
solidification behavior using Thermo-Calc software [29,30] in combi-
nation with the TCHEA database. The employed thermodynamic data-
base of the Mo-Nb-Ti-V-W-Zr system was combined from previous works
[31-43], which includes the BCC, HCP, LAVES (C15), and liquid phases.
Both equilibrium calculations and Scheil model simulations were per-
formed for the two designed alloys. Equilibrium calculations minimize
the Gibbs energy for the system of interest. The Scheil solidification
model was first introduced by Gulliver and Scheil [44]. The model
considers the following assumptions: 1) perfect mixing of liquid with
infinite diffusivity; 2) no diffusion in the solid phase; and 3) local
equilibrium between liquid and solid at the solid/liquid interface.

3. Results and discussion
3.1. Composition identification from ML

The trained generator was tasked with generating multiple candidate
compositions with the desired property values (with value for ASp; ~
1.5R, an arbitrarily chosen low cost, and an arbitrarily chosen high value
of the hardness), out of which the composition MogNbgTi3gV3WayZrsg
was selected based on the predictions of the surrogate models. However,
unmelted W regions were observed during arc melting. Given the high
content of W, one possible way to mitigate this issue was to reduce the
amount of W in the composition. As W content is not a part of the
conditioning properties, it is not trivial to induce the generator to
generate new compositions with W content within a specific range. In
contrast, it is possible to perform operations in the latent space to
manipulate the generator’s output and derive a composition with the
necessary content of W [27,45]. A multi-objective optimization using
the pymoo python package was used, where a local optimization
reduced W content while maximizing UTS at 1200 °C, fracture tough-
ness, and hardness while minimizing price. Constraints included the
atomic fractions summing to unity and density ~ 8-10 g cm . Upon
optimization, the COl‘l‘lpOSitiOl‘l M020,3Nb27_8Ti6_5V24_1W6_22r15_1 was
obtained.

Apart from generating compositions from the cGAN, a forward
search was also performed on the synthetic dataset with the necessary
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search conditions, as described in Section 2.1.1. Based on the search, we
were able to select the composition Mo;3Nby;TizsV13Wy5Zry7 from the
shortlisted candidates. The compositions Mo;3Nby;Ti3Vi3WyZr;7 and
M020.3Nb27_gTi6_5V24_1W6_22r15_1 are designated as AHOy A and B,
respectively. A summary of the predicted properties for the alloys A and
B using the surrogate models is shown in Table 1.

3.2. Microstructure

The XRD pattern of the as-cast and annealed alloys A and B exhibit
two BCC solid solutions and a secondary Laves phase, as shown in Fig. 1
(a). The BCC1 phase of the alloys A and B is Zr-rich, with a lattice
parameter of 0.3615 nm and 0.3549 nm, respectively, whereas the BCC2
phase is W-rich, with a lattice parameter of 0.3266 nm and 0.3204 nm,
respectively. Both the alloys have similar phases, and the difference in
the lattice parameters can be attributed mainly to the differences in the
Mo, Nb, and V concentrations, which shift the peaks (corresponding to
the BCC phases of alloy B) to higher angles, indicating a reduced lattice
parameter.

The phases detected through XRD were correlated with SEM anal-
ysis, as shown in Fig. 1(b). The microstructure of annealed samples
exhibits dendritic (D) and interdendritic (ID) regions due to the differ-
ence in the melting point of the elements. The high melting point ele-
ments, such as Mo and W, segregate in the D regions, whereas the
relatively low melting point element Zr concentrates in the ID region.
Correlating Figs. 1(b) and 2(a), it is indicative that the grey region
(indicated by blue arrow) surrounding the dark ID region (indicated by
yellow arrow) is rich in Nb and V. The dark ID region is Zr-rich, corre-
sponding to the BCC1 phase, whereas the matrix (bright region indicated
by red arrow) is Zr-depleted, corresponding to the BCC2 phase. The
composition of different regions of alloys A and B, quantified using SEM-
EDS analysis, is given in Fig. 2(b).

Moreover, the BCC2 phase consists of a homogenous distribution of
Zr-rich fine precipitates (Fig. 1(b), consistent with the Nb-Mo-Zr-based
alloys [46]. The distribution of different phases, along with the IPF
map and elemental mapping for alloys A and B obtained from EBSD
analysis, is shown in Fig. 3. The microstructure of alloys A and B is
similar with the presence of similar phases, which differs in their lattice
parameter due to the variation in their composition. The volume fraction
of the phases obtained from SEM analysis is given in supplementary
section S2.

3.3. Thermodynamic equilibrium and non-equilibrium scheil predictions

The preceding microstructural analysis shows that alloys A and B
comprise two BCC solid solutions with a secondary Laves phase. Fig. 4
displays the equilibrium phase fraction predictions of the two designed
alloys, A and B, as functions of temperature. Alloy A exhibits liquid,
HCP, C15, and two BCC phases (BCC#1 and BCC#2) in the equilibrium
calculation, while alloy B predominantly consists of liquid, two BCC
phases, and the C15 phase. The phase transformation temperatures for
both alloys are summarized in Supplementary section S3. For alloy A,
both equilibrium and Scheil simulations indicate the formation of only
the BCC#2 phase during solidification.

On the other hand, for alloy B, the equilibrium simulation suggests

Table 1
Predicted properties of designed alloys A and B obtained from surrogate models.

Alloy  AScons D Price Density Hardness CYS
J/K) parameter ($/8) (g/cm®) (GPa) (GPa)
=)
A 1.48R 2.97 84.9 7.76 4.07 £ 1.63
0.19 +0.12
B 1.66R 2.61 133.3 8.32 6.04 + 1.77
0.19 +0.11
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the formation of the BCC#2 phase, while the Scheil simulation indicates
the formation of the C15 phase at around 1200 °C. Alloy A displays
higher phase transition temperatures in the start temperature from
liquid to the BCC#2 phase (T;) and completion from liquid to the BCC#2
phase (Ts). As temperature decreases, the BCC#2 phase partially
transforms into BCC#1 phase at 1215 °C in alloy A, followed by a
transformation into HCP and C15 phases at 615 °C and 550 °C,
respectively. Conversely, in alloy B, the BCC#2 phase partially trans-
forms into the C15 phase at 1205 °C before transforming into C15 and
BCC#1 at 830 °C. The higher fraction of C15 phase in alloy B aligns with
the SEM experimental findings. Fig. 4(c) shows the equilibrium and
Scheil solidification simulation of alloys A and B. It is observed that the
range of equilibrium solidification is much narrower than that of Scheil
solidification, resulting in the formation of the BCC#2 phase.

Moreover, it is essential to note the solidification sequence in both
alloys. The BCC#2 phase (W-rich) solidifies first, followed by BCC#1(Zr-
rich) and C15 Laves phase in both the alloys, which is consistent with the
experimental observation of W-rich dendrites and Zr-rich interdenrites.
The phase composition of the alloys at different temperatures is
mentioned in Supplementary section S3.

3.4. Phase formation criteria

The alloys studied are multiphase in nature with a dendritic micro-
structure. The experimentally observed phases are consistent with the
CALPHAD predictions. Both the alloys show the presence of two BCC
phases and a Laves phase. CALPHAD and Scheil simulations indicate
that the alloys have a wide solidification range of approximately 800 °C.
In both alloys, the high temperature BCC solid solution dissociates into
low temperature BCC solid solution and a C15 Laves phase. Similar
observations are reported for MoyNbTiVyZr RMCAs [47]. The presence
of Zr results in an increased segregation tendency with strong segrega-
tion of Zr in the ID regions due to its positive AH,,;. The calculated
empirical parameters for phase formation criteria in MCAs are also used
to explore phase evolution. The values of various parameters such as
entropy of mixing, enthalpy of mixing, omega parameter, size differ-
ence, atomic packing factor, electronegativities (Allen, Ay, and Pauling,
Ayp) and VEC are as given in Table 2.

Different interactions between the alloying elements are responsible
for the phase separation. The hexanary Mo-Nb-Ti-V-W-Zr system con-
tains fifteen binary and twenty ternary systems. Among the binaries, Ti-
V, Nb-V, Ti-V, Ti-Mo, and W-V exhibit a miscibility gap, and interaction
of Zr with the other elements results in the HCP + C15 Laves phase.
These binary and ternary interactions reflect in the higher-order hexa-
nary system and result in the separation of the high-temperature BCC
phase into BCC and Laves phase at temperatures below 1200 °C. Both
alloys show the formation of two disordered BCC phases. One is rich in
Zr, lean in Nb (BCC2), and another is rich in Nb and depleted in Zr
(BCC1), consistent with CALPHAD predictions. Moreover, the Laves
phase formation in these alloys can be attributed to the atomic radius
difference between V and Zr, which is the largest among the alloying
elements. From Table 2, the atomic packing parameter and the elec-
tronegativity parameter also indicate the formation of the Laves phase
along with BCC solid solutions.

3.5. Mechanical properties

3.5.1. Vickers hardness: correlation between experiment and prediction
The predictions from the ML models were assessed and compared to
the experimental results. A lower value of RMSE and a higher value of R?
indicate that the model’s predictions were more aligned with the
measured values. The 10-hardness model ensemble had a mean RMSE of
0.76 GPa and an R? score of 0.84. The experimental Vickers hardness of
the alloys A and B were measured to be 5.1 and 5.3 GPa, respectively.
The ML predicted values were estimated at approximately 4.07 + 0.28
and 6.04 + 0.19 GPa, respectively, close to the experimental values.
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Fig. 1. (a) X-ray diffractogram of the alloys A and B in the as-cast and annealed condition showing the presence of two BCC solid solution and Laves phases and (b)
SEM-BSE microstructure of alloys A and B after annealing. The blue, red, and yellow arrows indicate the grey, bright (D), and dark (ID) regions, respectively. 1400-FC
in (a) denotes the sample annealed at 1400 °C for 48 h, followed by furnace cooling. (For interpretation of the references to color in this figure legend, the reader is
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Fig. 3. SEM microstructure (a,d), the corresponding phase map (b,e), and IPF map (c,f) of alloys A and B, respectively.

(@) 10

o S
= o

Phase fraction

A

C15

LIQUID

BCC#1

500

1000 1500 2000 2500
Temperature (°C)

3000 3500

(b) 1.0
0.8
0.6

0.4

BCC#1

LIQUID

BCC#2

500

1000 1500 2000 2500
Temperature (°C)

3000 3500

(c)
2200F

— 2000¢

1800

Temperature (°C

—— Equilibrium

Scheil

1600F — A(BCC#2+L)
--- A(BCC#2+L)
1400} — B(BCCH2+L) AL
--- B(BCC#2+L) Y e
=== B(BCC#2+1+C15) hatn
12007 ___ B(BCC#2+C15) :
0.0 02 04 06 08 10

Mole fraction of solid

Fig. 4. (a-b) Phase fraction plot of alloys A and B (c) Solidification sequence of the alloys using Scheil simulation.

While the ensemble captured the expected order of higher hardness
(Alloy B > A), the absolute values differed. The porosity in the annealed
alloys resulted in lower compressive yield values. Incorporating porosity

as a feature in the algorithm can improve the ML predictions.
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Table 2
Phase formation criteria for alloys A and B.
Parameters Alloy Alloy Inference Ref
A B
Entropy of mixing 1.48R 1.66 R  Solid solution when [48]
(ASnix, R is gas ASmix > 1.5R
constant)
Enthalpy of mixing —2.95 —3.55 Solid solution when — [48]
(AHpmix, kJ/mol) 15 < AHpix <5
Omega parameter Q =  10.69 9.77 Solid solution when Q > 1.1 [49]
T ASmix
‘AHm'u(‘
Atomic size difference 5.46 5.76 Solid solution when [48]
(6, %) 1<6<6
Atomic packing 1.19 1.19 Solid solution -+ IM/TCP [50]
parameter (y) formation when y > 1.175
Electro- Ay 5.6 6.31 TCP formation when Ayp > [51]

negativity (%)
Ayp 0.24 0.25
Valence electron 5 5.04
concentration (VEC)

0.133 and Ay4 > 6 %

BCC when VEC <6.87 [52]

3.5.2. Room temperature three-point bend test and compression test

The Young’s modulus of both alloys ranged from 120 to 150 GPa, and
the mean flexural strength for alloys A and B were 440 and 340 MPa,
respectively, as shown in Fig. 5(a). The critical elastic strain of the alloys
A and B is 0.36 % + 0.08 % and 0.26 % =+ 0.05 %, respectively. The
room temperature engineering stress-strain curves under compression
are shown in Fig. 5(b). In both alloys, spallation was observed during
compression. Alloy A exhibited better performance than alloy B, as
indicated by the spallation location in Fig. 5(b). The microstructure
shows the presence of pores, which are the main contributing factors to
the low strength of these alloys (Supplementary sections S4 and S5). It is
hypothesized that secondary processing techniques such as hot isostatic
pressing would aid in closing the pores as well as breaking down the
dendritic microstructure.

The CS ensemble model’s RMSE (root mean square error) and R?
scores are 0.34 GPa and 0.59, respectively. The predicted room tem-
perature CS values for alloys A and B are 1630 + 120 MPa and 1770 +
110 MPa respectively, while the experimental values were observed to
be between 1078-1404 MPa and 436-734 MPa, respectively. While the
predictions using the simple descriptors mentioned in Section 2.1 might
be a reasonable starting point, there is potential to reduce the disparity
between the model and experiments by including more descriptive
features. For instance, instead of binary features, CS may be better
estimated by considering the volume fractions of the phases present in
the sample. Additionally, performance can be improved by using

(a)
~|Bending strength (MPa) [[[[] Young's modulus (GPa)
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advanced ML techniques like multi-task learning.

3.5.3. Hardness and modulus of the phases

Nanoindentation identified the contribution of each phase towards
the overall mechanical strength through accelerated property maps
(XPM), which provided the spatial distribution of hardness and modulus
over the desired area of interest. Regions with all the phases were chosen
for the NI study. The XPM of the alloys A and B are given in Fig. 6. The
blue and red colors indicate the lower and upper limits of the values. The
mean hardness and modulus of the various phases were calculated from
their loading-unloading profiles from the NI data and are given in
Table 3. For both alloys, the bright region (BCC2 phase) in the SEM
image has relatively low hardness and high modulus, which indicates
that the BCC2 phase, although stiffer, is more amenable to plastic
deformation. The interface between the dark region (BCC1 phase) and
the bright region (BCC2 phase, grey phase) has intermediate hardness
and modulus, indicating a strong interface. The hardness and modulus
values of both alloys are higher than the values reported for (Ti44-V28-
Nb14-Zr14)9g sMoj 5 [53]. This difference can primarily be attributed to
the contribution of elements such as Mo and W.

3.5.4. Comparison of mechanical data of Mo-Nb-Ti-V-W-Zr with state-of-
the-art RMCAs

The bending strength of the alloys A and B was 440 and 340 MPa,
respectively, and the elastic modulus ranged from 120 to 150 GPa. Ti-Zr-
Nb-Mo alloys exhibit higher bending strength and lower elastic modulus
than those reported in this study [54]. The compressive yield strength of
alloy A is similar to other RMCAs in Table 4. Although failure under
compression may be challenging to identify, the failure stress was
recognized at the instant spallation was observed; the mean compressive
strength corresponding to spallation for alloys A and B were 1404 and
436 MPa, respectively, as indicated in Fig. 5(b). Alloy B exhibited lower
strength and was more prone to spallation due to porosity. From Table 4,
it can be inferred that alloy A has a preferable combination of
hardness-strength and a lower density than MoNbTaW. Further, the
ductility of these alloys can be improved via secondary processing
conditions.

4. Conclusions

In this study, a multiphase RMCA with desired properties is designed
using a data-driven alloy design approach. Moj3Nb4;TigVi3W7Zr17
(alloy A) and Mogg 3Nbg 278Ti6 5V24.1We.2Z115.1 (alloy B) show a hier-
archical microstructure with 2 BCC solid solutions and a Laves phase,
consistent with the CALPHAD and Scheil predictions. The BCC 2 phase

(b)
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Fig. 5. (a) The elastic modulus, maximum stress under tension, and elastic strain obtained from room temperature three-point bend test. (b) Engineering stress-strain
curve for compression. The dots represent when spalling on the surfaces first became visible.
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the hardness and modulus maps were taken. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)

Table 3
Hardness and modulus values of different phases obtained from NI-XPM.
Alloy Property/Phases BCC1 BCC2 Interface
A Hardness (GPa) 9.6 +1.18 7.1+ 0.4 8.4+ 0.1
Modulus (GPa) 170.2 + 13.6 181.1+7 165.5+ 7.3
B Hardness (GPa) 9.6 + 1.5 7.8 +0.2 7.4 + 0.7
Modulus (GPa) 172 £7.7 197 £ 6 192.7 £ 5.3

(Zr depleted) has lower hardness and higher modulus than the BCC 1
phase, and the interface is relatively strong with intermediate properties
between the BCC 1 and BCC 2 phases. Although the compressive yield
strength of the alloys is not in complete agreement with the predicted
values, an overall optimum density-strength combination of refractory
alloys is achieved, indicating the excellent adaptability of the alloy
design approach to other multicomponent systems. We envisage that
integrating data-driven inverse design with experimental approaches
will establish a new trajectory in advancing high-entropy refractory
alloys. This holistic approach holds great promise for addressing the

Table 4

Summary of room temperature mechanical properties of a few RMCAs from the literature.
Alloys Density (g/cm® Phases Hardness (GPa) Compressive yield strength (MPa) % el. Ref
Zr,NbMoTaW 12.24% 2BCC - 1354-1589 5-15 [55]
HfMoNbTaTiZr 9.96" BCC - 1512 12 [56]
HfNbTaTiZr 9.91" BCC - 929 >50
HfMoTaTiZr 10.24% BCC - 1600 4
HfMoNbTiZr 8.62" BCC - 1351 20
HfMoNbTaZr 11.05% BCC - 1524 16
HfMoNbTaTi 10.65" BCC - 1369 27
Nb-Mo-Zr-Al 7.56-8.58 BCC + HCP + AlsZrs - 587-1240 [46]
MoNbVW 111 BCC 6 +0.2 1243 + 49 [57]
MOoNbVTi 7.4 BCC 4+£0.1 1210 + 36
Mo3oNb3oV30Tiio 7.9 BCC 4+0.2 1441 + 39
MoNbVWTi 9.8 BCC 5+0.1 1289 + 42
NbTiVZr 6.52 BCC 3.29 [20]
NbTiV,Zr 6.34 3BCC 2.99 [21]
TioVNbMoZry 6.7 2BCC 4.1 1287-1421 27-30 [58]
TiMoNbZry 7.46" BCC 3.9-5 1109-1314 8-12 [59]
TiZrNbMoVy 7.2% 2BCC - 1500 10-12 [60]
HfNbTaTiZr 9.9" BCC - 929 [61]
HfNbTaTiZrW 11.46% 2BCC - 1550 26.3 [62]
HfNbTaTiZrMoW 11.28% 2BCC - 1637 15.5
NbTiVZr 6.43 BCC - 967 >50 [63]
MoNbTaTiWw 11.84° BCC - 1343 14 [64]
MoNbTaTivVW 10.88% BCC - 1515 11
MoNbTaW 12.36 BCC 4.26 1058 2.6 [65]
MoNbTavVW 13.75 BCC 5.23 1246 1.7
Wi(TaVZr)100-x 10-11.8 BCC + HCP + Laves 5.6-6.4 1680-1985 1.2-3.2 [66]
Mo 3Nby;TizV,3W;Zry7 7.76 2BCC + Laves 5.1 1078-1404 2-5 Present work
Moo 3Nby7 gTig 5V24.1We 271151 8.32 2BCC + Laves 5.3 436-734 1-2 Present work

? Density of the alloys is calculated using the rule of mixtures.
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pressing challenges in high-temperature materials science and engi-
neering, ultimately driving advancements in various industrial and
technological sectors.
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