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Co-Buchi Control Barrier Certificates for
Stochastic Control Systems

Daniel Ajeleye™, Graduate Student Member, IEEE, and Majid Zamani

Abstract—This letter addresses the problem of syn-
thesizing controllers that enforce properties expressed
by Universal Co-Biichi Automata (UCA) over stochastic
control systems. Our approach introduces a notion of
Stochastic Co-Biichi Control Barrier Certificates (SCBC),
which, together with their associated controllers, ensure
that specific regions in the state set are visited only a
limited number of times during the system’s evolution. The
SCBC is formulated over a hybrid domain that combines
the system’s state, the UCA’s state, and a counter variable
that tracks the number of visits to the UCA’s accepting
states. We require the SCBC to satisfy a supermartingale
condition, thereby, enforcing the property expressed by
the UCA on the stochastic control system without any
restriction over the time horizon. Additionally, we propose
a method for constructing SCBCs and corresponding con-
trollers that guarantee the enforcement of UCA properties
over stochastic control systems with formal probabilistic
guarantee. The practical applicability of our approach is
demonstrated through a case study involving a stochastic
three-tank system, whose dynamics is both nonlinear and
influenced by noise.

Index Terms—Stochastic systems, stochastic co-Biichi
barrier certificates, universal co-Biichi automata.

|. INTRODUCTION

N RECENT years, formal methods have emerged as

essential tools in the autonomous and hybrid systems
community. They have been offering rigorous frameworks
for analyzing complex dynamical systems, often modeled as
stochastic processes. These processes are integral to a wide
range of applications in science and engineering. They are
used to model dynamical systems influenced by stochastic
disturbances, where ensuring their correctness is paramount,
particularly in safety-critical applications. However, achieving
formal guarantees of correctness in such systems presents a
significant challenge, especially for processes with continuous
state sets. The requirement of interest for these systems is
often specified through temporal logic specifications, which
are best described using linear temporal logic (LTL) formulae
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or, more broadly, w-regular properties [1], and automata-based
languages [2].

In the past decade, numerous results have been proposed
using abstraction-based methods for synthesizing correct-
by-construction controllers for stochastic and non-stochastic
control systems [3]. Notable examples of such efforts include
the results presented in [4], [5], [6], [7], [8], [9], and references
therein. However, these techniques depend on discretizing the
state and input sets, which leads to the curse of dimensionality,
i.e., the computational complexity grows exponentially with
the system’s dimension.

The use of barrier certificates [10] offers an alternative
method for formal verification and controller synthesis of
(stochastic) dynamical systems, one that does not rely on
discretization. Barrier certificates, similar to Lyapunov func-
tions, use level sets to distinguish between unsafe regions
and the reachable states of the system starting from a given
initial set. The existence of such a certificate provides a
(probabilistic) safety guarantee for the system. In the context
of automata-theoretic verification, the central challenge is
to determine whether a set of states can be visited only
a finite number of times. This issue can be addressed by
establishing a safety-like condition that ensures the number
of times the system can visit a specific region is bounded by
a fixed hyperparameter. Recent results, as discussed in [11],
build on bounded synthesis methods [12], [13], [14], [15]
and introduce an abstraction-free technique for automata-
theoretic verification of discrete-time non-stochastic dynamical
systems. This method introduces notions of co-Biichi barrier
certificates, which offer sufficient conditions to verify systems
against w-regular properties defined by universal co-Biichi
automata (UCA). For a detailed explanation of the differences
between traditional barrier certificates and co-Biichi barrier
certificates, we refer the interested readers to [11].

Contributions: In this letter, we introduce an abstraction-
free approach for automata-theoretic controller synthesis of
discrete-time stochastic control systems with finite input sets.
This method is centered on a notion of Stochastic Co-Biichi
Barrier Certificates (SCBC). An SCBC is a real-valued func-
tion defined over the product of a stochastic control system and
a deterministic UCA, with conditions that ensure the UCA’s
accepting states are visited only a finite number of times.
The certificate includes a counter that tracks how often an
accepting state is reached. We propose a method for construct-
ing SCBCs, inspired by the counterexample-guided inductive
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synthesis (CEGIS) approach, and we use satisfiability modulo
theories (SMT) solvers to identify a suitable SCBC candi-
date. Once identified, the system can be rendered to satisfy
properties expressed by UCA with particular probability lower
bounds. We then use the SCBC to synthesize controllers that
ensure a stochastic control system visits the accepting states
of the UCA only a finite number of times. The effectiveness
of our approach is demonstrated using a stochastic three-tank
system.

Related Work: In recent years, considerable attentions have
been directed towards the formal analysis of stochastic control
systems with respect to w-regular properties using abstraction-
free approaches. The results in [16], [17], [18], [19] focus on
verifying systems with continuous state sets against automata
specifications. A common aspect of these works is their use of
barrier certificates to divide the automaton into state triplets,
and can be used for the verification of systems whose traces
do not reach the automaton’s accepting state at all (similar to
safety verification) [11]. In contrast, our approach provides a
systematic method for synthesizing controllers ensuring that
the traces of stochastic control systems visit the accepting
states of deterministic UCAs a finite number of times with
some probability lower bounds.

A very recent work in [20] tackled the verification and
synthesis of controllers of stochastic models with respect
to the properties expressed by Streett automata, leveraging
the so-called Streett supermartingales. Our work differenti-
ates itself from theirs in two key aspects. First, while [20]
guarantees almost sure satisfaction, our approach provides a
probabilistic guarantee for satisfaction of properties expressed
by deterministic UCA. Achieving an almost sure guarantee
is challenging for most stochastic models unless there is a
bounded support assumption on the noise or existence of
absorbing sets. Secondly, the Streett martingales formulation
in [20] involves a notion of Post(-) function that integrates
the Streett supermartingales over a probability distribution.
In contrast, our approach uses the expectation of the SCBC,
which is generally much more straightforward to compute.

Our method systematically synthesizes controllers that
enforce deterministic UCA properties over nonlinear discrete-
time stochastic control systems, differing from the approach
in [21], [22], [23], which synthesize controllers that enforce
similar properties over non-stochastic control systems.
Moreover, while the work in [11], [24], [25] focuses on
verification of non-stochastic dynamical systems using barrier
certificates, our approach is tailored to constructing SCBCs
and synthesizing controllers that enforce deterministic UCA
properties over stochastic control systems.

Organization: The remainder of this letter is structured as
follows. Section II provides the required notation and notion
of so-called ¢-Universal co-Biichi automata (¢ — UCA), with
a formal definition of discrete-time stochastic control systems
(dt-SCS), and the main problem studied. In Section III, we
formalize the notions of SCBCs and their corresponding
controllers. The section also describes a proposed method
for constructing SCBCs. Our approach is illustrated over a
nonlinear stochastic control system in Section IV. We conclude
this letter with brief discussion in Section V.

I[I. PRELIMINARIES AND DEFINITIONS
A. Notation

The symbols U, N and \ represent, respectively, the union,
the intersection and the difference of sets. Notations Z, R>q
and R denote the sets of integers, non-negative real and real
numbers, respectively. For any n € Z, Z>, ={i € Z | i > n}.
For integers s,t € 7Z where s < t, the intervals [s; ] and
(s; ) represent, respectively, the closed and open intervals in Z.
Similarly, for reals s, t € R where s < ¢, the intervals [s, #] and
(s, 1) represent the corresponding closed and open intervals in
R. For any nonempty set Q, C4(Q) indicates the cardinality of
0, while Q“ denotes the set of infinite sequences derived from
Q, formally expressed as Q% = {(w;)2, | wi € Q Vi € Zxo}.

In a given probability space (G,B(G),Pg), G refers to
the sample space, B(G) is a o-algebra on G containing
subsets of events, and Pg is the probability measure that
assigns probabilities to these events. We treat random vari-
ables as measurable functions (i.e., Borel measurable) of the
form @ : (G,B(G)) — (Su,B(w)), where (G, B(G)) and
(8w, B(w)) are measurable spaces. For any Y € B(w),
the random variable @ induces a probability measure on
(Sw,B(w)) given by Prob[Y] = Pg[w~'(Y)]. For the
subsequent discussions in this letter, we often omit the explicit
reference to the underlying probability space and the function
@ when referring to the probability measure on (S, B(w)).

B. Universal Co-Biichi Automaton

In line with the definition provided in [14], we introduce
a variation of a deterministic universal co-Biichi automaton,
where the acceptance criterion is defined by allowing at most
¢ visits to the accepting states, for some { € Zxo.

Definition 1: Given ¢ € Zs>q, a deterministic {-Universal
Co-Biichi Automaton (£-UCA) A is a tuple (Q, A, 0, Qo, OF),
where:

o Q is a finite set of states;

e A is a finite alphabet;

e 0:0xA =2 Qis a transition map, where C4(0(q, ¢)) <

1 Vg e Qand Vg € A, and;
o 0o, OF C Q, respectively, denotes the initial and (accept-
ing) final set of states.
The acceptance condition of A4 requires that O be visited no
more than ¢ times. Consider a word v = (g;)7°, € A”. A run
of A over v is defined as an infinite sequence of states, q =
(qi)2, € O, where qo € Qo and giy1 = 0(qi, i) Vi € Zxy.
The word v € A® is said to be accepted by A if, for every run
q = ()2, € Q° of A over v, one has Cq({i | gi € QF}) <
¢. In other words, every run of A over v visits some of the
accepting states at most ¢ times. The language of a ¢{-UCA
A, denoted by L(A), is defined as the set of all words that
are accepted by A.

C. Discrete-Time Stochastic Control Systems

Here, we formalize discrete-time stochastic control systems
with continuous state sets. This class of systems has
been widely used in various engineering and financial
contexts [26], [27].
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Definition 2: A discrete-time stochastic control system (dt-
SCS) is a tuple & = (X, U, Xo, A, @w, f), where

e« X C R" is the state set of the system such that B(X) is
a Borel o-algebra on X and (X, B(X)) is a measurable
space;

e U={u; e R" | j e [I;N]} with N € Z>1, is the finite
input set;

e Xp C X is the set of initial states and A is the uncertainty
set, which is not necessarily bounded;

« w is a sequence of independent and identically dis-
tributed (i.i.d.) random variables from a sample space G
to the set A, ie, w :={wy : G — A | k€ Z=o};

e f: X xUxXxA — X is a measurable state transition
function.

For any initial state xp € Xo and an input sequence

{utk) : G — U | k € Zx>o}, we describe the evolution of the
state of dt-SCS & for a given time step k € Zxq as follows:

x(k+1) =fk), uk), @ (k). (D

Furthermore, we denote the state trajectory of dt-SCS E,
given an input trajectory u(-), noise @ (-) and an initial state
x0 € Xo by Xxg,u,0 = (Xk) ey € X, Where Xy 4, (k) = x; and
Xk+1 = f(xg, u(k), @ (k)), Vk € Z>o. We introduce a labeling
function L : X — A that maps each state of the dt-SCS to a
symbol in a finite alphabet A. This labeling function captures
the regions visited along the trajectories of the dt-SCS and
connects the dt-SCS to the ¢-UCA. This concept extends to
sequences, allowing us to map a state sequence (xx) 2, € X“
to a sequence of symbols (L(xx));2, € A®. Consequently, we
can assign different labels from A to regions within X.

Given a {-UCA A and a dt-SCS E, we use &, to denote
E equipped with a controller u : X x Q x [0; ¢] — U, while
Pr[E, = A] denotes the probability for which &, satisfies a
property defined by A. In this letter, our main objective is to
synthesize controllers u : X x O x[0; ¢] — U, which guarantee
that Pr[Z, = A] has a potentially tight lower bound. We now
proceed to formalize the main problem that we aim to address
in this letter.

Problem 1: Consider a dt-SCS E and a {-UCA A as in
Definition 2 and 1, respectively. Given a labeling function L,
design a controller p : X x Q x [0; ¢] — U and find a constant
0 <6 < 1, such that E equipped with u satisfies the property
specified by A with a probability of at least 1 — &, i.e.,

Pr[E, = Al = 1-3.

Ill. STOCHASTIC CO-BUCHI CONTROL
BARRIER CERTIFICATES

Consider a dt-SCS E = (X, U, Xo, A, w,f) and a {-UCA
A= (0, A, 0, Qo, OF), as in Definitions 2 and 1, respectively.
Let L : X — A be a labeling map. We define the probability
that E satisfies a property specified by A as the probability
measure of the set {(xx);2, € X | (Lx))e, € L(A)}.
The objective of this letter is to provide a lower bound on
this probability. To formalize this, we introduce a notion
of stochastic co-Biichi barrier certificates. These certificates
include a counter variable integrated into the state set to keep

track of the number of times the augmented state (x, g) € XxQ
appears in X x Qr.

Definition 3: Consider a dt-SCS E and a ¢-UCA A as
described in Definitions 2 and 1, respectively, with L : X — A
serving as a labeling function. A function S : X X Q X Zx¢ —
R is called a stochastic co-Biichi barrier certificate (SCBC)

for E with respect to the property defined by A if there exist
A,y € R such that A > y and

S(x,q,0) <y, VxeXo,Yq € Qo \ OF, 2
S(x,q,1) <y, Vx € Xo,¥q € Qo N QOF, (3)
Sx,q,¢+1) > X, Vx € X,Vq € OF, “4)

and for all states x € X, ¢ € Q and counter values ¢ € [0; ¢],
one has

min B[S0, ). g%, %) | x.0.0,u]] = S(.0.0.,(5)

where [E[ - ] represents expectation,

q" = o(q, L(x)), (6)
¢ ifgteQ
+ . q F
and £7 = {K 4+ 1 otherwise. @

Note that condition (5) for an SCBC is a supermartingale-
type condition. This ensures that the SCBCs are non-increasing
in expectation at each time step, which can be utilized to estab-
lish lower bounds for the satisfaction probability Pr[E, =
AJ over infinite time horizons. In addition, one can design a
controller w:X x Q x [0; ] — U based on the SCBC S as
follows:

ulx, q, ) € {u eU ‘ E[S(f(x, u, w),q+,£+) | x,q, 4, u]
= Str.q.0}. ®)

where g7 and £ are defined in (6) and (7), respectively.

Remark 1: Note that the controller given in equation (8),
enforces the specification defined by a {-UCA over a dt-SCS
and operates within the augmented state set X x Q x [0; ¢].
Hence, this controller is history-dependent (i.e., with memory),
meaning it takes into account the state of the dt-SCS, ¢-UCA,
and the counter variable.

The following theorem illustrates the effectiveness of
SCBCs in synthesizing controllers for the specifications
expressed by ¢-UCA.

Theorem 1: Consider a dt-SCS E and a ¢-UCA A accord-
ing to Definition 2 and 1, respectively. Given a labeling map
L, suppose that S : X x Q x Z=o — R is an SCBC for & and
A as in Definition 3. Then, for any initial conditions xy € X,
90 € Qo,

_J0 ifgo ¢ OF
and £o = { 1 otherwise, ®)
one obtains
P = A x0.0.00] = 1- 1 (10)

where the controller i : X x Q x [0; {] — U is defined in (8).
Proof: Since S is an SCBC, it follows from condition (4)
that for any (x, g, £¢) where x € X, g € O, and £ > ¢ + 1,
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one has S(x, g, £) > X\. Therefore, for every state trajectory
(xk>,fio of E with initial conditions xyg € Xo, qo € Qp, and £y
as in (9), one obtains the following chain of (in)equalities:

1-— IP’I‘[EM = A | xo, qo, Ko]
= Pr[{L(a))2o ¢ L(A) | x0. q0. Lo]
= Prl((xk, gk, €x))5e, Where
qr € O and £ > ¢ + 1 | X0, qo. €0

sup S(xk, gk, k) > A where
kEZZ()

qr € Qr and £ > ¢ +1 | XO,qo,ﬁo]
(applying Ville’s maximal inequality [28] and using (5))

< ]Pr[

1
< XS(XO’ q0, Lo) < % (obtained by using (2), (3) and (9)),

which establish the proposed bound in (10). |

In this letter, we develop a controller to address Problem 1
by leveraging the concept of SCBCs. Theorem 1 provides
a lower bound for the probability that a dt-SCS E satis-
fies the property expressed by a ¢-UCA A. Consequently,
solving Problem 1 reduces to finding an appropriate SCBC,
which can then be used to synthesize the corresponding
controllers.

Although various tools from the literature may be used to
search for an SCBC, we provide a brief overview of how
to implement one of such method, for the sake of complete-
ness. Specifically, we consider employing the Counterexample
Guided Inductive Synthesis (CEGIS) approach [29], which
utilizes Satisfiability Modulo Theory (SMT) solvers for this
purpose.

In the search for an SCBC as defined in Definition 3 using
the CEGIS approach, we start by fixing a template for a
candidate SCBC as follows:

d
S, q.0 =) plg. OV (), (1)

i=1

where pi(g, £) € R are unknown coefficients and ' are some
user-defined (nonlinear) functions, which can be, for instance,
some monomials over state variables, if one desires polynomial
SCBCs. Note that if d and x € X are fixed in (11), the only
decision variables in S are the coefficients p'(g, £) € R. To
determine these coefficients, we construct a finite set of states
D={x; e X|iell;M]}, where M € Z>,. We then encode
the SCBC constraints for each x € D into an SMT-query using
the sequence of conjunctions described below.

A\ <$(x, q,0) < y>, (12)
(x,9)e(XoND) x (Qo\OF)
A\ (S(x,q,w sy), (13)
(x,9)€(XoND) x(QoNQF)
/\ (S(x, ¢.C+1) > ,\), (14)
x,9)eDxQF
(v <), (15)

b
a
a,b

Fig. 1. A ¢-UCA specifying that the dt-SCS visits a state with label a
only finitely often.

/\ <\/ (E[S(f(x, u, w),q+,ﬂ+) | x, q,g,u]

(x,9)€DxQ, ‘ucl
Lel0;¢]

= S, ff))), (16)
where ¢ and ¢T are defined in (6) and (7), respectively. We
compute a candidate SCBC by determining the coefficients
pi (g, £), and constants XA and y, such that the query expressed
in (12) to (16) is satisfied. Depending on the nature of the
transition function f appearing in (16), this query may be
solved using linear real arithmetic theory with Z3 [30] if f
is linear, or nonlinear real arithmetic theory with dReal [31]
if f is nonlinear. After obtaining a candidate SCBC, we
check whether there exists a state x € X where any of
the condition (12) to (16) fails. If such a counterexample
X is found, we repeat the process with the expanded set
D U {x}. If no counterexample is identified, the computed
candidate is rendered to be a valid SCBC. Upon identifying
an SCBC, a lower bound on the satisfaction probability
of ¢-UCA by the dt-SCS is calculated as described in
Theorem 1.

IV. CASE STuDY

We demonstrate the effectiveness of our approach by design-
ing a controller that ensures that a dt-SCS satisfies a property
defined by a ¢-UCA with some probability lower bound, using
SCBCs. Our methodology is applied to a stochastic three-tank
system arranged in a cascade configuration, with dynamics
adopted from [32], and evaluated against a property specified
by a {-UCA A = (O, A, 0, Qo, OF) as in Definition 1. In
this case, @ = {qo,q1}, A = {a,b}, Qo = {qo}, and QO =
{g1}. The transitions between the states of .4 are governed by
the edges of the graph depicted in Fig. 1, which define the
transition function p.

The stochastic three-tank system is discretized with a
sampling time T = 2 seconds and is influenced by additive
Gaussian noise @;(-), for i € [1;3], with zero mean and
variance of 0.01. The system is modeled by a dt-SCS, where
the state evolves as:

xik+1) = [ +x100 + tu— B]* +0.01 (k),

stk ) = [ 40 + e G D -

+ 0.01w;(k),

7)

where § = 0.5t and i € {2, 3}. For each i € [1; 3], the state
xi(k) represents the level of fluid in the i-th tank at time k €
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Z=, while /x;(k) corresponds to the outflow rate of the same
tank. The inflow rate u into the first tank takes values from
the set of control inputs U = {0, 1.5,4.5,7.5,9}. The set of
states is defined as X = [0, 100]%, with initial states Xy =
[0, 6]% x [60, 66]. Additionally, a labelling function L : X — A
is defined as follows:

_ [avxeXx\ (10,60)3,
L = {be e (10, 60)3.

Based on the {-UCA depicted in Fig. 1, our objective is to
systematically construct an SCBC that addresses Problem 1
by designing a controller © : X x Q x [0; ¢], ensuring that
the dt-SCS in (17) satisfies the specification expressed by the
¢-UCA A in Fig. 1 with some probability lower bound. We
select ¢ = 8; therefore, we aim to design a controller w that
ensures with some probability lower bound that (17) visits
the region labeled by a no more than eight times during its
evolution. The SCBC is obtained using the CEGIS approach
described in the previous section. Hence, as in (11), we fix
the SCBCs’ structures as piecewise quadratic polynomials
Spe() = S, q.0) = Y2 p'(q. OY'(x) Vx € X, Vg €
Q, and V¢ € [0;9], where basis functions (W()c))}:o1 =
(1,xl,xz,xg,x%,xlxz,x1x3,x%,x2x3,x%). We reformulate the
constraint (5) in query (16) into a bilinear form using equation
(13) from [21], replacing the original min-max constraint.
Then by leveraging the dReal SMT solver, we compute the
SCBC coefficients along with other decision variables in the
query, yielding the following results: A = 70, y = 1, and

(18)

2.05842 if (¢, €,1) € Yy,
0.21722 if (g, £,1) € Yy,
2.1 x 1073 if (g, £, i) € T3,
; ) 2.6 x 1073 if (g, ¢, i) € Y4,
P40 =1 109 if (q,¢,1) € s,
—1.39896  if (¢, €, i) € Y
30.38227  if (¢, £,0) € Y7,
0 if (¢, ¢€,1) € {q1} x {9} x [2; 10],
where:

T = {{QO} x {{(0, DY U {7} x {3,5,8, 10}} U {{8}
x (3,7,8, 10}}}] U {{ql} x {{1,2} x {1}}],
T = {{q()} x {{{0} x [2: 101} U {{1} x {2.3,4,5.7, 10}}
U{(5.3)} UL2: 42U {{5.7} x {6, 9}}}}
Ut x ({10120 x 241} U {1381 x 12 101},
73 = {0} x {{(6,3), 6.1, 7.1, 8,9} U {1} x
{6, 8,91} U {{2} x [5; 101} U {{3} x {5.7,8,10}} U
{14: 61 x (5. 8. 101} }} U {1an) x {(1.2) x 153 101},
Ty = {a0} x {{(3.6.8) x (61} U {14 x 6.7, 9})
u{s D},
Ts = {{ao) x {{16:91 x (11} U {19} x [2: 101}}}
U ftan = {1y x 11101} u {©, DY},

States (Tank-levels)

60 80 100 120 140 160

Time Steps (k)

Fig. 2. One thousand closed-loop state trajectories from initial state
[x1(0); x2(0); x3(0)] = [5;0.5;65] for the stochastic three-tank dt-
SCS (17).

R

o ®

Control Inputs

~

80 100 120 140 160

60
Time Steps (k)

Fig. 3. An input trajectory synthesized for the stochastic three-tank
dt-SCS (17) using (8).

Yo = {q0} x {{{5,7} x (2,41} U {{6, 8} x (2,4, 9}}},
7 = {{go. q1} x [1;9] x {1}}.

According to Theorem 1, the identified SCBC allows us
to deploy a controller w(x, g, £) for any (x,q,¢) € X x Q x
[0; 8] (cf. Fig. 3), ensuring that the specification expressed
by A is enforced over the system in (17) with a satisfaction
probability of at least 98.57%. Using the derived SCBC,
we performed 10000 simulations on the closed-loop three-
tank dt-SCS (17). Out of these simulations, 138 failed to
meet the specification set by .4, resulting in 9862 successful
sequences of the closed-loop states. Importantly, none of
these 9862 sequences experienced the three tanks entering the
region labeled a more than 8 times. This outcome yields an
empirical satisfaction probability of 98.62%, consistent with
the minimum threshold specified in Theorem 1. Fig. 2 displays
1000 of these 9862 successful closed-loop state sequences,
while Fig. 3 shows the dt-SCS (17) synthesized controller
from one of the 9862 successful cases. The entire SCBC
construction process was implemented in Python on a 64GB
RAM MacBook Pro with a 3.2 GHz processor, taking 220.34
seconds to complete. Moreover, by employing a predetermined
SCBC template in this case, a quadratic polynomial we
present Figure 4, which illustrates how the lower bound of the
satisfaction probability changes with respect to the maximum
number of visits, ¢, to region a. It is evident that as ¢
grows, the lower bound of the probability of satisfaction also
increases.
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Fig. 4. The lower bound on the probability of satisfaction of ¢-UCA in
Figure 1, based on a fixed quadratic SCBC template, with respect to the
maximum number of visits ¢ to region a.

V. CONCLUSION

In this letter, the main goal was to design a controller
that ensures the satisfaction of a ¢-UCA property over a
discrete-time stochastic control system. We achieved this by
constructing an SCBC and using supermartingale theory to
provide a lower bound on the probability of satisfaction. We
discussed a method for computing the SCBC and demonstrated
the effectiveness of our approach with a stochastic three-tank
system. However, the CEGIS approach, although suitable for
computing SCBCs, may present challenges due to its iterative
nature and the lack of guaranteed termination, making it
difficult to analyze its computational complexity. Future work
could explore improvements inspired by recent findings [33]
to achieve tighter lower bounds for the probability of sat-
isfaction using SCBCs. Moreover, leveraging compositional
strategies, including divide-and-conquer techniques for calcu-
lating SCBCs, will enhance scalability to tackle large-scale
interconnected dt-SCSs.
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