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Online Stochastic Optimization for Unknown Linear Systems:
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Abstract—This paper proposes a data-driven control frame-

work to regulate an unknown stochastic linear dynamical system

to the solution of a stochastic convex optimization problem.

Despite the centrality of this problem, most of the available

methods critically rely on a precise knowledge of the system

dynamics, thus requiring offline system identification. To solve

the control problem, we first show that the steady-state gain of

the transfer function of a linear system can be computed directly

from historical data generated by the open-loop system, thus

overcoming the need to first identify the full system dynamics. We

leverage this data-driven representation of the steady-state gain

to design a controller, which is inspired by stochastic gradient

descent methods, to regulate the system to the solution of the

prescribed optimization problem. A distinguishing feature of our

method is that it does not require any knowledge of the system

dynamics or of the possibly time-varying disturbances affecting

them (or their distributions). Our technical analysis combines

concepts from behavioral system theory, stochastic optimization

with decision-dependent distributions, and Lyapunov stability.

We illustrate the applicability of the framework in a case study

for mobility-on-demand ride service scheduling in Manhattan.

I. INTRODUCTION

This paper focuses on the design of output-feedback con-
trollers to regulate a discrete-time linear time-invariant system
to an equilibrium point that is the solution to a convex
optimization problem. Due to the presence of unknown and un-
measurable disturbance terms entering the system, the solution
of the optimization problem cannot be computed explicitly;
thus, the control inputs must be adapted online based on
the instantaneous output feedback measured from the system.
Our controller synthesis is inspired by principled optimization
methods, suitably modified to account for unmeasurable dis-
turbance terms and for the presence of dynamics in the system
to control. These problems are central in application domains
such as power grids [2], [3], transportation systems [4],
robotics [5], and control of epidemics [6], where the target
optimization problem encodes desired performance objectives
and constraints (possibly dynamic and time-varying) of the
system at equilibrium. Within this broad context, the focus
of this work is on cases where the target equilibrium point is
defined according to a stochastic optimization problem and on
proposing a new approach to controller synthesis that is based
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on data, thus enabling controller synthesis in cases where the
underlying dynamical system is stochastic and unknown.

Most of the recent literature on online optimization for
dynamical systems critically relies on the availability of a
model describing the dynamics of the system to control. For
instance, the authors in [7] model the system to control as
an algebraic map and assume that such a map is known;
the backstepping technique proposed in [8] requires exact
knowledge of the system dynamics to recast control laws
derived in terms of the system output into explicit control
laws for the system inputs; the control techniques in [3],
[4], [9] focus on systems with linear dynamics and require
knowledge of the system’s steady-state gain of the transfer
function; the methods [10], [11] account for systems with
nonlinear dynamics and require knowledge of the (Jacobian of)
the system’s steady-state map. Unfortunately, perfect system
knowledge is rarely available in practice – especially when
exogenous disturbances are not observable and/or inputs are
not persistently exciting – because maintaining and refining
full system models often require ad-hoc system-identification
phases. In lieu of system-based controller synthesis, data-
driven controllers can be fully synthesized by leveraging data
from past trajectories. To the best of our knowledge, the design
of optimization-based controllers that overcome the need to
identify the system dynamics is still lacking in the literature.
Related Work. Data-driven control methods exploit the ability
to express future trajectories of a linear system in terms of a
sufficiently-rich past trajectory, as shown by the fundamental
lemma [12]. This result, developed in the context of behavioral
theory, has enabled the synthesis of several types of con-
trollers, including static feedback controllers [13]–[15], model
predictive controllers [16], [17], minimum-energy control laws
[18], to solve trajectory tracking problems [19], distributed
control problems [20], and recent extensions account for
systems with nonlinear dynamics [21], [22].

The line of research on online convex optimization [23]
is also related to this work. Several works recently applied
online convex optimization tools to control plants modeled as
algebraic maps [24]–[26] (describing systems whose dynamics
are infinitely-fast). When the dynamics are non-negligible,
LTI systems are considered in [2]–[4], [27], stable nonlinear
systems in [11], [28], switching systems in [9], and distributed
multi-agent systems in [8], [29]. All these works consider
continuous-time deterministic dynamics and deterministic op-
timization problems. In contrast, in this work, we focus on
discrete-time stochastic dynamical systems and stochastic op-
timization problems. Discrete dynamics were the focus of [5],
which however does not account for the presence of distur-
bances affecting the system. To the best of our knowledge,
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data-driven implementations of online optimization controllers
have not been explored yet. A notable exception is [30], which
however does not account for the presence of noise, and
results are limited to regret analysis. In this work, we show
that when the system is affected by an unknown disturbance,
the distributions of the random variables that characterize the
optimization are parametrized by the decision variables, thus
leading to a stochastic optimization problem with decision-

dependent distributions, as studied in [31]–[33]. In this work,
we build upon this class of problems, but accounting for two
additional complexities: the online nature of the optimization
method and the coupling with a dynamical system.
Contributions. The contribution of this work is fourfold1.
First, we show that the steady-state gain of the transfer
function of a linear system can be computed from non-steady-
state, open-loop, and finite-length input-output trajectories
generated by the system (without any knowledge or estimation
of the system parameters). When the historical data is affected
by unknown noise terms, our techniques return a class of
steady-state transfer functions that are compatible with the
noisy data and, in this case, we explicitly characterize the
approximation error. We remark that, differently from [19],
[34]–[36], our framework accounts for disturbances that enter
both the output equation and the model equation. Second,
we leverage this data-driven representation of the system to
propose a control method (inspired by an online version of
the stochastic projected gradient-descent algorithm [37]) that
regulates such system to an equilibrium point that is the
solution to a stochastic optimization problem. Our framework
shows that when the historical data is affected by noise
and the transfer function is known only approximately, the
control problem becomes a stochastic optimization problem
with decision-dependent distribution [33], whereby changes
in the control variable induce a shift in the distribution of
the underlying random variables. This is a class of problems
whose direct solution is in general difficult to compute [31]
and thus, to bypass this hurdle, we introduce a new notion
of optimal point, named stable optimizer [31], [32], Third,
we analyze the convergence and performance properties of
the proposed controller, showing that is contractive (in ex-
pectation) with respect to the stable optimizer and explicitly
quantifying its transient performance. More generally, our
results show that the controller regulates the system towards
a stable optimizer up to an asymptotic error that depends on
the time variability of the optimization problem. Fourth, we
apply the control method to study a real-time fleet management
problem, where a ride service provider seeks to maximize its
profit by dispatching its fleet while serving ride requests from
its customers. We demonstrate the applicability and benefits of
our methods numerically on a real network and demand data.
Organization. Section II presents some basic notions used in
the work; Section III formalizes the problem of interest; in

1This paper generalizes the preliminary work [1] in several directions:
we consider stochastic optimization problems (rather than deterministic),
we account for noisy training data, and we only require systems to be
observable (instead of relying on direct state measurements), we provide an
explicit contraction bound, and we illustrate applicability on a ride-service
scheduling problem.

Section IV, we discuss our data-driven technique to compute
the the transfer function of linear systems. Section V illustrates
our controller synthesis method; in Section VI, we introduce
the notion of a stable optimizer to tackle optimization prob-
lems with decision-dependent distributions, and Section VII
presents the controller analysis. Section VIII illustrates an
application of the method to ride service scheduling and
Section IX concludes the paper.

II. PRELIMINARIES

In this section, we outline the notation and introduce some
preliminary concepts used throughout the paper.
Notation. Given a symmetric matrix M 2 Rn⇥n, �(M) and
�̄(M) denote its smallest and largest eigenvalue, respectively;
M � 0 indicates that M is positive definite. Given a matrix
M 2 Rn⇥m, M

† denotes its Moore-Penrose inverse. For a
vector u 2 Rn, we denote by kuk the Euclidean norm of u

and by u
> its transpose. For vectors u 2 Rn

, w 2 Rm, we
use the shorthand notation (u,w) 2 Rn+m for their vector
concatenation.
Persistency of Excitation. We next recall some useful facts
on behavioral system theory from [12]. For a signal k 7! zk 2
R� , k 2 Z, we denote the vectorization of z restricted to the
interval [k, k + T ], T 2 Z>0, by z[k,k+T ] := (zk, . . . , zk+T ).
Given z[0,T�1], t  T , and q  T � t+ 1, we let Zt,q denote
the Hankel matrix of length t associated with z[0,T�1]:

Zt,q =

2

6664

z0 z1 . . . zq�1

z1 z2 . . . zq

...
...

. . .
...

zt�1 zt . . . zq+t�2

3

7775
2 R�t⇥q

.

Moreover, we use [Zt,q]i, i 2 {1, . . . , t} to denote the i-th
block-row of Zt,q , namely, [Zt,q]i = [zi�1, zi, . . . , zi+q�2].

Definition 2.1: (Persistently Exciting Signal [12]) The
signal z[0,T�1], zk 2 R� for all k 2 {0, . . . , T � 1}, is
persistently exciting of order t if Zt,q has full row rank �t.⇤
We note that persistence of excitation implicitly requires q �
�t (which in turns requires T � (� + 1)t� 1).

Consider the linear dynamical system

xk+1 = Axk +Buk, yk = Cxk +Duk, (1)

with x 2 Rn, u 2 Rm, y 2 Rp, A 2 Rn⇥n, B 2 Rn⇥m,
C 2 Rp⇥n, D 2 Rp⇥m. Let C✓ := [B,AB,A

2
B, . . . , A

✓�1
B]

and O⌫ := [CT
, A

T
C

T
, . . . , (AT)⌫�1

C
T]T denote the con-

trollability and observability matrices of (1), respectively. The
system is controllable if rank(C✓) = n for some ✓ 2 Z>0,
and it is observable if rank(O⌫) = n for some ⌫ 2 Z>0. The
smallest integers ✓, ⌫, that satisfy the above conditions are the
controllability and observability indices, respectively.

We next recall the following properties of (1) when its inputs
are persistently exciting.

Lemma 2.2: (Fundamental Lemma [12, Corollary 2])

Assume (1) is controllable, let (u[0,T�1], x[0,T�1]), T 2 Z>0,
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be an input-state trajectory of (1). If u[0,T�1] is persistently
exciting of order n+ L, then:

rank


UL,q

X1,q

�
= Lm+ n,

where UL,q and X1,q denote the Hankel matrices associated
with u[0,T�1] and x[0,T�1], respectively. ⇤

Lemma 2.3: (Data Characterizes Full Behavior [12,

Thm. 1]) Assume (1) is controllable and observable, let
(u[0,T�1], y[0,T�1]), T 2 Z>0, be an input-output trajectory of
(2). If u[0,T�1] is persistently exciting of order n+L, then any
pair of L-long signals (ũ[0,L�1], ỹ[0,L�1]) is an input-output
trajectory of (2) if and only if there exists ↵ 2 Rq such that


ũ[0,L�1]

ỹ[0,L�1]

�
=


UL,q

YL,q

�
↵,

where UL,q and YL,q denote the Hankel matrices associated
with u[0,T�1] and y[0,T�1], respectively. ⇤

In words, persistently exciting signals generate output tra-
jectories that can be used to express any other trajectory.
Probability Theory. Let (⌦,F , P ) be a probability space and
z be a random variable mapping this space to (Rd

, B�(Rm)),
where B�(Rd) is the Borel �-algebra on Rd. Let P be the
distribution of z and ⌅ ✓ Rm be the support of P . We use
z ⇠ P to denote that z is distributed according to P , and
Ez⇠P [·] to denote the expectation under P . Let M(⌅) be the
space of all probability distributions supported on ⌅ with finite
first moment, i.e., Ez⇠P [kzk] =

R
⌅ kzkP(dz) < 1 for all

P 2 M(⌅). The Wasserstein-1 metric is:

W1(P1,P2) := inf
⇧2H(P1,P2)

⇢Z

⌅2

kz1 � z2k⇧(dz1, dz2)

�
,

where H(P1,P2) is the set of all joint distributions with
marginals P1 and P2. By interpreting the decision function
⇧(P1,P2) as a transportation plan for moving a mass dis-
tribution described by P1 to another one described by P2,
the Wasserstein distance W1(P1,P2) represents the cost of
an optimal mass transportation plan, where the transportation
costs are described by the 1-Euclidean norm.

Theorem 2.4: (Kantorovich-Rubinstein, [38]) For any pair
of distributions P1,P2 2 M(⌅), the following holds

W1(P1,P2) = sup
g2L1

{Ez1⇠P1 [g(z1)]� Ez2⇠P2 [g(z2)]} ,

where L1 denotes the space of all 1-Lipschitz functions, i.e.,
L1 := {g : ⌅ ! Rm : kg(z1)� g(z2)k  kz1 � z2k}. ⇤

The following result is instrumental for our analysis. We
provide a short proof for completeness.

Lemma 2.5: (Deviation Between Expectations [31, Lemma

C.4]) Let f : Rn ! Rd be L-Lipschitz continuous. Then, for
any pair of distributions P1,P2 2 M(⌅),

kEz1⇠P1 [f(z1)]� Ez2⇠P2 [f(z2)] k  LW1(P1,P2).

Proof: Let v 2 Rd be any unit vector and let g(z) := v
T
f(z).

By assumption, g(z) is L-Lipschitz continuous and therefore:

v
T(Ez1⇠P1 [f(z1)]� Ez2⇠P2 [f(z2)])

= Ez1⇠P1

⇥
v
T
f(z1)

⇤
� Ez2⇠P2

⇥
v
T
f(z2)

⇤
)

= Ez⇠Z(↵) [g(z)]� Ez⇠Z(�) [g(z)]  LW1(P1,P2),

where the last inequality follows by the application of Theo-
rem 2.4. The result then follows by choosing

v =
Ez1⇠P1 [f(z1)]� Ez2⇠P2 [f(z2)]

kEz1⇠P1 [f(z1)]� Ez2⇠P2 [f(z2)] k
.

⌅
III. PROBLEM FORMULATION

In this section, we present the problem focus of this work
and we discuss a reformulation used for controller synthesis.

A. Steady-State Regulation Problem for Linear Systems

We consider stochastic discrete-time linear system:

xk+1 = Axk +Buk + Ewk, yk = Cxk +Dwk, (2)

where k 2 Z>0 is the time index, xk 2 Rn is the state,
uk 2 Rm is the control decision, yk 2 Rp is the measurable
output, and Rr 3 wk ⇠ Wk is an exogenous disturbance
whose distribution Wk is unknown for all k 2 Z>0.

Assumption 1: (System Properties) System (2) is control-
lable and observable. Moreover, A is Schur stable, i.e., for any
Q � 0, there exists P � 0 such that AT

PA� P = �Q. ⇤
Assumption 1 guarantees that for any pair of (fixed) vectors
ū 2 Rm and w̄ 2 Rr, (2) admits a unique stable equilibrium
point described by the state (I � A)�1

Bū + (I � A)�1
Ew̄.

At the equilibrium, the system output is given by:

C(I �A)�1
B| {z }

:=G

ū+ (D + C(I �A)�1
E)| {z }

:=H

w̄, (3)

where G denotes the steady-state gain of the transfer function
(or steady-state transfer function for short) of the system and
H denotes the disturbance-to-output steady-state gain.

In this work, we focus on the problem of controlling, at
every time k, the system (2) to the solution of the following
time-dependent optimization problem:

min
ū

Ewk⇠Wk [�(ū, Gū+Hwk)] , (4)

where � : Rm ⇥ Rp ! R is a cost function that describes
losses associated with the steady-state control inputs ū and
steady-state system outputs (given by Gū + Hwk). Notice
that, in (4), wk parametrizes the optimization problem, which
is thus time-dependent. Problem (4) formalizes an optimal
equilibrium-selection problem, where the objective is to select,
at every time k, an optimal equilibrium point (as specified
by the cost �(·, ·)) despite the instantaneous (unknown) noise
wk ⇠ Wk affecting the dynamics.

Two important observations on (4) are in order. First,
because the distribution Wk is time-dependent, the solution of
the optimization will also be time-dependent. Second, because
Wk is unknown and samples of wk are unmeasurable, a
solution of the problem (4) cannot be computed explicitly.
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Remark 1: (Relationship with Output Regulation Prob-

lems) Problem (4) formalizes a steady-state control problem,
similar to the well-established output-regulation problem [39],
where the objective is to find a control law such that the output
of the plant can asymptotically track a prescribed trajectory
and reject undesired disturbances. Differently from the classi-
cal output-regulation problem, where the target trajectory can
be arbitrary and is often generated by an exosystem (i.e., a
known autonomous linear model), in our setting target trajec-
tories are specified as the solution of an optimization problem
(whose solution is unknown since Wk is unknown). ⇤
We impose the following regularity assumptions on �(u, y).

Assumption 2: (Lipschitz and Convexity of Cost Function)

(a) For any fixed u 2 Rm, the map y 7! �(u, y) is `-
Lipschitz continuous.

(b) For any fixed y 2 Rp, the map u 7! r�(u, y) is `
r

u
-

Lipschitz continuous, and for any fixed u 2 Rm the map
y 7! r�(u, y) is `

r

y
-Lipschitz continuous.

(c) For any fixed y 2 Rp, the map u 7! �(u, y) is µ-strongly
convex, i.e., there exists µ 2 R>0 such that, for all
u, u

0 2 Rm, �(u, y) � �(u0
, y) + r�(u0

, y)T((u, y) �
(u0

, y)) + µ

2 ku� u
0k2. ⇤

Strong convexity and Lipschitz-type assumptions impose basic
conditions on the growth of the cost function often used for the
analysis of first-order optimization methods [40]. Under As-
sumption 2(c), the function ū 7! Ewk⇠Wk [�(ū, Gū+Hwk)]
is also strongly convex [41], and thus (4) admits a unique
optimizer u⇤

k
for each k. Further, it follows from Assumption 1

that the corresponding equilibrium state x
⇤

k
= (I�A)�1

Bu
⇤

k
+

(I � A)�1
Ewk is unique since the linear map (I � A)�1

has empty kernel. Hence, in what follows, we denote by
(u⇤

k
, x

⇤

k
) the unique optimizer associated to (4). We conclude

by formally stating the problem studied in this work.

Problem 1: Design a dynamic output-feedback controller
of the form uk+1 = C(uk, yk) such that, without any prior
knowledge of the matrices (A,B,C,D,E) as well as of the
noise distributions Wk, the inputs and outputs of (2) converge
asymptotically to the time-varying optimizer of (4). ⇤

B. Problem Reformulation for Unknown Dynamics

When the matrices (A,B,C,D,E) are unknown, the maps
G and H in (3) are also unknown, and thus the steady-
state output of (2) as well as its effect on the optimization
problem (4) are unknown. In practice, however, it is often
possible to use some basic knowledge of the system (2)
to derive an approximation Ĝ of the map G. (Notice that
estimating H is in general a more challenging task since wk is
unmeasurable). In these cases, problem (4) can be rewritten as:

u
⇤

k
= argmin

ū

Ezk⇠Zk(ū)[�(ū, Ĝū+ zk)], (5)

where zk := (G � Ĝ)ū + Hwk is a random variable that
encodes the lack of knowledge of the map G as well as
of the term Hwk, and where Ĝ is treated as a fixed (non
stochastic) matrix. We note that in (5) the distribution of zk is
parametrized by the decision variable ū and, in order to em-

phasize such dependency, we used the notation2
zk ⇠ Zk(ū).

From an optimization perspective, seeking a solution of (5)
raises three main challenges:

(C1) The closed-form expression for G depends on the system
matrices (A,B,C) (cf. (3)), which are unknown. This
raises the question of how to construct an approximate
map Ĝ and how to quantify the approximation error.

(C2) Since Wk is unknown, the distribution Zk(ū) is also
unknown. Instead, we only have access to evaluations
of zk via the output yk of the system (2). This calls for
the development of controllers that can adjust uk based
on noisy evaluations of the cost function through access
to the instantaneous system output yk.

(C3) Because the distribution of zk is parametrized by the de-
cision variable ū, the cost function of (5) is nonlinear in
ū, thus making the optimization problem (5) intractable
for general costs (even when �(u, y) is convex).

The subsequent sections address the above challenges. Pre-
cisely, we address (C1) in Section IV; we propose a control
method that accounts for (C2) in Section V; and in Section VI
we address (C3) by introducing an alternative notion of opti-
mality. We put together all these developments in Section VII
and provide the technical analysis of the proposed controller.

IV. DATA-DRIVEN COMPUTATION OF THE TRANSFER
FUNCTION OF LINEAR SYSTEMS

In this section, we tackle challenge (C1). To this end, we
show that G can be computed from input, output, and noise
data generated by (2). When the noise terms are unknown, we
show that our method yields an approximation Ĝ of G.
A. Direct Computation of the Transfer Function from Data

We begin by assuming the availability of a set of historical
data (u[0,T ], w[0,T ], y[0,T ]), T 2 Z>0, generated by (2). In
order to state our result, we define:

y
diff := (y1 � y0, y2 � y1, . . . , yT � yT�1),

w
diff := (w1 � w0, w2 � w1, . . . , wT � wT�1), (6)

and we let Y
diff
⌫,q

and W
diff
⌫,q

, respectively, be the associated
Hankel matrices. The following result provides a method to
compute G via algebraic operations on the historical data.

Theorem 4.1: (Data-Driven Characterization of Steady-

State Transfer Function) Let Assumption 1 be satisfied and
let ⌫ 2 Z>0 denote the observability index of (2). Moreover,
assume that the concatenated signal (u[0,T�1], w[0,T�1]) is per-
sistently exciting signals of order n+⌫, and let q := T�⌫+1.
The following holds:

(i) There exists M 2 Rq⇥m such that:

Y
diff
⌫,q

M = 0, W
diff
⌫,q

M = 0,

U⌫,qM = 1⌫ ⌦ Im, W⌫,qM = 0, (7)

where Y
diff
⌫,q

and W
diff
⌫,q

are defined in (6).

2To ease the notation in what follows we denote Ez̄⇠Zk(ū)[·] in compact
form as EZk(ū)[·], since the random variable with respect to which the
expectation is taken is made clear in the argument.
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(ii) For any M 2 Rq⇥m that satisfies (7), the steady-state
transfer function of (2) equals G = [Y⌫,q]iM , for any
i 2 {1, . . . , ⌫}. ⇤

Proof: (Proof of (i)). Fix a j 2 {1, . . . ,m}, let ū =
(ej , ej , . . . ) 2 Rm⌫ , where ej 2 Rm denotes the j-th
canonical vector, let w̄ = (0r, 0r, . . . ) 2 Rr⌫ , and let
ȳ = (Gej , Gej , . . . ) 2 Rp⌫ . Since (ū, w̄, ȳ) is an input-
output trajectory of (2), Lemma 2.2 guarantees the existence
of mj 2 Rq such that U⌫,qmj = ū, W⌫,qmj = w̄,
and Y⌫,qmj = ȳ. By iterating the above reasoning for all
j 2 {1, . . . ,m}, and by letting the j-th column of M be mj ,
we obtain that U⌫,qM = 1✓⌦Im and W⌫,qM = 0. Moreover,
since ȳ, and w̄ are constant at all times we conclude that
Y

diff
⌫,q

M = 0 and W
diff
⌫,q

M = 0, which proves existence of M .
(Proof of (ii)). The proof of this claim builds upon the

following observation. Let Ū := Im, let W̄ := 0r⇥m, let X̄ :=
(In �A)�1

BŪ + (In �A)�1
EW̄ , and let Ȳ := CX̄ +DW̄ .

Then, by substitution, Ȳ satisfies:

Ȳ = GŪ +HW̄ = G. (8)

In words, this implies that when the inputs Ū = Im and W̄ =
0r⇥m are applied to (2) and the state satisfies X̄ = (In �
A)�1

BŪ + (In � A)�1
EW̄ , then the system output satisfies

Ȳ = G, namely, it coincides with the steady-state transfer
function G.

Building upon this observation, in what follows we show
that (7) and (8) are equivalent, in the sense described by
Lemma 2.3. Formally, let M be any matrix that satisfies (7).
By application of Lemma 2.3, U⌫,qM = 1⌫ ⌦ Im implies that
the input applied to (2) is Ū = Im, and W⌫,qM = 0 implies
that the exogenous disturbance applied to (2) is W̄ := 0r⇥m.
Next, we show that the matrix Ȳ defined as Ȳ = [Y⌫,q]iM for
any i 2 {1, . . . , ⌫} coincides with (8), namely, we will show:

Ȳ = [Y⌫,q]iM ) Ȳ = CX̄, X̄ = (In �A)�1
BIm. (9)

To this aim, we let ȳij = [Y⌫,q]imj denote the j-th column
of Ȳ , and we define x̄ij := [X⌫,q]imj . Notice that Ȳ = CX̄

follows from [Y⌫,q]i = C[X⌫,q]i. Thus, we next show that
X̄ = (In �A)�1

BIm. The proof is organized into two steps.
(Step 1) We show that ȳi,j = ȳi+1,j . By using Y

diff
⌫,q

M = 0:

0 = [Y diff
⌫,q

]imj

= C
⇥
(A� In) B E

⇤
2

4
[X⌫,q]i
[U⌫,q]i
[W⌫,q]i

3

5mj +D[W diff
⌫,q

]imj

= C(A� In)x̄ij + CBej , (10)

where the last inequality follows from x̄ij := [X⌫,q]imj ,
U⌫,qM = 1⌫ ⌦ Im, W⌫,qM = 0, and W

diff
⌫,q

M = 0. Hence, we
conclude that

ȳij = Cx̄ij = CAx̄ij + CBej . (11)

Moreover, since (10) holds for all i 2 {1, . . . , ⌫}, Lemma 2.3
guarantees that ū = (ej , . . . , ej) 2 Rm⌫ , w̄ = (0r, . . . , 0r) 2
Rr⌫ , x̄ = (x̄1j , . . . , x̄⌫j) 2 Rn⌫ , and ȳ = (ȳ1j , . . . , ȳ⌫j) 2

Rp⌫ is an input-state-output trajectory of the system (2), and
thus it satisfies the dynamics:

x̄i+1,j = Ax̄ij +Bej , ȳij = Cx̄ij . (12)

By combining (11) with (12) we conclude that:

ȳij = CAx̄ij + CBej = C(Ax̄ij +Bej) = Cx̄i+1,j = ȳi+1,j .

(Step 2) We show that x̄i,j = (I � A)�1
Bej . By combining

ȳi,j = ȳi+1,j with the dynamics (12) we obtain:

CA
k
⇥
A� In B

⇤ x̄0,j

ej

�
= 0, for all k 2 {1, . . . , ⌫ � 1}.

By recalling that (2) is Observable (see Assumption 1), the
above identity implies (A�I)x̄0,j+Bej = 0 or, equivalently,
x̄0,j = (I �A)�1

Bej . By recalling that x̄ = (x̄1j , . . . , x̄⌫j) 2
Rn⌫ represents the state associated with the constant input
sequences ū = (ej , . . . , ej) 2 Rm⌫ and w̄ = (0r, . . . , 0r) 2
Rr⌫ (see (12)), we obtain xi+1,j = xi,j for all i 2 {1, . . . , ⌫�
1}, which implies that x̄i,j = (I � A)�1

Bej holds for all i,
thus proving Step 2. Finally, X̄ = (In�A)�1

BIm follows by
iterating the above reasoning for all j 2 {1, . . . ,m⌫}. ⌅
Theorem 4.1 shows that G can be computed from (non-steady-
state) historical data generated by the open-loop system (2),
and without knowledge of the matrices (A,B,C). We note
that the approach proposed in Theorem 4.1 is aligned with
the vast body of literature (see, e.g. [12], [30], [42]), where
past trajectories are utilized directly (i.e., without resorting
on system identification) to parametrize the behavior of the
system. The result also offers some insights into the number
of required data samples3: it shows that the required length of
the historical trajectory needed for the computation of G grows
linearly with the observability index ⌫ and with the size of the
state space n. Two technical observations are in order. First,
any M chosen according to (7), in general, depends on the
realization of w[0,T�1] and on the choice of u[0,T�1]. Second,
for any fixed u[0,T�1] and w[0,T�1], in general, there exists
an infinite number of choices of M that satisfy (7). Despite
M not being unique, Theorem 4.1 guarantees that [Y⌫,q]iM is
unique and independent of the choice of u[0,T�1] and w[0,T�1].

As a direct consequence of Theorem 4.1, G admits the
following data-explicit expression, which follows from (7).

Corollary 4.2: (Data-based Expression of G) Under the
same assumptions of Theorem 4.1, the steady-state transfer
function G admits the following data-based expression:

G = [Y⌫,q]i

2

664

Y
diff
⌫,q

U⌫,q

W⌫,q

W
diff
⌫,q

3

775

† 2

664

0
1⌫ ⌦ Im

0
0

3

775 . (13)

⇤
We conclude with a remark that shows that when w[0,T�1] is

constant, G can be computed without knowing the noise terms.

3Notice that Theorem 4.1 requires persistence of excitation of the T -
long signals u[0,T�1] and w[0,T�1]. In addition, constructing the difference
signals y

diff and w
diff requires the collection of one additional sample of the

signals y[0,T ] and w[0,T ] (i.e., T + 1 samples).
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Remark 2: (Noise-Independent Characterization for Con-

stant Disturbance) When w[0,T�1] is constant at all times, an
adaptation of Theorem 4.1 can be used to determine G without
requiring the knowledge of w[0,T�1], as outlined next. Define:

dk := xk+1 � xk, rk := yk+1 � yk, vk := uk+1 � uk, (14)

then, (2) can be rewritten in velocity form as follows:

dk+1 = Adk +Bvk, rk = Cdk. (15)

Thus, by letting R⌫,q and V⌫,q denote the Hankel matrices of
the signals r0,T�1 and v0,T�1, respectively, and R

diff
⌫,q

be the
Hankel matrix of [r1 � r0, r2 � r1, . . . rT � rT�1], then,
Theorem 4.1 guarantees that the steady-state transfer function
of (2) equals G = [R⌫,q]iM , for any i 2 {1, . . . , ⌫}, where
q := T � ⌫ + 1 and M 2 Rq⇥m⌫ satisfies

R
diff
⌫,q

M = 0, V⌫,qM = 1⌫ ⌦ Im. (16)

Notice that, the Hankel matrices R1,q, V1,q , and R
diff
1,q can be

computed directly from an input-output trajectory of (2) by
processing the data4 as described by (14). Finally, we notice
that the only required assumption to apply Theorem 4.1 in
this case is that u[0,T ] is persistently exciting of order n+ ⌫.
Indeed, persistency of excitations of u[0,T ] implies persistency
of excitations of v[0,T�1] of the same order. This is because
the columns of V⌫,q are obtained by subtracting disjoint pairs
of columns of U⌫,q+1, which are linearly independent. ⇤

B. Uncertainty Characterization

While Theorem 4.1 provides a way to compute G from
data, it requires knowledge of w[0,T�1], which is impractical
when the disturbance is unmeasurable. To this end, we next
construct upon Theorem 4.1 to derive a characterization of all
the transfer functions Ĝ that are consistent with the noisy data.

Proposition 4.3: (Error Characterization) Let Assump-
tion 1 hold and let ⌫ 2 Z>0 denote the observability in-
dex of (2). Moreover, assume that the concatenated signal
(u[0,T�1], w[0,T�1]) is persistently exciting signals of order
n + ⌫, and let q := T � ⌫ + 1. Assume M̂ 2 Rq⇥m⌫ is any
matrix that satisfies:

Y
diff
⌫,q

M̂ = 0, U⌫,qM̂ = 1⌫ ⌦ Im, (17)

where Y
diff
⌫,q

is defined according to (6). If Ĝ is computed as
Ĝ := [Y⌫,q]iM̂ , for any i 2 {1, . . . , ⌫}, then

Ĝ�G = CA([X⌫,q]iM̂ � (I �A)�1
B) (18)

+ CE[W⌫,q]iM̂ +D([W diff
⌫,q

]i + [W⌫,q]i)M̂.

Proof: Let M be any matrix as in (7) and M̂ be any matrix as
in (17). By noting that Ĝ�G = [Y⌫,q]i(M̂�M), we will prove
this claim by showing that [Y⌫,q]i(M̂ �M) equals the right-
hand side of (18). By using [Y diff

⌫,q
]iM = 0, [Y diff

⌫,q
]iM̂ = 0, and

4Notice that the computation of these Hankel matrices requires the availabil-
ity of a (T + 1)-long signal u[0,T ], and of a (T + 2)-long signal y[0,T+1]
(where the additional sample is needed to compute the difference signal).
By comparison, the only additional complexity due to the presence of an
unknown but constant disturbance consists in collecting one additional sample
as compared to the case where the disturbance is known.

by recalling that [Y diff
⌫,q

]i = C(A � I)[X⌫,q]i + CB[U⌫,q]i +
CE[W⌫,q]i +D[W diff

⌫,q
]i:

0 = [Y diff
⌫,q

]i(M̂ �M) (19)

= C(A� I)[X⌫,q]i(M̂ �M) + CB[U⌫,q]i(M̂ �M)

+ CE[W⌫,q]i(M̂ �M) +D[W diff
⌫,q

]i(M̂ �M),

= C(A� I)[X⌫,q]i(M̂ �M) + CE[W⌫,q]iM̂ +D[W diff
⌫,q

]iM̂,

where we used [U⌫,q]iM̂ = [U⌫,q]iM , [W⌫,q]iM = 0, and
[W diff

⌫,q
]iM = 0. Next, by recalling that [Y⌫,q]i(M̂ � M) =

C[X⌫,q]i(M̂ �M) +D[W⌫,q]i(M̂ �M) and by using (19):

[Y⌫,q]i(M̂ �M) = CA[X⌫,q]i(M̂ �M)

+ (CE +D)[W⌫,q]iM̂,+D[W diff
⌫,q

]iM̂.

Finally, by iterating Step 2 in the proof of Theorem 4.1, we
obtain [X⌫,q]iM = (I �A)�1

B, which proves the claim. ⌅
Proposition 4.3 shows that the absolute error Ĝ � G is

governed by three terms: (i) the difference [X⌫,q]iM̂ � (I �
A)�1

B, which describes the error between any equilibrium
state that is compatible with the noisy data [X⌫,q]iM̂u and
the true equilibrium state, described by (I � A)�1

B; (ii) the
quantity E[W⌫,q]iM̂ , which describes the error due to noise
affecting the model equation; (iii) the quantity [W diff

⌫,q
]iM̂ ,

which accounts for the effect of noise on the output equation.
We note that if M̂ satisfies (17) and, simultaneously, also

W
diff
⌫,q

M̂ = 0, and W⌫,qM̂ = 0, then we have [X⌫,q]iM̂ =

(I � A)�1
B, and thus Ĝ � G = 0. Hence, in this case, we

recover the characterization presented in Theorem 4.1.
Similarly to Corollary 4.2, we have the following data-

explicit expression for Ĝ, which follows directly from (17).
Corollary 4.4: (Data-based Expression of Ĝ) Under the

same assumptions of Proposition 4.3, matrix Ĝ computed as

Ĝ = [Y⌫,q]i


Y

diff
⌫,q

U⌫,q

�† 
0

1⌫ ⌦ Im

�
, (20)

satisfies (18), with M̂ =


Y

diff
⌫,q

U⌫,q

�† 
0

1⌫ ⌦ Im

�
. ⇤

Remark 3: (Direct vs Indirect Approach to Computing Ĝ)

The results derived in this section shed some light on the
advantages and disadvantages of the direct versus the indirect
approach, a matter which is the subject of ongoing research,
cf. [43], [44]. In the present context, by direct approach we
mean the computation of the steady-state transfer function via
algebraic operations on the data. By indirect approach, we
mean first performing system identification (namely, deriv-
ing matrices (A,B,C,D,E) from historical data [45]) and
subsequently using the estimates to compute the steady-state
transfer function. We observe the following benefits of the
direct approach over the indirect one. The first benefit is
computational: (13) and (20) allow us to characterize the
system behavior by performing simple algebraic operations,
thus avoiding the need to resort to a more-advanced system
identification techniques (which often involve two steps: (i)
the extraction of the extended observability matrix, possibly
after a first step where the impulse response is estimated, to
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Fig. 1. Montecarlo simulations comparing the accuracy of (20) with that of
system identification methods. (Top) illustrates the noiseless case w[0,T ] = 0
at all times; (Bottom) illustrates the noisy case, where w[0,T ] is chosen as
a piecewise-constant random signal, and where the frequency of variation is
varied over two cases (low frequency and high frequency). System identifi-
cation was done using a subspace identification algorithm that minimizes the
prediction errors to obtain maximum-likelihood estimates (see [45, Sec 7.3]).
The curves illustrate the average over 100 experiments, where matrices A

and B have been populated with random i.i.d. normal entries and where the
modulus of the eigenvalues of A has been chosen in the real interval (�1, 1).

reconstruct the state of the system from input-output data, and
(ii) solving a convex optimization problem to determine the
matrices (A,B,C,D,E), see [45, Sec 7.3]). Second, Propo-
sition 4.3 provides an explicit error characterization for Ĝ,
which is typically not available through system identification
methods since error estimates for the matrices (A,B,C) are
generally unknown. Third, our numerical simulations suggest
that our methods are more accurate in estimating Ĝ from noisy
(and non-noisy) data, cf. Fig. 1. As shown by the top plot, in
the absence of noise (i.e., w[0,T ] = 0), equation (13) allows us
to recover the steady-state transfer function up to a numerical
error of the order 10�14. In contrast, subspace identification
methods compute approximations with errors in the order 102.
The reason why subspace identification methods have poor
performance is that they are designed to compute a set of
matrices (A,B,C,D) that minimize the prediction error for
the given data, while they fall short of computing a set of
matrices (A,B,C,D) approximating those that originated the
data. From our simulations, we also observed that subspace
identification methods are more precise when the system
state can be measured directly, but perform poorly when one
measures a low-dimensional output vector (as in our setting);
this is because identification methods first reconstruct the
internal state of the system using the outputs. Fig. 1(bottom)
illustrates that our methods are more accurate than system
identification also in the presence of noise. ⇤

V. SYNTHESIS OF STOCHASTIC OPTIMIZATION-BASED
CONTROLLERS FOR DYNAMICAL SYSTEMS

In this section, we build upon the characterizations in Sec-
tion IV and derive a control method that addresses challenge
(C2). The basic idea to overcome the lack of knowledge of
Wk is using samples of the system output yk.

We begin by illustrating the controller synthesis technique.
To this end, we notice that a gradient-descent iteration to
determine a solution of the optimization problem (4) reads as:

uk+1 = uk�⌘Ewk [ru�(uk, Guk +Hwk) (21)
+G

Try�(uk, Guk +Hwk)],

where ⌘ 2 R>0 is a tunable controller gain. Unfortunately, the
update (21) suffers from the following three main limitations:
(i) evaluations of the right-hand side of (21) require knowledge
of the transfer function G, which is known only approximately
through Ĝ, (ii) the update requires evaluations of the gradient
functions at the points Guk+Hwk, which are unknown when
G and H are unknown (notice that Guk + Hwk is not only
unknown but also unmeasurable, since yk = Guk+Hwk does
not hold unless the plant has infinitely-fast dynamics), and (iii)
computing the expectation in (21) requires the knowledge of
the distributions Wk, for all k 2 Z>0, which are also unknown.
In order to overcome limitation (i), we replace G with its
approximation (20) computed from data; in order to deal with
limitation (ii), we replace the steady-state map Guk + Hwk

with instantaneous samples of the output yk (thus making
the algorithm online [23]); to cope with limitation (iii), we
replace exact gradient evaluations with instantaneous samples
(thus making the algorithm stochastic). This gives rise to the
following data-enabled stochastic gradient-descent controller:

xk+1 = Axk +Buk + Ewk, yk = Cxk +Dwk, (22)

uk+1 = uk � ⌘

⇣
ru�(uk, yk)

+ ([Y⌫,q]i


Y

diff
⌫,q

U⌫,q

�† 
0

1⌫ ⌦ Im

�
)Try�(uk, yk)

⌘
,

where the characterization (20) has been used to replace G.
Notice that the controller update(22) can be evaluated by only
having access to the gradients of the cost functions of (4) and
to (possibly noisy) historical data generated by the system.

Remark 4: (Extensions to Constrained Optimization Prob-

lems and Time-Varying Costs) The proposed framework can
be extended to control problems (4) that include constraints
and/or time-varying costs. When the optimization problem (4)
includes constrains of the form ū 2 U , where U ✓ Rm is
closed and convex, then (22) can be modified as:

uk+1 = ⇧U

h
uk � ⌘

⇣
ru�(uk, yk) (23)

+
⇣
[Y⌫,q]i


Y

diff
⌫,q

U⌫,q

�† 
0

1⌫ ⌦ Im

�⌘T
ry�(uk, yk)

⌘i
,

where ⇧U : Rm ! U denotes the orthogonal projection onto
U , namely, ⇧U (z) := argminu2U ku � zk, for any z 2 Rm.
In this case, by using the non-expansiveness property of the
projection operator [40], all the conclusions drawn in the
remainder of this paper hold unchanged. When the cost of



8

(4) is time-dependent, i.e., �(u, y) is generalized to �(u, y, k),
all the results derived in the remainder also hold unchanged,
provided that Assumption 2 holds uniformly in time. ⇤

Remark 5: (Extensions to non-stable systems) It is often
of interest to account for cases where (2) is not a stable plant.
In general, marginally stable or unstable systems are more
challenging to optimize since in these cases (4) can no longer
be written as an unconstrained optimization problem. To
account for these cases, one could decompose the control input
uk as follows uk = u

s
k
+u

o
k
, where u

s
k

is used for stabilization
and u

o
k

is used for optimization. With this separation, the
techniques in [14] can be used to design an output-feedback
controller applied through u

s
k
, while the methods in our work

can be directly applied to design u
o
k
. ⇤

VI. NOTION OF STABLE OPTIMIZER

As anticipated in (C3), because of the direct dependence
between the random variable zk and the decision variable ū

in (5), the control algorithm (22) might be incapable of de-
termining the exact solution of the optimization problem5 (5).
For this reason, in what follows we focus on a relaxed notion
of optimizer of (5), as formalized next.

Definition 6.1: (Stable Optimizer) The vector u
so
k
2 Rm is

a stable optimizer of (5) at time k 2 Z>0 if:

u
so
k
= argmin

ū

EZk(uso
k )

h
�(ū, Ĝū+ zk)

i
. (24)

Accordingly, we let xso
k
:= (I�A)�1

Bu
so
k
+(I�A)�1

Ewk. ⇤
In words, uso

k
is a stable optimizer if it solves the optimization

problem that originates by fixing the distribution of zk to
Zk(uso

k
). Convergence to a stable optimizer is desirable be-

cause it guarantees that, when u
so
k

is applied as an input to (2),
the resulting cost is optimal for the distribution induced by
the random variables. In general, stable optimizers (uso

k
, x

so
k
)

do not coincide with the true optimizer (u⇤

k
, x

⇤

k
) of (5),

and existence and uniqueness are guaranteed under suitable
technical assumptions (see Theorem 7.1). We illustrate the
distinction between the two concepts in the following example.

Example 1: (Stable Optimizers vs True Optimizers) Con-
sider an instance of (4) for a scalar dynamical system (i.e.,
n = m = p = r = 1), so that G,H 2 R, and �(u, y) =
u
2 + y. In this case, the objective of (4) can be specified in

closed form as E[�(ū, Gū + Hwk)] = ū
2 + Gū + HE[wk],

and thus the optimizer of (4) is u
⇤

k
= �G

2 . To determine
a stable optimizer, let Ĝ be an approximation of G, define
zk := (G � Ĝ)ū + Hwk, and rewrite the objective as
E[�(ū, Gū+Hwk)] = E[�(ū, Ĝū+ zk)] = E[ū2 + Ĝū+ zk].
Next, notice that rū�(ū, Ĝū + zk) = 2ū + Ĝ, and thus u

so
k

satisfies E[2ū+ Ĝ] = 0, which implies u
so
k
= � Ĝ

2 . ⇤
While true optimizer and stable optimizers do not coincide

in general, an explicit error bound can be derived under
suitable smoothness assumptions, as shown next.

5A similar behavior also originates when gradient-descent is applied to
static optimization problems (i.e. without plants), as outlined in [31]–[33].

Proposition 6.2: (Optimizer Gap) Let Assumption 2 hold,
let u⇤

k
be as in (5), and let uso

k
be a stable optimizer. Then,

ku⇤

k
� u

so
k
k  2`kG� Ĝk

µ�
2
min(Ĝ)

, (25)

where �
2
min(Ĝ) denotes the smallest singular value of Ĝ.

Proof: By recalling that z̄ = (G � Ĝ)ū + wk, a direct
application of Theorem 2.4 yields:

W1(Zk(u),Zk(u
0))  kG� Ĝkku� u

0k, (26)

for any u, u
0 2 Rm

. Next, we denote in compact form
f(u, z) := �(u, Ĝu + z). By recalling the definition of u

⇤

k

and of u
so
k

, we have that EZ(u⇤
k)
f(u⇤

k
, z)  EZ(uso

k )
f(uso

k
, z),

which implies:

EZ(uso
k )

[f(u⇤

k
, z)]� EZ(uso

k )
[f(uso

k
, z)] (27)

 EZ(uso
k )

[f(u⇤

k
, z)]� EZ(u⇤

k)
[f(u⇤

k
)] .

First, we upper bound the right-hand side of (27). To this aim,
by combining (26) with Assumption 2(a) and by application
of Lemma 2.5 we have:

EZ(uso
k )

[f(u⇤

k
, z)]� EZ(u⇤

k)
[f(u⇤

k
, z)]  `kG� Ĝkku⇤

k
� u

so
k
k.

(28)

Second, we lower-bound the left-hand side of (27). To this aim,
we note that Assumption 2(c) implies: f(u⇤

k
, z) � f(uso

k
, z)+

ruf(uso
k
, z)T(u⇤

k
�u

so
k
)+ µ�

2
min(Ĝ)
2 ku⇤

k
�u

so
k
k2 for all z. More-

over, since u
so
k

is a stable optimizer, it satisfies the following
variational inequality: EZ(uso

k )
[ruf(uso

k
, z)T(u0 � u

so
k
)] � 0

for all u0 2 Rm. By combining the above two conditions:

EZ(uso
k )

[f(u⇤

k
, z)]� EZ(uso

k )
[f(uso

k
, z)] � µ�

2
min(Ĝ)

2
kuso

k
� u

⇤

k
k2.

(29)

Finally, the claim follows by combining (28) with (29). ⌅
Proposition 6.2 quantifies the gap between a stable optimizer

and the true optimizer of (5). The bound shows that the
gap grows linearly with the absolute error kG � Ĝk and
with the Lipschitz constant `, and is inversely proportional to
the smallest singular value of Ĝ and to the strong-convexity
constant µ. Finally, we note that when G is known exactly (i.e.,
Ĝ = G), then (25) yields u

⇤

k
= u

so
k

. Indeed, in this case (5)
does not feature distributions that are decision-dependent.

VII. CONTROLLER ANALYSIS IN THE PRESENCE OF
TIME-VARYING DISTURBANCES

Having presented solutions to the challenges (C1)-(C3), we
are now ready to characterize the transient performance of the
controller proposed in (22) with respect to a stable optimizer.
More generally, in this section, we focus on stochastic gradient
descent controllers with an inexact gradient of the form:

xk+1 = Axk +Buk + Ewk, yk = Cxk +Dwk,

uk+1 = uk � ⌘

⇣
ru�(uk, yk) + Ĝ

Try�(uk, yk)
⌘
, (30)

where Ĝ denotes a deterministic approximation of G.
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Remark 6: (Generality of the Analysis) While Section IV
presents a way to compute Ĝ from data, the results presented
here hold for any deterministic Ĝ (computed by using other
methods such as, e.g., system identification [45]), provided
that a deterministic error bound for kG� Ĝk is available. ⇤

For the subsequent analysis, we let

ek := ru�(uk, yk) + Ĝ
Try�(uk, yk)

� Eyk [ru�(uk, yk) + Ĝ
Try�(uk, yk)], (31)

denote the error that originates from approximating the true
gradient (obtained by computing the expectation) with a
single-point gradient6 (obtained by sampling the random vari-
ables through the output of the dynamical system).

Theorem 7.1: (Tracking of Time-Varying Stable Optimizer)

Let Assumption 2 be satisfied. If a stable optimizer ⇠
so
k

:=
(xso

k
, u

so
k
) exists, then for any k 2 Z>0 the solutions ⇠k :=

(xk, uk) of (30) satisfy:

E[k⇠k+1 � ⇠
so
k+1k]  �1E [kuk � u

so
k
k] + �2E [kxk � x

so
k
k]

+ �1E[kekk] + �2kuso
k+1 � u

so
k
k+ �3E[ sup

t2Z>0

kxso
t+1 � x

so
t
k],

(32)

where ek defined in (31) and, for any  2 (0, 1),

�1 =
p

1� ⌘µ+ ⌘ ˆ̀rkG� Ĝk, ˆ̀r := `
r

u
+ kĜk`r

y
,

�2 =

s
�̄(P )

�(P )

✓
1� (1�)

�(Q)

�̄(P )

◆
+ ⌘ ˆ̀rkCk,

�1 = ⌘, �2 = 1, �3 = max{

s
2�̄(P )

�(Q)
,
4kAT

Pk
�(Q)

}.

Moreover, if �1,�2 < 1, then (xso
k
, u

so
k
) exists and is unique. ⇤

Proof: The proof is organized into five main steps.
(1 – Change of Variables and Contraction Bound) Define the
change of variables x̃k := xk � x

so
k
= xk � (I �A)�1

Bu
so
k
�

(I �A)�1
Ewk. Accordingly, (30) read as:

x̃k+1 = Ax̃k + (xso
k
� x

so
k+1),

uk+1 = uk � ⌘(ru�(uk, Cx̃k + Ĝuk + zk)

+ Ĝ
Tru�(uk, Cx̃k + Ĝuk + zk)).

Next, we introduce the following compact notation to denote
the algorithmic updates (30) for all ✓ 2 Rm, u 2 Rm, x 2 Rn:

F✓(u, x) := E
zk⇠Z(✓)

[ru�(u,Cx+ Ĝu+ zk) (33)

+ Ĝ
Try�(u,Cx+ Ĝu+ zk)],

F̂ (u, x) := ru�(u,Cx+ Ĝu+ zk)

+ Ĝ
Try�(u,Cx+ Ĝu+ zk),

C✓(u, x) := u� ⌘F✓(u, x), Ĉ(u, x) := u� ⌘F̂ (u, x).

Accordingly, the left hand side of (32) satisfies:

E[k⇠k+1 � ⇠
so
k+1k]  E[kuk+1 � u

so
k+1k] + E[kx̃k+1k] (34)

 E[kuk+1 � u
so
k
k] + kuso

k+1 � u
so
k
k+ E[kx̃k+1k],

6Notice that in (31) both the single-point and exact gradients are evaluated
at the same point (uk, yk). Thus ek does not account for errors due to
evaluating gradients at yk instead of Guk +Hwk (cf. Remark 12).

where we used E[kuso
k+1 � u

so
k
k] = kuso

k+1 � u
so
k
k since stable

optimizers are deterministic quantities. Moreover, notice that:

E[kuk+1 � u
so
k
k] = E[kĈ(uk, x̃k)� Cuso

k
(uso

k
, 0)k]

 E[kekk] + kCuk(uk, x̃k)� Cuso
k
(uk, x̃k)k

+ kCuso
k
(uk, x̃k)� Cuso

k
(uk, 0)k

+ kCuso
k
(uk, 0)� Cuso

k
(uso

k
, 0)k. (35)

where we used Ĉ(uk, x̃)�Cuk(uk, x̃) = ek and we remark that
the last three terms are deterministic quantities. Linear con-
vergence of (30) is a direct consequence of four independent
properties, namely calmness to distributional shifts, ease with
respect to system dynamics, contraction at the equilibrium, and
contraction of the dynamical system, which we prove next.
(2 – Calmness With Respect to Distributional Shifts) We will
show: kCuk(uk, x̃k)�Cuso

k
(uk, x̃k)k  ⌘ ˆ̀rkG�Ĝkkuk�u

so
k
k.

Indeed, the following estimate holds:

kCuk(uk, x̃k)� Cuso
k
(uk, x̃k)k  ⌘ ˆ̀rW1(Z(uk),Z(uso

k
))

 ⌘ ˆ̀rkG� Ĝkkuk � u
so
k
k,

where the first inequality follows by expanding (33) and by
using Lemma 2.5, and the second inequality follows from (26).
(3 – Ease With Respect to the System Dynamics) We will show
that kCuso

k
(uk, x̃k) � Cuso

k
(uk, 0)k  ⌘ ˆ̀rkCkkx̃kk. By using

Assumption 2(b):

kCuso
k
(uk, x̃k)� Cuso

k
(uk, 0)k

 ⌘kEZk(u
so
k )

h
ru�(uk, Cx̃k+Ĝuk+zk)�ru�(uk, Ĝuk+zk)

i
k

+ ⌘kĜTEZk(u
so
k )

h
ry�(uk, Cx̃k+Ĝuk+zk)�ry�(uk, Ĝuk+zk)

i
k

 ⌘ ˆ̀rkCkkx̃kk,

which proves the claimed estimate.
(4 – Contraction at the Equilibrium) We will show that
kCuso

k
(uk, 0) � Cuso

k
(uso

k
, 0)k 

p
1� ⌘µkuk � u

so
k
k. This fact

follows directly from [37, Thm 3.12], and we provide a short
proof for completeness. By substituting (33):

kCuso
k
(uk, 0)� Cuso

k
(uso

k , 0)k2 = kuk � ⌘Fuso
k
(uk, 0)� uso

k k2

= kuk�uso
k k2 � 2⌘Fuso

k
(uk, 0)

T(uk�uso
k ) + ⌘2kFuso

k
(uk, 0)k2

 (1� ⌘µ)kuk�uso
k k2 � 2⌘

⇣
EZ(uso

k ) [�(uk, Cûk + zk)]

� EZ(uso
k )

h
�(uso

k , Ĝuso
k + zk)

i ⌘
+ ⌘2kFuso

k
(uk, 0)k2

 (1� ⌘µ)kuk � uso
k k2 + ↵

⇣
EZ(uso

k )

h
�(uk, Ĝuk + zk)

i

� EZ(uso
k )

h
�(uso

k , Ĝuso
k + zk)

i ⌘

 (1� ⌘µ)kuk � uso
k k2,

where ↵ = 2(⌘2 ˆ̀r � ⌘). Above, the first inequality fol-
lows from �(uso

k
, y) � �(uk, yk) � r�(uso

k
, y)T(uso

k
� uk) +

µ

2 kuk � u
so
k
k2 (see Assumption 2(c)), the second inequality

follows from kFu
so
k
(uk, 0)k2  2ˆ̀rEZ(uso

k )
[�(uk, Ĝuk+zk)�

�(uso
k
, Ĝu

so
k

+ zk)] (see Assumption 2(b)), and the last
inequality holds because u

so
k

is a stable optimizer (see (24)).
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(5 – Contraction of the Dynamical System) We will prove the
following estimate:

E[kx̃k+1k] 

s
�̄(P )

�(P )

✓
1� �(Q)

4�̄(P )

◆
E[kx̃kk] (36)

+max{

s
4�̄(P )

�(Q)
,
4kAT

Pk
�(Q)

}E[ sup
t2Z>0

kxso
k+1 � x

so
k
k].

In what follows, we fix the realization of the disturbance
wk and (with a slight abuse of notation) we denote by x̃k

the corresponding (deterministic) state of (2) and by x
so
k

the
associated (deterministic) stable optimizer. Let V (x) := x

T
Px

and define the set:

⌦ := {x 2 Rn : V (x)  4�̄(P )kAT
Pk

�(Q)
sup

t2Z>0

kxso
t+1 � x

so
t
k

and V (x)  �̄(P )

s
4�̄(P )

�(Q)
sup

t2Z>0

kxso
t+1 � x

so
t
k}.

We distinguish among two cases.
(5 – Case 1) Suppose x̃k 62 ⌦. In this case, we have:

V (x̃k+1)� V (x̃k)  ��(Q)kx̃kk2 + �̄(P )kxso
k+1 � x

so
k
k2

+ 2kAT
Pkkxso

k+1 � x
so
k
kkx̃kk

 �1

4

�(Q)

�̄(P )
V (x̃k), (37)

where the last inequality follows since x̃k 62 ⌦ and by using
V (x̃k)  �̄(P )kx̃kk2. By using �(P )kx̃kk2  V (x̃k) 
�̄(P )kx̃kk2, (37) implies the following bound for the state:

kx̃k+1k2  �̄(P )

�(P )

✓
1� �(Q)

4�̄(P )

◆
kx̃kk2. (38)

(5 – Case 2) Suppose x̃k 2 ⌦. In this case, we will show
that ⌦ is forward-invariant, i.e., x̃k+1 2 ⌦. By contradiction,
let ✏ > 0 and let k1 be the first instant such that one of the
following conditions is satisfied:

V (x̃k1) > �̄(P )
4kAT

Pk
�(Q)

sup
t2Z>0

kxso
t+1 � x

so
t
k+ ✏, or

V (x̃k1) > �̄(P )

s
4�̄(P )

�(Q)
sup

t2Z>0

kxso
t+1 � x

so
t
k+ ✏, (39)

It follows by iterating (37) that V (x̃k) is strictly decreasing
in a neighborhood of k1. Accordingly, there must exist 0 
k0 < k1 such that V (x̃k0) > V (x̃k1). But this contradicts the
assumption that k1 is the first instant that satisfies (39). So ⌦
must be forward invariant. By recalling the definition of ⌦,
when x̃k 2 ⌦:

kx̃k+1k  max{

s
4�̄(P )

�(Q)
,
4kAT

Pk
�(Q)

} sup
t2Z>0

kxso
k+1 � x

so
k
k.

(40)

Finally, the estimate (36) follows by combining (38) and
(40) and by taking the expectation on both sides.

To conclude, (32) follows by substituting the estimates
derived in the above five steps into (34)–(35). Notice that,

when 0 < ˆ̀rkG� Ĝk <
µ

2

⌘

g(⌘)

1
µ

(a)

when µ

2 < ˆ̀rkG� Ĝk < µ

⌘

g(⌘)

1
µ

(b)

Fig. 2. Roots of g(⌘) =
p
1� ⌘µ+ ⌘ ˆ̀rkG� Ĝk� 1. The green segment

illustrates the set of choices of ⌘ that guarantee �1 < 1.

the existence and uniqueness of uso
k

follows from contractivity
and by application of the Banach fixed-point theorem. ⌅

Remark 7: (Choices of ⌘ that Guarantee �1 < 1) To
guarantee �1 < 1, the following conditions must hold simul-
taneously:

kG� Ĝk <
µ

ˆ̀r
, and

2kG� Ĝk � µ

kG� Ĝk2
< ⌘  1

µ
. (41)

Note that for any µ 2 R>0 and Ĝ 2 Rp⇥m, there exists a
nonempty set of choices of ⌘ that satisfy the second condition
in (41). To see this, notice that 2kG�Ĝk�µ

kG�Ĝk2
 1

µ
is equivalent

to (kG � Ĝk � µ)2 � 0, which is satisfied for any µ 2 R>0

and Ĝ 2 Rp⇥m. While there always exists a choice of ⌘ that
guarantees the second condition, the first inequality in (41)
outlines a feasibility condition. Namely, when the absolute
error kG � Ĝk is larger than the constant µ/ˆ̀r, then the
controller (30) might not guarantee contractivity.

To derive (41), notice that
p
1� ⌘µ admits a real-valued

solution if an only if ⌘  1/µ. Moreover, the equationp
1� ⌘µ+ ⌘ ˆ̀rkG� Ĝk = 1 yields the solution ⌘ = ⌘1 := 0

and ⌘ = ⌘2 := (2kG� Ĝk � µ)/kG� Ĝk2, where ⌘2 is real
only if ˆ̀rkG � Ĝk  µ. Accordingly, �1 < 1 when ⌘ < ⌘1

or ⌘ > ⌘2 (see Fig. 2), which yields (41). ⇤
Remark 8: (Choices of ⌘ that Guarantee �2 < 1) To

guarantee �2 < 1 the controller ⌘ must be chosen as:

⌘ <
1

ˆ̀rkCk

 
1�

s
�̄(P )

�(P )

✓
1� (1�)

�(Q)

�̄(P )

◆ !
. (42)

Notice that the quantity �̄(P )
�(P )

⇣
1� (1�)�(Q)

�̄(P )

⌘
is always

non-negative since �(Q)/�̄(P ) < 1 and it strictly smaller that
1 if the open-loop dynamics (2) are contractive. ⇤

Theorem 7.1 provides a sufficient condition to guarantee
that the controlled dynamics (30) converge to a stable opti-
mizer (xso

k
, u

so
k
) (up to an asymptotic error that depends on

the time-variability of the optimizer and on the sampling
error). This result, combined with Proposition 6.2, allows
us to conclude convergence to a small neighborhood of the
desired optimizer (x⇤

k
, u

⇤

k
). The estimate (32) upper bounds

the tracking error at time k + 1 (i.e., E[k⇠k+1 � ⇠
so
k+1k]) as a

function of three main terms: (i) the tracking error at time k

(characterized by E [kuk � u
so
k
k] and E [kxk � x

so
k
k]), (ii) the

error due to sampling (i.e., E[kekk]), and (iii) the temporal
shift of the optimizer (namely, the temporal shift of the input



11

0 20 40 60 80 100
Time k

10-15
10-10
10-5
100
105
1010

k9
k
!
9
so k

k
2 = 1

102min
2 = 2min

2 = 1
2(2min + 2max)

2 = 2max

2 = 102max

Fig. 3. Numerical simulations illustrating the rate of convergence of (30) for
different choices of ⌘. We have conducted the simulations on a system with
matrices (A,B,C,D,E) having random entries with n = 10,m = 5, p =

3, r = 5. ⌘min := 2kG�Ĝk�µ

kG�Ĝk2
, ⌘max := 1

µ (see (41)). In all the simulations,

the parameters satisfy kG� Ĝk < µ/ˆ̀r (as in (41)) and (42).

optimizer kuso
k+1 � u

so
k
k and the worst-case temporal shift in

the state optimizer E[sup
t2Z>0

kxso
t+1 � x

so
t
k]).

According to Theorem 7.1, the rate of contraction of (30)
(characterized by the constants �1 and �2) depends on the
various parameters of the optimization problem as well as of
the dynamical system: it increases with the square root of ⌘,
µ, and of the ratio �(Q)/�̄(P ) (that characterizes the rate of
convergence of the open-loop plant (2)), and it is inversely
proportional to ⌘, ˆ̀r, kG � Ĝk, and kCk. Some important
comments on the choice of ⌘ are in order. First, as discussed
in Remark 7, when the distributional shifts originated by
the controller update are small (i.e., ˆ̀rkG � Ĝk < µ/2),
then a sufficiently-slow controller (i.e, ⌘  1/µ) guarantees
contraction in (32). On the other hand, when the distributional
shifts originated by the controller updates are large (i.e.,
ˆ̀rkG � Ĝk > µ/2), then there is a lower bound on the
required controller gain to guarantee contractivity (namely,
⌘ > (2kG�Ĝk�µ)/kG�Ĝk2). This fact can be interpreted by
noting that a sufficiently-large controller gain guarantees that
deviations introduced by shifts in the distribution (i.e. the term
⌘ ˆ̀rkG�Ĝk) are dominated by the the algorithm contractivity
towards the optimizer (i.e., the term

p
1� ⌘µ). See the proof

of Theorem 7.1, steps 2 and 4. We note that this fact is in
contrast with standard conditions for convergence of gradient-
descent algorithms without decision-dependent distributions
(see e.g. [37]), where arbitrarily-small choices of the controller
gain always guarantee contractivity of the updates.

Finally, we illustrate the rate of convergence of (30) via
simulations in Fig. 3. The simulations illustrate that choices of
⌘ in the interval (41) guarantee contraction of the tracking error
and that (30) has exponential rate of convergence (equivalently,
linear in log scale), as formally characterized in Theorem 7.1.

Remark 9: (Parameters Needed for Controller Design) We
notice that even when the system (2) is unknown and the
interval (41) cannot be computed exactly, the upper bound
⌘ = 1/µ can be computed without knowledge of the system
(since it depends only on the parameters of the optimization),
and thus it can be used as an initial estimate for the controller
stepsize; on the other hand, the lower bound for ⌘ in (41)
may be harder to estimate since it requires an estimation of
kG� Ĝk. Moreover, to satisfy the first inequality in (41), one

needs to guarantee that kG � Ĝk <
µ

ˆ̀r . In this case, since
the strong convexity constant µ and Lipschitz constant ˆ̀r are
often free design parameters (that can be tuned by changing
the cost function), computing the exact error G � Ĝ is also
not necessary and thus precise knowledge of (A,B,C) is not
needed, provided that kG� Ĝk is bounded. ⇤

Remark 10: Estimates for the temporal shift of the stable

optimizers An estimate for the temporal shift of stable opti-
mizers (which multiplies the quantities �2 and �3 in (32)) can
be obtained by leveraging the bound in Proposition 6.2, as
discussed next. By using the triangle inequality:

kuso
k+1 � u

so
k
k = ku⇤

k+1 � u
⇤

k
+ u

so
k+1 � u

⇤

k+1 � u
so
k
+ u

⇤

k
k

 ku⇤

k+1 � u
⇤

k
k+ kuso

k+1 � u
⇤

k+1k+ kuso
k
� u

⇤

k
k

 ku⇤

k+1 � u
⇤

k
k+ 4`kG� Ĝk

µ�
2
min(Ĝ)

,

which shows how an explicit bound for kuso
k+1 � u

so
k
k can

be obtained as a function of the temporal shift of the true
optimizer ku⇤

k+1�u
⇤

k
k. Notice that, in the online optimization

literature, ku⇤

k+1 � u
⇤

k
k is typically referred to as “path

length”. Moreover, when u
⇤

k
can be expressed as a function

of the disturbance wk, the path length ku⇤

k+1 � u
⇤

k
k can be

bounded with a term that captures the temporal variability of
the disturbance wk. However, for cases where u

⇤

k
cannot be

made explicit in terms of wk, tracking bounds in the online
optimization literature are expressed in terms of ku⇤

k+1 � u
⇤

k
k

(see, e.g., [46], [47]). A similar bound holds for kxso
k+1�x

so
k
k,

which can be derived by iterating the reasoning above. ⇤
Remark 11: (Common Assumptions That Guarantee

Bounded Gradient Error) Theorem 7.1 implicitly assumes
that the gradient error E[kekk] is bounded. Such an assumption
is commonly adopted in the literature (see e.g. [48] for a
thorough discussion). Commonly-adopted assumptions that
guarantee boundedness of the gradient error include uniform
boundedness assumptions of the form:

E[kekk] < �, for all k 2 Z>0,

where � 2 R>0, or bounded variance assumptions of the form:

E[kekk2]  kEyk [ru�(uk, yk) + Ĝ
Try�(uk, yk)]k2 + �̄

2
,

for some �̄ 2 R�0. We also notice that due to unbiasedness,
uniform boundedness and bounded variance assumptions are
equivalent (see, e.g., [48]). ⇤

Remark 12: (Error Due To Sampling vs Error Due To

Approximate Evaluation) Notice that the term ek accounts
only for the error that is due to the use of a one-sample evalu-
ation of the gradient (compared to the actual gradient obtained
by computing the expectation), while it does not include the
error due to evaluating the gradient at the instantaneous system
output (i.e., at yk) instead of at the steady-state output (i.e., at
Guk +Hwk). We remark that the latter is instead accounted
through the constant �2 (see step (3 – Ease With Respect to

the System Dynamics) in the proof of Theorem 7.1). ⇤
Remark 13: (Cases where Wk is Known) In case the

distribution Wk is known for all k 2 Z>0, then the true
gradient can be computed exactly at each iteration, and thus
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Fig. 4. (a) Case study: New York City, partitioned into 18 regions of ride
requests. (b) Number of idle vehicles and cost of trips for region 1. Short trip
refers to trips from 1 to 4, mid-range trip refers from 1 to 10, long trip refers
from 1 to 16. See caption of Fig. 6 for detailed experiment description.

(32) still holds by letting ek = 0 for all k 2 Z>0. In such a
case, the obtained contraction bound with respect to the stable
optimizer is still relevant as the optimization problem remains
decision-dependent (since the steady-state transfer function G

remains known only approximately). ⇤

VIII. APPLICATION TO RIDE-SERVICE SCHEDULING

We illustrate here the versatility and performance of the pro-
posed controller synthesis approach in an application scenario.
A ride service provider (RSP), such as Uber, Lyft, or DiDi,
seeks to maximize its profit by dispatching the vehicles in its
fleet to serve ride requests from its customers. We model the
area of interest using a graph G = (V, E), where each node
in V represents a region (e.g., a block or a district of a city)
and an edge (i, j) 2 E allows rides from node i to node j.
As a case study, we consider Manhattan, NY, and, similarly
to [49], we divide the area into n = 18 region as in Fig. 4(a).
We assume that time is slotted and each slot has a duration
� = 5 min. We let �ij

k
2 R�0 be the demand of rides from

region i 2 V to region j 2 V at time k 2 Z>0. We denote by
p
k

ij
the price of rides, decided by the RSP, from region i to

region j at time k. We account for elasticity of the demand,
whereby customers can decide to accept or decline rides after
observing the price set by the RSP, and leave the system when
prices are higher than their maximum willingness to pay. We
model the elasticity of the demand as follows:

d
ij

k
= �

ij

k

⇣
1� ✓

ij
p
ij

k

p
ij

max

⌘
. (43)

Here, dij
k

denotes the accepted demand (after customers have
observed the set price) from region i to j at time k, ✓ij 2 [0, 1]
is a parameter that characterizes the steepness of elasticity, and
p

max
ij

2 R>0 is an upper limit on prices from i to j.
We let x

i

k
2 R�0 denote the idle-vehicle occupancy (i.e.,

the number of unoccupied vehicles, normalized by the fleet
size) of fleet vehicles in region i at time k. We assume that
drivers of unoccupied vehicles naturally rebalance the fleet,
namely, they travel from regions with a high occupancy of
(fleet) vehicles to regions with a lower occupancy in order to

maximize their profit. We denote by aij 2 R�0 the fraction
of unoccupied vehicles that travel from i to j at every time
step. Travel times are non-negligible and can vary over time,
we model them by using Boolean variables:

�
ij,⌧

k
=

(
1, if travel time from i to j at time k is ⌧ slots,
0, otherwise,

defined for all i, j 2 V and k, ⌧ 2 Z>0. In what follows, we
assume that �ij,0

k
= 0 for all i, j 2 V , k 2 Z>0, so vehicles

take at least one time slot to travel between any pair of nodes;
moreover, we let �ij,⌧

k
= 0 for all ⌧ > T 2 Z>0, so that T

is the maximum travel time in the network. Accordingly, the
occupancy of idle vehicles in each region i satisfies:

x
i

k+1 = x
i

k
�
X

j2V

aijx
i

k
+
X

j2V

ajix
j

k
(44)

�
X

j2V

d
ij

k
+
X

j2V

k�1X

⌧=k�T

�
ji,k�⌧

⌧
d
ji

⌧
+ g

i

k

| {z }
:=w

i
k

,

In (44), the quantity �
P

j2V
aijx

i

k
accounts for the vehi-

cles that leave the region due to fleet rebalancing, whileP
j2V

ajix
j

k
models rebalancing vehicles arriving at i. The

quantity �
P

j2V
d
ij

k
models all customer-occupied vehicles

departing i at time k, while
P

k

⌧=0 �
ji,k�⌧

⌧
d
ji

⌧
accounts for

occupied vehicles arriving to i at time k. Finally, the term
g
i

k
can be used to account for unmodeled disturbances affect-

ing the dynamics, including inaccuracies in the rebalancing
coefficients aij and vehicles leaving or entering the system
(e.g., drivers that stop or start driving). In our simulations,
we assume that the true coefficients aij are known up to
a 20% parameter estimation error, and thus we model the
known coefficients by perturbing the true coefficients with
uniform error whose distribution has support within ±20%
from the nominal values. Further, we assume that the travel
times between regions (i.e., the scalars �

ij,⌧

k
) are unknown or

difficult to estimate, and we incorporate all unknown terms
in the exogenous signal w

i

k
. Because (44) describes a mass

conservation law, the dynamics (44) define a compartmental
model that is marginally stable [50]. For this reason, we define
the state differences x̃i

k
:= x

i

k
�x

i+1
k

for all k 2 Z>0, i 2 V . In
these new variables, (44) defines a (n�1)-dimensional system
that is asymptotically stable and thus satisfies Assumption 1.

We formulate the RSP’s objectives of selecting the price
of rides in order to maximize its profit as the following
optimization problem to be solved at every k:

max
p,x,d

X

i2V

X

j2V

p
ij
d
ij � c

ij
d
ij � %kxk2,

s.t. 0 = �
X

j2V

aijx
i +
X

j2V

ajix
j �

X

j2V

d
ij + w

i

k
,

d
ij = �

ij

k

�
1� ✓

ij
p
ij
/p

ij

max
�
,

d
ij � 0, xi � 0, 8i, j,2 V, (45)

where p, x, d denote the vectors obtained by stacking p
ij , xi,

and d
ij , for all i, j 2 V , respectively, pijdij models the RSP
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Fig. 5. (a) Numerical error and error bound from Theorem 7.1 and (b)
terms characterizing the error bound. Curves illustrate the average over 100
realizations of the noise terms. Fluctuation at around 1:00PM is caused by a
drop in ride demands (see Fig. 6 (top panel)).

earnings from serving the demand d
ij , the quantity c

ij
d
ij ,

c
ij 2 R>0, models the cost of routing vehicles from i to j.

Finally, %kxk, % 2 R>0, describes the RSP’s objective of max-
imizing fleet utilization. We notice that this term robustifies the
control objective by guaranteeing that the solution of (45) is
optimal for any instantaneous value of the noise terms.

To solve the optimization problems we employ the projected
controller (23) to account for constraints, with controller
gain ⌘ = 0.9/µ, where µ = mini,j,k �

ij

k
✓
ij
/p

ij

max is the
strong convexity constant of the cost in (45). All experiments
were performed using Matlab 2019a, ride demands and
locations were estimated by using the Taxi and Limousine
Commission (TLC) data from New York City [51] for March
1, 2019 between 6:00 AM and 9:00 PM. Note that the available
demand data does not describe the potential rides, but rather
the realized ones. Although this data may not reflect the true
demand, it is often used as an approximation (see, e.g., [49]).

Fig. 5(a) illustrates the numerical tracking error and the
error bound characterized in Theorem 7.1, and Fig. 5(b)
presents a breakdown of the terms characterizing the tracking
error. The plots show that during the initial transient the
tracking error quickly decreases, up to a steady-state value
of the order 10�2, thus validating the conclusions drawn in
Theorem 7.1. Fig. 5(b) showcases that the tracking error does
not further decrease beyond such steady-state error because the
optimizer (uso

k
, x

so
k
) is changing over time. The sudden increase

in error that occurs at around 1:00 PM can be interpreted by
means of Fig 3(b), which shows that the price of rides, at this
time of the day, must decrease consistently since the network
experiences a drop in ride demands (see Fig. 6, top panel).

In Fig. 6, we compare the performance of the online
optimization method with a fixed-pricing policy, whereby the
RSP selects a fixed price for all rides, corresponding to a 25%
profit from the operational cost of the fleet. A 25% profit
was selected as the maximum profit that allows the RSP to
serve the peak of demand with the available fleet. Fig. 6,
second panel from the top, shows that by using the adaptive
pricing policy the RSP always accept a higher number of
rides; Fig. 6, third panel, shows that the RSP profit is always
higher under the adaptive pricing policy except at the peak of
demand, which can be interpreted as an optimistic situation
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Fig. 6. Comparison between optimized pricing policy and fixed-pricing policy.
In the fixed-pricing policy, the RSP sets prices to guarantee a 25% profit
from the operational cost of the fleet. All lines show trajectories averaged
over 100 realizations of the simulation and over the regions of the network
(Fig. 4). Network demand data was derived from [51] for March 1, 2019,
and normalized by its maximum value for illustration purposes. Fleet size
was set to 25% of the maximum demand. The RSP profit (third panel) was
normalized by the maximum profit achievable if the fleet had an infinite
number of vehicles. The average price of rides (fourth panel) was normalized
by the maximum willingness to pay p

max. As shown in the middle panel (RSP
relative profit), our methods outperform fixed profit policies at all times of
the day, and the maximum benefit is obtained outside of peak-hours.

where suboptimal pricing still leads to high utilization of the
fleet; Fig. 6, fourth panel shows that the adaptive policy adjusts
the price of rides based on the instantaneous demand, and
showcases that our optimal pricing policy tends to reduce the
price of rides in the interest of maximizing fleet utilization;
finally, Fig. 6, bottom panel shows that the optimized pricing
policy always results in a higher fleet utilization.

IX. CONCLUSIONS

We have proposed a gradient-like controller to regulate a
stochastic dynamical system to the solution trajectory of a
stochastic and time-varying optimization problem. We showed
how the controller can be synthesized by only having ac-
cess to the gradient of the cost function of the optimization
problem and possibly noisy input-output data generated by
the open-loop system, thus overcoming the need for system
identification. Overall, our work demonstrates for the first time
that online optimization controllers can be synthesized directly
from data, and that online stochastic optimization techniques
can be used to control dynamic systems. This opens up several
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exciting opportunities for future work, including extensions
to scenarios where the control method guarantees persistence
of excitation, to problems of simultaneous stabilization and
steady-state optimization, the generalization to scenarios with
distributed sensing, computation, and communication, as well
as accounting for cases where costs are not strongly convex.

REFERENCES

[1] G. Bianchin, M. Vaquero, J. Cortés, and E. Dall’Anese, “Data-driven
synthesis of optimization-based controllers for regulation of unknown
linear systems,” in IEEE Conf. on Decision and Control, Austin, TX,
Dec. 2021, pp. 5783–5788.

[2] S. Menta, A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler, “Stability
of dynamic feedback optimization with applications to power systems,”
in Annual Conf. on Communication, Control, and Computing, Oct. 2018,
pp. 136–143.

[3] M. Colombino, E. Dall’Anese, and A. Bernstein, “Online optimization
as a feedback controller: Stability and tracking,” IEEE Transactions on

Control of Network Systems, vol. 7, no. 1, pp. 422–432, 2020.
[4] G. Bianchin, J. Cortés, J. I. Poveda, and E. Dall’Anese, “Time-varying

optimization of LTI systems via projected primal-dual gradient flows,”
IEEE Transactions on Control of Network Systems, vol. 9, no. 1, pp.
474–486, Mar. 2022.

[5] M. Nonhoff and M. A. Müller, “Online gradient descent for linear
dynamical systems,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 945–952,
2020.

[6] G. Bianchin, E. Dall’Anese, J. I. Poveda, D. Jacobson, E. J. Carlton,
and A. Buchwald, “Novel use of online optimization in a mathematical
model of COVID-19 to guide the relaxation of pandemic mitigation
measures,” Scientific Reports, vol. 4731, no. 12, Mar. 2022.

[7] A. Jokic, M. Lazar, and P. van den Bosch, “On constrained steady-state
regulation: Dynamic KKT controllers,” IEEE Transactions on Automatic

Control, vol. 54, no. 9, pp. 2250–2254, 2009.
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