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Abstract

Adaptive design optimization (ADO) is a state-of-the-art technique for experimental design (Cavagnaro et al., 2010). ADO
dynamically identifies stimuli that, in expectation, yield the most information about a hypothetical construct of interest (e.g.,
parameters of a cognitive model). To calculate this expectation, ADO leverages the modeler’s existing knowledge, specified
in the form of a prior distribution. Informative priors align with the distribution of the focal construct in the participant
population. This alignment is assumed by ADQO’s internal assessment of expected information gain. If the prior is instead
misinformative, i.e., does not align with the participant population, ADO’s estimates of expected information gain could be
inaccurate. In many cases, the true distribution that characterizes the participant population is unknown, and experimenters
rely on heuristics in their choice of prior and without an understanding of how this choice affects ADO’s behavior.

Our work introduces a mathematical framework that facilitates investigation of the consequences of the choice of prior
distribution on the efficiency of experiments designed using ADO. Through theoretical and empirical results, we show
that, in the context of prior misinformation, measures of expected information gain are distinct from the correctness of the
corresponding inference. Through a series of simulation experiments, we show that, in the case of parameter estimation, ADO
nevertheless outperforms other design methods. Conversely, in the case of model selection, misinformative priors can lead
inference to favor the wrong model, and rather than mitigating this pitfall, ADO exacerbates it.

Introduction

Inferences made on the basis of behavioral experiments have
the potential to influence both scientific consensus and per-
sonalized treatment recommendations. However, strong and
accurate inferences can require a daunting number of obser-
vations, arequirement that can be prohibitive when resources,
e.g., participant attention, are scarce. Thus, methods that
maximize the information provided by each individual obser-
vation are extremely valuable.
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Adaptive design optimization (ADO) is a method that
leverages observations from individual participants, on-the-
fly, to identify the most powerful design in sequence (Cav-
agnaro et al., 2010).1 At its core, ADO evaluates candidate
stimuli with a global utility function that estimates, for each
stimulus, the potential informativeness of possible responses
to that stimulus. Because of its potential to automatically
identify powerful designs, ADO has been used extensively
for behavioral, psychometric, and psychiatric applications
(Kwon et al., 2022). Such applications are facilitated by the
combination of increased access to computational resources
and the development of software packages that facilitate its
implementation (Yang et al., 2020; Sloman, 2022).

ADO relies on the machinery of Bayesian inference,
which requires that the user specify a prior distribution across
models and parameter values that will generate their data,
i.e., a distribution across possible values of the psychological
characteristics underlying the observed stimulus—response
relationship. When using optimal design methods like ADO,

I We use the convention that terms in bold refer to definitions, terms
in italics refer to technical terms that will be defined later, and ‘terms
in single quotations’ refer to vague or ill-defined concepts.
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which rely on specified prior distributions in the design of the
experiment itself, the choice of prior has dual consequences:
Misinformative priors can bias inference and mislead the
experimental design process. The prior distribution can have
a substantial impact on ADO’s behavior (Myung et al., 2013;
Cavagnaro et al., 2016). Thus, choosing a prior distribution
is an issue of enormous practical import, and requires that
the experimenter balance multiple considerations, e.g., prior
knowledge and analytical tractability (Myung et al., 2013).

The goal of the present work is to unpack the effects
of these various considerations on the behavior of ADO.
We consider a common paradigm in which the goal of the
experiment is to measure some latent variable, representing
a given psychological characteristic, at the participant level
as precisely as possible. The assumption is that the behavior
exhibited by a given participant can be perfectly captured by
a single value of this latent variable, and that these values
are drawn from a distribution characterizing the participant
population.

In practice, experimenters usually specify a single prior
that they use for a large number of experimental partici-
pants, their specified prior. If the specified prior matches
the true distribution of relevant psychological characteristics
in the participant population, ADO’s criterion for evaluating
stimuli can be interpreted as the amount of information the
experimenter would receive, on average, across sufficiently
many repetitions of the experiment. In this case, the design
selected by ADO is optimal in the sense that it will lead the
experimenter to correct inferences as quickly as possible, on
average. If the specified prior does not match this population
distribution, ADO’s global utility function no longer admits
this interpretation, and the designs selected by ADO may
no longer lead the experimenter efficiently towards correct
inferences.

Prior literature has devised ways to construct an informed
specified prior by incorporating observations from similar
past experiments (Tulsyan et al., 2012; Kim et al., 2014).
However, this may be infeasible or impractical in many situ-
ations of interest, due to, e.g., resource limitations that restrict
the number of total participants one can recruit, or a desire to
endow all participants with the same prior knowledge for the
sake of ethical considerations or the tractability of pooled
analyses. In such situations, experimenters are forced to
contend with some degree of uncertainty about the true pop-
ulation distribution, and run the risk of deviations between
the prior they specify and the population distribution.

The goal of the present work is to study how deviations
between the specified prior and the true population dis-
tribution affect the performance of ADO. We refer to the
presence of such a deviation as prior misinformation. In
the sections that follow, we introduce a novel conceptual and
mathematical framework for investigating the effect of prior
misinformation. We leverage this framework to identify both

(a) characteristics of specified priors that contribute to robust
inference and (b) cases in which the threats of prior misin-
formation can only be mitigated by acquiring knowledge of
the population distribution.

“Preliminaries” introduces the mechanics of ADO and
its application to problems of inference about psychologi-
cal characteristics, such as trait values and model structure.
“The prior’s two lives” presents the main conceptual ten-
sion addressed in our paper: Users of ADO implicitly rely
on two distinct — and potentially opposing — interpreta-
tions of the specified prior. “Extended notation” gives a
mathematical decomposition of the measure of informa-
tion gain that reveals how prior information affects ADO’s
efficiency. “Prior misinformation in the context of param-
eter estimation” and “Prior misinformation in the context
of model selection” interpret these results in the context of
the problems of parameter estimation and model selection,
respectively. These sections also present results from simula-
tion experiments illustrating the effect of misinformation on
the behavior of ADO in practice. “Robust practices for ADO
for model selection” discusses and suggests practices users
of ADO can adopt to enhance robustness to issues we will
show can arise in the context of model selection. “Discussion
and limitations” discusses limitations of the present work and
avenues for future work, and “Conclusion” concludes.

Preliminaries
Notation

We use bolded, capital letters to refer torandom variables, and
lowercase, unbolded letters to refer to their corresponding
realizations. The probability of a particular realization x of
the random variable X is p(x), i.e., X : x — p(x).

Cognitive models

Latent constructs, like those typically of interest in psycho-
logical research, are, by definition, unavailable for observa-
tion and thus difficult to measure. For many applications,
experimenters specify cognitive models, which mathemati-
cally represent these constructs in such a way that facilitates
their measurement. The scope of the present work is within-
subjects estimation: estimating as precisely as possible the
degree to which a given participant exhibits a psychologi-
cal characteristic. We give example applications later in this
section. First, we make more precise how cognitive models
facilitate the measurement of latent psychological constructs.

We consider probabilistic cognitive models that associate
stimuli, e.g., questions that could be asked in an experiment,

@ Springer
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with probability distributions over possible responses.” We
denote stimuli x and responses y, which are realizations
of a random variable Y|x. Models, denoted m, are fami-
lies of functions indexed by a free parameter or parame-
ters, denoted 6. Models encapsulate substantive mechanistic
accounts of the relevant psychological, cognitive, or percep-
tual processes. The parameters encapsulate psychological
or behavioral traits that may vary between experimental
participants, but which are consistent within a participant.
Our framework assumes that there is some true model m*
and corresponding parameter value 6* that defines the true
data-generating distribution for each stimulus x, given by
Y|x, 0%, m*.

We consider separately the goals of parameter estimation
and model selection. Parameter estimation is the problem of
inferring the value of 6*, or measuring the degree to which
a participant exhibits a particular trait (assuming a given
model structure). For example, for educational testing, the
examiner’s goal is to identify the examinee’s ability level
(assuming a given item-response model). Model selection
is the problem of inferring the identity of m* from a set
of candidate models M, i.e., determining which of several
substantively different processes a participant exhibits. For
example, a longstanding problem in psychophysics has been
to distinguish among various functional forms for describing
the relationship between physical dimensions of stimuli and
the psychological experience they induce (Roberts, 1979).
Both of these goals — parameter estimation and model selec-
tion — can be achieved using Bayesian inference, in which
the experimenter places a prior distribution across models
and parameter values (M, ®) and updates this prior accord-
ing to observed data.

By specifying a prior distribution, the experimenter also
implicitly specifies a prior predictive distribution Y|x, for
which each possible response to a stimulus has a correspond-
ing marginal probability:

PO =Y p(m)/gp(yu,e,m) p@©lm). (1)

meM

We can also compute the predictive distribution condi-
tioned on a particular quantity, such as a parameter value or
model.

Adaptive design optimization

Different sets of stimuli have different degrees of power to
identify the generating model and parameter value (Myung
& Pitt, 2009; Cavagnaro et al., 2010; Young et al., 2012;

Broomell et al., 2019). To address this, researchers have

2 In the remainder of this paper, the term ‘cognitive model” can be read
as ‘probabilistic cognitive model.’
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developed methods for the principled selection of stimuli to
maximize the informativeness and efficiency of one’s experi-
ment (Myung & Pitt, 2009; Broomell & Bhatia, 2014). ADO
is one such method (Cavagnaro et al., 2010). By basing its
recommendations on the observations it has seen so far, ADO
identifies experimental designs tailored to the response pat-
terns of the current participant.

Experiments using ADO proceed across a sequence of
mini-experiments, which we call trials. Each trial may consist
of a single stimulus or a block of stimuli. ADO dynamically
incorporates information throughout the experiment by using
the posterior distribution from one trial as the prior distribu-
tion on the subsequent trial. This process is visualized in
Fig. 1.

To identify the stimulus with the greatest information gain,
users of ADO specify a local utility function u(x, y, 8, m)
which is a function of the candidate stimulus x, response Yy,
and a possible model and parameter value {m, 0} (together, a
possible state of the world). The local utility function mea-
sures how much is learned from response y on stimulus x
about the state of the world {m, 6}. It can take a variety of
forms, depending on the particular goals of the experimenter.
The true state of the world and outcome of the experiment
are unknown to the experimenter a priori — otherwise, there
would be no need to run the experiment. Therefore, rather
than maximizing #, ADO selects the stimulus that maximizes
the expectation of u across possible models, parameter values
and experimental outcomes according to the specified prior
distribution. This yields the global utility function:

Ux)= Z p(m)/(;/u(x,yﬁ,fn) p(ylx, 0, m) p@|m).
y

meM
(2)

For our applications, we consider a specification of u such
that Eq. 2 measures the amount of information the candi-
date stimulus x is expected to yield about some inferential
quantity of interest. The amount of information one variable

Select z* = argmax,U

Specify (M, ©) Collect data y|z*

Update to (M, ©)[{y,z*}

Fig.1 Note. Flow chart of ADO experiment. The experimenter begins
the experiment at the lightest grey node, by specifying a prior distri-
bution over models and parameter values. On each trial, they select
the stimulus that maximizes the global utility, observe responses to
that stimulus, update the distribution over models and parameter values
according to Bayes’ rule, and then use the obtained posterior as the prior
on the next trial
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provides about another has been made mathematically pre-
cise in the field of information theory by the concept of
mutual information (Cover & Thomas, 1991). Motivated by
these information-theoretic principles, global mutual infor-
mation utility is the mutual information (/) between a focal
quantity of interest, which we refer to as the focus and denote
¢, and responses to a stimulus (Bernardo, 1979). Then, the
global mutual information utility of a stimulus is:>

U(x)—f/ (p(¢'y’ )) p(lx. 9) (@)

= [(P; Y|x). 3

In order for the global utility function to have the form in
Eq. 3, the local utility function must take the form:

“)

u(x,y, 8, m) = log (M)

p(®)

which can be thought of as a measure of the information
gained about the true value of ¢ from y|x.

“Parameter estimation” and “Model selection” show how
this specification is adapted to two of the most frequent appli-
cations of ADO: the problems of parameter estimation and
of model selection. In the former case, the parameters 6 are
the focus, and in the latter case, the model m is the focus.

Notice that Eq. 3 can be rewritten in terms of Kullback—
Leibler divergence, an information-theoretic measure that
captures the information gained in moving from one distri-
bution to another. Specifically:

U)= | Dk (®ly,x || ®) p(ylx) &)

Focal divergence

y

where Dk, (®|y, x || ), or what we will refer to as the focal
divergence, is the Kullback—Leibler divergence from distri-
bution ®|y, x to distribution . In other words, global mutual
information utility captures, in an information-theoretic
sense, how much an observed response to a particular stim-
ulus x is expected to move the prior distribution assigned to
the focus.

Parameter estimation

Parameter estimation refers to the problem of maximizing
the precision of one’s estimate of the parameters 6 given
a particular model m. Applications of ADO to parameter
estimation are useful if the experimenter is interested in

3 If @ is a discrete random variable, as is the case in the problem of
model selection (“Model selection”), the integrals in Eq. 3 are replaced
by the analogous sums.

capturing individual variation, for the purpose of, e.g., gener-
ating personalized treatment recommendations on the basis
of a behavioral assessment. In the educational testing set-
ting mentioned above, the examiner’s goal is to identify each
examinee’s ability level in order to make recommendations
of areas of strength or potential improvement (Owen, 1969).
In a medical application, Hou et al. (2016) used ADO to
estimate participants’ degree of visual contrast sensitivity, a
characteristic that can be used for diagnosis of eye disease
and treatment recommendations.

In the context of ADO for parameter estimation, m is
assumed known, and the focus of the utility function is the
parameter 6.

The global utility function is:

p@ly, x)
U(x)-// ( o )p<y|9>p(e>. ©)

Focal predictive distributions

As mentioned in “Cognitive models”, we can compute the
predictive distribution conditioned on any particular state of
the world, Y|x, 6, m (Eq. 1).

In the context of parameter estimation, the value of m is
known by assumption, so we can equivalently compute the
predictive distribution conditioned on any particular value
of 6, Y|x, 6. In this case, the set of predictive distributions
characterized by possible parameter values are also the set of
focal predictive distributions, or the predictive distributions
associated with possible values of the focus.

We highlight two properties of the focal predictive distri-
butions in the context of parameter estimation. First, since
the true data-generating distribution is Y|x, 6 for some value
of 6, the set of focal predictive distributions is in effect a
set of possible data-generating distributions. The parameter
estimation problem then (asymptotically) amounts to identi-
fying which value of the focus has a corresponding predictive
distribution that most resembles the distribution of observed
data.

Second, because of this, the predictive distribution corre-
sponding to a particular value of the focus does not depend on
additional information like the current trial number or history
of observations: While a particular value of # may become
arbitrarily more or less likely, it will always elicit the same
likelihood on a given stimulus—response pair.

Model selection

Model selection refers to the problem of maximizing the pre-
cision of one’s estimate of the model m, assuming both m
and 6 are unknown. The problem of model selection can
be thought of as identifying the core psychological process
governing a participant’s response distribution.

@ Springer



7106

Behavior Research Methods (2024) 56:7102-7125

In the context of model selection, the focus of the util-
ity function is the model m, which yields the global utility

function:
(m)/10g<”( L, x)) p(ylx, m)
~ (m)

p(m)// ( 'y’x))p(yu,e,m)p(mm).

(N

U(x)

me

meM

Focal predictive distributions

In the case of model selection, the focal predictive distribu-
tions are the predictive distributions associated with possible
values of the model m, which can be calculated as:

p(ylx,m) =/9p(y|x,9,m) p(@|m). ®)

Experimenters faced with the model selection problem
have two sources of uncertainty to contend with (the value
of m and the value of ), yet measure utility with respect to
reduction in only one source of uncertainty. This is reflected
in properties of Eq. 8: Unlike in the case of parameter esti-
mation, here, the focus is not the only conditioning variable
needed to completely specify a possible response distribution
Y|x, 6, m; full specification of the response distribution also
requires knowledge of 6.* In addition, unlike in the case of
parameter estimation, the focal predictive distributions are a
moving target: Because of their dependence on the parame-
ter distributions, they shift as the parameter distributions are
updated on the basis of observed data. These characteristics
will become important in our discussion in “Prior misinfor-
mation in the context of model selection” of the impact of
prior misinformation in the context of model selection.

The prior’s two lives

In ADO, the specified prior plays two roles: It both facilitates
estimation of the focus from data via Bayesian updating, and
informs the design of the experiment that generates these
data. These two roles, or ‘lives,” of the prior map on to
two traditions in Bayesian statistics: Bayesian inference and
Bayesian decision theory. While the effect of the prior on
the behavior of Bayesian inference has been well studied,
specified priors that enjoy good theoretical guarantees in the
context of Bayesian inference may not seem so appealing

4 For this reason, the problem of model selection is a special case of an
embedded model problem (Foster, 2021), or inference in the presence
of nuisance parameters (Paninski, 2005).

@ Springer

when evaluated on the quality of a corresponding sequential
decision-making policy. This section unpacks the reasons for
this.

The goal of the present work is, in a sense, parallel to that
of literature understanding the effect of priors on Bayesian
inference: Our goal is to understand the effect of the choice of
prior distribution on the quality of the corresponding sequen-
tial decision-making policy, and give guidance for users of
ADO constrained to identify a single prior that lives both
lives.

Sequential Bayesian inference is a core component of
ADO: On each trial, the prior distribution is constructed
as the posterior from the previous trial. In its first role, the
prior can be seen as a launching pad for learning that will
occur throughout the experiment. The prior is understood
as an incomplete and ill-informed characterization of the
distribution over possible states of the world, and is usu-
ally constructed on the basis of a variety of epistemic and
pragmatic considerations. Considerations pertaining to —and
guidance for constructing — the prior in the context of sequen-
tial Bayesian inference is the topic of a substantial body of
existing literature (e.g., Lopes and Tobias (2011); Gelman et
al. (2017)). Uninformative priors are often selected because
of their pragmatic appeal in this role.

In its second role, the prior is used when calculating
the global utility (Eq. 2) and thus informs the experimen-
tal design policy about the relative likelihoods of various
outcomes. Bayesian decision theory refers to a prescriptive
decision-making policy in which the costs and benefits of
taking an action in different states of the world are aver-
aged according to the probabilities of those states of the
world (DeGroot, 2005; Berger, 2013). ADO’s policy of
selecting the stimulus that maximizes the global utility is
a special case of a Bayesian decision theoretic method. If
the decision-making policy relies on a prior that mischar-
acterizes the relative likelihoods of candidate states of the
world, the prescribed action is no longer defensible as the
action with the highest expected benefit. Bayesian decision
theoretic applications thus require a prior that is as informed
as possible with available knowledge about the distribution
of states of the world. Priors that ignore or mislead about
the available knowledge cannot be easily justified from a
decision-theoretic perspective, as they may bias the design
selection toward stimuli that would not actually be the most
informative across multiple experiments.

We assume that the relevant prior knowledge is the true
distribution of relevant psychological characteristics in the
participant population. Therefore, we will refer to the best
decision-theoretic prior as the population prior. We do this
for conceptual tractability; however, the analyses that follow
require only that there is some defensible decision-theoretic
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prior. Our results apply regardless of the basis on which that
prior is constructed. In many cases, information in addition
to or instead of a population distribution should inform the
decision-theoretic prior. For example, in all but the first trial
of an adaptive experiment, the decision-theoretic prior must
condition on the observations seen in previous trials. In these
cases, the decision-theoretic prior can be formed from the
population distribution conditioned on the history of obser-
vations (our analyses incorporate this consideration, in a way
that is stated more formally in “Extended notation”). More
generally, our framework extends to any case in which other
information, e.g., knowledge about relevant demographic
characteristics or a participant’s past behavior, is available,
as our results can be readily generalized by considering the
‘population’ as all participants with the same demographic
or behavioral characteristics.

If the specified prior — the prior used in the context of the
experiment — matches the population prior, the global utility
(Eq. 3) is also the expected focal divergence — the degree of
focal divergence one should expect if one were to run the
experiment on a sufficiently large participant sample. On the
other hand, if the specified prior is not well calibrated, the
global utility values could be misleading about the expected
focal divergence. “Motivating example” gives an example
of this in the context of an item-response model, a common
paradigm used for educational testing. Experiments identi-
fied by ADO may not have the power to precisely identify
the true model or its parameters, leading to a situation where
a characteristic indicative of a disease or needed intervention
is not identified efficiently, or possibly at all.

Types of priors

Priors are typically categorized as ‘informative’ or ‘unin-
formative.” With an informative prior, a Bayesian analysis
may reach a different conclusion than a conventional one
because the prior injects information that is not in the data.
For a single experiment aimed at identifying the model and
parameter of an individual, the ideal informative prior would
be a degenerate one that gives probability 1 to the true model
and parameter. Such a prior is not feasible for the paradigm
we consider here, where the same prior must be used for each
participant drawn from a heterogeneous population. For this
case, the best one could do would be to use a population
prior. The logic of ADO implicitly assumes that the speci-
fied prior is the population prior. Therefore, we characterize
the prior that coincides with the population prior as informa-
tive, and any prior that deviates from that population prior as
misinformative.

Under our definition, priors that are usually referred
to as ‘uninformative’ are typically misinformative when

considered in the context of decision-theoretic applications.
‘Uninformative’ priors are not supposed to inject informa-
tion, but in the paradigm we consider here, they entail explicit
assumptions about the population of participants in the study.
We will here use uninformative in the context of parame-
ter estimation to refer to a special class of misinformative
priors that are agnostic about either the parameter value or
the predictive distribution. Priors that are agnostic about the
parameter value — are uninformative in parameter space
— are disperse across the support of the parameter distribu-
tion. Priors that are agnostic about the data distribution — are
uninformative in data space — have high density in regions
of the parameter space that correspond to a wide variety of
data distributions. These two properties do not necessarily,
or even usually, coincide.

Expected focal divergence

The primary innovation of our analysis is to decouple the
two lives of the prior, and provide a framework within which
one can reason separately about the process of sequential
Bayesian inference and the distribution of observations upon
which this inference is pelrformed.5 In this section, we more
precisely define, motivate, and mathematically unpack the
expected focal divergence, a concept that is central to the
remainder of our analyses.

Extended notation

In the remainder of our paper, it will be important to dis-
tinguish whether a random variable is distributed according
to the population or specified distribution of the correspond-
ing quantity. We will do this by subscripting variables that
correspond to the population distribution with a 0, e.g., the
population distribution of models and parameters becomes
M, ®)(, and the corresponding marginal distribution of
observations becomes Yo|x. Analogously, we will subscript
variables that correspond to the specified distribution with a
1, e.g., the specified distribution of models and parameters
becomes (M, ®), and the corresponding marginal distri-
bution of observations, i.e., the distribution of observations
implied by the specified prior, becomes Y |x. We will also
use po and p; analogously to refer to the probabilities of the
implied random variables taking particular values under the
true and specified distribution, respectively.

The notation for quantities used repeatedly is summarized
in Table 1. While Table 1, and our discussion more generally,

5 See Simchowitz et al. (2021) for a related analysis in the context of
Bayesian decision-making algorithms more generally.
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Table 1 Extended notational system

Terminology Variable Realization Evaluation Known?
Candidate stimulus X Specified by experimenter v
Population prior M, ©)¢ ) Property of the system under study X
Specified prior M, ), (m, 0) Specified by experimenter v
Population distribution of focus [on) Subspace of (M, ®) X
Specified distribution of focus [of ¢ Subspace of (M, ©), v
Response distribution Yolx y — ZmeM po(m) f9 p(y|x,0,m) po(6|m) X
Prior predictive distribution Y |x y Y= Y mem P10) [y p(ylx, 6, m) p1(6|m) v
Focal predictive distribution Yilx, ¢ vy — p1(ylx, ¢) v
Global utility U) Jy Jylog (2852 ) py @1y, x) pi (1) v
Expected focal divergence U'(x) f f¢ log (p';‘f’(‘é;)”) p1(ply, x) po(y|x) X

Note. Columns show, respectively, the terminology used for quantities repeatedly referred to, the corresponding random variable notation, notation
used for realizations of the corresponding random variable, how the corresponding distribution is evaluated, and whether the corresponding

distribution is available to the experimenter

refers to prior distributions, i.e., the distributions of random
variables before conditioning on observations, all distribu-
tions should be interpreted to implicitly condition on the
number of observations implied by context. For example,
we write (M, ®); to refer generally to the specified prior,
regardless of how many experimental trials have elapsed.
When considering the degree of prior misinformation on the
second trial of an experiment, i.e., after an observation (x, y),
this canberead as (M, ®)|{y, x} (recalling that the posterior
from the first trial is the prior on the second trial). In the same
way, the population posterior distribution is (M, ®)q|{y, x},
which can be interpreted as the appropriate decision-theoretic
prior for the next trial given the history of observations.

Definition of expected focal divergence

Equation 5 showed that global mutual information utility
can be rewritten as an expectation of the focal divergence
across the specified predictive distribution. In the context of
the prior’s two lives, the focal divergence can be thought
of as the degree to which the prior fulfills its role of effi-
cient Bayesian inference. Taking the expectation of the focal
divergence across the specified predictive distribution then
invokes the prior’s decision-theoretic role: One uses the pre-
dictive distribution implied by the specified prior to calculate
the relative likelihood of prospective observations.

In the case where the specified prior deviates from the pop-
ulation prior, i.e., the specified prior is misinformative, the
global mutual information utility is not equivalent to the focal
divergence an experimenter would achieve from a stimulus
if they presented it to many members of the participant pop-
ulation. We refer to this latter quantity — the expectation of

@ Springer

the focal divergence taken across the response distribution —
as the expected focal divergence. The expected focal diver-
gence associated with a stimulus x, denoted U L(x), is:

U (x)_// <p1(¢>|y,
P1(®)

=/DKL (@11{y. x} || ©1) po(yl),
y

) P1(@ly, x) po(ylx)

©))

e., is the expected Kullback—Leibler divergence between
posterior and prior under the response distribution Yg|x, or
how much observations distributed according to the popula-
tion distribution are expected to move the prior distribution.

Motivating example

To illustrate our claim that misinformative priors can impact
the effectiveness of ADO, we demonstrate how the popula-
tion distribution can affect the expected focal divergence of a
stimulus in the context of a simple item-response model. We
consider an item-response model that uses a one-dimensional
‘proficiency’ trait 6 to predict the probability of a correct
response to a multiple-alternative question with a given ‘item
difficulty,’ x. For a fixed value of x, higher values of 9, i.e.,
greater proficiency, yields a higher probability of a correct
response. For a fixed value of 6, higher values of x, i.e., more
difficultitems, yield lower probabilities of a correct response,
with the lowest possible probability being some value greater
than zero that is consistent with random guessing. The goal
of an experiment is to estimate the proficiency of each par-
ticipant from their responses to items of various difficulty
levels.
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Fig. 2 The effect of prior misinformation: Motivating example from
item response theory. (a) Response distributions. (b) Expected focal
divergence. Note. Effect of the population distribution on (a) response
distribution po(y = 1|x), and (b) the expected focal divergence of a

In prior work, Weiss and McBride (1983) found that pri-
ors that differed from the population distribution induced
biases in inferences drawn from experiments designed using
a version of ADO.% As our running example, we adopt the
item-response model used in their simulation study:’

p(y=1]x,0) =2+ (10)

| 4 ¢-2720-x)"

The black curve in Fig. 2a shows, for each item difficulty x
between -3 and 3, the predictive distribution associated with a
prior ®1 ~ .A47(0, 1) (i.e., distributed according to a standard
normal distribution). In the case this prior is informative, i.e.,
the population distribution is also ®g ~ .47(0, 1), this curve
also shows the empirical distribution of responses one should
expect. The black curve in Fig. 2b shows the global utility
corresponding to each candidate design under this prior. In
the case this prior is informative, this curve also shows the
expected focal divergence corresponding to each candidate
design.

The blue curves show the distribution of observations and
expected focal divergence values under two other possible
populations. The light blue curves correspond to the popula-
tion distribution ®¢ ~ 4" (=2, 1), and the dark blue curves
correspond to the population distribution ®y ~ A4'(2, 1).

6 Unlike us, Weiss and McBride (1983) did not provide analytical
results, did not extend their analysis beyond item-response models, and
did not examine the effect of general properties of prior distributions
(e.g., dispersion).

7 We set the item discrimination parameter to the middle of the range

investigated by Weiss and McBride (1983), resulting in the constant
2.72 present in Eq. 10.

(b)
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Item difficulty (x)

U'(x) (Expected focal divergence of design)

0 2

stimulus U (x). Colors denote different true distributions ®. In all
cases, the specified prior is ®; ~ .47(0, 1) (i.e., is a standard normal
distribution). The vertical line indicates the stimulus, i.e., value of x,
that would be selected by ADO under the specified prior

With reference to Fig. 2b, if the true population distribu-
tion is ®g ~ A4(2, 1), the stimulus selected by ADO will
yield much less focal divergence than ADO anticipates,
on average. By contrast, if the population distribution is
®p ~ A (-2, 1), the stimulus selected by ADO will yield
much more focal divergence than ADO anticipates, on aver-
age.

What accounts for this difference? Are there systematic
properties of prior distributions that determine which will
yield a greater or less expected focal divergence? The fol-
lowing section unpacks these questions.

Decomposition of the expected focal divergence

The expected focal divergence U (x) decomposes into three
terms, which provide insight into how prior misinformation
may affect ADO’s efficiency:

Ul = H(Yolv) ]Response variability
+ Dis (Yol | Yy 1) }Surprisal

+//¢log(p1<y\x,¢>) P1(@ly, x) po(y|x). }Hindsight (11)
g

Derivation is deferred to Appendix A.

Response variability is the entropy in responses to a given
stimulus. Entropy is an information-theoretic measure of the
uncertainty related to the possible outcomes of a random vari-
able. If arandom variable has only one possible outcome then
it has no entropy, while a distribution with high entropy is
very dispersed across its support. This captures the intuitive
notion that questions are less informative when the experi-
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menter already knows what the response will be. Response
variability stems from a) uncertainty about the value of the
focus, and b) uncertainty about the responses given a partic-
ular value of the focus. The source of the stochasticity will
determine how this term affects inference, which we discuss
more in “Item response theory”. Another important charac-
teristic of response variability is that it is a function only
of the response distribution, and so should not affect one’s
choice of prior.

Surprisal is the Kullback—Leibler divergence between the
specified prior predictive distribution and the response distri-
bution. Higher surprisal contributes to higher expected focal
divergence since the specified prior is forced to update in light
of observed inconsistencies. Considered differently, high sur-
prisal indicates that there is a lot to learn — i.e., the specified
prior is in a sense more misinformed. Thus, despite its contri-
bution to the expected focal divergence, one would generally
prefer a specified prior that induces low surprisal.

Hindsight is the expected posterior log likelihood of
responses under the specified prior. Posterior likelihood is a
function of both prior likelihood and the specified prior’s abil-
ity to ‘respond’ to observations. We discuss this property of
‘responsiveness’ more formally in “Prior misinformation in
the context of parameter estimation”. Surprisal and hindsight
will tend to be inversely related through the prior likelihood.

Response distribution

0.6

0.8
0.5

0.6 0.4

0.3
0.4

Our discussion of considerations in the specification of one’s
prior, particularly in “Prior misinformation in the context of
parameter estimation”, will focus on the effect of different
specified priors on hindsight.

Revisiting motivating example

Figure 3 shows the amount of response variability, surprisal
and hindsight under each of the three population distributions
shown in Fig. 2. This gives insight into the puzzle posed
in “Motivating example”: Why does the zero-centered prior
lead to a more powerful experiment when the population
exhibits low values of the trait & than when the population
exhibits high values of 6?

Figure 3 reveals that this is because of two (in this case,
related) reasons: Both response variability and surprisal are
higher in the low-6 population. Looking more carefully at the
response distributions shown in the lefthand panel, the prob-
ability of an observation of y = 1 is closest to .5 in the low-6
population. This makes sense: As discussed in “Motivating
example”, low values of the trait lead to arbitrary responses —
i.e., responses that are harder to predict. Thus, response vari-
ability is much higher. For the same reason, surprisal is also
higher: The low-6 population surprises the specified prior
by producing y = 0 much more often than it anticipates.
(The high-6 population also surprises the specified prior by

Expected focal divergence

—uy =0 (Informative)
Ho = —2(Misinformative)
—Ho =2 (Misinformative)

=3 -2 i 4 0 1 2

Item difficulty (x)

Response variability

0.7
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-3 -2 -1 0 1 2
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Fig. 3 Reproduction of Fig. 2 along with the three components of the expected focal divergence curves in Fig. 2b: response variability, surprisal
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Item difficulty (x)
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and hindsight (Eq. 11). Note. As in Fig. 2b, colors denote different true distributions ®g. In all cases, the prior is @1 ~ .47(0, 1)
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producing y = Oless often than it anticipates, but the surprise
is not as much as in the low-6 population.)

This section has shown that when the specified prior is
misinformed, ADO’s global utility may mislead about the
expected focal divergence. The following sections explore
the practical relevance of this misalignment. As stressed
in “Introduction”, the motivation for our work is a situa-
tion where the population distribution is inaccessible to the
experimenter. While our motivating example applied our
framework to understanding the effect of variation in the pop-
ulation distribution, what is of more practical interest is what
can be controlled by the experimenter: the prior they use, and
whether they use ADO at all. “Prior misinformation in the
context of parameter estimation” and “Prior misinformation
in the context of model selection” address these questions
in the context of parameter estimation and model selection,
respectively.

Prior misinformation in the context of
parameter estimation

“The prior’s two lives” and “Expected focal divergence”
showed that under prior misinformation, ADO can be mis-
taken about the expected gain in information from a particular
stimulus. In cases where it cannot reliably anticipate the
expected focal divergence, does ADO still enjoy an advan-
tage over other experimental design methods? In this section,
we investigate this question in the context of the problem of
parameter estimation. We show that even under prior mis-
information, ADO facilitates identification of the correct
parameter value faster than other sequential design meth-
ods. In many practical cases, using methods like ADO may
be even more important when there is danger of prior mis-
information, since this misinformation can be overcome
comparably faster than under other experimental design
methods.

As discussed in “Decomposition of the expected focal
divergence”, when identifying properties of specified pri-
ors that are robust to prior misinformation, we are most
interested in their effect on hindsight. With reference to
Eq. 11, hindsight is composed of three terms: pi(y|x, ¢),
p1(ély, x) and po(y|x). In the case of parameter estima-
tion, these become p; (y|x, 0), p1(@|y, x) and po(y|x). Here,
unlike in the case where the focus is the model, the focal pre-
dictive distributions do not depend on the specified prior, i.e.,
p1(y|x,0) = po(y|x, 0). Thus, of these three terms, only
p1@|y, x) o po(ylx,0) p1(0), representing the specified
posterior, depends on the specified prior. One way to achieve
high hindsight given a misinformative prior is to specify a
prior for which the likelihood dominates the posterior. As
we discussed in “Types of priors”, this is the definitional
property of priors that are uninformative in parameter space.

Indeed, empirical studies by Alcald-Quintana and Garcia-
Pérez (2004) showed that in the context of the adaptive
estimation of psychometric functions, uniform priors led to
less bias than other commonly specified priors. These results
lead us to expect that priors that are uninformative in param-
eter space will contribute to robustness in the face of prior
misinformation.

Empirical results

This section empirically tests the robustness of ADO to mis-
information in two modeling paradigms: the item response
paradigm introduced in “Motivating example”, and a paradigm
used to measure a participant’s capacity for memory reten-
tion. All experiments reported in this paper were run using
the pyBAD package for ADO (Sloman, 2022).

Item response theory

This section discusses simulation experiments to estimate the
parameters of item-response models run under the modeling
paradigm used as our motivating example.

Experimental setup We simulated experiments under
two design methods: ADO and a fixed design method. Again
drawing inspiration from Weiss and McBride (1983), who
discretized the parameter space into 31 equally spaced lev-
els ranging from -3 to 3, the fixed design was set a priori
as all such 31 stimuli (presented in a random order). ADO
was similarly constrained to select from amongst these 31
candidate stimuli. All experiments were run for 31 trials.

For the fixed design, this means that each stimulus would
have been presented exactly once, while in the ADO exper-
iments some of those candidate stimuli may be repeated or
not presented at all. For each combination of design method,
population distribution, and specified prior, we simulated a
total of 1000 experiments. In each experiment, a new value
of 6%, the parameter value governing the true distribution of
responses, was sampled at random from the corresponding
population distribution, and held fixed for that experiment.
Data were generated according to Eq. 10. Both methods were
initialized with the specified prior.

We here show the results of three sets of experiments:

1. Experiments that show the effect of changes in population
distribution, with the specified prior held fixed, were run
under the same conditions as shown in Figs. 2 and 3.

2. Experiments that show the effect of uncontrolled changes
in specified prior fixed the population distribution to
®p ~ A(2,1) and varied the specified prior among
an informative prior (] = ®¢ ~ 47(2, 1)), a misin-
formative prior (®; ~ .4°(0, 1)), and a more dispersed
misinformative prior, i.e., a prior that is uninformative
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Fig.4 Item response models: Empirical results. (a) Results for differ-
ent populations with the same prior, ®; ~ .47(0, 1). (b) Results as
a function of uncontrolled changes in specified prior with population
®p ~ A(2,1) . (c) Results as a function of controlled changes in
specified prior with population ®g ~ .47(0, 1). Note. Lines track the
posterior probability assigned to the true parameter value across trials,
averaged over n = 1000 simulation experiments. Shaded regions indi-
cate standard errors. In Panel (a) shows results for different populations
with the same prior, ®; ~ 4#7(0, 1). The specified prior is fixed and

in parameter space (@1 ~ .47(0, 2)). We refer to these
manipulations as ‘uncontrolled’ changes because they do
not control for the degree of prior misinformation: The
uninformative prior assigns a higher prior log probabil-
ity to 0*, and induces lower surprisal across part of the
stimulus space. Thus, the misinformative prior is at an
initial disadvantage but may learn faster because of the
mismatch in surprisal.

3. Toisolate the effect of dispersion from prior misinforma-
tion, experiments that show the effect of controlled chan-
ges in specified prior fixed the population distribution to
®o ~ A(0, 1) and varied the specified prior among an
informative prior (@) = ®¢ ~ A47(0, 1)), a misinfor-
mative prior (01 ~ 47(0,.65)) and a more dispersed
misinformative prior, i.e., a prior that is uninformative in
parameter space (0] ~ .47(0,2)). While these condi-
tions are more artificial than those in our second set of
experiments, they control for prior misinformation in the
sense that the uninformative prior both tends to assign
a lower prior log probability to 6*, and induces higher
surprisal across the entire stimulus space.
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different colors correspond to different population distributions. Panel
(b) shows results as a function of uncontrolled changes in specified prior
with population ®g ~ .47(2, 1). Panel (c) shows results as a function of
controlled changes in specified prior with population ®y ~ .4(0, 1).
In each of Panels (b) and (c), the population distribution is fixed and
different colors correspond to different specified priors. Black curves
always denote the case where the specified prior is informative, i.e.,
®; = 0. Solid lines show the performance of ADO. Dashed lines
show the performance of the fixed design

Results Each panel of Fig. 4 shows results corresponding to
one of the three sets of experiments described above. The
x-axis of each panel indicates the trial number. The y-axis
indicates the log posterior probability of the true parame-
ter value.8:2 In all cases, the black curve corresponds to the
informative case, where the specified prior matches the pop-
ulation distribution.

First, comparing ADO (solid lines) to the fixed design
(dashed lines), it is clear that ADO outperforms the fixed
design in all three cases. In fact, ADO even under prior mis-

8 The true parameter value was different in each simulated experiment,
so, writing 0" for the true parameter value in experiment 7, the average
1000
log posterior probability of the true parameter value is Z’:'*W.
9 When discussing our results, we measure the effectiveness of each
design method by tracking log (p;(6*)) across trials. The log trans-
formation reflects the structure of the global utility and expected focal
divergence measures. Sometimes, qualitative trends of the non-logged
probabilities differ from those shown in the figures in the main text. For
completeness, we include corresponding plots of non-logged probabil-
ities in Appendix B.
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information ultimately results in stronger inference than the
fixed design under an informative prior.

Taking a closer look at the first set of simulations in Fig. 4a,
we find no discernible difference. Although Fig. 3 showed the
low-6 population induced higher expected focal divergence,
this difference does not translate into a difference in the rate
of convergence on the correct parameter value. Recall from
“Revisiting motivating example” that the higher expected
focal divergence in the low-6 population was largely driven
by higher response variability. If high response variability
stems mainly from dispersion across values of the focus, this
indicates that each value of the focus makes distinct predic-
tions, facilitating identification of the correct value (Houlsby
etal., 2011).

However, in the low-6 population, response variability
stems mostly from higher guessing rates. More generally,
as this example illustrates, high response variability that is
inherent in the model, i.e., that does not disappear even when
conditioning on a particular parameter value, inhibits identi-
fication of the correct parameter value.

Figure 4b and c show that the prior that is uninformative
in parameter space generally converges more quickly on the
correct parameter value, whether using ADO or the fixed
design.'? This is the case even when controlling for prior
misinformation (Fig. 4c), since priors that are uninformative
in parameter space are able to respond more effectively to
unexpected observations.

Memory retention

While the simplicity of the item-response paradigm allows
careful control of our experimental conditions and facilitates
interpretation, it potentially limits the generalizability of our
findings. We now test whether the main finding — that ADO
for parameter estimation outperforms other sequential design
methods under prior misinformation — holds in a more com-
plex modeling paradigm: estimating a participant’s capacity
for memory retention.

Over a century of research on forgetting has shown that a
person’s ability to remember information just learned drops
quickly for a short time after learning and then levels off
as more and more time elapses (Ebbinghaus, 1913; Laming,
1992). The simplicity of this data pattern has led to the intro-
duction of a number of models to describe the rate at which
information is retained in memory (Rubin & Wenzel, 1996).

One of these is the power-law model, which posits that
the probability a participant will recall an item (y = 1)

10 The difference appears small in the log space, but is illustrated more
dramatically when probabilities are plotted on the linear scale, as shown
in Fig. 8c.

x seconds after presentation is (Wixted & Ebbesen, 1991):
py=D=ax+D". (12)

The parameters of the model are a and b, where 0 < a <1
encodes a baseline level of accuracy, and 0 < b < 1 encodes
the forgetting rate.

Experimental set-up We again ran experiments under two
design methods: ADO and a fixed design method. The design
variable to be manipulated was the time delay between pre-
sentation of the target and the recall phase (i.e., x in Eq. 12).

The fixed design method was a slight variation on a bench-
mark used by Cavagnaro et al. (2010), taken from previous
literature (Rubin et al., 1999). In the fixed design method
scheme, delays were {0, 1,2,4,7, 12,21, 35,59, 99}. Each
fixed-design experiment ran for 100 trials, allowing each of
these ten delays to be repeated ten times. The order of stim-
uli was randomized separately for each experiment. ADO
experiments also ran for 100 trials. In each ADO trial, the
time delay could be any integer between 0 and 100 s.

We simulated experiments under two different population
distributions, each combined with four types of specified pri-
ors. For the high b population, we set by ~ Beta(2, 1), i.e.,
the forgetting rate is high, on average, but negatively skewed.
For the low b population, we set by ~ Beta(l, 2), i.e., the
forgetting rate is low, on average, but positively skewed. For
both populations, we set a to Beta(1, 1), which is equivalent
to a uniform distribution between 0 and 1. The four types of
specified priors are as follows:

1. Informative priors matched the population distributions
given above.

2. Priors that mistook the two populations: The specified
prior for the high b population was a ~ Beta(l, 1),
b ~ Beta(l, 2), and the specified prior for the low b popu-
lation was a ~ Beta(1, 1), b ~ Beta(2, 1). In the context
of these experiments, we refer to these as misinformative
priors.

3. Priors that were uninformative in parameter space spec-
ified that a ~ Beta(l, 1), b ~ Beta(l, 1).

4. Priors that were uninformative in data space resulted in
maximally dispersed predictive distributions. The prior
that achieves thisis a ~ Beta(2, 1), b ~ Beta(1, 4) (Cav-
agnaro et al., 2010).11

Figure 5a shows typical forgetting curves under each prior.
For each population and for each type of prior, we simu-
lated 100 experiments, for a total of 2 design methods x 2
populations x 4 types of specified priors x 100 repetitions
= 1600 experiments. In each experiment, a true parameter

I Note that it is only when the prior is uninformative in data space that
the distribution over a is misspecified.
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Fig. 5 Memory retention models (parameter estimation): Empirical
results. Note. Panel (a) shows the predictive distributions under each
prior, with lines denoting mean predictions, and shaded regions indi-
cating the standard deviation across the corresponding prior. Panel (b)
shows performance across the course of the experiment. Lines denote
the mean log posterior probability assigned to the generating parameter

0* = {a*, b*} was randomly drawn from the correspond-
ing population distribution, the time delay on each trial was
selected according to the design method, and data were gen-
erated according to Eq. 12.

Results Figure 5b shows how the correctness of inference
evolves over the course of the experiment under each type
of prior (results are pooled across the two populations). Val-
ues on the y-axes are the log probabilities assigned to the
true, generating parameter value under each specified prior.
This figure shows replication of our main result from “Item
response theory”’: ADO outperforms the benchmark for each
population and every type of specified prior. Interestingly,
unlike in the item-response paradigm, differences in perfor-
mance at the end of the experiment are mostly accounted for
by the type of prior: The fixed design under the informative
prior generally does better than ADO under the misinfor-
mative or uninformative in data space priors (this is despite
the fact that, unlike in the item-response example, ADO
has access to a larger stimulus bank than the fixed design
method).!2

12 If the experimenter is able to collect a sufficiently large amount
of data, they will eventually see inference in all cases converge on
the correct parameter value (or the set of parameter values that are
indistinguishable from the true parameter value on the basis of responses
to the available stimuli).
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values, and shaded regions denote standard errors around those means
(across n = 2 populations x 100 repetitions = 200 simulated experi-
ments). Different colors correspond to results under different specified
priors. Solid lines show the performance of ADO. Dashed lines show
the performance of the fixed design

In sum, in both simulation paradigms, ADO performed
better than the fixed design method even under prior mis-
information. In other words, we do not find that prior
misinformation diminishes ADO’s relative advantage. In
fact, our results suggest that using ADO when there is prior
misinformation may help to overcome that misinformation
more quickly than using other design methods.

Choosing a prior distribution

Our results show that access to an informative prior offers a
clear advantage: Experiments run under an informative prior
lead to the quickest convergence on the true parameter value.
However, both our mathematical and empirical results also
show that specifying a prior that is uninformative in param-
eter space can be nearly as good: Experiments run under
a prior that is uninformative in parameter space result in a
final parameter estimate that is essentially as accurate as the
estimate from experiments run under an informative prior.
In other words, informative priors offer inference a ‘head
start, while the efficiency of priors that are uninformative in
parameter space enables inference to quickly catch up with
inference under the informative priors.

Of course, when there is uncertainty about the popula-
tion distribution, attempting to specify an informative prior
exposes one to the downside risk that the specified prior actu-
ally slows convergence relative to what could be achieved
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with an uninformative prior (cf., the orange line in Fig. 5b).
Is this risk worth the potential head start, or are researchers
better off specifying priors that are uninformative in param-
eter space as a rule? The answer to that question is that it
depends.

The size of the informative prior’s upside advantage — the
size of its head start — depends on how misinformed the unin-
formative in parameter space prior is. The true prior shown
in Fig. 5 is quite similar to the corresponding uninformative
in parameter space prior, and so the size of the head start was
relatively small (and in practice, would likely be outweighed
by the downside risk of misinformation). However, this may
not be the case when prior knowledge more severely restricts
the set of likely parameter values.

Another important consideration is the number of responses
the experimenter can elicit from each participant: In our
simulations, experiments were run for long enough that infer-
ence under the uninformative in parameter space priors could
catch up to inference under the informative priors. In these
cases, priors that are uninformative in parameter space offer
the same upside advantage as informative priors without the
downside risk. However, in practice, experimenters may have
the resources to collect far fewer responses per participant —
indeed, it is precisely such cases that motivate the use of
ADO in the first place! In these cases, the head start pro-
vided by informative priors will result in a more accurate
final inference.

Prior misinformation in the context of model
selection

“Prior misinformation in the context of parameter estima-
tion” showed that in the context of parameter estimation,
ADO usually leads to faster convergence on the true param-
eter value under prior misinformation than other sequential
design methods. This section explores whether the same can
be said in the context of model selection. It will turn out that,
in the context of model selection, the effect of prior misin-
formation can be more damaging: It can lead one to favor the
wrong model.

A common measure of the strength of evidence in favor
of one model m over another model m is the Bayes factor,
or relative likelihood of data y|x under m and m»:

pi(ylx, my)
p1(ylx, m2)

_ Jo plx, 0) p1(Blm)
o pOlx.0) pr(®lma)’

BF(mi,mp) =

(13)

Equation 13 reveals the sensitivity of model selections to
prior misinformation: The apparent strength of evidence in
favor of one model over the other is a function of the spec-

ified priors ®1|m| and ®1|m>. Under prior misinformation,
the magnitude and even direction of the Bayes factor can
be misleading — implying that it can lead to the erroneous
selection of one model over the true, generating model (Van-
paemel, 2010; Lopes & Tobias, 2011).

This is an important concern in Bayesian inference, and
addressing it through the choice of prior has been the sub-
ject of much literature (Vanpaemel, 2010; Lee et al., 2019).
In this section, we show that this relates importantly to the
consequences of the choice of prior in its decision-theoretic
role.

Recall Eq. 7, which gives the global mutual information
utility in the context of model selection. Cavagnaro et al.
(2010) showed that Eq. 7 can be rewritten as a function of
the Bayes factors between all pairs of candidate models. This
result implies that ADO results in the selection of stimuli that
are expected to lead to extreme Bayes factors according to
the specified prior. When the Bayes factors are misleading,
this effect of ADO can exacerbate the amount of information
encountered that leads one to the wrong model.

The results presented in the remainder of this section will
show that in the case of model selection, like in the case of
parameter estimation, ADO tends to accelerate convergence
towards a particular model. However, under a deceptive prior,
this might be the wrong model. In such cases, desirable
behavior for an experimental design method would be to
decelerate, rather than accelerate, convergence. We will show
in “Empirical results” that in such cases other experimental
design methods outperform ADO.

Effect of prior misinformation through the lens
of Bayesian inference

Before turning to our results on the effect of ADO, we first
present a simple example illustrating the potential effect of
prior misinformation in the context of Bayesian inference
more generally. Consider the toy example shown in Fig. 6.
The task is to distinguish between two models, Model A
and Model B. Each model has a free parameter, ;tqg ~ gy
and g ~ g, respectively,’> and makes predictions for a
single stimulus xo. Under Model A, responses to xq are dis-
tributed as Y|xg, ua ~ -4 (4, 10), while under Model B,
responses to xg are distributed as Y|xg, up ~ A (up, 11).
Thus, the families of functions captured by the two mod-
els are distinguished by the inherent variance in responses.
The experimenter is required in advance of the experiment
to assign a prior distribution to (M, s, #g), i.e., to both

13 Here we simply bold the notation for the realization pu4 (up) to
indicate its corresponding distribution, g4 (g p), to avoid confusion
with the random variable that generically represents the distribution
over models, M.
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Fig.6 Prior misinformation biases inference for model selection: Motivating example (see discussion in main text). Note. Panel (a) shows parameter

distributions and Panel (b) shows focal predictive distributions

assess the relative likelihoods of Model A and Model B and
to specify the distributions over p 4 and pp.

The top two panels of Fig. 6a show the prior parameter
distributions the experimenter specifies for Models A and
B. The corresponding focal predictive distributions for the
two models are shown, respectively, as the green and orange
dashed lines in Fig. 6b.

Now, consider a heterogeneous participant population
in which everyone responds according to Model A (i.e.,
o = 10), but with different values of p4 as represented
in the bottom panel of Fig. 6a. The solid green line in Fig. 6b
shows the distribution of responses from this population. The
dispersion in this curve captures both the inherent variance
in each participant’s responses (o = 10), and variance due to
the distribution of values of 4 across participants. Impor-
tantly, most participants will produce data that is more likely
under Model B than under Model A, under their respective
specified priors, yielding apparently strong evidence in favor
of Model B.

The upshot is that the true state of the world, i.e., the
true response distribution, may look very different from the
focal predictive distribution corresponding to the generating
model. In essence, the specified prior sets an expectation for
what data from a given model will look like, but data from
that model may look different in reality if the specified prior
is far from the population distribution, and that can lead to
wrong inference. In effect, unless the true state of the world
happens to coincide exactly with the predictive distribution
of m*, each possible value of the focus is effectively mis-
specified a priori. Notice that this doesn’t matter in the case
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of parameter estimation: In this case, the focal predictive dis-
tributions are unaffected by prior misinformation — as Eq. 1
shows, they are a function only of the model structure, which
is (by assumption) known.

This example is albeit quite contrived to prove a point.
However, such deceptive priors — priors that induce initial
convergence towards the wrong model — can actually emerge
in practice, as we show in “Empirical results”. In the remain-
der of this section, we explore — conceptually in “Effect of
prior misinformation through the lens of Bayesian decision
theory ”” and empirically in “Empirical results” — the degree to
which this phenomenon persists in the context of ADO. The
consistency of Bayesian inference guarantees that the experi-
menter in this example will eventually be able to recover m™.
However, when the amount of data collected is not large,
relying on Bayesian decision-theoretic policies —i.e., choos-
ing data on the basis of these misinformed inferences — has
the potential to exacerbate the effect of misinformation.

Effect of prior misinformation through the lens
of Bayesian decision theory

In the toy example in “Effect of prior misinformation through
the lens of Bayesian inference”, ADO would assign xo a high
global utility because it induces a large divergence between
the predictions of Models A and B — even though these pre-
dictions are made on the basis of prior misinformation.

In general, when crafting a policy for selecting optimal
designs, the goals of parameter estimation and model selec-
tion may come into conflict. A stimulus that ADO calculates
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is optimal for discriminating between models may not be
optimal for refining estimates of the distribution of parameter
values. In other words, ADO for model selection faces a ver-
sion of an explore — exploit dilemma: By acting on its prior
beliefs about each model’s predictions, it may fail to explore
parts of the sample space that could challenge these beliefs.

Thus, when the goals of model selection and parameter
estimation are in conflict, ADO can actually exacerbate the
problem. By aggressively ‘exploiting’ areas of the design
space that appear to yield information about the models,
ADO finds powerful evidence in favor of its prior beliefs.
In contrast, by ‘exploring’ less apparently informative stim-
uli, other methods may have more of an opportunity to learn
the correct parameter distributions before making strong con-
clusions about the generating model.

ADO'’s aggressiveness is thus a double-edged sword: It
converges quickly on conclusions based on what it believes
about the predictions of the foci. However, in the case where
prior beliefs do not reflect the population distribution, it does
not seek opportunities to challenge these incorrect beliefs.

Choosing a prior distribution

“Prior misinformation in the context of parameter estima-
tion ”” showed that, in the case of parameter estimation, priors
that are uninformative in parameter space can somewhat mit-
igate the damage of prior misinformation. One would hope
that the issues that arise in model selection could be avoided
by using similarly uninformative priors.

Unfortunately, this is not the case: As will be shown in the
following section, priors that are uninformative in parameter
space nevertheless associate models with particular response
distributions, and are also prone to inducing biased inference.
One could nevertheless hope that specifying such priors over
the parameter distributions of candidate models might miti-
gate the problem by facilitating more rapid convergence on
informative parameter distributions. Indeed, we find empir-
ically that in one model selection context, recovery from
biased inference is relatively fast under a uniform prior.
However, it is difficult to disentangle the effect of the respon-
siveness of the uniform prior from its effect on the focal
predictive distributions — in particular, how they diverge from
the response distribution. We leave investigating whether
specifying priors that are uninformative in parameter space
mitigates biased inference in the context of model selection
as an avenue for future work.

Is it possible to identify a prior that is instead ‘uninforma-
tive in model space’? In the case of parameter estimation, the
important characteristic of an uninformative prior was that it
was responsive: Areas of the parameter space quickly became
represented in proportion to the relative likelihood they
assigned to the history of observations. A prior that was unin-
formative in model space would facilitate the proportional

representation of models according to their relative condi-
tional likelihood. But as emphasized in “Model selection”,
the relative conditional likelihood of a model depends on
the prior parameter distribution; indeed, the problem of not
knowing the parameter distribution is in a sense the prob-
lem of not knowing the conditional likelihood distribution
Yolx, m.

In summary, these results suggest the absence of con-
crete guidance for the case of model selection. The following
section reinforces through simulation results that apparently
uninformative priors can inadvertently induce biased infer-
ence.

Empirical results

This section extends the memory retention paradigm intro-
duced in “Memory retention” to model selection. The goal of
these results will be to demonstrate that apparently uninfor-
mative priors can inadvertently bias inference, and that this
bias is exacerbated by ADO.

In these experiments, the goal is to distinguish the power-
law model introduced in “Memory retention” (Eq. 12) from
the exponential model of memory retention, which posits that
the probability a participant will recall an item x seconds after
presentation is:

piy=1)= ae b (14)

Experimental set-up We considered two types of prior dis-
tributions, prior A and prior B. We also varied the population
distribution such that each prior was informative in half of
our experiments and misinformative in the other half.

1. Prior A assigns a 0.5 probability to each of the power-
law and exponential models, with a ~ Beta(l, 1) and
b ~ Beta(l, 1) under both models. According to prior
A, all viable parameter values are equally likely. There-
fore, prior A is uninformative in parameter space. When
encountering the population characterized by this distri-
bution, which we call population A, prior A is also the
informative prior. When encountering any other popula-
tion, prior A is misinformative.

2. Prior B also assigns probability 0.5 to each model, but
a ~ Beta(2,1) and b ~ Beta(l, 4) under the power-
law model, and a ~ Beta(2,1) and » ~ Beta(1l, 80)
under the exponential model. The predictive distribution
under prior B exhibits an extremely diffuse set of behav-
ioral patterns, as shown in Fig. 7a (see also Cavagnaro
et al., 2010). Therefore, prior B is uninformative in data
space. When encountering the population characterized
by this distribution, which we refer to as population B,
prior B is also the informative prior. When encountering
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Fig.7 Memory retention models (model selection): Empirical results.
Note. Panel (a) shows the predictive distribution of each model under
each prior, with lines denoting mean predictions, and shaded regions
indicating standard deviations across the corresponding prior. Panel (b)
shows results where data were generated from population A. Panel (c)
shows results where data were generated from population B. In each

any other population, such as population A, prior B is
misinformative.

We simulated experiments with two different design meth-
ods: ADO and the fixed design described earlier. In each
simulated experiment, data were generated from a given
model, either the power-law or exponential model, with
parameters randomly drawn from the corresponding pop-
ulation distribution (either A or B). We did not randomize
the generating model, but rather simulated an equal number
of experiments with each model (each population distribu-
tion assigns a probability of .5 to each of the power-law and
exponential models, and so the prior over models was always
correctly specified). In all, we simulated 1600 experiments:
100 for each combination of design method (ADO or fixed),
population (A or B), prior (A or B) and model (power-law or
exponential).

Results Figure 7b and ¢ show how the correctness of infer-
ence evolves over the course of the experiment under each
type of prior (results are pooled across the two generat-
ing models). Values on the y-axes are the log probabilities
assigned to the generating model m* under each generat-
ing prior. Like in the case of parameter estimation (Fig. 5b),
when the specified priors are informative, inference con-
verges steadily, and more quickly under ADO, towards the
true model.

However, inference under the misinformative priors exhibits
the dynamic explained in the previous subsections, favoring
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of panels (b) and (c), lines denote the mean log posterior probability
assigned to the generating model, and shaded regions denote standard
errors around those means (across n = 2 models x 100 repetitions
= 200 simulated experiments). Different colors correspond to results
under different specified priors. Solid lines show the performance of
ADO. Dashed lines show the performance of the fixed design

the wrong model (at least initially) — and this is exacerbated
by ADO. The reasons for this are precisely the reasons for
the confusion illustrated in Fig. 6: As shown in Fig. 7a, in
both cases the specified prior distributions are wildly off base
about the expected behavior of the population characterized
by each model.

Recovery from biased inference under the specified prior
that is uninformative in parameter space (Fig. 7c) is quicker
than recovery from biased inference under the specified prior
that is uninformative in data space (Fig. 7b), potentially
reflecting the capacity of the prior that is uninformative in
parameter space to more quickly ‘respond’ to unexpected
observations.'* However, our setup here is not adequate to
confirm this. Notice first that while the specified prior varies
between the two panels of Fig. 7, so does the population dis-
tribution. More fundamentally, the specified prior changes
the focal predictive distributions. Taken together, this implies
that our setup does not (and perhaps cannot) control for quali-
tative differences in the divergence between the focal predic-
tive distributions and the response distribution, which, as dis-
cussed in “Effect of prior misinformation through the lens
of Bayesian inference”, is the source of the biased inferences.

14 As in the case of parameter estimation, if the experimenter is able
to collect a sufficiently large amount of data, they will see inference
eventually converge on the correct state of the world and, by extension,
on the correct model indicator. However, as Fig. 7b illustrates, the tra-
jectory of inference can misguide the experimenter for at least 80 trials
— far longer than the duration of many experiments in practice.
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Robust practices for ADO for model selection

The results from the previous section highlight the impor-
tance of taking steps to ensure one’s priors are informative —
especially when used in conjunction with decision-theoretic
methods like ADO, which amplify biases induced by prior
misinformation. In the context of model selection, if an
experimenter specifies a prior that faithfully captures their
epistemic uncertainty, ADO will treat that uninformative
prior as being a true representation of relative likelihoods
in the world and select designs accordingly. Because the two
roles of the prior here conflict, this can result in incorrect
inferences.

While we framed our results in “Prior misinformation in
the context of model selection” as applying to the problem
of model selection — identification of model structure — note
that these results apply to any situation in which knowing the
value of the focus of interest does not completely identify the
true data-generating distribution. In the case of model selec-
tion, this applies because one needs the value of both m and
0 to identify the data-generating distribution, yet evaluates
performance based only on m. However, one could also apply
ADOrto, e.g., a parameter estimation problem for which some
‘nuisance parameters’ are not considered foci for inference
(e.g., estimating only main effects in the presence of fixed or
participant-level effects). In these cases, our results on model
selection, not parameter estimation, would apply.

“Prior misinformation in the context of model selection”
discussed the potential beneficial effect of specifying priors
that are uninformative in parameter space in mitigating these
biases. This section discusses additional methods to alleviate
or anticipate this bias, some of which have been adopted
by previous studies, and some of which provide promising
avenues for future research.

Additional trials to inform specified priors

One way to increase confidence in one’s specified priors is to
devote a portion of one’s experimental resources to collecting
observations from which to learn more informed parameter
distributions. For example, when using ADO to distinguish
between competing models of intertemporal choice, Cav-
agnaro etal. (2016) devoted three quarters of each experiment
to parameter estimation, i.e., selecting stimuli to maximize
the global utility function for parameter estimation, before
using the inferred posteriors for each participant during the
later model selection trials.

In a parameter estimation application, Kim et al. (2014)
leveraged hierarchical modeling techniques to pool informa-
tion across participants to construct informed distributions:
Data from each sequential participant was used to refine the
specified prior for the next participant. They showed that this

method led to better parameter estimates in the context of a
psychophysical experiment.

While these methods offer promising solutions for many
use cases, their application falls outside the scope considered
by our work. As we stated in “Introduction”, we consider sit-
uations in which the experimenter wishes to use the same
prior for every participant. This characterizes situations in
which incorporating data from previous participants would
be infeasible or unfair (e.g., educational testing), or when
the experimenter cannot afford to spend scarce resources on
additional parameter estimation trials. (Note that participants
in Cavagnaro et al. (2016)’s study were required to com-
plete 80 experimental trials. Conducting an experiment of
this length would be at best difficult and at worst impossible
in cases in which candidate stimuli correspond to potentially
irritating or invasive tests such as a medical procedure.)

Total entropy utility

Borth (1975) introduced the total entropy utility function in
order to cope with the dual sources of uncertainty that char-
acterize the model selection problem, i.e., uncertainty about
both the model identifier and the parameter value. The total
entropy utility function considers the entire state of the world
as the focus of the utility function:

[
p(m)// (”('" . x))p(yu,e,m)p(mm).

Ux) = .6
(15)

meM

We had hoped that running ADO using the total entropy
utility function would, like Cavagnaro et al. (2016)’s method,
lead to a balance between parameter estimation and model
selection trials. We had further hoped that it would do so
more efficiently than fixed or heuristic methods of achieving
this balance.

To test this, we ran simulation experiments with exactly
the same setup as those discussed in “Empirical results”, with
the exception that when using ADO, the stimulus that maxi-
mized Eq. 15 (rather than Eq. 7) was selected. The results of
these experiments, presented in Appendix C, did not show a
consistent advantage of the total entropy utility function in
leading to more robust selection of the correct model.

Novel approaches to robust adaptive experiments

The previous two subsections discussed existing methods
for coping with the effect of prior misinformation on model
selection. However, these existing methods can be pro-
hibitively costly (running additional trials to inform priors)
or potentially ineffective (using the total entropy utility
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function). An important direction for future research is
the development of methods that increase the robustness
of adaptive design methods to the pitfalls introduced in
“Prior misinformation in the context of model selection .
To this end, in this section, we propose two steps exper-
imenters can take in the design and implementation of
adaptive experiments to increase their robustness. We leave
further development and stress testing of these approaches
as avenues for future research.

1. Anticipating biases via prior sensitivity analyses As
mentioned in “The prior’s two lives”, the choice of prior dis-
tribution in the context of Bayesian inference is the topic of
a substantial literature. One practice advocated in this liter-
ature (e.g., Lee et al. (2019)) is to perform prior sensitivity
analyses, i.e., to perform data analysis under a variety of pri-
ors to ensure one’s inferences are robust to the specification
of the prior.

We echo the importance of this practice. In the context of
adaptive experiments, analogous prior sensitivity analyses
are important to understand not only the direct effect of the
prior on inference, but also the prior’s indirect effect through
its effect on the data collected. For a given specified prior,
experimenters should simulate sets of experiments where
data is generated by parameter values distributed accord-
ing to several different ‘participant’ populations. If these
simulated experiments are reliably able to identify the true
model, this will provide reassurance that actual experiments
run under the specified prior will be able to recover the gen-
erating model, even if the true participant population differs
slightly from the specified prior.

2. Using a design policy that navigates the explore—exploit
dilemma Another approach is to respecify the utility func-
tion itself in a way that is more robust to such biases
(Go & Isaac, 2022). The total entropy utility function
(“Total entropy utility”) is one example of an alternative util-
ity function designed for a similar purpose.

As we discussed in “Effect of prior misinformation
through the lens of Bayesian decision theory”, in the context
of model selection, ADO effectively faces an explore—exploit
dilemma: Should it select a stimulus that ‘exploits’ what
it thinks it knows about the predictions of the competing
models, or a stimulus that has the potential to contradict
these pre-existing beliefs? Designing decision-making poli-
cies that effectively navigate the explore—exploit dilemma
has been the subject of literature spanning cognitive science
(Hills et al., 2015) to machine learning (Schulz et al., 2018).
Utility functions intended to navigate this dilemma in the
context of model selection could draw from this literature.

One approach to sequential decision-making that navi-
gates this dilemma in a principled way is known as upper
confidence bound (UCB) sampling (Schulz et al., 2018):
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Rather than sample where their expectation of the value of the
local utility is highest, a UCB sampler would sample where
an additive combination of this expectation and a measure
of the variance around this expectation is the highest. UCB
effectively constructs a confidence interval around the expec-
tation, and samples at the upper bound of that confidence
interval. During early trials, the variance measure usually
dominates, inducing exploration. As the variance measure
decreases, the expectation measure begins to dominate, and
the sampler gradually turns to exploiting areas where the
expectation of the utility is highest.

In Appendix D, we leverage our framework to suggest one
way the global mutual information utility function could be
modified to incorporate principles from UCB sampling.

Discussion and limitations

While our work provides insight into the behavior of ADO
under prior misinformation, it also has a number of limita-
tions. Firstly, the scope of our theory is limited. In the case of
model selection, our work shows that ADO can exacerbate
inferential biases in the presence of prior misinformation,
but does not provide additional guidance as to when or the
extent to which one should anticipate these biases. While
some work provides additional theoretical characterization
of the conditions that lead to related biases in the context
of ADO (Sloman et al., 2024) and other adaptive design
schemes, e.g., optional stopping (Hendriksen et al., 2020;
Heide & Griinwald, 2021), there remain many open theoret-
ical questions.

Secondly, when ADO is used in practice, the correctness
of the resultant inferences can be affected by multiple fac-
tors not captured by our mathematical and simulation-based
framework. For example, parameter values may drift due to,
e.g., changes in the environment. In the context of real-world
applications of item-response theory, one of our motivating
experimental paradigms, this can lead to biased proficiency
estimates (Wells et al., 2002). However, we expect that the
dynamics induced by such factors will usually interact with,
rather than counteract, the dynamics revealed by our results.

One of the most important factors we have not considered
is the potential for model misspecification, or misspecifica-
tion of the functional form of the model p(y|x, 6, m) itself.
The case of model misspecification differs from our case,
prior misinformation, in that the true state of the world is
assigned a probability of zero: Since the functional form of
the model does not update in light of observed data, one can
never hope to counteract this form of misspecification. Under
model misspecification, inference can stray further and fur-
ther from the Bayes-optimal parameter estimate, resulting
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in totally random designs leading to better estimates than
ADO (Sloman et al., 2022). Recent work has proposed design
policies that increase the robustness of ADO in such cases
(Overstall & McGree, 2022; Catanach & Das, 2023). Along-
side development of practices to increase ADQO’s robustness
to prior misinformation, further development of methods to
enhance ADQO’s robustness to model misspecification is an
important avenue for future research.

Conclusion

When performing Bayesian inference, there are many consid-
erations experimenters must keep in mind. An important one
is the specification of one’s prior distribution. When using
optimal design methods like ADO, which rely on specified
prior distributions in the design of the experiment itself, this
decision has dual consequences: Misinformative priors both
bias inference, and mislead the experimental design process.

In this paper, we introduced a conceptual and mathe-
matical framework for reasoning about the effect of prior
misinformation on the efficiency of ADO. Our framework
elucidated one general limitation of mutual information util-
ity functions: While the implied expected focal divergence
indicates the degree of posterior divergence, it does not in
general indicate whether that divergence is in the right direc-
tion.

We applied our framework to two common use cases for
ADO: the estimation of parameters that measure individually
varying psychological characteristics, and the identification
of model structure to inform the development of psycholog-
ical theory. Through mathematical analysis and simulation
experiments, we demonstrated counterintuitive pitfalls of
using uninformative priors in the case of model selection.
In the context of parameter estimation, our framework eluci-
dated principles upon which users of ADO can base selection
of their prior — namely, to favor priors that are uninformative
in parameter space, rather than data space. In the context of
model selection, we discussed and suggested several prac-
tices users of ADO can adopt to enhance the robustness of
their design and analysis strategies to the biases we identi-
fied. Investigating these practices is a promising direction for
future research.

Open Practices Statement

All the simulation code used to generate the results reported
in this paper is publicly available at https://github.com/
sabjoslo/prior-impact.

Appendix A: Derivation of Eq. 11
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where H (Xj || X2) denotes the cross entropy of the distri-
bution that characterizes the random variable X3, relative to
the distribution that characterizes the random variable Xj.

Appendix B: Experimental results using lin-
ear probability measures

Figures 8, 9 and 10 reproduce Figs. 4, 5b and 7b—c, respec-
tively, with the values on the y-axis showing the average
probability assigned to the true value of the focus, rather
than the average log probability.

Appendix C: Experimental results using the
total entropy utility function

“Total entropy utility” introduced the total entropy utility
function. Figure 11 reproduces the experiments shown in
Fig. 7b—c, with the exception that the ADO experiments use
the total entropy utility function. While it appears to make a
difference in the experiments shown in Fig. 11a, it actually
appears to exacerbate the problem in Fig. 11b. It therefore
does not appear to be a consistent solution to the problem.

Appendix D: Upper-confidence bound global
utility

In “Novel approaches to robust adaptive experiments”, we
framed ADQ’s failures in the case of model selection under
the more general framework of an exploration—exploitation
dilemma. Here, we leverage our framework to suggest one
way the global mutual information utility function could be
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modified to incorporate principles from UCB sampling, an
approach for navigating this dilemma discussed in “Novel
approaches to robust adaptive experiments”.

A direct application of UCB in ADO would involve incor-
porating a measure of dispersion of the local utility values
around the global utility. However, this would not be suffi-
cient to address our motivating problem: Recall that our goal
for ‘exploration’ here is to challenge our pre-existing beliefs
about the specified prior parameter distributions. First of all,
notice that this naive application of UCB targets uncertainty
in the utility values, which is not what we care about. Sec-
ondly, in the same way that the global utility (the expectation
of the local utility) is calculated on the basis of the specified
prior (Eq. 2), the most natural way to calculate the analogous
second moment would also be on the basis of the specified
prior. Thus, rather than challenging our beliefs about the
priors, this approach would actually incorporate additional
reliance on them.

Nevertheless, we can leverage core principles of UCB
— maximizing an additive combination of an exploitation
and exploration measure that dynamically adjusts over time
— to construct a decision-making policy that targets the
dual goals of model selection and parameter estimation. As
discussed, existing measures of global mutual information
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operation exacerbates low probabilities). Panel (b) corresponds to Fig.
4b. It shows results as a function of uncontrolled changes in specified
prior with population ®¢ ~ .4(2, 1). Panel (¢) corresponds to Fig. 4c.
It shows results as a function of controlled changes in specified prior
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utility effectively exploit specified prior knowledge. To con-
struct a UCB policy, we can directly use this as a measure of
exploitation. As a measure of exploration, we seek a quantity
that both reflects the degree to which we will learn about the
parameter estimates, and shrinks as these estimates become
more precise.

With reference to our decomposition of the expected focal
divergence (Eq. 11), notice that the response variability and
surprisal terms are shared by both the expected focal diver-
gence corresponding to model selection and to parameter
estimation. If a decision-making policy for model selection
selects stimuli that induce high response variability and/or
surprisal, this will facilitate not only the explicit goal of
model selection, but also the implicit goal of parameter esti-
mation. Thus, together, response variability and surprisal
achieve our first criterion for an appropriate measure of
exploration: They reflect the degree to which the experi-
menter can be expected to learn about the parameter values.

15" Although recall from “Decomposition of the expected focal diver-
gence ~ the caveat that the effect of response variability on inference
will depend on the source of the variability, i.e., whether it stems from
uncertainty about the parameter value, or uncertainty about responses
even conditioned on a particular parameter value.
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@ gives the corresponding expected focal divergence function:

1000 Tnformative

—ADO
= = Fixed
isinformati Upep() = U'()  +H (Yolx) + Dxr (Yolx || Yi]x)
0o Misinformative UCB | lx [ Y1l
—ADO Exploitation term Exploration term
= = Fixed

U'(x) + H (Yolx || Y1lx)

//( (pl(YIx ¢))—10g(p1(Y|x))> P1(@) po(y|x)
P1(ylx)

Uninformative in

— ADO
- = = Fixed
S _ PiI(YIx, ¢)
E Uninformative in y = /y]qbl()g< P12 P1(9) po(ylx) (17)
a0 — ADO

= = Fixed

where H (Yolx || Y1]x) denotes the cross entropy of the
predictive distribution relative to the response distribution.
Of course, in practice we are not maximizing the expected
focal divergence (the expectation of the focal divergence
________ : under the population prior), but rather the global utility (the
expectation of the focal divergence under the specified prior).
Equation 18 gives the global utility function implied by
Eq. 17, i.e., what one would actually maximize in practice:

Fig.9 Corresponds to Fig. 5b

X
Combined, these terms will also tend to achieve the second Uycp(x) = f / log (%) p1(y|x, @) p1(d)
criterion: Surprisal, by definition, will shrink as the parame- Y P1i@) p1iy

' pi(ylx, ¢)
ter estimates converge. . o f / ( =) p (ylx, ¢) p1($)
Therefore, one could consider the combination of response p1(ylx)
variability and surprisal as an exploration measure. Equation 17 =1(®;Y11x)+ H(Yq]x). (18)
(2) (b)

Prior A (Informative)
——ADO
== Fixed

8
Prior B (Misinformative)
—ADO

== Fixed

Prior A (Misinformative)
—ADO
= = Fixed

Prior B (Informative)
—ADO

0.4 - =~ Fixed

0 20 40 60 80 0 20 40 60 80 100

Trial Trial
Fig. 10 Note. Panel (a) corresponds to Fig. 7b. It shows results in population A. Panel (b) corresponds to results in population B. Here, not taking

the logs and thus not penalizing for extremely small values helps ADO, which tends to result in more extreme posterior probabilities than the fixed
design
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log (p; (m™))

Prior A (Informative)
—ADO
== Fixed

, Prior B (Misnformative)
—ADO
= = Fixed

0 20 40 60 80

Trial

Fig. 11 Memory retention models (total entropy): Empirical results.
Absolute performance across the course of the experiment. Note. Panel
(a) shows results where data were generated from population A. Panel
(b) shows results where data were generated from population B. In each
of panels (a) and (b), lines denote the mean log posterior probability

Equation 18 is an additive combination of the mutual infor-
mation between ®; and Y{|x, i.e., our original measure of
global utility, and the entropy of Y |x, a criterion used for an
alternative sampling scheme known as uncertainty sampling
(Lee et al., 2021).

Both Eqs. 17 and 18 are written using the more generic
notation of ¢, to emphasize their potential application in any
case the value of the focus of interest does not completely
identify the true data-generating distribution. For the problem
of model selection, Eq. 18 would more specifically become:

T My Yilx) + H (Yilx)

> pl(m)// ("‘(”" ’")) PG 0.m) p1@m).

o p1yI)?
19)

Uycp ()

In other words, a relatively straightforward combination
of two common sequential experimental design strategies
— one that targets mutual information, and one that targets
uncertainty — can be theoretically motivated to achieve the
dual goals of model selection and parameter estimation in
the presence of prior misinformation.
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