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Abstract—Barrier certificates provide an effective auto-
mated approach to verifying the safety of dynamical
systems. A barrier certificate is a real-valued function over
states of the system whose zero level set separates the
unsafe region from all possible trajectories starting from a
given set of initial states. Typically, the system dynamics
must be nonincreasing in the value of the barrier certificate
with each transition. Thus, the states of the system that
are nonpositive with respect to the barrier certificate act as
an over-approximation of the reachable states. The search
for such certificates is typically automated by first fixing
a template of functions and then using optimization and
satisfiability modulo theory (SMT) solvers to find them.
Unfortunately, it may not be possible to find a single
function in this fixed template. To tackle this challenge,
we propose the notion of interpolation-inspired barrier
certificate. Instead of a single function, an interpolation-
inspired barrier certificate consists of a set of functions
such that the union of their sublevel sets over-approximate
the reachable set of states. We show how one may find
interpolation-inspired barrier certificates of a fixed tem-
plate, even when we fail to find standard barrier certificates
of the same template. We present sum-of-squares (SOS)
programming as a computational method to find this set
of functions and demonstrate effectiveness of this method
over a case study.

Index Terms—Hybrid systems, barrier certificates, inter-
polation, safety.

. INTRODUCTION

HE NOTION of barrier certificate [1] is a prominent
T approach used to verify the safety of dynamical systems.
A barrier certificate is a real valued function that is nonpositive
over the initial states, positive over the unsafe states, and
typically nonincreasing as a system evolves. Thus, such a
certificate acts as an inductive proof of safety. The search
for barrier certificates is effectively automated through the
use of optimization [1], [2] or SMT-based [3] approaches.
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These approaches typically rely on first fixing a template
and then make use of the above approaches to search for
an appropriate function in this template. Unfortunately one is
forced to consider a different template when one is unable
to find such a certificate. Inspired by the success of (logical)
interpolation [4] in software and hardware system verification,
instead of changing the template, we consider a notion of
interpolation-inspired barrier certificates. We show how one
may find such certificates in a similar fashion to standard
barrier certificates, and allow for larger classes of functions to
act as proofs of safety.

The problem of safety verification problem aims to provide
a rigorous guarantee that all of the system trajectories start-
ing from some initial states avoid visiting unsafe states. A
prominent method for safety verification of digital hardware
and software systems, is based on inductive invariants [5].
An inductive invariant is any property that is i) true over the
initial set of states, and ii) true over the next state if it is
true in the current state. Thus, any inductive invariant is true
over all the reachable states of the system via an inductive
argument. Ensuring that such a property is not true over the
unsafe states thus provides an effective automated approach
to safety. Unfortunately, one may not find a single property
of interest to be inductive. Thus, a common approach in the
verification of these systems is to incrementally strengthen the
property as a conjunction of other properties. One method to
adopt such an incremental strengthening approach is that of
interpolation-based model checking [4].

In the context of dynamical systems, barrier certificates
proposed by [1] act as functional analogs of inductive invari-
ants. Typical approaches to find barrier certificates assume
the presence of a single inductive invariant that holds with
every single transition step and the barrier certificate value
to be nonincreasing with each transition step. Thus, in cases
where those conditions are not met, one cannot prove or
disprove the system’s safety. This letter utilizes ideas inspired
by interpolation to find multiple functions that together act as
a guarantee of safety via an incremental approach for discrete-
time dynamical systems.

Related Work: The use of inductive invariants and incremen-
tal inductive proofs for safety for finite state-transition systems
has been quite influential [6], [7], [8]. Interpolation [4] and
its extension via IC3 [9] are two major algorithms used in
incremental proofs. Such proofs first start with a property
to prove, and then try to incrementally constrain it, till
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an inductive proof is obtained. In the context of bounded
model checking, interpolation unrolls the transition function
some k times and finds intermediate interpolants until an
inductive invariant formula is found. IC3 uses frames and
counterexamples to build incremental formulae one step at a
time until an inductive invariant is found.

The authors of [10] consider multiple unsafe regions and
design multiple barrier certificates corresponding to each
unsafe region using the standard formulation. Thus their work
presumes that a standard barrier certificate can always be
found for a single unsafe region. However, our approach is
a less restrictive alternative to the standard barrier certificate
formulation. Our approach differs from [11] as follows. They
introduce vector barrier certificates, which are a set of func-
tions, where the condition for the initial states is imposed
over all the functions and the condition for the unsafe states
is imposed over at least one of the functions. Our proposed
method imposes the condition for the initial states only over
the first function and the condition for the unsafe states
over all the functions. Moreover, their formulation enforces
the nonincreasing condition by relating a single function to
multiple other functions in the vector via a Metzler matrix,
whereas our approach enforces the same condition only using
one of the functions. We also describe how the functions we
compute characterize the reachable set of a dynamic system
(See Section III-B for more details). Thus, their formulation
is not directly comparable to us except through the fact that
they also use multiple functions.

An alternative approach to finding more permissive con-
ditions for barrier certificates has been addressed via the
use of k-induction in [12]. They considered two notions of
k-inductive barrier certificates that both introduced k and few
other hyperparameters as part of their formulations. Setting the
values of these hyperparameters is not quite straightforward.
In this letter, we have only one hyperparameter k that we
increment from 0. More fundamentally, they search for a single
function using more relaxed conditions. First, they require that
the value of the barrier certificate is nonpositive for k-steps
starting from the initial set of states. Second, they require a
state to have a nonpositive barrier certificate value after k-steps
if the previous k states did so. We calculate multiple functions
with the standard nonincrease requirement in the value of the
barrier certificate. As such, it could be possible to come across
systems where only one of these approaches works. A trivial
solution will be to combine the ideas to form a more general
notion of barrier certificates.

Organization: Section II discusses preliminary concepts cru-
cial for this letter. The main inspiration and theoretical results
are explained in Section III along with an implementation
method in Section IV. We discuss a case study showing the
efficacy of our results in Section V.

Il. PRELIMINARIES
A. Notation
The sets of nonnegative and positive integers are denoted by
N:={0,1,2,...} and Ny = {1, 2, 3, ...}, respectively. The
sets of real numbers and positive real numbers are denoted by

symbols R and R, respectively. The n-dimensional Euclidean
space is denoted by R”".

Given a collection of sets X;, i = {0,1,...,N}, we use
Uf\; o Xi to denote the union of the sets X;. Given two sets
X and Y, we use X\Y for set difference to denote the set of
elements in X excluding all the elements of Y (i.e., X\Y =
{xxeXand x ¢ Y}).

For two sets X and Y, a set-valued function map F:X = Y is
a mapping of elements from X to subsets of Y. For a function
map F : X = X and k € N, F¥ denotes the self-composition
of F k-times (i.e., given x € X, F*(x) = U ' | ¥ €

X eF(x)
F1()) with FO(x) = identity).

We use V and 3 to denote the universal and existential
quantifiers, respectively. We use logical operators A, Vv, —
and = for conjunction (logical AND), disjunction (logical
OR), negation (logical NOT) and implication, respectively.

B. Discrete-Time Dynamical Systems

In this letter, we model the systems as discrete-time
dynamical systems defined next.

Definition 1: A discrete-time dynamical system is given by
the tuple:

S =X, Xo, F), (1)

over the state set X, set of initial states Xy C X, and F: X = X
is a set-valued transition map that describes the evolution of
the states of the system. That is, for x(¢), the state of the system
at time step t € N, the state of the system in the next time
step is given by:

x(t+1) € F(x(@®)), Vx(t) € X.

We use xy, = (x(0),x(1),x(2),...) to denote the state
sequence of the system S starting from the initial state x(0) =
xg € Xp.

Now we define reachable states of discrete-time systems.

Definition 2 (Reachability): We say a state x(f1) of a system
S is reachable from the state x(fg) if there exists a state
sequence X,(y,) which contains x(#1). That is, x(#;) € F i(x(19)),
for some i € N.

Now we define safety for discrete-time systems.

Definition 3 (Safety): We say that a system S given in
Definition 1 is safe with respect to a set of initial states Xo C
X and a set of unsafe states X, € X if no state sequence
starting from X, reaches X,,. That is for any state sequence
Xy, = (x(0), x(1), ...) where x(0) € Xy, we have x(i) ¢ X, for
all i e N.

C. Inductive Invariants

We now describe inductive invariants as discussed in [8].
Consider a finite-state system, where the state set is a set of
logical values while the initial set of states and transition map
are described by propositional logical formula. That is, X C
{0, 1}, Xo = {x | I(x) = 1}, F(x) = {x' | T(x,x') = 1} where
the formula /(x) is the initial condition over the system’s states
x, and T(x,x") is the transition relation from the current state
x to the next state x'.

In order to determine whether such a system is safe, we
look at the safety property expressed by a logical formula
P(x) described over the state variable x € X. We say that
such a system satisfies a safety property if, for every reachable
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state x € X from the initial set, we have P(x) to be true
(i.e., P(x) = 1). A prominent and effective approach to prove
safety is through the use of inductive invariants. We say that
a formula K is an inductive invariant, if:

e Vx € X, we have I(x) — K(x).

e Vx,x' € X, we have K(x) AT(x,x¥) = K().

Note that any reachable state x satisfies an inductive invari-
ant formula K. Thus, showing that a safety property P is an
inductive invariant acts as a proof of safety. When we fail to
prove P to be an inductive invariant (that is I(x) =5 P(x)
and/or P(x) AT(x,x') =5 P(X')), we try to strengthen P. We
say that P* is an inductive strengthening of a safety property
P if there exists a formula F such that P* = F A P is
inductive. In [13], two strengthening strategies are discussed:
i) using a stronger property, or ii) conducting an incremental
proof using previously computed formulae. Interpolation [4]
is one of these incremental techniques used in the inductive
strengthening process and will be discussed broadly in the next
section.

D. Barrier Certificates

For safety verification of a system S as in Definition 1, we
now discuss the notion of barrier certificates [1] that provide
sufficient conditions for safety.

Definition 4 (Barrier Certificate): A function B : X — R
is a barrier certificate for a system S if:

Bx) <0 VxeXp, 2)
B(x) >0 VxeX,, and 3)
B(x) <0 = B(x) <0 VxeX\X,, Vx' € F(x). (4

The next result borrowed from [1] shows the usefulness of
barrier certificates in verifying safety.

Theorem 1: Consider a dynamical system S. If there exists
a function B : X — R for S such that it is a barrier certificate
as in Definition 4, then the system is safe.

Observe that the level set B(x) = 0 acts as the barrier that
prevents the system from reaching the unsafe set of states.
That is, starting from any state x € X, where B(x) < 0, the
system cannot reach a state x € X, where B(x) > 0.

Note that the above condition is an inductive invariant for
system S where P(x) = (B(x) < 0). For any xo € Xo,
P(xp) = 1 from condition (2). Now, consider states x, x' € X
such that x’ € F(x), and suppose that P(x) = 1. Following
condition (4), P(x') = 1. Thus, the two conditions jointly
guarantee that the safety property is satisfied for any reachable
state x in the state set starting from the initial set.

The search for barrier certificates has been primarily per-
formed by fixing a template. By fixing the template, one
considers the barrier certificate to be a linear combination of
some fixed basis functions. For example, if it is a polynomial
of a fixed degree, then we consider the basis functions to
be monomials and aim to find the coefficients corresponding
to each basis function. Search techniques, such as Sum-
of-Squares (SOS) programming [2] or Satisfiability Modulo
Theory (SMT) solvers [3], can be employed to search for these
coefficients satisfying conditions (2)-(4). Unfortunately, if no
barrier certificate is found, a common approach is to change
the template (e.g., increase the degree of the polynomial).

Such changes typically make verifying (or searching) for
barrier certificates computationally demanding and may lead
to inconclusive results as shown below.

Example 1: Consider a one-dimensional system

S x(t+1) = 0.5x(). 5)

The state set, initial, and unsafe sets are given by X = [0, 3],
Xo = [2,2.3], and X, = [1.6, 1.9], respectively. We consider a
linear barrier certificate of the parametric form B(x) = mx+b
and attempt to compute coefficients m, b € R. We require
B2) = 2m + b < 0 from condition (2), and furthermore, we
need to ensure that 3(1.9) = 1.9m+b > 0 from condition (3).
From condition (4), B2) < 0 — B(l) =m+b < 0.
However, b < —2m, b > —19m, b < —m cannot all
be satisfied simultaneously so there exists no standard linear
barrier certificate.

In the next section, we discuss the idea of (logical) interpola-
tion [4], [8], to define a notion of interpolation-inspired barrier
certificates. The conditions for these are more permissive as
illustrated through Example 1 later.

[1l. INTERPOLATION AND SAFETY
A. Interpolation

The concept of logical interpolation plays a key role in
developing algorithms for bounded model checking (BMC).
BMC is a technique that aims to find bugs in hardware and
software systems by falsifying safety properties [14]. Consider
finite systems as described in Section II-C. In BMC, we
unroll the transition relation some k € N times until we
reach an unsafe state and construct a formula representing all
possible execution paths from an initial state to the unsafe state
(assuming that all states before the k™ step are safe). Let’s
say x; is the state after the /" transition. Then the sequence of
states for this unrolling is given by:

I(xo) A T(x0,x1) A oo AT (Xp—1, Xk) A —P(x1), (6)

where logical formula P(x) describes a safety property.

For k = 0, the formula reduces down to I(xp) A —=P(xg). If
formula (6) is satisfied, then the system is unsafe. Otherwise,
one may use interpolation to try to prove safety by finding
an intermediate logical formula or a series of formulae
called interpolants via Craig’s interpolation theorem [4] as
follows.

Theorem 2 (Craig’s Interpolation Theorem): Given a pair
of clauses (a disjunction of boolean variables or their negation)
E and G such that E A G is unsatisfiable, then there exists an
intermediate interpolant clause F' such that:

o £ — F s

e F A G is unsatisfiable, and

o F refers to the common variables of E and G.

The proof of Theorem 2 can be found in [15].

Based on this theorem, when formula (6) is unsatisfiable,
there exists intermediate formulae F; such that formula (6) can
be broken down as follows:

I(x0) AT (x0, x1) A oo AT Xp—1, X8) A —P(xg)
——

Eop(x0)
is unsatisfiable.

Go (xX0,X1 -+, Xk)
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We can then iteratively separate Go as follows:

I(xg) = Fo(xo)
Fo(xp) A T(xp,x1) = Fi(x1)

(7

Fr—1(k—1) A T(xg—1, %) == Fi(x), and
Fr(x) A —P(xy) is unsatisfiable.

Informally, condition (7) can be thought of as a way
of representing the over-approximation of reachable sets.
That is, the set of x; € X where the formula F;(x;)
is true is an over-approximation of states reachable in
i steps and states satisfying F;(x;) will not violate the
safety property after (k — i) transitions. To get the inter-
polants, as shown in [8], [9], we start with £k = 0
and iteratively (incrementally) compute a sequence of
interpolants Fo(xo) = I(xg), F1(x1), ..., Fx(xx) by setting
Exi, xit1) = FOi) A T(xi, xip1) and G, ..., %) =
T(xi+1, Xi+2) - .. T(xg—1, xx) A—P(xx) according to Theorem 2.
This iterative process is stopped when the union of the initial
formula and previous interpolants grows to a fixed point (when
all reachable states are contained in that union).

Unfortunately, such a fixed point is not guaranteed for
infinite state systems. Next, we consider a notion of barrier
certificates inspired by the above BMC paradigm that com-
bines interpolation with that of inductive invariants. Such a
combination takes inspiration from [4], [8].

B. Interpolation-Inspired Barrier Certificate (IBC)

Here we introduce a notion of interpolation-inspired barrier
certificates (IBC) and demonstrate their efficacy.

Definition 5: Consider a discrete-time dynamical system S
as in Definition 1. A set of functions B; : X — R, for all
0 <i <k, is an IBC for § if the following hold:

Bo(x) <0 Vi € Xo. @®)
Bi(x) > 0 VieX, 0<i<k (9
Bix) <0 = Biyi(x) <0

Vxe X\X,,V¥ e F(x), 0<i<k, (10)

Br(x) <0 = Bi(x) <0 Vxe X\X,, ¥x' € F(x).(11)

The next theorem shows the usefulness of IBC.
Theorem 3: Consider a discrete-time dynamical system S
as in Definition 1. If there exists an IBC B; : X — R, 0 <
i <k, for § as in Definition 5, then the system is safe.
Proof: We prove the above theorem by contradiction.
Assume system S satisfies conditions (8)-(11) but is not safe.
Then there exists a state sequence Xy, = (x(0), x(1), x(2), ...)
such that x(0) € Xy, and x(j) € X, for some j € N. From
condition (9), we have B;(x(j)) > 0 for all 0 < i < k. We
consider two cases for the value of j.
o If j < k. If j = 0, then we must have By(x(j)) < 0
following condition (8). This is a contradiction. If 0 < j <
k, then following condition (8) and via induction through
condition (10), we must have the value of B;(x(j)) < 0.
This is again a contradiction.

o If j > k, then similar to the earlier case, we have
Br(x(k)) < 0 following conditions (8) and (10). Via

condition (11), and induction, we must have By (x(j)) < 0,
which is again a contradiction. ]
Corollary 1: Consider a system S with a corresponding
IBC as in Definition 5. Any reachable state x; € X, j € N,
from initial state xy € Xy satisfies:

xje{x| Bi(x) <0 VxeX},

where i =j when 0 <j <k and i = k when j > k.

Following conditions (8) and (10), by inductive reasoning,
a state that evaluates to a nonpositive value of the barrier
certificate at the i’ step evaluates to a nonpositive value of
the barrier certificate at the (i + 1) step. It follows that 5;(x)
represents a barrier certificate that over-approximates all states
x that are reachable in i-steps from the initial states in X for all
0 < i < k. From condition (11), By(x) over-approximates all
states that are reachable in more than k-steps from the set Xj.
This interpretation of B;(x), is formally stated in Corollary 1.

Corollary 2: Consider a system S with a corresponding
IBC as in Definition 5. All reachable states x; € X of S,
Vj € N, satisfy:

k
yelJixIBiw =<0 vrex)
i=0

Corollary 2 formally states that the reachable states of the
system are contained in the union of all the zero-sublevel sets
of the IBC.

Note that by setting k = 0 in Definition 5, condition (10)
is inapplicable and conditions (8), (9) and (11) reduce to the
standard barrier certificate conditions as in Definition 4. This
is relevant for the implementation as we first start with k = 0
to find a standard barrier certificate. We then increment k by
one only if we fail, and check for satisfiability of conditions
(8)-(11). We repeat the above until we find an IBC or we reach
a maximum number k.. Any IBC found for k > 0 indicates
that a standard barrier certificate with the given template could
not be found. Also observe that once an IBC is found for a
given k € N, we guarantee that an IBC can be found for all
Jj > k. In this sense, k is the minimum integer that forms an
IBC for a given fixed template.

We now show that one can find an IBC even if a standard
barrier certificate cannot be found, based on Example 1.

Example 1(Continued): We consider a set of linear barrier
certificate functions of the parametric form B;(x) = m;x + b;
and attempt to compute coefficients m;, b; € R, with an upper
bound i < k. = 3 such that the collection of 3;(x) is an IBC
as defined in Definition 5. We utilize SOS optimization [2]
to solve conditions (8)-(11) and find the coefficients. See
Section IV for the formulation.

An IBC was found for k = 1 with By(x) = —0.143x+0.281
and B (x) = 2.539x—4.002. Figure 1 shows the IBC computed
along with the relevant initial and unsafe sets. Function By(x)
is always nonpositive for the initial states and positive for the
unsafe states as expected. Observe that the set of states that
are reachable in one step from the initial state are within the
zero level set of B (x) but not By(x).

We also note that IBCs do not automatically replace a higher
degree polynomial standard barrier certificate with a set of
linear ones in all cases. In fact, one can trivially see that
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— B0

— Bl
Initial
Unsafe

1.0 15

x(t)

2.0 2.5 3.0

Fig. 1. IBC with k = 1. The purple and orange shaded regions
represent the sublevel sets of By(x) and Bi(x) respectively. They
together over-approximate the reachable states.

— B
— B0
— B1
Initial
# Unsafe

x(t)

Fig. 2. Standard barrier certificate and IBC for system in Example 1.
The (overlapped) orange shaded regions represent the sublevel set of
B(x). The gray (overlapping green and orange) and purple (overlapping
orange) shaded regions represent the sublevel sets of By(x) and B1(x),
respectively. The green shaded region appears darker due to overlap
with other colors.

for the system in Example 1, if we modify the unsafe set
to be X, = [0.8,0.95] U [1.6,1.9], there is no combination
of linear functions to satisfy the IBC conditions. This is
because no linear function can be positive over the given
unsafe states and be nonpositive in the region [1, 1.15], the
set of states reachable in one step from the initial states Xo =
[2,2.3]. However, IBCs can allow us to find a set of lower
degree polynomials as opposed to larger degree polynomials
for barrier certificates. To better illustrate this point, we use the
following example to highlight the benefit of IBCs over merely
incrementing the degree of a standard barrier certificate. For
the same simple system given in Example 1, we keep the same
unsafe set X;, = [1.6, 1.9] and modify the state set and initial
set to be X = [0, 5] and Xo = [4, 4.6], respectively. Using
SOS, we see that the safety of the system can be verified using
a degree seven polynomial as a standard barrier certificate
and not any degree less than seven. On the other hand, we
only need two cubic polynomials in the form of IBC to verify
safety. Figure 2 shows the plot of these barrier certificates.
B(x) shows the standard barrier certificate while By(x) and
Bi(x) represent the IBC functions. The sublevel set of B(x)
as well as the union of the sublevel sets of By(x) and Bj(x)
over-approximate the reachable states of the system. In this
example, we also notice that the over-approximation obtained
from the IBC functions is tighter than that of the standard
barrier certificate. As such, IBCs could potentially remedy
the concern of increase in degree by allowing us to use a
combination of much lower degree polynomials as proof of
safety. A potential concern with IBCs is that it is not obvious

as to when to choose to increment k versus the degree of the
polynomial template for successful search results.

IV. COMPUTATION OF IBC UsING SOS

In this section, we provide a suitable computational method
using sum-of-squares (SOS) optimization [2] for synthesizing
IBC based on Definition 5. Here, we consider a single valued
transition map JF, which is a deterministic transition function
denoted by f : X — X.

When function f is polynomial and the initial set Xop and
unsafe set X, are semi-algebraic [16], conditions (8)-(11) can
be cast as a collection of SOS constraints in order to compute
a polynomial IBC of a predefined degree.

Assumption 1: The state set X is a subset of R”, and the
transition function f : X — X is a polynomial function of
the state x. Furthermore, sets X, Xo and X, are semi-algebraic
and can be described as vectors of polynomial inequalities:
X={xeR"|[gk) =0}, Xo={x € R" | gox) = 0},
and X, = {x € R" | g,(x) > 0} where the inequalities are
element-wise.

SOS handles optimization problems when the constraints
are written as conjunctions of one another. However, an IBC
as defined in Definition 5 requires the satisfaction of logical
implications (conditions (10) and (11)), which cannot be
checked using the SOS approach. Therefore, we reformulate
conditions (10) and (11) as more conservative ones that are
compatible with SOS optimization and are given by:

TiBip1(f(0) — Bi(x) =0 Vx e X\X,, 0<i<k, (12)
uBi(f(x) — Br(x) =<0 Vx € X\X,, 13)

where 7; e R}, 0 <i <k

These conservative conditions require the barrier certificate
to be nonincreasing throughout the evolution of the system by
some factor 7; while the implication-based statements require
the barrier certificate values to be below the zero level set for
all reachable states of the system.

Under Assumption 1, conditions (8), (9), (12) and (13) can
be formulated as a set of SOS constraints, as follows.

Lemma 1: Consider a discrete-time dynamical system S.
Suppose Assumption 1 holds for S and there exist constants
k € N, € € Ry, polynomials of same degree B;(x) and
SOS polynomials Ag(x), Ay i(x), Xi(x), )A»(x) of appropriate
dimensions such that:

—By(x) — A () go(x), (14)
Bi(x) — € — AL ;(x)gu(x) for all 0 <i <k, (15)
Bi(x) — tiBiv1(f(x)) — kiT(x)g(x) for all 0 <i <k, (16)
Bi(x) — ueBi(f(x) — AT (0g(x), (17)

are SOS polynomials where x is the state variable over X.

Then the set of functions B;(x), 0 < i < k, is an
IBC following Definition 5. Note that € is introduced in
condition (15) to convert the strict inequality in condition (9)
to an inclusive inequality.

Observe that our formulation can help address the issue
of computational complexity with regards to SOS as follows:
the search for traditional barrier certificates via SOS has a
complexity that is polynomial in O(("}¢) x ("1%)) [2, Th. 3.3],
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where 7 is the dimension of the system, and 2d is the degree
of the SOS polynomial. The term O(("}?) x ("1¢)) represents
the number of decision variables introduced in converting the
SOS problem to an SDP characterization. This suffers in a
polynomial fashion with respect to the degree 2d. By allowing
for lower degrees of functions to act as certificates in our
formulation, we suffer a constant additional complexity cost
(O(1)) when the number of interpolating functions is constant.
This grows linearly as we increase the value of k (if k is not
fixed, then we suffer with a complexity that is O(k), and not
polynomially in k). Thus, one may use existing techniques
and reduce the computational burden on the search for the
certificate.

V. CASE STUDY

For our case study, we consider the discrete-time Lotka-
Volterra type prey—predator model with state variables v, p
denoting the victim/prey and the predator, respectively. The
dynamics is given by the following difference equations:

{ v(t+ 1) = v(n) + Tvd(1 —v(D) = frp®). g

p(t+1) =p@®) —T(yp() — sv(p®),

where T = 0.1s is the sampling time, o = 1.1 is the growth
rate of the prey, B = 0.4 is the death rate of the prey,
y = 0.4 is the death rate of the predator, and § = 0.1
is the growth rate of the predator. The state set, initial set,
and unsafe set are given by X = [0, 10] x [0,5], Xp =
[6,7] x [2, 3], and X, = [3, 5] x [0, 3], respectively. We first
consider a degree three polynomial function in two variables
as our parametric template of the barrier certificate B(v, p)
and attempt to compute suitable coefficients such that B(v, p)
is a standard barrier certificate as in Definition 4. We used
TSSOS [17] in Julia to reformulate conditions (2)-(4) as SOS
optimization problem as described in the previous section with
€ = 1075, However, we found that no suitable coefficients
exist. Therefore, one cannot verify the safety of this system
using a standard barrier certificate.

We then reformulated conditions (8)-(11) as an SOS
optimization problem via Lemma 1. By taking kj., =
3, € = 1073 and the same parametric form as above for
Bi(v, p), we obtain the following IBC with k = 1:

Bo(v, p) = 0.13305v° + 0.168261°p — 0.11002vp>
+0.30322p> — 1.52807v* — 3.55885vp
+ 2.1532p% 4 5.77075v + 3.22429p + 5.34744
Bi(v,p) = 0.24199v° + 0.22602v%p 4 0.14704vp?

+0.1285p° +2.99671v* — 0.13358vp
—0.5105p — 6.71922v + 1.58361p — 12.69347

Figure 3 shows the union of the zero-sublevel sets of the IBC.
These do not include the set of unsafe states.

VI. CONCLUSION

We proposed a notion of interpolation-inspired barrier
certificate (IBC) for discrete-time systems, which relax the
conditions of a standard barrier certificate by incrementally
finding functions that together guarantee safety. We presented
SOS optimization as a technique of computing IBC under
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Fig. 3. IBC sublevel sets for Lotka-Volterra type model. The axes show
the state variables v and p. The blue and purple shaded regions show
the sublevel sets of By(v,p) and B (v,p) respectively.

some assumptions. Using an example and a case study, we
demonstrated that given a barrier certificate template, one
may find IBC even when standard barrier certificates do
not exist for a system. Given that SOS-based approaches
are not computationally tractable for systems with larger
dimensions, we hope that the potential to find multiple low
degree polynomials via IBC will alleviate these concerns. As
future work, we plan to extend this letter for stochastic systems
and explore how to extend IC3 for barrier certificates. We also
plan to explore the use of IBCs in controller synthesis.
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