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Online Regulation of Dynamical Systems to
Solutions of Constrained Optimization Problems

Yiting Chen, Liliaokeawawa Cothren, Jorge Cortés, and Emiliano Dall’Anese

Abstract— This paper considers the problem of regulat-
ing a dynamical system to equilibria that are defined as
solutions of an input- and state-constrained optimization
problem. To solve this regulation task, we design a state
feedback controller based on a continuous approximation
of the projected gradient flow. We first show that the equi-
libria of the interconnection between the plant and the
proposed controller correspond to critical points of the
constrained optimization problem. We then derive sufficient
conditions to ensure that, for the closed-loop system, iso-
lated locally optimal solutions of the optimization problem
are locally exponentially stable and show that input con-
straints are satisfied at all times by identifying an appropri-
ate forward-invariant set.

I. INTRODUCTION

This paper considers the problem of steering the state of a
dynamical system to equilibria that are implicitly defined as
the solution of a constrained, nonlinear optimization problem.
Such a regulation problem is motivated by optimization and
control problems in a number of areas, including power
systems [1], transportation systems [2], epidemic control,
and robotics [3]. To address this regulation problem, prior
work [2], [4]–[11] in “online feedback optimization” has
considered the design of controllers based on adaptations of
first-order optimization methods. The majority of these works
consider equilibria that are solutions to either unconstrained
optimization problems or problems with constraints on the
control inputs. However, an open research question remains
regarding how to systematically design feedback controllers
to regulate a dynamic plant to solutions of optimization
problems with nonlinear constraints on the system’s state,
which is what we tackle here. State constraints are critical
across multiple domains: e.g., in power transmission systems,
to impose frequency and line flow limits [1].

Literature review. Constrained problems in online regulation
of dynamical systems were first considered in [5], where con-
trollers for control-affine systems were engineered based on
saddle flows and conditions for asymptotic stability of saddle
points of the Lagrangian function were established. Similar
gradient-based strategies for constrained convex problems
were proposed in [6], and local stability results were provided
based on non-singularity of the matrix modeling the closed
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loop. The Moreau envelope was used in [8] to deal with linear
inequality constraints on the state; however, the stability anal-
ysis hinges on augmented Lagrangian approaches, which leads
to perturbations of the set of optimal solutions. A primal-dual
flow based on a regularized Lagrangian was utilized in [2];
however, the approach in [2] is applicable to only linear in-
equality constraints on the system’s state. Polytopic constraint
sets for the state of linear systems (without disturbances) were
considered in for discrete-time linear systems [10]. Finally, our
controller design relies on a continuous approximation of the
projected gradient flow, termed safe gradient flow [12], that
solves constrained optimization problems. The treatment here
significantly expands [12] by (i) having the safe gradient flow
act as a feedback controller, (ii) analyzing the stability of the
interconnection with a dynamic plant, and (iii) providing a
precise characterization of the local stability region.

Contributions. We present a new class of feedback con-
trollers for dynamic plants (possibly subject to unknown
disturbances) to regulate their input and state to locally optimal
solutions of an optimization problem with constraints on the
state at steady-state. Our main contribution is twofold.
(a) We propose a new control design strategy that leverages the
safe gradient flow [12]. The controller utilizes state feedback
to perform the regulation task at hand. Critically, our dynamic
controller is defined by a locally Lipschitz vector field, thus
ensuring existence and uniqueness of classical solutions, and
guarantees that input constraints are enforced at all times;
moreover, its equilibria correspond to the critical points of
the optimization problem.
(b) We show the existence of a forward invariant set for
the interconnection of the dynamic plant and the proposed
controller, and we leverage singular perturbation theory [13]
to find sufficient conditions for the stability of the closed-loop
system. We show that isolated locally optimal solutions of
the optimization problem are locally exponentially stable and
characterize the region of attraction.

II. PRELIMINARIES AND PROBLEM FORMULATION

Notation. (·)→ denotes transposition. For a given vector
x → Rn, ↑x↑ :=

↓
x→x. Given the vectors x → Rn and

y → Rm, (x, y) → Rn+m denotes their concatenation. For a
smooth function f : Rn ↔ R, the gradient is denoted by ↗f
and its Hessian matrix is denoted by ↗2f . For a continuously
differentiable function h : Rn ↔ Rm, its Jacobian matrix
is denoted by Jh. For any natural number n, [n] denotes
the set {1, · · · , n}. For any vectors, a and b, a ↘ b means
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that all the entries of a ≃ b are less than or equal to 0. The
distance between a point s and an nonempty set S is defined
as dist(s,S) = infs0↑S ↑s ≃ s0↑. The diameter of a set S
is defined as diam(S) := sups1,s2↑S ↑s1 ≃ s2↑. We define
Bn(x↓, r) := {x → Rn : ↑x ≃ x↓↑ < r} and 0n → Rn the
vector of all zeros.

Plant model. We consider systems that can be modeled
using continuous-time dynamics

ẋ = f(x, u, w), x(t0) = x0 (1)

where f : X ⇐ U ⇐W ↔ Rn, with X ⇒ Rn, U ⇒ Rnu , and
W ⇒ Rnw open and connected sets. In (1), x → X is the state
(with x0 → X the initial condition), u → Uc ⇑ U is the control
input, and w → Wc ⇑ W is an unknown disturbance. We
assume that Uc and Wc are compact, and that the vector field
f is continuously differentiable and Lipschitz-continuous. We
make the following assumptions.

Assumption 1 (Steady-state map): There exists a unique
continuously differentiable function h : U ⇐ W ↔ X such
that, for any fixed ū → U and w̄ → W , f(h(ū, w̄), ū, w̄) =
0. Moreover, h(u,w) admits the decomposition h(u,w) =
hu(u)+hw(w), and hw(w) and the Jacobian Jh(u) :=

ωhu(u)
ωu

are locally Lipschitz continuous. ↭
Assumption 1 guarantees that, due to the continuity of Jh(u)

and compactness of Uc and Wc, there exists ωhu , ωhw ⇓ 0 such
that ↑Jh(u)↑ ↘ ωhu and ↑hw(w1)≃hw(w2)↑ ↘ ωhw↑w1≃w2↑
hold for any u → Uc and any w1, w2 → Wc. Hereafter, we
denote the compact set of admissible equilibrium points of
the system (1) by Xeq := h(Uc ⇐ Wc). Let r > 0 denote
the largest positive constant such that Xr := Xeq + Bn(0n, r)
satisfies Xr ⇒ X . We make the following stability assumption
on the plant, which is common in the feedback optimization
literature [7]–[9].

Assumption 2 (Stability): ⇔ a, k > 0 such that, for any fixed
ū → Uc and w̄ → Wc, the bound ↑x(t) ≃ h(ū, w̄)↑ ↘ k↑x0 ≃
h(ū, w̄)↑e↔a(t↔t0), holds for all t ⇓ t0, for some t0 ⇓ 0,
and for every initial condition x0 → X0 := Xeq + Bn(0n, r0),
r0 < r/k ≃ diam(Xeq), where x(t) is the solution of (1). ↭

Assumption 2 guarantees the equilibrium h(u,w) is expo-
nentially stable, uniformly in time. Using this, the existence
of a Lyapunov function is guaranteed by the following result,
which is a slight extension of [14, Prop. 2.1].

Lemma 2.1: (Existence of a Lyapunov function): Consider
the system (1) satisfying Assumptions 1-2, where X0 is the set
of initial conditions defined in Assumption 2. Then, for any
fixed w → Wc, there exists a function W : X0 ⇐ U ↔ R that
satisfies the inequalities:

d1↑x≃ h(u,w)↑2 ↘ W (x, u) ↘ d2↑x≃ h(u,w)↑2,
εW

εx
f(x, u, w) ↘ ≃d3↑x≃ h(u,w)↑2,

∥∥∥∥
εW

εx

∥∥∥∥ ↘ d4↑x≃ h(u,w)↑,
∥∥∥∥
εW

εu

∥∥∥∥ ↘ d5↑x≃ h(u,w)↑,

for some positive constants d1 ↘ d2, d3, d4, d5. ↖
Our control problem is formalized next.

Target control problem. We consider an optimization prob-
lem of the form:

min
u↑Rnu

ϑ(u) + ϖ (h(u,w)) (2a)

s.t. ω (h(u,w)) ↘ 0, ϱ(u) ↘ 0 (2b)

where the functions ϑ : Rnu ↔ R, ϖ : Rn ↔ R, and
ω : Rn ↔ Rp have a locally Lipschitz continuous gradient
(Jacobian), and where ϱ(u) = [ϱ1(u), · · · , ϱm(u)]→ : Rnu ↔
Rm is continuously-differentiable. We assume that Uc can
be expressed as Uc = {u : ϱ(u) ↘ 0}. We note that the
constraints ω(x) ↘ 0 specify a given desirable set for the state
of the system at steady state; we also notice that this set is
parametrized by the unknown disturbance w since it can be
rewritten as ω(h(u,w)) ↘ 0. The presence of this constraint is
a key differentiating factor relative to existing works on online
feedback optimization [2], [5], [7]–[9].

We make the following assumptions on (2).
Assumption 3 (Set of inputs): For any i → [m] and any u →

Uc, it holds that ↗ϱi(u) ↙= 0 if ϱi(u) = 0. ↭
Assumption 4 (Regularity): Let u↓ → Uc be a local mini-

mizer and an isolated Karush–Kuhn–Tucker (KKT) point for
the optimization problem (2). The following hold:
i) Strict complementarity condition [15] and the linear inde-
pendence constraint qualification (LICQ) hold at u↓.
ii) The maps u ∝↔ ϱ(u), u ∝↔ ϑ(u), u ∝↔ ϖ(h(u,w)), and
u ∝↔ ω(h(u,w)) are twice continuously differentiable over
some open neighborhood of u↓ and their Hessian matrices
are positive semi-definite at u↓.
iii) The Hessian ↗2ϑ(u↓) is positive definite. ↭

Assumption 3 is satisfied when Uc = {u : ↑u≃ u0↑p ↘ r}
for a given r > 0 and for 1 ↘ p ↘ +′, or when Uc is a
polytope; it is also satisfied in applications such as the ones
described in [1]–[3], [8]. Assumption 4 is satisfied when (2)
is convex with a strongly convex function [3], [8]; here, we
provide a minimal set of assumptions that allows us to consider
non-convex problems while still allowing for strong stability
guarantees as discussed in the next section. We refer the reader
to [16] for the notions of local minimizer and KKT point. Next,
we outline our problem.

Problem (Regulation to optimal solutions): Design a feed-
back controller to regulate inputs and states of (1) to a
minimizer u↓ of (2) and the optimal state x↓ = h(u↓, w)
without requiring knowledge of the disturbance w, while
respecting input constraints at all times. ↭

III. CONTROLLER DESIGN AND STABILITY ANALYSIS

A. Approximate projected gradient controller
To solve our regulation problem, we propose the following

state-feedback controller:

u̇ = ςFε(x, u) (3)
Fε(x, u) := argmin

ϑ
↑φ +↗ϑ(u) + J→

h ↗ϖ(x)↑22,

s.t.
εω

εx
(x)Jh(u)φ ↘ ≃↼ω(x),

εϱ

εu
(u)φ ↘ ≃↼ϱ(u),

(4)
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where ↼ → R>0 is a design parameter and ς > 0 is the
controller gain. To gain intuition on this design, we note
that (3) is an approximation of the projected gradient flow
u̇ = projTF (u)(≃↗ϑ(u) ≃ J→

h ↗ϖ(h(u,w))), where TF (u)
denotes the tangent cone of F(u) := {u : ω (h(u,w)) ↘
0, ϱ(u) ↘ 0} at u; in fact, one can show [12, Prop.
4.4] that limε↗↘ Fε(h(u,w), u) = projTF (u)(≃↗ϑ(u) ≃
J→
h ↗ϖ(h(u,w))). A key modification relative to the projected

gradient flow is that the steady-state map h(u,w) is replaced
by measurements of the system state x; this allows us to
leverage measurements of the state to steer it to the solution
(u↓, x↓) of the problem (2) without requiring knowledge of
w.

Assumption 5 (Feasibility): For all x → X and u → Uc,
⇔ φ → Rnu such that ωϖ

ωx (x)Jh(u)φ ↘ ≃↼ω(x) and ωϱ
ωu (u)φ ↘

≃↼ϱ(u). ↭
Since the constraints in (4) are based on techniques from

Control Barrier Functions (CBFs) [12], Assumption 5 guaran-
tees that there always exists a direction that keeps the system
inside the feasible set of problem (2). We show later that
Assumption 5 can be weakened to a subset of X . Defining
z := (x, u), the plant (1) under the controller (3) leads to the
following interconnected system:

ż = F (z, w), F (z, w) :=

[
f(x, u, w)
ςFε(x, u)

]
, (5)

with initial condition z(t0) = (x(t0), u(t0)). Before presenting
our main convergence and stability results for (5), we discuss
some important properties. The proof of all results is post-
poned to Section IV.

Proposition 3.1 (Forward invariance): Let Assumptions 3
and 5 be satisfied. Then, (5) renders the set Uc forward
invariant. ↖

Proposition 3.2 (Lipschitzness): Let Assumption 5 be sat-
isfied. Then:
(i) for any w → W , u ∝↔ Fε(h(u,w), u) is Lipschitz
continuous with constant ωFu ⇓ 0 over Uc;
(ii) for any u → Uc, x ∝↔ Fε(x, u) is locally Lipschitz
continuous;
(iii) For any compact subset X̃ ⇒ X and any x → X̃ , u ∝↔
Fε(x, u) is locally Lipschitz continuous. ↖

Proposition 3.1 guarantees that constraints on the inputs
are satisfied, while Proposition 3.2 ensures the existence and
uniqueness solutions in the classical sense; this is a key
advantage over projected gradient flows which may be, in
general, discontinuous.

B. Stability analysis
This section characterizes the stability of (5). We first

establish the existence of a compact and forward-invariant set
for the state x; this is necessary for the Lipschitz constant in
Proposition 3.2(iii) to be well defined and plays an integral
part in the proof of the main stability result.

Define the compact set X1 := {x | dist(x,Xeq) <√
d2/d1 (d0 + diam(Xeq))}, where

d0 := max

{
dist(x(t0),Xeq),

2(d4ωhu + d5)ωFuMu

d3
↽0

}
,

with t0 ⇓ 0, ↽0 > 0 and Mu := maxu↑Uc ↑u ≃ u↓↑.
Proposition 3.2(iii) applies to X1 with t0 = 0; we denote as
ωFx the Lipschtiz constant of Fε(x, u) w.r.t x over X1. The
following result establishes forward invariance of X1.

Lemma 3.3 (Forward invariance): Consider system (5) and
let Assumptions 1, 2, and 5 hold. Assume that r0 >√

d2/d1 diam(Xeq). If dist(x(t0),Xeq)↘
√

d1/d2r0 ≃
diam(Xeq) and

↽0 ↘ d3
2(ωFxωhu + d5)ωFuMu

(√
d1/d2r0 ≃ diam(Xeq)

)
.

Then:
(a) X1 ⇒ X0; and,
(b) for any ς ↘ min{ d3

2(d4ϖhu+d5)ϖFx
,↽0}, the state x(t) never

leaves X1 after time t ⇓ t0. ↖
Note that, since X1 is forward invariant, Assumption 5

can be restricted to X1. Additionally, by comparing the KKT
conditions for (2) and for the optimization defining Fε , we
obtain the following result.

Proposition 3.4 (Equilibria and optimizer): There exists
⇀↓ such that (u↓,⇀↓) is a KKT point for (2) if and only if
(h(u↓, w), u↓) is an equilibrium for (5). ↖

Before stating the main stability result, we introduce some
useful notation. Let z̃ = (x ≃ x↓, u ≃ u↓) and define E :=
ωFω(h(u,w),u)

ωu |u=u→ , e1 := ≃⇀max(E), and e2 := ≃⇀min(E).
Then, we can write the dynamics as [13]: Fε(h(u,w), u) =
E(u≃u↓)+ĝ(u), where ĝ(u) satisfies ↑ĝ(u)↑2 ↘ L↑u≃u↓↑22,
∞u → Bnu(u

↓, ⇁), for some L > 0 and ⇁ > 0. Define

smin =

{
0 , if ⇁ ⇓ e1

L ,
1≃ ςL

e1
, if ⇁ < e1

L .

Also, let M → R2≃2 with entries m11 = ϑ
φ (d3 ≃ d4ωhuωFxς≃

d5ωFxς), m12 = m21 = ≃ 1
2 (φ(d4ωhu +d5)ωFu +(1≃φ)↼ϖFx

e1
),

m22 = (1 ≃ φ)κs, where φ = κωFx(e1ωFu(d4ωhu + d5) +
κωFx)

↔1 and κ > 0.

Theorem 3.5 (Local exponential stability): Consider the
system (5) satisfying Assumption 1-5, and let (x(t), u(t)),
t ⇓ t0, be the unique trajectory of (5). Assume that
r0 >

√
d2/d1 diam(Xeq) and let ↽0 satisfy the conditions

on Lemma 3.3. Then, for any κ > 0, any s → (smin, 1], and
0 < ς < min {ς↓1 , ς↓2 ,↽0}, with

ς↓1 :=
sd3e1

ωFx(d4ωhu + d5)(ωFu + e1s)
, ς↓2 :=

d3
2(d4ωhu + d5)ωFx

it holds that M is positive definite and

↑z̃(t)↑ ↘ r̄ ↑z̃(t0)↑ e↔
1
2↽Mr2(t↔t0), ∞ t ⇓ t0, (6)

where r̄ :=
√

r1
r2
(1 + ω2hu

+ ωhu), r1, r2 are defined as

r1 := max

{
ς

φd1
,

2e2ς

κ(1≃ φ)

}
, r2 := min

{
ς

φd2
,

2e1ς

κ(1≃ φ)

}

and ⇀M = ⇀min(M), for any initial condition (x(t0), u(t0))

such that dist(x(t0),Xeq)↘
√

d1
d2
r0 ≃ diam(Xeq) , ↑u(t0) ≃

u↓↑ ↘ e1
L (1≃ s). ↖
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Theorem 3.5 establishes local exponential stability of
(u↓, x↓), where we recall that u↓ satisfies Assumption 4 and
x↓ = h(u↓, w). We note that the free parameter s affects both
⇀M and the size of the region of attraction; in particular, as
s decreases, the region gets smaller and ⇀M may increase.
We also note that the other free parameter κ can be used
to maximize ⇀Mr2. However, this is something that may be
burdensome for a numerical perspective. The result of Theo-
rem 3.5 holds for constant disturbances; the extension to time-
varying disturbances will be the subject of future research.
If the QP problem (4) is not solved to convergence, then we
would have an inexact implementation of the controller; in this
case, by combining Theorem 3.5 and [13, Lemma 9.4], it is
possible to derive results in terms or practical local exponential
stability.

IV. PROOFS

For brevity, we use the shorthand notation Fε(u) :=
Fε(h(u,w), u). Consider the variable shift x̃ = x ≃ h(u,w),
which shifts the equilibrium of (1) to the origin. In the new
variables, (5) reads as:

˙̃x = f(x̃+ h(u,w), u, w)≃ d

dt
h(u,w) (7a)

u̇ = ςFε(x̃+ h(u,w), u) (7b)

For (7a), we denote by W (x̃, u) the Lyapunov function from
Lemma 2.1.

(a) Proof of Proposition 3.1. By definition, ωϱ
ωuFε(x, u) ↘

≃↼ϱ(u) or, equivalently ↗ϱ→
i Fε(x, u) ↘ ≃↼ϱi(u). Then,

using (3), for u → εUc = ∈i{u : ϱi(u) = 0}, we have
ϱ̇i(u) = ↗ϱ→

i Fε(x, u) ↘ ≃↼ϱi(u) = 0. Hence by Nagumo’s
Theorem [17], {u : ϱi(u) ↘ 0} is forward invariant for all i.

(b) Proof of Proposition 3.2. Note that the statement
describes the (local) Lipschitzness of both Fε(x, u) and
Fε(h(u,w), u). To establish these properties, we review an
essential result from [18, Theorem 3.10], which establishes
the local Lipschitzness of functions defined by quadratic
programs (QPs) with parameter-dependent linear constraints:
specifically, if the objective and linear constraints are locally
Lipschitz, the function defined by a QP is locally Lipschitz.

To prove (i)-(iii), it suffices to establish the local Lipschitz-
ness of each term in the objective and the constraints of (4). By
substituting x with h(u,w) in (4), it follows that each term in
the objective and the constraints is locally Lipschitz, implying
the local Lipschitzness of Fε(u) on Uc. Hence we finish the
proof of (i) by noting that Fε(u) is Lipschitz on Uc due to
the compactness. A similar reasoning can be applied to prove
the local Lipschitzness of Fε(x, u) in each of its arguments,
which correspond to (ii) and (iii).

(c) Proof of Lemma 3.3. First, it is straightforward to verify
that X1 ⇒ X0. Next, define X2 = {x | infx⇐↑Xeq ↑x ≃
x⇐↑ ↘ d0}, then x(t0) → X2 ⊋ X1. We show that for
ς ↘ min{ d3

2d4ϖhuϖFx
,↽0}, we have d

dtW (x̃, u) < 0 for any
x(t) → X1 \ X2. Note that,

d

dt
W (x̃, u) =

εW

εx̃
˙̃x+

εW

εu
u̇ (8a)

=
εW

εx̃
f(x̃+ h(u,w), u)≃ εW

εx̃
Jh(u)u̇+

εW

εu
u̇ (8b)

↘≃ d3↑x̃↑2 + (d4ωhu + d5) ↑u̇↑↑x̃↑ (8c)

Next, we bound ↑u̇↑. If x → X1, then

↑u̇↑ = ς↑Fε(x, u)↑ = ς↑Fε(x, u)≃ Fε(u
↓)↑

↘ ς↑Fε(x, u)≃ Fε(u)↑+ ς↑Fε(u)≃ Fε(u
↓)↑

↘ ςωFx↑x≃ h(u,w)↑+ ς↑Fε(u)≃ Fε(u
↓)↑

and note that ↑Fε(u) ≃ Fε(u↓)↑ ↘ ωFu↑u ≃ u↓↑. Hence, if
x → X1, one has that

d

dt
W (x̃, u)

↘≃ d3↑x̃↑2 + (d4ωhu + d5) ↑x̃↑(ωFxς↑x̃↑+ ωFuς↑u≃ u↓↑)
↘(≃d3 + (d4ωhu+ d5)ωFxς)↑x̃↑2 + (d4ωhu+ d5) ωFuςMu↑x̃↑.

It then follows that d
dtW (x̃, u) < 0 if

↑x̃↑ >
(d4ωhu + d5) ωFuςMu

d3 ≃ (d4ωhu + d5)ωFxς
and ς <

d3
(d4ωhu + d5)ωFx

.

For any x(t) → X1\X2 and any ς ↘ min{ d3
2(d4ϖhu+d5)ϖFx

,↽0},
one has that

↑x̃(t)↑ > d0 ⇓ 2(d4ωhu + d5)ωFuMu

d3
↽0

⇓ (d4ωhu + d5)ωFuMuς
d3
2

⇓ (d4ωhu + d5)ωFuςMu

d3 ≃ (d4ωhu + d5)ωFxς
,

implying that d
dtW (x̃, u) < 0.

Next, we show that x(t) will not exit X1. Otherwise, there
must exist t2 > 0 such that

inf
x⇐↑Xeq

↑x(t2)≃ x⇐↑ =
√
d2/d1 (d0 + diam(Xeq)) .

Additionally, we know that infx⇐↑Xeq ↑x(0) ≃ x⇐↑ ↘ d0, by
continuity, there exists t1 such that 0 < t1 < t2, x(t) →
X1 \ X2, infx⇐↑Xeq ↑x(t) ≃ x⇐↑ > d0 + ε, ∞t → [t1, t2), and
infx⇐↑Xeq ↑x(t1) ≃ x⇐↑ < d0 + 2ε, where ε > 0 sufficiently
small. It follows that d

dtW (t) < 0, ∞t → [t1, t2); hence, we
must have that limt↗t↑2

W (t) ↘ W ( t2+t1
2 ) < W (t1).

On the other hand, we have that limt↗t↑2

√
W (t) ⇓↓

d1↑x(t2) ≃ h(u(t2), w)↑ ⇓
↓
d1 infx⇐↑Xeq ↑x(t2) ≃ x⇐↑ =↓

d2(d0 + diam(Xeq)), and
√
W (t1) ↘

√
d2↑x(t1)≃ h(u(t1), w)↑

↘
√
d2

(
inf

x⇐↑Xeq

↑x(t1)≃ x⇐↑+ ε+ diam(Xeq)

)

↘
√
d2(d0 + diam(Xeq) + 3ε).

Thus, limt↗t↑2

√
W (t)+3ε

↓
d2 ⇓

√
W (t1). If we let ε ↔ 0,

one would have that limt↗t↑2

√
W (t) ⇓

√
W (t1), which is a

contradiction.
(d) Proof of Theorem 3.5. In order to demonstrate the local

exponential stability of the interconnected system, we first
establish an intermediate result pertaining to the stability of
the “open-loop controller” u̇ = Fε(u) at u↓.
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We note that Fε(u) is well-defined for any u → Uc

since the constraints in Fε(h(u,w), u) are always feasible by
Assumption 5. By Assumption 4, and using [12, Lemma 5.11]
and [12, Theorem 5.6(iii)], we deduce Fε is differentiable at
u↓ and its Jacobian E = ωFω(u)

ωu |u=u→ is negative definite;
let P := κ

∫↘
0 (exp(E▷)→ exp(E▷)d▷ for some κ > 0. By

[13, Theorem 4.10], it holds that PE + E→P = ≃κIn, and
↼

2e2
↑u ≃ u↓↑22 ↘ (u ≃ u↓)→P (u ≃ u↓) ↘ ↼

2e1
↑u ≃ u↓↑22. Let

V (u) := (u≃ u↓)→P (u≃ u↓); then

(u≃ u↓)→PFε(u) + Fε(u)
→P (u≃ u↓)

=(u≃ u↓)→
(
PE + E→P

)
(u≃ u↓)

+ 2(u≃ u↓)→P ĝ(u)

↘≃ κ↑u≃ u↓↑2 + 2↑u≃ u↓↑↑P↑↑ĝ(u)↑

↘ ≃ κ↑u≃ u↓↑2 + κ

e1
↑u≃ u↓↑L↑u≃ u↓↑2

where the last inequality holds for all ↑u ≃ u↓↑ < ◁ <
min{⇁, e1/L}. For u̇ = ςFε(x, u), it follows that

1

ς
V̇ =

1

ς
u̇→P (u≃ u↓) +

1

ς
(u≃ u↓)→Pu̇

= 2Fε(u)
→P (u≃ u↓)

+ 2(Fε(x, u)≃ Fε(u))
→P (u≃ u↓)

↘
(
≃κ+

κL

e1
↑u≃ u↓↑2

)
↑u≃ u↓↑22

+ 2↑u≃ u↓↑↑P↑↑(Fε(u)≃ Fε(x, u))↑

↘ ≃κs ↑u≃ u↓↑22 +
κ

e1
↑u≃ u↓↑↑(Fε(u)≃ Fε(x, u))↑

where the last inequality holds if ↑u≃u↓↑ ↘ e1
L (1≃s), for any

s → (smin, 1]. In the proof of Lemma 3.3, we have shown that
d
dtW (x̃, u) ↘ ≃d3↑x̃↑2 + (d4ωhu + d5) ↑u̇↑↑x̃↑ and ↑u̇↑ ↘
ςωFx↑x ≃ h(u,w)↑ + ς↑Fε(u) ≃ Fε(u↓)↑. Since ↑Fε(u) ≃
Fε(x, u)↑ ↘ ωFx↑x ≃ h(u,w)↑ and ↑Fε(u) ≃ Fε(u↓)↑ ↘
ωFu↑u ≃ u↓↑, one has that, if ↑u ≃ u↓↑ ↘ e1

L (1 ≃ s), s →
(smin, 1], then

d

dt

1

ς
V (u) ↘ ≃κs ↑u≃ u↓↑22 +

κωFx

e1
↑u≃ u↓↑↑x̃↑, (9)

d

dt
W (x̃, u) ↘(≃d3 + d4ωhuωFxς + d5ωFxς)↑x̃↑2

+ (d4ωhu + d5)ωFuς↑x̃↑↑u≃ u↓↑.
(10)

Next, define the Lyapunov function candidate v(x̃, u) :=
φ 1
φW (x̃, u) + (1≃ φ) 1φV (u) for (7). Using (9) and (10), the

following holds if ↑u≃ u↓↑ ↘ e1
L (1≃ s):

d

dt
v(x̃, u) ↘ φ

ς

(
(≃d3 + d4ωhuωFxς + d5ωFxς)↑x̃↑2

+(d4ωhu + d5)ωFuς↑x̃↑↑u≃ u↓↑)

+ (1≃ φ)(≃κs ↑u≃ u↓↑22 +
κωFx

e1
↑u≃ u↓↑↑x̃↑)

= ≃▷→M▷,

where ▷ = (↑x̃↑, ↑u ≃ u↓↑)→, and φ → (0, 1), ς > 0. To
ensure that v(x̃, u) is a valid Lyapunov function candidate,
we need M to be positive definite. Since M is symmetric, the
sufficient and necessary conditions for positive definiteness

are m11 > 0 and m11m22 > m21m12, which are equivalent
to ς < d3

d4ϖhuϖFx+d5ϖFx
and

s

ς
>

1

4φ(1≃ φ)κd3

(
φ(d4ωhu + d5)ωFu + (1≃ φ)

κωFx

e1

)2

+
ωFxs

d3
(d4ωhu + d5)

=
1

4κd3

(
φ

1≃ φ
↽2
1 +

1≃ φ

φ
↽2
2 + 2↽1↽2

)

+
ωFxs

d3
(d4ωhu + d5) ⇓

1

κd3
↽1↽2 +

ωFxs

d3

where ↽1 = (d4ωhu + d5)ωFu , ↽2 = ↼ϖFx
e1

for brevity. The
last inequality comes from the arithmetic-geometric mean
inequality [19], and equality can be attained if and only if
ϑ

1↔ϑ↽
2
1 = 1↔ϑ

ϑ ↽2
2, which is equivalent to φ = ⇀2

⇀1+⇀2
. In the

rest of the proof, we fix

φ =
↽2

↽1 + ↽2
=

κωFx

e1ωFu(d4ωhu + d5) + κωFx

.

Therefore, one has that ς < sd3e1
ϖFx (d4ϖhu+d5)(ϖFu+e1s)

.

Since we need x(t) staying in X0, the valid range of ς

is ς ↘ min
{

sd3e1
ϖFx (d4ϖhu+d5)(ϖFu+e1s)

,↽0,
d3

2(d4ϖhu+d5)ϖFx


, by

combining the limitation for ς in Lemma 3.3.
To conclude, we first note that

↑▷↑2 = ↑x̃↑2 + ↑u≃ u↓↑2 ↘ 1

d1
W +

2e2
κ

V

=
ς

φd1

φ

ς
W +

2e2ς

κ(1≃ φ)

1≃ φ

ς
V ↘ max

{
ς

φd1
,

2e2ς

κ(1≃ φ)

}

  
=r1

v,

↑▷↑2 = ↑x̃↑2 + ↑u≃ u↓↑2 ⇓ 1

d2
W +

2e1
κ

V

=
ς

φd2

φ

ς
W +

2e1ς

κ(1≃ φ)

1≃ φ

ς
V ⇓ min

{
ς

φd2
,

2e1ς

κ(1≃ φ)

}

  
=r2

v.

Let ⇀M be the minimum eigenvalue of M ; then, v̇ ↘
≃⇀M↑▷↑2 = ≃⇀M (↑x̃↑2 + ↑u ≃ u↓↑2) ↘ ≃⇀Mr2v. By
the Comparison Lemma [13, Lemma 3.4], it follows that
v(t) ↘ v(t0) exp(≃⇀Mr2(t≃t0)) if ↑u(t0)≃u↓↑ ↘ e1

L (1≃s),
for all s → (smin, 1]. Besides, we note that ↑▷(t)↑ and ↑z̃(t)↑
satisfy the following:

↑z̃(t)↑2 =↑x≃ h(u↓, w)↑2 + ↑u≃ u↓↑2

↘(↑x̃↑+ ↑h(u,w)≃ h(u↓, w)↑)2 + ↑u≃ u↓↑2

↘↑▷(t)↑2 + 2ωhu↑x̃↑↑u≃ u↓↑+ ω2hu
↑u≃ u↓↑2

↘(1 + ω2hu
)↑▷(t)↑2 + ωhu(↑x̃↑2 + ↑u≃ u↓↑2)

=(1 + ω2hu
+ ωhu)↑▷(t)↑2.

Similarly, one can show that ↑▷(t)↑2 ↘ (1 + ω2hu
+

ωhu)↑z̃(t)↑2. Hence, ↑z̃(t)↑ ↘
√

(1 + ω2hu
+ ωhu)r1v(t) ↘

√
(1 + ω2hu

+ ωhu)r1v(t0) exp
(
≃ 1

2⇀Mr2(t≃ t0)
)

↘ (1 +

ω2hu
+ ωhu)

√
r1
r2
↑z̃(t0)↑ exp

(
≃ 1

2⇀Mr2(t≃ t0)
)
, for all t ⇓ t0,

if ↑u(t0) ≃u↓↑ ↘ e1
L (1≃ s), for all s → (smin, 1].
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V. REPRESENTATIVE NUMERICAL RESULTS

In this section, we apply (5) to the problem of regulating
the position of a unicycle robot to the solution of a constrained
optimization problem. Specifically, the unicycle dynamics [20]
read as ȧ = v1 cos φ, ḃ = v1 sin φ, φ̇ = v2, where v1, v2 → R
are the low-level inputs, the state is x = (a, b, φ), with (a, b)
the position in a 2-dimensional plane, and φ → (≃0,0] its
orientation with respect to the a-axis. We consider the cost
functions ϑ(u) := 0.05↑u↑22, ϖ(x) := ↑(a, b) ≃ xtarget↑22 and
constraints u → Uc := {(ua, ub) | ≃10 ↘ ua, ub ↘ 10} and
ω(x) := ↑(a, b)↑22 ≃ 0.9 ↘ 0, where xtarget = (0.6, 0.8) is
the targeted final position of the robot. Here, we follow [11]
and focus on the error variables 1 := ↑u ≃ (a, b)→↑ and
φ̄ := atan 2

(
ub↔b
ua↔a

)
≃ φ, whose dynamics yield a globally

exponentially stable equilibrium point (1, φ̄) = (0, 0) with the
choice v1 = k1 cos(φ̄) and v2 = k(cos(φ̄) + 1) sin(φ̄) + kφ̄,
where u = (ua, ub) is the high-level control input given by the
optimization problem. Finally, we model measurement errors
in the state x by instead considering (â, b̂) := (a, b)+w, where
w → R2 is a constant disturbance.

In Figure 1, we apply (5) to regulate u and x toward the min-
imizer with initial condition x(0) = (0,≃1, 0), u(0) = (0, 0)
and parameters ↼ = 10, k = 2, ς = 0.1. In Figure 1(a), we plot
the trajectories of (a, b) and steady-state mapping h(u(t), w)
with and without disturbance w. For both cases, all trajectories
converge to the corresponding equilibrium h(u↓, w). In Figure
1(b), we plot the error ↑z̃(t)↑. For both cases, the error curves
can be upper bounded by a plot of an exponentially decreasing
function, in consistency with Theorem 3.5.
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(a) Trajectory of x(t) and h(u(t), w)
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Fig. 1. Trajectories for the interconnected system and error plot.

VI. CONCLUSIONS

We proposed a state feedback controller based on a contin-
uous approximation of the projected gradient flow to regulate
a dynamical system to optimal solutions of a constrained
optimization problem. In particular, the optimization problem
can have nonlinear inequality constraints on the system state.
We derived sufficient conditions to ensure that isolated locally
optimal solutions for which the strict complementarity condi-
tion and the LICQ hold are locally exponentially stable for
the closed-loop system. Future research efforts will look at
extensions of our results to time-varying disturbances and to
sample-data implementations of our controller.
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