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Abstract—This letter addresses the problem of syn-
thesizing controllers that enforce properties expressed
by Universal Co-Büchi Automata (UCA) over stochastic
control systems. Our approach introduces a notion of
Stochastic Co-Büchi Control Barrier Certificates (SCBC),
which, together with their associated controllers, ensure
that specific regions in the state set are visited only a
limited number of times during the system’s evolution. The
SCBC is formulated over a hybrid domain that combines
the system’s state, the UCA’s state, and a counter variable
that tracks the number of visits to the UCA’s accepting
states. We require the SCBC to satisfy a supermartingale
condition, thereby, enforcing the property expressed by
the UCA on the stochastic control system without any
restriction over the time horizon. Additionally, we propose
a method for constructing SCBCs and corresponding con-
trollers that guarantee the enforcement of UCA properties
over stochastic control systems with formal probabilistic
guarantee. The practical applicability of our approach is
demonstrated through a case study involving a stochastic
three-tank system, whose dynamics is both nonlinear and
influenced by noise.

Index Terms—Stochastic systems, stochastic co-Büchi
barrier certificates, universal co-Büchi automata.

I. INTRODUCTION

I
N RECENT years, formal methods have emerged as

essential tools in the autonomous and hybrid systems

community. They have been offering rigorous frameworks

for analyzing complex dynamical systems, often modeled as

stochastic processes. These processes are integral to a wide

range of applications in science and engineering. They are

used to model dynamical systems influenced by stochastic

disturbances, where ensuring their correctness is paramount,

particularly in safety-critical applications. However, achieving

formal guarantees of correctness in such systems presents a

significant challenge, especially for processes with continuous

state sets. The requirement of interest for these systems is

often specified through temporal logic specifications, which

are best described using linear temporal logic (LTL) formulae
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or, more broadly, ω-regular properties [1], and automata-based

languages [2].

In the past decade, numerous results have been proposed

using abstraction-based methods for synthesizing correct-

by-construction controllers for stochastic and non-stochastic

control systems [3]. Notable examples of such efforts include

the results presented in [4], [5], [6], [7], [8], [9], and references

therein. However, these techniques depend on discretizing the

state and input sets, which leads to the curse of dimensionality,

i.e., the computational complexity grows exponentially with

the system’s dimension.

The use of barrier certificates [10] offers an alternative

method for formal verification and controller synthesis of

(stochastic) dynamical systems, one that does not rely on

discretization. Barrier certificates, similar to Lyapunov func-

tions, use level sets to distinguish between unsafe regions

and the reachable states of the system starting from a given

initial set. The existence of such a certificate provides a

(probabilistic) safety guarantee for the system. In the context

of automata-theoretic verification, the central challenge is

to determine whether a set of states can be visited only

a finite number of times. This issue can be addressed by

establishing a safety-like condition that ensures the number

of times the system can visit a specific region is bounded by

a fixed hyperparameter. Recent results, as discussed in [11],

build on bounded synthesis methods [12], [13], [14], [15]

and introduce an abstraction-free technique for automata-

theoretic verification of discrete-time non-stochastic dynamical

systems. This method introduces notions of co-Büchi barrier

certificates, which offer sufficient conditions to verify systems

against ω-regular properties defined by universal co-Büchi

automata (UCA). For a detailed explanation of the differences

between traditional barrier certificates and co-Büchi barrier

certificates, we refer the interested readers to [11].

Contributions: In this letter, we introduce an abstraction-

free approach for automata-theoretic controller synthesis of

discrete-time stochastic control systems with finite input sets.

This method is centered on a notion of Stochastic Co-Büchi

Barrier Certificates (SCBC). An SCBC is a real-valued func-

tion defined over the product of a stochastic control system and

a deterministic UCA, with conditions that ensure the UCA’s

accepting states are visited only a finite number of times.

The certificate includes a counter that tracks how often an

accepting state is reached. We propose a method for construct-

ing SCBCs, inspired by the counterexample-guided inductive
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synthesis (CEGIS) approach, and we use satisfiability modulo

theories (SMT) solvers to identify a suitable SCBC candi-

date. Once identified, the system can be rendered to satisfy

properties expressed by UCA with particular probability lower

bounds. We then use the SCBC to synthesize controllers that

ensure a stochastic control system visits the accepting states

of the UCA only a finite number of times. The effectiveness

of our approach is demonstrated using a stochastic three-tank

system.

Related Work: In recent years, considerable attentions have

been directed towards the formal analysis of stochastic control

systems with respect to ω-regular properties using abstraction-

free approaches. The results in [16], [17], [18], [19] focus on

verifying systems with continuous state sets against automata

specifications. A common aspect of these works is their use of

barrier certificates to divide the automaton into state triplets,

and can be used for the verification of systems whose traces

do not reach the automaton’s accepting state at all (similar to

safety verification) [11]. In contrast, our approach provides a

systematic method for synthesizing controllers ensuring that

the traces of stochastic control systems visit the accepting

states of deterministic UCAs a finite number of times with

some probability lower bounds.

A very recent work in [20] tackled the verification and

synthesis of controllers of stochastic models with respect

to the properties expressed by Streett automata, leveraging

the so-called Streett supermartingales. Our work differenti-

ates itself from theirs in two key aspects. First, while [20]

guarantees almost sure satisfaction, our approach provides a

probabilistic guarantee for satisfaction of properties expressed

by deterministic UCA. Achieving an almost sure guarantee

is challenging for most stochastic models unless there is a

bounded support assumption on the noise or existence of

absorbing sets. Secondly, the Streett martingales formulation

in [20] involves a notion of Post(·) function that integrates

the Streett supermartingales over a probability distribution.

In contrast, our approach uses the expectation of the SCBC,

which is generally much more straightforward to compute.

Our method systematically synthesizes controllers that

enforce deterministic UCA properties over nonlinear discrete-

time stochastic control systems, differing from the approach

in [21], [22], [23], which synthesize controllers that enforce

similar properties over non-stochastic control systems.

Moreover, while the work in [11], [24], [25] focuses on

verification of non-stochastic dynamical systems using barrier

certificates, our approach is tailored to constructing SCBCs

and synthesizing controllers that enforce deterministic UCA

properties over stochastic control systems.

Organization: The remainder of this letter is structured as

follows. Section II provides the required notation and notion

of so-called ζ -Universal co-Büchi automata (ζ − UCA), with

a formal definition of discrete-time stochastic control systems

(dt-SCS), and the main problem studied. In Section III, we

formalize the notions of SCBCs and their corresponding

controllers. The section also describes a proposed method

for constructing SCBCs. Our approach is illustrated over a

nonlinear stochastic control system in Section IV. We conclude

this letter with brief discussion in Section V.

II. PRELIMINARIES AND DEFINITIONS

A. Notation

The symbols ∪, ∩ and \ represent, respectively, the union,

the intersection and the difference of sets. Notations Z, R≥0

and R denote the sets of integers, non-negative real and real

numbers, respectively. For any n ∈ Z, Z≥n = {i ∈ Z | i ≥ n}.
For integers s, t ∈ Z where s < t, the intervals [s; t] and

(s; t) represent, respectively, the closed and open intervals in Z.

Similarly, for reals s, t ∈ R where s < t, the intervals [s, t] and

(s, t) represent the corresponding closed and open intervals in

R. For any nonempty set Q, Cd(Q) indicates the cardinality of

Q, while Qω denotes the set of infinite sequences derived from

Q, formally expressed as Qω := {〈wi〉∞i=0 | wi ∈ Q ∀i ∈ Z≥0}.
In a given probability space (G,B(G),PG), G refers to

the sample space, B(G) is a σ -algebra on G containing

subsets of events, and PG is the probability measure that

assigns probabilities to these events. We treat random vari-

ables as measurable functions (i.e., Borel measurable) of the

form � : (G,B(G)) → (S� ,B(�)), where (G,B(G)) and

(S� ,B(�)) are measurable spaces. For any Y ∈ B(�),

the random variable � induces a probability measure on

(S� ,B(�)) given by Prob[Y] = PG[�−1(Y)]. For the

subsequent discussions in this letter, we often omit the explicit

reference to the underlying probability space and the function

� when referring to the probability measure on (S� ,B(�)).

B. Universal Co-Büchi Automaton

In line with the definition provided in [14], we introduce

a variation of a deterministic universal co-Büchi automaton,

where the acceptance criterion is defined by allowing at most

ζ visits to the accepting states, for some ζ ∈ Z≥0.

Definition 1: Given ζ ∈ Z≥0, a deterministic ζ -Universal

Co-Büchi Automaton (ζ -UCA) A is a tuple (Q,�, �, Q0, QF),

where:

• Q is a finite set of states;

• � is a finite alphabet;

• � : Q ×� ⇒ Q is a transition map, where Cd(�(q, ς)) ≤
1 ∀q ∈ Q and ∀ς ∈ �, and;

• Q0, QF ⊆ Q, respectively, denotes the initial and (accept-

ing) final set of states.

The acceptance condition of A requires that QF be visited no

more than ζ times. Consider a word v = 〈ςi〉∞i=0 ∈ �ω. A run

of A over v is defined as an infinite sequence of states, q =
〈qi〉∞i=0 ∈ Qω, where q0 ∈ Q0 and qi+1 = �(qi, ςi) ∀i ∈ Z≥0.

The word v ∈ �ω is said to be accepted by A if, for every run

q = 〈qi〉∞i=0 ∈ Qω of A over v, one has Cd({i | qi ∈ QF}) ≤
ζ . In other words, every run of A over v visits some of the

accepting states at most ζ times. The language of a ζ -UCA

A, denoted by L(A), is defined as the set of all words that

are accepted by A.

C. Discrete-Time Stochastic Control Systems

Here, we formalize discrete-time stochastic control systems

with continuous state sets. This class of systems has

been widely used in various engineering and financial

contexts [26], [27].
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Definition 2: A discrete-time stochastic control system (dt-

SCS) is a tuple 	 = (X, U, X0,
,�, f ), where

• X ⊆ R
n is the state set of the system such that B(X) is

a Borel σ -algebra on X and (X,B(X)) is a measurable

space;

• U = {uj ∈ R
m | j ∈ [1; N]} with N ∈ Z≥1, is the finite

input set;

• X0 ⊆ X is the set of initial states and 
 is the uncertainty

set, which is not necessarily bounded;

• � is a sequence of independent and identically dis-

tributed (i.i.d.) random variables from a sample space G

to the set 
, i.e., � := {�k : G → 
 | k ∈ Z≥0};
• f : X × U × 
 → X is a measurable state transition

function.

For any initial state x0 ∈ X0 and an input sequence

{u(k) : G → U | k ∈ Z≥0}, we describe the evolution of the

state of dt-SCS 	 for a given time step k ∈ Z≥0 as follows:

x(k + 1) = f (x(k), u(k),�(k)). (1)

Furthermore, we denote the state trajectory of dt-SCS 	,

given an input trajectory u(·), noise �(·) and an initial state

x0 ∈ X0 by xx0,u,� = 〈xk〉∞k=0 ∈ Xω, where xx0,u,� (k) = xk and

xk+1 = f (xk, u(k),�(k)), ∀k ∈ Z≥0. We introduce a labeling

function L : X → � that maps each state of the dt-SCS to a

symbol in a finite alphabet �. This labeling function captures

the regions visited along the trajectories of the dt-SCS and

connects the dt-SCS to the ζ -UCA. This concept extends to

sequences, allowing us to map a state sequence 〈xk〉∞k=0 ∈ Xω

to a sequence of symbols 〈L(xk)〉∞k=0 ∈ �ω. Consequently, we

can assign different labels from � to regions within X.

Given a ζ -UCA A and a dt-SCS 	, we use 	μ to denote

	 equipped with a controller μ : X × Q × [0; ζ ] → U, while

Pr[	μ |= A] denotes the probability for which 	μ satisfies a

property defined by A. In this letter, our main objective is to

synthesize controllers μ : X×Q×[0; ζ ] → U, which guarantee

that Pr[	μ |= A] has a potentially tight lower bound. We now

proceed to formalize the main problem that we aim to address

in this letter.

Problem 1: Consider a dt-SCS 	 and a ζ -UCA A as in

Definition 2 and 1, respectively. Given a labeling function L,

design a controller μ : X×Q×[0; ζ ] → U and find a constant

0 ≤ δ < 1, such that 	 equipped with μ satisfies the property

specified by A with a probability of at least 1 − δ, i.e.,

Pr
[

	μ |= A
]

≥ 1 − δ.

III. STOCHASTIC CO-BÜCHI CONTROL

BARRIER CERTIFICATES

Consider a dt-SCS 	 = (X, U, X0,
,�, f ) and a ζ -UCA

A = (Q,�, �, Q0, QF), as in Definitions 2 and 1, respectively.

Let L : X → � be a labeling map. We define the probability

that 	 satisfies a property specified by A as the probability

measure of the set {〈xk〉∞k=0 ∈ Xω | 〈L(xk)〉∞k=0 ∈ L(A)}.
The objective of this letter is to provide a lower bound on

this probability. To formalize this, we introduce a notion

of stochastic co-Büchi barrier certificates. These certificates

include a counter variable integrated into the state set to keep

track of the number of times the augmented state (x, q) ∈ X×Q

appears in X × QF .

Definition 3: Consider a dt-SCS 	 and a ζ -UCA A as

described in Definitions 2 and 1, respectively, with L : X → �

serving as a labeling function. A function S : X ×Q×Z≥0 →
R is called a stochastic co-Büchi barrier certificate (SCBC)

for 	 with respect to the property defined by A if there exist

λ, γ ∈ R such that λ > γ and

S(x, q, 0) ≤ γ, ∀x ∈ X0,∀q ∈ Q0 \ QF, (2)

S(x, q, 1) ≤ γ, ∀x ∈ X0,∀q ∈ Q0 ∩ QF, (3)

S(x, q, ζ + 1) > λ, ∀x ∈ X,∀q ∈ QF, (4)

and for all states x ∈ X, q ∈ Q and counter values � ∈ [0; ζ ],

one has

min
u∈U

{

E
[

S
(

f (x, u,�), q+, �+)

| x, q, �, u
]

}

≤ S(x, q, �), (5)

where E[ · ] represents expectation,

q+ := �(q, L(x)), (6)

and �+ :=
{

� if q+ /∈ QF

� + 1 otherwise.
(7)

Note that condition (5) for an SCBC is a supermartingale-

type condition. This ensures that the SCBCs are non-increasing

in expectation at each time step, which can be utilized to estab-

lish lower bounds for the satisfaction probability Pr[	μ |=
A] over infinite time horizons. In addition, one can design a

controller μ:X × Q × [0; ζ ] → U based on the SCBC S as

follows:

μ(x, q, �) ∈
{

u ∈ U

∣

∣

∣
E

[

S
(

f (x, u,�), q+, �+)
∣

∣ x, q, �, u
]

≤ S(x, q, �)
}

, (8)

where q+ and �+ are defined in (6) and (7), respectively.

Remark 1: Note that the controller given in equation (8),

enforces the specification defined by a ζ -UCA over a dt-SCS

and operates within the augmented state set X × Q × [0; ζ ].

Hence, this controller is history-dependent (i.e., with memory),

meaning it takes into account the state of the dt-SCS, ζ -UCA,

and the counter variable.

The following theorem illustrates the effectiveness of

SCBCs in synthesizing controllers for the specifications

expressed by ζ -UCA.

Theorem 1: Consider a dt-SCS 	 and a ζ -UCA A accord-

ing to Definition 2 and 1, respectively. Given a labeling map

L, suppose that S : X × Q ×Z≥0 → R is an SCBC for 	 and

A as in Definition 3. Then, for any initial conditions x0 ∈ X0,

q0 ∈ Q0,

and �0 =
{

0 if q0 /∈ QF

1 otherwise,
(9)

one obtains

Pr
[

	μ |= A | x0, q0, �0

]

≥ 1 − γ

λ
, (10)

where the controller μ : X ×Q× [0; ζ ] → U is defined in (8).

Proof: Since S is an SCBC, it follows from condition (4)

that for any (x, q, �) where x ∈ X, q ∈ QF , and � ≥ ζ + 1,
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one has S(x, q, �) > λ. Therefore, for every state trajectory

〈xk〉∞k=0 of 	 with initial conditions x0 ∈ X0, q0 ∈ Q0, and �0

as in (9), one obtains the following chain of (in)equalities:

1 − Pr
[

	μ |= A | x0, q0, �0

]

= Pr
[

〈L(xk)〉∞k=0 /∈ L(A) | x0, q0, �0

]

= Pr
[

〈(xk, qk, �k)〉∞k=0 where

qk ∈ QF and �k ≥ ζ + 1 | x0, q0, �0

]

≤ Pr
[

sup
k∈Z≥0

S(xk, qk, �k) > λ where

qk ∈ QF and �k ≥ ζ + 1
∣

∣ x0, q0, �0

]

(applying Ville’s maximal inequality [28] and using (5))

≤ 1

λ
S(x0, q0, �0) ≤ γ

λ
(obtained by using (2), (3) and (9)),

which establish the proposed bound in (10).

In this letter, we develop a controller to address Problem 1

by leveraging the concept of SCBCs. Theorem 1 provides

a lower bound for the probability that a dt-SCS 	 satis-

fies the property expressed by a ζ -UCA A. Consequently,

solving Problem 1 reduces to finding an appropriate SCBC,

which can then be used to synthesize the corresponding

controllers.

Although various tools from the literature may be used to

search for an SCBC, we provide a brief overview of how

to implement one of such method, for the sake of complete-

ness. Specifically, we consider employing the Counterexample

Guided Inductive Synthesis (CEGIS) approach [29], which

utilizes Satisfiability Modulo Theory (SMT) solvers for this

purpose.

In the search for an SCBC as defined in Definition 3 using

the CEGIS approach, we start by fixing a template for a

candidate SCBC as follows:

S(x, q, �) =
d

∑

i=1

pi(q, �)ψ i(x), (11)

where pi(q, �) ∈ R are unknown coefficients and ψ i are some

user-defined (nonlinear) functions, which can be, for instance,

some monomials over state variables, if one desires polynomial

SCBCs. Note that if d and x ∈ X are fixed in (11), the only

decision variables in S are the coefficients pi(q, �) ∈ R. To

determine these coefficients, we construct a finite set of states

D = {xi ∈ X | i ∈ [1; M]}, where M ∈ Z≥1. We then encode

the SCBC constraints for each x ∈ D into an SMT-query using

the sequence of conjunctions described below.

∧

(x,q)∈(X0∩D)×(Q0\QF)

(

S(x, q, 0) ≤ γ

)

, (12)

∧

(x,q)∈(X0∩D)×(Q0∩QF)

(

S(x, q, 1) ≤ γ

)

, (13)

∧

(x,q)∈D×QF

(

S(x, q, ζ + 1) > λ

)

, (14)

(

γ < λ
)

, (15)

Fig. 1. A ζ -UCA specifying that the dt-SCS visits a state with label a
only finitely often.

∧

(x,q)∈D×Q,
�∈[0;ζ ]

(

∨

u∈U

(

E
[

S
(

f (x, u,�), q+, �+)

| x, q, �, u
]

≤ S(x, q, �)
)

)

, (16)

where q+ and �+ are defined in (6) and (7), respectively. We

compute a candidate SCBC by determining the coefficients

pi(q, �), and constants λ and γ , such that the query expressed

in (12) to (16) is satisfied. Depending on the nature of the

transition function f appearing in (16), this query may be

solved using linear real arithmetic theory with Z3 [30] if f

is linear, or nonlinear real arithmetic theory with dReal [31]

if f is nonlinear. After obtaining a candidate SCBC, we

check whether there exists a state x̂ ∈ X where any of

the condition (12) to (16) fails. If such a counterexample

x̂ is found, we repeat the process with the expanded set

D ∪ {x̂}. If no counterexample is identified, the computed

candidate is rendered to be a valid SCBC. Upon identifying

an SCBC, a lower bound on the satisfaction probability

of ζ -UCA by the dt-SCS is calculated as described in

Theorem 1.

IV. CASE STUDY

We demonstrate the effectiveness of our approach by design-

ing a controller that ensures that a dt-SCS satisfies a property

defined by a ζ -UCA with some probability lower bound, using

SCBCs. Our methodology is applied to a stochastic three-tank

system arranged in a cascade configuration, with dynamics

adopted from [32], and evaluated against a property specified

by a ζ -UCA A = (Q,�, �, Q0, QF) as in Definition 1. In

this case, Q = {q0, q1}, � = {a, b}, Q0 = {q0}, and QF =
{q1}. The transitions between the states of A are governed by

the edges of the graph depicted in Fig. 1, which define the

transition function �.

The stochastic three-tank system is discretized with a

sampling time τ = 2 seconds and is influenced by additive

Gaussian noise �i(·), for i ∈ [1; 3], with zero mean and

variance of 0.01. The system is modeled by a dt-SCS, where

the state evolves as:

x1(k + 1) =
[

√

β2 + x1(k) + τu − β
]2 + 0.01�1(k),

xi(k + 1) =
[

√

β2 + xi(k) + τ
√

xi−1(k + 1) − β
]2

+ 0.01�i(k), (17)

where β = 0.5τ and i ∈ {2, 3}. For each i ∈ [1; 3], the state

xi(k) represents the level of fluid in the i-th tank at time k ∈

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on April 21,2025 at 17:31:25 UTC from IEEE Xplore.  Restrictions apply. 



AJELEYE AND ZAMANI: CO-BÜCHI CONTROL BARRIER CERTIFICATES FOR STOCHASTIC CONTROL SYSTEMS 2533

Z≥0, while
√

xi(k) corresponds to the outflow rate of the same

tank. The inflow rate u into the first tank takes values from

the set of control inputs U = {0, 1.5, 4.5, 7.5, 9}. The set of

states is defined as X = [0, 100]3, with initial states X0 =
[0, 6]2×[60, 66]. Additionally, a labelling function L : X → �

is defined as follows:

L(x) =
{

a ∀x ∈ X \ (10, 60)3,

b ∀x ∈ (10, 60)3.
(18)

Based on the ζ -UCA depicted in Fig. 1, our objective is to

systematically construct an SCBC that addresses Problem 1

by designing a controller μ : X × Q × [0; ζ ], ensuring that

the dt-SCS in (17) satisfies the specification expressed by the

ζ -UCA A in Fig. 1 with some probability lower bound. We

select ζ = 8; therefore, we aim to design a controller μ that

ensures with some probability lower bound that (17) visits

the region labeled by a no more than eight times during its

evolution. The SCBC is obtained using the CEGIS approach

described in the previous section. Hence, as in (11), we fix

the SCBCs’ structures as piecewise quadratic polynomials

Sq,�(x) := S(x, q, �) =
∑10

i=1 pi(q, �)ψ i(x) ∀x ∈ X, ∀q ∈
Q, and ∀� ∈ [0; 9], where basis functions 〈ψ i(x)〉10

i=1 =
〈1, x1, x2, x3, x2

1, x1x2, x1x3, x2
2, x2x3, x2

3〉. We reformulate the

constraint (5) in query (16) into a bilinear form using equation

(13) from [21], replacing the original min-max constraint.

Then by leveraging the dReal SMT solver, we compute the

SCBC coefficients along with other decision variables in the

query, yielding the following results: λ = 70, γ = 1, and

pi(q, �) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

¬

2.05842 if (q, �, i) ∈ ϒ1,

0.21722 if (q, �, i) ∈ ϒ2,

2.1 × 10−3 if (q, �, i) ∈ ϒ3,

−2.6 × 10−3 if (q, �, i) ∈ ϒ4,

100 if (q, �, i) ∈ ϒ5,

−1.39896 if (q, �, i) ∈ ϒ6

30.38227 if (q, �, i) ∈ ϒ7,

0 if (q, �, i) ∈ {q1} × {9} × [2; 10],

where:

ϒ1 =
{

{q0} ×
{

{(0, 1)} ∪ {{7} × {3, 5, 8, 10}} ∪ {{8}

× {3, 7, 8, 10}}
}

}

∪
{

{q1} ×
{

{1, 2} × {1}
}

}

,

ϒ2 =
{

{q0} ×
{{

{0} × [2; 10]
}

∪
{

{1} × {2, 3, 4, 5, 7, 10}
}

∪
{

(5, 3)
}

∪ [2; 4]2 ∪
{

{5, 7} × {6, 9}
}}

}

∪
{

{q1} ×
{{

{1, 2} × [2; 4]
}

∪
{

[3; 8] × [2; 10]
}}

}

,

ϒ3 =
{

{q0} ×
{{

(6, 3), (6, 7), (7, 7), (8, 5)
}

∪
{

{1} ×
{6, 8, 9}

}

∪
{

{2} × [5; 10]
}

∪
{

{3} × {5, 7, 8, 10}
}

∪
{

[4; 6] × {5, 8, 10}
}}

}

∪
{

{q1} ×
{

{1, 2} × [5; 10]
}

}

,

ϒ4 =
{

q0

}

×
{

{

{3, 6, 8} × {6}
}

∪
{

{4} × {6, 7, 9}
}

∪
{

(5, 7)
}

}

,

ϒ5 =
{

{q0} ×
{{

[6; 9] × {1}
}

∪
{

{9} × [2; 10]
}}

}

∪
{

{q1} ×
{{

{0} × [1; 10]
}

∪
{

(9, 1)
}}

}

,

Fig. 2. One thousand closed-loop state trajectories from initial state
[x1(0); x2(0); x3(0)] = [5; 0.5; 65] for the stochastic three-tank dt-
SCS (17).

Fig. 3. An input trajectory synthesized for the stochastic three-tank
dt-SCS (17) using (8).

ϒ6 =
{

q0

}

×
{

{

{5, 7} × {2, 4}
}

∪
{

{6, 8} × {2, 4, 9}
}

}

,

ϒ7 =
{

{q0, q1} × [1; 9] × {1}
}

.

According to Theorem 1, the identified SCBC allows us

to deploy a controller μ(x, q, �) for any (x, q, �) ∈ X × Q ×
[0; 8] (cf. Fig. 3), ensuring that the specification expressed

by A is enforced over the system in (17) with a satisfaction

probability of at least 98.57%. Using the derived SCBC,

we performed 10000 simulations on the closed-loop three-

tank dt-SCS (17). Out of these simulations, 138 failed to

meet the specification set by A, resulting in 9862 successful

sequences of the closed-loop states. Importantly, none of

these 9862 sequences experienced the three tanks entering the

region labeled a more than 8 times. This outcome yields an

empirical satisfaction probability of 98.62%, consistent with

the minimum threshold specified in Theorem 1. Fig. 2 displays

1000 of these 9862 successful closed-loop state sequences,

while Fig. 3 shows the dt-SCS (17) synthesized controller

from one of the 9862 successful cases. The entire SCBC

construction process was implemented in Python on a 64GB

RAM MacBook Pro with a 3.2 GHz processor, taking 220.34

seconds to complete. Moreover, by employing a predetermined

SCBC template in this case, a quadratic polynomial we

present Figure 4, which illustrates how the lower bound of the

satisfaction probability changes with respect to the maximum

number of visits, ζ , to region a. It is evident that as ζ

grows, the lower bound of the probability of satisfaction also

increases.
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Fig. 4. The lower bound on the probability of satisfaction of ζ -UCA in
Figure 1, based on a fixed quadratic SCBC template, with respect to the
maximum number of visits ζ to region a.

V. CONCLUSION

In this letter, the main goal was to design a controller

that ensures the satisfaction of a ζ -UCA property over a

discrete-time stochastic control system. We achieved this by

constructing an SCBC and using supermartingale theory to

provide a lower bound on the probability of satisfaction. We

discussed a method for computing the SCBC and demonstrated

the effectiveness of our approach with a stochastic three-tank

system. However, the CEGIS approach, although suitable for

computing SCBCs, may present challenges due to its iterative

nature and the lack of guaranteed termination, making it

difficult to analyze its computational complexity. Future work

could explore improvements inspired by recent findings [33]

to achieve tighter lower bounds for the probability of sat-

isfaction using SCBCs. Moreover, leveraging compositional

strategies, including divide-and-conquer techniques for calcu-

lating SCBCs, will enhance scalability to tackle large-scale

interconnected dt-SCSs.
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