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Abstract—Barrier certificates provide an effective auto-
mated approach to verifying the safety of dynamical
systems. A barrier certificate is a real-valued function over
states of the system whose zero level set separates the
unsafe region from all possible trajectories starting from a
given set of initial states. Typically, the system dynamics
must be nonincreasing in the value of the barrier certificate
with each transition. Thus, the states of the system that
are nonpositive with respect to the barrier certificate act as
an over-approximation of the reachable states. The search
for such certificates is typically automated by first fixing
a template of functions and then using optimization and
satisfiability modulo theory (SMT) solvers to find them.
Unfortunately, it may not be possible to find a single
function in this fixed template. To tackle this challenge,
we propose the notion of interpolation-inspired barrier
certificate. Instead of a single function, an interpolation-
inspired barrier certificate consists of a set of functions
such that the union of their sublevel sets over-approximate
the reachable set of states. We show how one may find
interpolation-inspired barrier certificates of a fixed tem-
plate, even when we fail to find standard barrier certificates
of the same template. We present sum-of-squares (SOS)
programming as a computational method to find this set
of functions and demonstrate effectiveness of this method
over a case study.

Index Terms—Hybrid systems, barrier certificates, inter-
polation, safety.

I. INTRODUCTION

T
HE NOTION of barrier certificate [1] is a prominent

approach used to verify the safety of dynamical systems.

A barrier certificate is a real valued function that is nonpositive

over the initial states, positive over the unsafe states, and

typically nonincreasing as a system evolves. Thus, such a

certificate acts as an inductive proof of safety. The search

for barrier certificates is effectively automated through the

use of optimization [1], [2] or SMT-based [3] approaches.
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These approaches typically rely on first fixing a template

and then make use of the above approaches to search for

an appropriate function in this template. Unfortunately one is

forced to consider a different template when one is unable

to find such a certificate. Inspired by the success of (logical)

interpolation [4] in software and hardware system verification,

instead of changing the template, we consider a notion of

interpolation-inspired barrier certificates. We show how one

may find such certificates in a similar fashion to standard

barrier certificates, and allow for larger classes of functions to

act as proofs of safety.

The problem of safety verification problem aims to provide

a rigorous guarantee that all of the system trajectories start-

ing from some initial states avoid visiting unsafe states. A

prominent method for safety verification of digital hardware

and software systems, is based on inductive invariants [5].

An inductive invariant is any property that is i) true over the

initial set of states, and ii) true over the next state if it is

true in the current state. Thus, any inductive invariant is true

over all the reachable states of the system via an inductive

argument. Ensuring that such a property is not true over the

unsafe states thus provides an effective automated approach

to safety. Unfortunately, one may not find a single property

of interest to be inductive. Thus, a common approach in the

verification of these systems is to incrementally strengthen the

property as a conjunction of other properties. One method to

adopt such an incremental strengthening approach is that of

interpolation-based model checking [4].

In the context of dynamical systems, barrier certificates

proposed by [1] act as functional analogs of inductive invari-

ants. Typical approaches to find barrier certificates assume

the presence of a single inductive invariant that holds with

every single transition step and the barrier certificate value

to be nonincreasing with each transition step. Thus, in cases

where those conditions are not met, one cannot prove or

disprove the system’s safety. This letter utilizes ideas inspired

by interpolation to find multiple functions that together act as

a guarantee of safety via an incremental approach for discrete-

time dynamical systems.

Related Work: The use of inductive invariants and incremen-

tal inductive proofs for safety for finite state-transition systems

has been quite influential [6], [7], [8]. Interpolation [4] and

its extension via IC3 [9] are two major algorithms used in

incremental proofs. Such proofs first start with a property

to prove, and then try to incrementally constrain it, till
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an inductive proof is obtained. In the context of bounded

model checking, interpolation unrolls the transition function

some k times and finds intermediate interpolants until an

inductive invariant formula is found. IC3 uses frames and

counterexamples to build incremental formulae one step at a

time until an inductive invariant is found.

The authors of [10] consider multiple unsafe regions and

design multiple barrier certificates corresponding to each

unsafe region using the standard formulation. Thus their work

presumes that a standard barrier certificate can always be

found for a single unsafe region. However, our approach is

a less restrictive alternative to the standard barrier certificate

formulation. Our approach differs from [11] as follows. They

introduce vector barrier certificates, which are a set of func-

tions, where the condition for the initial states is imposed

over all the functions and the condition for the unsafe states

is imposed over at least one of the functions. Our proposed

method imposes the condition for the initial states only over

the first function and the condition for the unsafe states

over all the functions. Moreover, their formulation enforces

the nonincreasing condition by relating a single function to

multiple other functions in the vector via a Metzler matrix,

whereas our approach enforces the same condition only using

one of the functions. We also describe how the functions we

compute characterize the reachable set of a dynamic system

(See Section III-B for more details). Thus, their formulation

is not directly comparable to us except through the fact that

they also use multiple functions.

An alternative approach to finding more permissive con-

ditions for barrier certificates has been addressed via the

use of k-induction in [12]. They considered two notions of

k-inductive barrier certificates that both introduced k and few

other hyperparameters as part of their formulations. Setting the

values of these hyperparameters is not quite straightforward.

In this letter, we have only one hyperparameter k that we

increment from 0. More fundamentally, they search for a single

function using more relaxed conditions. First, they require that

the value of the barrier certificate is nonpositive for k-steps

starting from the initial set of states. Second, they require a

state to have a nonpositive barrier certificate value after k-steps

if the previous k states did so. We calculate multiple functions

with the standard nonincrease requirement in the value of the

barrier certificate. As such, it could be possible to come across

systems where only one of these approaches works. A trivial

solution will be to combine the ideas to form a more general

notion of barrier certificates.

Organization: Section II discusses preliminary concepts cru-

cial for this letter. The main inspiration and theoretical results

are explained in Section III along with an implementation

method in Section IV. We discuss a case study showing the

efficacy of our results in Section V.

II. PRELIMINARIES

A. Notation

The sets of nonnegative and positive integers are denoted by

N := {0, 1, 2, . . .} and N+ := {1, 2, 3, . . .}, respectively. The

sets of real numbers and positive real numbers are denoted by

symbols R and R+, respectively. The n-dimensional Euclidean

space is denoted by R
n.

Given a collection of sets Xi, i = {0, 1, . . . , N}, we use
⋃N

i=0 Xi to denote the union of the sets Xi. Given two sets

X and Y , we use X\Y for set difference to denote the set of

elements in X excluding all the elements of Y (i.e., X\Y =
{x:x ∈ X and x /∈ Y}).

For two sets X and Y , a set-valued function map F :X ⇒ Y is

a mapping of elements from X to subsets of Y . For a function

map F : X ⇒ X and k ∈ N, Fk denotes the self-composition

of F k-times (i.e., given x ∈ X, Fk(x) =
⋃

x′∈F(x)

{x′′ | x′′ ∈

Fk−1(x′)} with F0(x) = identity).

We use ∀ and ∃ to denote the universal and existential

quantifiers, respectively. We use logical operators ', (, ¬
and =⇒ for conjunction (logical AND), disjunction (logical

OR), negation (logical NOT) and implication, respectively.

B. Discrete-Time Dynamical Systems

In this letter, we model the systems as discrete-time

dynamical systems defined next.

Definition 1: A discrete-time dynamical system is given by

the tuple:

S = (X, X0,F), (1)

over the state set X, set of initial states X0 ⊆ X, and F :X ⇒ X

is a set-valued transition map that describes the evolution of

the states of the system. That is, for x(t), the state of the system

at time step t ∈ N, the state of the system in the next time

step is given by:

x(t + 1) ∈ F(x(t)), ∀x(t) ∈ X.

We use xx0
= (x(0), x(1), x(2), . . .) to denote the state

sequence of the system S starting from the initial state x(0) =
x0 ∈ X0.

Now we define reachable states of discrete-time systems.

Definition 2 (Reachability): We say a state x(t1) of a system

S is reachable from the state x(t0) if there exists a state

sequence xx(t0) which contains x(t1). That is, x(t1) ∈ F i(x(t0)),

for some i ∈ N.

Now we define safety for discrete-time systems.

Definition 3 (Safety): We say that a system S given in

Definition 1 is safe with respect to a set of initial states X0 ⊆
X and a set of unsafe states Xu ⊆ X if no state sequence

starting from X0 reaches Xu. That is for any state sequence

xx0
= (x(0), x(1), . . .) where x(0) ∈ X0, we have x(i) /∈ Xu for

all i ∈ N.

C. Inductive Invariants

We now describe inductive invariants as discussed in [8].

Consider a finite-state system, where the state set is a set of

logical values while the initial set of states and transition map

are described by propositional logical formula. That is, X ⊆
{0, 1}n, X0 = {x | I(x) = 1}, F(x) = {x′ | T(x, x′) = 1} where

the formula I(x) is the initial condition over the system’s states

x, and T(x, x′) is the transition relation from the current state

x to the next state x′.

In order to determine whether such a system is safe, we

look at the safety property expressed by a logical formula

P(x) described over the state variable x ∈ X. We say that

such a system satisfies a safety property if, for every reachable
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state x ∈ X from the initial set, we have P(x) to be true

(i.e., P(x) = 1). A prominent and effective approach to prove

safety is through the use of inductive invariants. We say that

a formula K is an inductive invariant, if:

• ∀x ∈ X, we have I(x) =⇒ K(x).

• ∀x, x′ ∈ X, we have K(x) ' T(x, x′) =⇒ K(x′).

Note that any reachable state x satisfies an inductive invari-

ant formula K. Thus, showing that a safety property P is an

inductive invariant acts as a proof of safety. When we fail to

prove P to be an inductive invariant (that is I(x) �=⇒ P(x)

and/or P(x)'T(x, x′) �=⇒ P(x′)), we try to strengthen P. We

say that P∗ is an inductive strengthening of a safety property

P if there exists a formula F such that P∗ = F ' P is

inductive. In [13], two strengthening strategies are discussed:

i) using a stronger property, or ii) conducting an incremental

proof using previously computed formulae. Interpolation [4]

is one of these incremental techniques used in the inductive

strengthening process and will be discussed broadly in the next

section.

D. Barrier Certificates

For safety verification of a system S as in Definition 1, we

now discuss the notion of barrier certificates [1] that provide

sufficient conditions for safety.

Definition 4 (Barrier Certificate): A function B : X → R

is a barrier certificate for a system S if:

B(x) f 0 ∀x ∈ X0, (2)

B(x) > 0 ∀x ∈ Xu, and (3)

B(x) f 0 =⇒ B
(

x′
)

f 0 ∀x ∈ X\Xu, ∀x′ ∈ F(x). (4)

The next result borrowed from [1] shows the usefulness of

barrier certificates in verifying safety.

Theorem 1: Consider a dynamical system S . If there exists

a function B : X → R for S such that it is a barrier certificate

as in Definition 4, then the system is safe.

Observe that the level set B(x) = 0 acts as the barrier that

prevents the system from reaching the unsafe set of states.

That is, starting from any state x ∈ X, where B(x) f 0, the

system cannot reach a state x̄ ∈ X, where B(x̄) > 0.

Note that the above condition is an inductive invariant for

system S where P(x) = (B(x) f 0). For any x0 ∈ X0,

P(x0) = 1 from condition (2). Now, consider states x, x′ ∈ X

such that x′ ∈ F(x), and suppose that P(x) = 1. Following

condition (4), P(x′) = 1. Thus, the two conditions jointly

guarantee that the safety property is satisfied for any reachable

state x in the state set starting from the initial set.

The search for barrier certificates has been primarily per-

formed by fixing a template. By fixing the template, one

considers the barrier certificate to be a linear combination of

some fixed basis functions. For example, if it is a polynomial

of a fixed degree, then we consider the basis functions to

be monomials and aim to find the coefficients corresponding

to each basis function. Search techniques, such as Sum-

of-Squares (SOS) programming [2] or Satisfiability Modulo

Theory (SMT) solvers [3], can be employed to search for these

coefficients satisfying conditions (2)-(4). Unfortunately, if no

barrier certificate is found, a common approach is to change

the template (e.g., increase the degree of the polynomial).

Such changes typically make verifying (or searching) for

barrier certificates computationally demanding and may lead

to inconclusive results as shown below.

Example 1: Consider a one-dimensional system

S : x(t + 1) = 0.5x(t). (5)

The state set, initial, and unsafe sets are given by X = [0, 3],

X0 = [2, 2.3], and Xu = [1.6, 1.9], respectively. We consider a

linear barrier certificate of the parametric form B(x) = mx+b

and attempt to compute coefficients m, b ∈ R. We require

B(2) = 2m + b f 0 from condition (2), and furthermore, we

need to ensure that B(1.9) = 1.9m+b > 0 from condition (3).

From condition (4), B(2) f 0 =⇒ B(1) = m + b f 0.

However, b f −2m, b > −1.9m, b f −m cannot all

be satisfied simultaneously so there exists no standard linear

barrier certificate.

In the next section, we discuss the idea of (logical) interpola-

tion [4], [8], to define a notion of interpolation-inspired barrier

certificates. The conditions for these are more permissive as

illustrated through Example 1 later.

III. INTERPOLATION AND SAFETY

A. Interpolation

The concept of logical interpolation plays a key role in

developing algorithms for bounded model checking (BMC).

BMC is a technique that aims to find bugs in hardware and

software systems by falsifying safety properties [14]. Consider

finite systems as described in Section II-C. In BMC, we

unroll the transition relation some k ∈ N times until we

reach an unsafe state and construct a formula representing all

possible execution paths from an initial state to the unsafe state

(assuming that all states before the kth step are safe). Let’s

say xi is the state after the ith transition. Then the sequence of

states for this unrolling is given by:

I(x0) ' T(x0, x1) ' . . . ' T(xk−1, xk) ' ¬P(xk), (6)

where logical formula P(x) describes a safety property.

For k = 0, the formula reduces down to I(x0) ' ¬P(x0). If

formula (6) is satisfied, then the system is unsafe. Otherwise,

one may use interpolation to try to prove safety by finding

an intermediate logical formula or a series of formulae

called interpolants via Craig’s interpolation theorem [4] as

follows.

Theorem 2 (Craig’s Interpolation Theorem): Given a pair

of clauses (a disjunction of boolean variables or their negation)

E and G such that E ' G is unsatisfiable, then there exists an

intermediate interpolant clause F such that:

• E =⇒ F,

• F ' G is unsatisfiable, and

• F refers to the common variables of E and G.

The proof of Theorem 2 can be found in [15].

Based on this theorem, when formula (6) is unsatisfiable,

there exists intermediate formulae Fi such that formula (6) can

be broken down as follows:

I(x0)
︸︷︷︸

E0(x0)

' T(x0, x1) ' . . . ' T(xk−1, xk) ' ¬P(xk)
︸ ︷︷ ︸

G0(x0,x1...,xk)

is unsatisfiable.
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We can then iteratively separate G0 as follows:
⎧

⎪
⎪
⎪
⎪
⎪
«

⎪
⎪
⎪
⎪
⎪
¬

I(x0) =⇒ F0(x0)

F0(x0) ' T(x0, x1) =⇒ F1(x1)
...

Fk−1(xk−1) ' T(xk−1, xk) =⇒ Fk(xk), and

Fk(xk) ' ¬P(xk) is unsatisfiable.

(7)

Informally, condition (7) can be thought of as a way

of representing the over-approximation of reachable sets.

That is, the set of xi ∈ X where the formula Fi(xi)

is true is an over-approximation of states reachable in

i steps and states satisfying Fi(xi) will not violate the

safety property after (k − i) transitions. To get the inter-

polants, as shown in [8], [9], we start with k = 0

and iteratively (incrementally) compute a sequence of

interpolants F0(x0) = I(x0), F1(x1), . . . , Fk(xk) by setting

E(xi, xi+1) = F(xi) ' T(xi, xi+1) and G(xi+1, . . . , xk) =
T(xi+1, xi+2) . . . T(xk−1, xk)'¬P(xk) according to Theorem 2.

This iterative process is stopped when the union of the initial

formula and previous interpolants grows to a fixed point (when

all reachable states are contained in that union).

Unfortunately, such a fixed point is not guaranteed for

infinite state systems. Next, we consider a notion of barrier

certificates inspired by the above BMC paradigm that com-

bines interpolation with that of inductive invariants. Such a

combination takes inspiration from [4], [8].

B. Interpolation-Inspired Barrier Certificate (IBC)

Here we introduce a notion of interpolation-inspired barrier

certificates (IBC) and demonstrate their efficacy.

Definition 5: Consider a discrete-time dynamical system S

as in Definition 1. A set of functions Bi : X → R, for all

0 f i f k, is an IBC for S if the following hold:

B0(x) f 0 ∀x ∈ X0, (8)

Bi(x) > 0 ∀x ∈ Xu, 0 f i f k, (9)

Bi(x) f 0 =⇒ Bi+1

(

x′
)

f 0

∀x ∈ X\Xu,∀x′ ∈ F(x), 0 f i < k, (10)

Bk(x) f 0 =⇒ Bk

(

x′
)

f 0 ∀x ∈ X\Xu,∀x′ ∈ F(x).(11)

The next theorem shows the usefulness of IBC.

Theorem 3: Consider a discrete-time dynamical system S

as in Definition 1. If there exists an IBC Bi : X → R, 0 f
i f k, for S as in Definition 5, then the system is safe.

Proof: We prove the above theorem by contradiction.

Assume system S satisfies conditions (8)-(11) but is not safe.

Then there exists a state sequence xx0
= (x(0), x(1), x(2), . . .)

such that x(0) ∈ X0, and x(j) ∈ Xu for some j ∈ N. From

condition (9), we have Bi(x(j)) > 0 for all 0 f i f k. We

consider two cases for the value of j.

• If j < k. If j = 0, then we must have B0(x(j)) f 0

following condition (8). This is a contradiction. If 0 < j <

k, then following condition (8) and via induction through

condition (10), we must have the value of Bj(x(j)) f 0.

This is again a contradiction.

• If j g k, then similar to the earlier case, we have

Bk(x(k)) f 0 following conditions (8) and (10). Via

condition (11), and induction, we must have Bk(x(j)) f 0,

which is again a contradiction. �

Corollary 1: Consider a system S with a corresponding

IBC as in Definition 5. Any reachable state xj ∈ X, j ∈ N,

from initial state x0 ∈ X0 satisfies:

xj ∈ {x | Bi(x) f 0 ∀x ∈ X},

where i = j when 0 f j f k and i = k when j > k.

Following conditions (8) and (10), by inductive reasoning,

a state that evaluates to a nonpositive value of the barrier

certificate at the ith step evaluates to a nonpositive value of

the barrier certificate at the (i + 1)th step. It follows that Bi(x)

represents a barrier certificate that over-approximates all states

x that are reachable in i-steps from the initial states in X0 for all

0 f i f k. From condition (11), Bk(x) over-approximates all

states that are reachable in more than k-steps from the set X0.

This interpretation of Bi(x), is formally stated in Corollary 1.

Corollary 2: Consider a system S with a corresponding

IBC as in Definition 5. All reachable states xj ∈ X of S ,

∀j ∈ N, satisfy:

xj ∈

k
⋃

i=0

{x | Bi(x) f 0 ∀x ∈ X}.

Corollary 2 formally states that the reachable states of the

system are contained in the union of all the zero-sublevel sets

of the IBC.

Note that by setting k = 0 in Definition 5, condition (10)

is inapplicable and conditions (8), (9) and (11) reduce to the

standard barrier certificate conditions as in Definition 4. This

is relevant for the implementation as we first start with k = 0

to find a standard barrier certificate. We then increment k by

one only if we fail, and check for satisfiability of conditions

(8)-(11). We repeat the above until we find an IBC or we reach

a maximum number kmax. Any IBC found for k > 0 indicates

that a standard barrier certificate with the given template could

not be found. Also observe that once an IBC is found for a

given k ∈ N, we guarantee that an IBC can be found for all

j > k. In this sense, k is the minimum integer that forms an

IBC for a given fixed template.

We now show that one can find an IBC even if a standard

barrier certificate cannot be found, based on Example 1.

Example 1(Continued): We consider a set of linear barrier

certificate functions of the parametric form Bi(x) = mix + bi

and attempt to compute coefficients mi, bi ∈ R, with an upper

bound i f kmax = 3 such that the collection of Bi(x) is an IBC

as defined in Definition 5. We utilize SOS optimization [2]

to solve conditions (8)-(11) and find the coefficients. See

Section IV for the formulation.

An IBC was found for k = 1 with B0(x) = −0.143x+0.281

and B1(x) = 2.539x−4.002. Figure 1 shows the IBC computed

along with the relevant initial and unsafe sets. Function B0(x)

is always nonpositive for the initial states and positive for the

unsafe states as expected. Observe that the set of states that

are reachable in one step from the initial state are within the

zero level set of B1(x) but not B0(x).

We also note that IBCs do not automatically replace a higher

degree polynomial standard barrier certificate with a set of

linear ones in all cases. In fact, one can trivially see that
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Fig. 1. IBC with k = 1. The purple and orange shaded regions
represent the sublevel sets of B0(x) and B1(x) respectively. They
together over-approximate the reachable states.

Fig. 2. Standard barrier certificate and IBC for system in Example 1.
The (overlapped) orange shaded regions represent the sublevel set of
B(x). The gray (overlapping green and orange) and purple (overlapping
orange) shaded regions represent the sublevel sets of B0(x) and B1(x),
respectively. The green shaded region appears darker due to overlap
with other colors.

for the system in Example 1, if we modify the unsafe set

to be Xu = [0.8, 0.95] ∪ [1.6, 1.9], there is no combination

of linear functions to satisfy the IBC conditions. This is

because no linear function can be positive over the given

unsafe states and be nonpositive in the region [1, 1.15], the

set of states reachable in one step from the initial states X0 =
[2, 2.3]. However, IBCs can allow us to find a set of lower

degree polynomials as opposed to larger degree polynomials

for barrier certificates. To better illustrate this point, we use the

following example to highlight the benefit of IBCs over merely

incrementing the degree of a standard barrier certificate. For

the same simple system given in Example 1, we keep the same

unsafe set Xu = [1.6, 1.9] and modify the state set and initial

set to be X = [0, 5] and X0 = [4, 4.6], respectively. Using

SOS, we see that the safety of the system can be verified using

a degree seven polynomial as a standard barrier certificate

and not any degree less than seven. On the other hand, we

only need two cubic polynomials in the form of IBC to verify

safety. Figure 2 shows the plot of these barrier certificates.

B(x) shows the standard barrier certificate while B0(x) and

B1(x) represent the IBC functions. The sublevel set of B(x)

as well as the union of the sublevel sets of B0(x) and B1(x)

over-approximate the reachable states of the system. In this

example, we also notice that the over-approximation obtained

from the IBC functions is tighter than that of the standard

barrier certificate. As such, IBCs could potentially remedy

the concern of increase in degree by allowing us to use a

combination of much lower degree polynomials as proof of

safety. A potential concern with IBCs is that it is not obvious

as to when to choose to increment k versus the degree of the

polynomial template for successful search results.

IV. COMPUTATION OF IBC USING SOS

In this section, we provide a suitable computational method

using sum-of-squares (SOS) optimization [2] for synthesizing

IBC based on Definition 5. Here, we consider a single valued

transition map F , which is a deterministic transition function

denoted by f : X → X.

When function f is polynomial and the initial set X0 and

unsafe set Xu are semi-algebraic [16], conditions (8)-(11) can

be cast as a collection of SOS constraints in order to compute

a polynomial IBC of a predefined degree.

Assumption 1: The state set X is a subset of R
n, and the

transition function f : X → X is a polynomial function of

the state x. Furthermore, sets X, X0 and Xu are semi-algebraic

and can be described as vectors of polynomial inequalities:

X = {x ∈ R
n | g(x) g 0}, X0 = {x ∈ R

n | g0(x) g 0},
and Xu = {x ∈ R

n | gu(x) g 0} where the inequalities are

element-wise.

SOS handles optimization problems when the constraints

are written as conjunctions of one another. However, an IBC

as defined in Definition 5 requires the satisfaction of logical

implications (conditions (10) and (11)), which cannot be

checked using the SOS approach. Therefore, we reformulate

conditions (10) and (11) as more conservative ones that are

compatible with SOS optimization and are given by:

τiBi+1(f (x)) − Bi(x) f 0 ∀x ∈ X\Xu, 0 f i < k, (12)

τkBk(f (x)) − Bk(x) f 0 ∀x ∈ X\Xu, (13)

where τi ∈ R+, 0 f i f k.

These conservative conditions require the barrier certificate

to be nonincreasing throughout the evolution of the system by

some factor τi while the implication-based statements require

the barrier certificate values to be below the zero level set for

all reachable states of the system.

Under Assumption 1, conditions (8), (9), (12) and (13) can

be formulated as a set of SOS constraints, as follows.

Lemma 1: Consider a discrete-time dynamical system S .

Suppose Assumption 1 holds for S and there exist constants

k ∈ N, ε ∈ R+, polynomials of same degree Bi(x) and

SOS polynomials λ0(x), λu,i(x), λi(x), λ̂(x) of appropriate

dimensions such that:

−B0(x) − λT
0 (x)g0(x), (14)

Bi(x) − ε − λT
u,i(x)gu(x) for all 0 f i f k, (15)

Bi(x) − τiBi+1(f (x)) − λT
i (x)g(x) for all 0 f i < k, (16)

Bk(x) − τkBk(f (x)) − λ̂T(x)g(x), (17)

are SOS polynomials where x is the state variable over X.

Then the set of functions Bi(x), 0 f i f k, is an

IBC following Definition 5. Note that ε is introduced in

condition (15) to convert the strict inequality in condition (9)

to an inclusive inequality.

Observe that our formulation can help address the issue

of computational complexity with regards to SOS as follows:

the search for traditional barrier certificates via SOS has a

complexity that is polynomial in O(
(

n+d
d

)

×
(

n+d
d

)

) [2, Th. 3.3],
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where n is the dimension of the system, and 2d is the degree

of the SOS polynomial. The term O(
(

n+d
d

)

×
(

n+d
d

)

) represents

the number of decision variables introduced in converting the

SOS problem to an SDP characterization. This suffers in a

polynomial fashion with respect to the degree 2d. By allowing

for lower degrees of functions to act as certificates in our

formulation, we suffer a constant additional complexity cost

(O(1)) when the number of interpolating functions is constant.

This grows linearly as we increase the value of k (if k is not

fixed, then we suffer with a complexity that is O(k), and not

polynomially in k). Thus, one may use existing techniques

and reduce the computational burden on the search for the

certificate.

V. CASE STUDY

For our case study, we consider the discrete-time Lotka-

Volterra type prey–predator model with state variables v, p

denoting the victim/prey and the predator, respectively. The

dynamics is given by the following difference equations:
{

v(t + 1) = v(t) + T(³v(t)(1 − v(t)) − ´v(t)p(t)),

p(t + 1) = p(t) − T(µ p(t) − ¶v(t)p(t)),
(18)

where T = 0.1s is the sampling time, ³ = 1.1 is the growth

rate of the prey, ´ = 0.4 is the death rate of the prey,

µ = 0.4 is the death rate of the predator, and ¶ = 0.1

is the growth rate of the predator. The state set, initial set,

and unsafe set are given by X = [0, 10] × [0, 5], X0 =
[6, 7] × [2, 3], and Xu = [3, 5] × [0, 3], respectively. We first

consider a degree three polynomial function in two variables

as our parametric template of the barrier certificate B(v, p)

and attempt to compute suitable coefficients such that B(v, p)

is a standard barrier certificate as in Definition 4. We used

TSSOS [17] in Julia to reformulate conditions (2)-(4) as SOS

optimization problem as described in the previous section with

ε = 10−5. However, we found that no suitable coefficients

exist. Therefore, one cannot verify the safety of this system

using a standard barrier certificate.

We then reformulated conditions (8)-(11) as an SOS

optimization problem via Lemma 1. By taking kmax =
3, ε = 10−5 and the same parametric form as above for

Bi(v, p), we obtain the following IBC with k = 1:

B0(v, p) = 0.13305v3 + 0.16826v2p − 0.11002vp2

+ 0.30322p3 − 1.52807v2 − 3.55885vp

+ 2.1532p2 + 5.77075v + 3.22429p + 5.34744

B1(v, p) = 0.24199v3 + 0.22602v2p + 0.14704vp2

+ 0.1285p3 + 2.99671v2 − 0.13358vp

− 0.5105p2 − 6.71922v + 1.58361p − 12.69347

Figure 3 shows the union of the zero-sublevel sets of the IBC.

These do not include the set of unsafe states.

VI. CONCLUSION

We proposed a notion of interpolation-inspired barrier

certificate (IBC) for discrete-time systems, which relax the

conditions of a standard barrier certificate by incrementally

finding functions that together guarantee safety. We presented

SOS optimization as a technique of computing IBC under

Fig. 3. IBC sublevel sets for Lotka-Volterra type model. The axes show
the state variables v and p. The blue and purple shaded regions show
the sublevel sets of B0(v ,p) and B1(v ,p) respectively.

some assumptions. Using an example and a case study, we

demonstrated that given a barrier certificate template, one

may find IBC even when standard barrier certificates do

not exist for a system. Given that SOS-based approaches

are not computationally tractable for systems with larger

dimensions, we hope that the potential to find multiple low

degree polynomials via IBC will alleviate these concerns. As

future work, we plan to extend this letter for stochastic systems

and explore how to extend IC3 for barrier certificates. We also

plan to explore the use of IBCs in controller synthesis.
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