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Abstract—Closure certificates (CCs), function analogs of
transition invariants, provide a framework to verify discrete-
time dynamical systems against ω-regular specifications.
Such certificates are similar to barrier certificates (BCs) yet
are less conservative than BCs when leveraged to verify
ω−regular properties. However, CCs are defined over pairs
of states of the system rather than over the state of the
system, and seek to overapproximate the transitive closure
of the transition relation. Thus, finding these certificates
is often harder and computationally more demanding than
BCs, especially for large-scale systems. To address this
challenge, we propose a dissipativity-inspired approach to
construct closure certificates for interconnected systems.
In such a setting, we assume our large-scale system to
be an interconnection of subsystems under a linear map.
We then find local certificates for these subsystems. These
local certificates are then composed to form a closure
certificate for the interconnected system, acting as proof of
the satisfaction of a desired ω-regular specification. Finally,
we illustrate our approach with a numerical simulation.

Index Terms—Verification, omega-regular specifications,
compositionality, interconnected systems, dissipativity.

I. INTRODUCTION

C
LOSURE certificates (CCs) proposed in [1] are a tech-

nique to verify dynamical systems against ω-regular

specifications. These certificates seek to overapproximate the

transitive closure of the transition relation of a system by

characterizing all elements in this set as being above a level

set of a function. Imposing a well-foundedness argument on

such a function acts as a proof that a set of accepting states

are visited finitely often and can thus be used to verify

ω-regular specifications [2]. As CCs capture the behavior of

system transitions, they are defined over pairs of system states.

Thus, using conventional approaches such as sum-of-squares

(SOS) [3] solvers to find such a function is computationally

challenging as the dimension grows. To address this, we

Manuscript received 8 March 2024; revised 16 May 2024; accepted
4 June 2024. Date of publication 7 June 2024; date of current version
17 September 2024. This work was supported in part by NSF under
Grant CNS-2039062 and Grant CNS-2111688, and in part by CAREER
Grant under Grant CNS-2145184. Recommended by Senior Editor
V. Ugrinovskii. (Corresponding author: Felipe Galarza-Jimenez.)

The authors are with the Department of Computer Science,
University of Colorado Boulder, Boulder, CO 80309 USA (e-mail:
felipe.galarzajimenez@colorado.edu; vishnu.murali@colorado.edu;
majid.zamani@colorado.edu).

Digital Object Identifier 10.1109/LCSYS.2024.3411508

present a compositional approach to synthesize CCs for large-

scale systems modeled as interconnections of subsystems.

Contributions: In this letter, we propose a compositional

approach to construct CCs to verify large-scale systems against

safety and more general ω-regular specifications described by

Universal co-Büchi Automata (UCA). Here, we assume that

the large-scale system can be modeled as an interconnection of

smaller subsystems connected via a linear map. We construct

a product of the system and the UCA and project the product

onto these subsystems. We then provide local certificates for

these projections. The conditions of these local certificates

rely on strengthening the conditions of a CC to make them

amenable to easy composition. We then compose these local

certificates to form a CC for the interconnected system using

a dissipativity-inspired approach. This allows us to provide a

proof that the large-scale system satisfies a given ω-regular

specification.

Related work: One approach to verify dynamical systems

against ω-regular specifications leverages abstraction-based

methods [4], where one quantizes the state set to create a

finite-state abstraction. Then, ensuring that the abstraction

satisfies the specification also provides a guarantee for the

original system. Although such methods are easily automat-

able, they suffer from the curse of dimensionality. The

construction of such an abstraction suffers exponentially as the

system dimension grows. To address this issue, one can lean

towards a compositional approach to construct abstractions [5],

or instead, may use abstraction-free approaches. One such

approach is the use of barrier certificates (BCs) [6] to prove

safety of dynamical systems.

The success of BCs has inspired their use in proving ω-

regular specifications given by automata. The authors of [7]

presented a “triplets” approach that decomposes the spec-

ification into a finite collection of straightforward safety

constraints. To do so, they partition consecutive automaton

transitions or “triplets” of states and form safety arguments

over these. Even though there are works that address the

problem of computing such BCs for large-scale systems

(see [8], [9] and references therein), this approach is poten-

tially conservative; i.e., even though the system satisfies

the specification, one cannot always find the required BC

that guarantees its satisfaction [10], [11]. The result in [12]

proposed a notion of co-Büchi barrier certificates (CBBC) that

acts as proof that the accepting states of the automaton are
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visited only finitely often by keeping track of the number of

visitations via a counter. This approach is inspired by bounded

verification and synthesis approaches [13], [14]. Here, one

selects an a priori upper bound for the counter and tries

to prove that the counter value never exceeds the upper

bound via a safety argument. If the CBBC is not found,

the upper bound may be iteratively increased until a desired

certificate is found, providing a more general framework than

the one provided by the “triplets” approach. Moreover, the

results in [15] provide a compositional approach for large-

scale systems using CBBC, addressing the time complexity

issues. Similar to how BCs act as function analogs of state

invariants, the CCs act as function analogs of transition

invariants. Transition invariants were introduced in [2] as

a framework to verify program termination and programs

against ω-regular specifications. This approach has since been

implemented to demonstrate program termination [16], [17],

and has also seen use in the verification of stability and safety

for hybrid systems [18], [19]. The use of CCs deals with the

conservatism of the “triplets” approach while simultaneously

removing the necessity of fixing an a priori bound on the

number of visitations. Though CCs may provide flexibility

and benefits over BCs and CBBCs in specific scenarios, their

computation becomes intractable for large-scale systems as

they are defined over pairs of system states rather than over

states of the system directly.

II. NOTATION AND PRELIMINARIES

We denote by N and R the natural (including zero) and

the real numbers. Given a ∈ R, we use N≥a (resp. R≥a) to

denote all values in N (resp. R) greater than or equal to a.

Notations [a, b], ]a, b[, [a, b[, and ]a, b] denote closed, open,

and half-open sets in R. Likewise, [a; b], ]a; b[, [a; b[ and

]a; b] denote closed, open, and half-open sets in N. Given sets

X1, . . . , Xm, for some m ∈ N≥1, we denote the product by

X1 ×X2 × . . .×Xm, or more compactly by
∏m

i=1 Xi. Moreover,

we denote an element (x1, . . . , xm) ∈
∏

Xi of the product set

by
∏

xi, where xi ∈ Xi for all i ∈ [1; m]. Similarly, we denote

the projection of x ∈ X on the subset Xi by proji(x) = xi. Note

that we drop the counter index from the product when it is

clear from the context. Given sets A and B, we represent the

set difference as A\B := {x ∈ A | x /∈ B}. We use f : A ⇒ B

to denote a set-valued map, whereas f : A → B denotes a

single-valued map. Additionally, we use f (A) to denote the set

{f (a) ∈ B | for all a ∈ A}. Given a set A, we denote the set

of infinite-length sequences Aω := {s | s = 〈a0, a1, . . .〉 s.t.

a0, a1, . . . ∈ A}. We say that an infinite sequence s ∈ Aω visits

a ∈ A at most k times if there are k distinct indices i ∈ N such

that ai = a with ai appearing in s. Let Inf(s) be the set of

elements a ∈ A that occur infinitely many times in s. Lastly,

a symmetric real matrix P is called negative semidefinite and

denoted by P � 0 if all its eigenvalues are non-positive.

A. Universal co-Büchi Automata

In this letter, we consider specifications or properties

expressed by universal co-Büchi automata defined as follows.

Definition 1: A universal co-Büchi automaton [20] (UCA)

is a tuple A = (Q, Q0, Qa, δ,�), where Q is a finite set

of states, Q0 ⊆ Q is the set of initial states, Qa is the

set of final or accepting states, � is a finite alphabet, and

δ : Q × � ⇒ Q is a transition map. A run of the UCA A over

a word s = 〈σ0, σ1, σ2, . . .〉 ∈ �ω is an infinite state sequence

q = 〈q0, q1, q2, . . .〉 ∈ Qω with q0 ∈ Q0 and qi+1 ∈ δ(qi, σi).

We say that an infinite word s = 〈σ0, σ1, . . .〉 ∈ �ω is accepted

by A if for every run q of A over s, we have Inf(q)∩Qa = ∅.

We define the language of the UCA A by the set of words it

accepts and denote this by L(A).

B. Dynamical Systems

We consider large-scale systems that can be decomposed

into interconnected subsystems modeled as follows.

Definition 2 (System): A discrete-time dynamical subsys-

tem S is a tuple S = (X, X0, W, f , Y, h), where X is the state

set, X0 ⊆ X is the set of initial states, W the internal input set,

Y the output set, f : X × W → X is the transition function,

and h : X → Y is the output map. The state evolution of S

and the output are given by

x(t + 1) = f (x(t), w(t)), and y(t) = h(x(t)), (1)

respectively, where x ∈ Xω with x(0) ∈ X0, w ∈ Wω, and

y ∈ Yω are called state run, internal input run, and output run,

respectively.

The internal input w ∈ W is leveraged for interconnection

with other subsystems. We now define the model of the

interconnected as follows.

Definition 3 (Interconnected System): Consider N ∈ N≥1

subsystems Si = (Xi, X0i, Wi, fi, Yi, hi), and a linear

interconnection map M of appropriate dimension. The

interconnected system is a tuple I(S) = (X, X0, f ), whose

evolution is described by the difference equation

x(t + 1) = f (x(t)), (2)

where X =
∏N

i=1 Xi, X0 =
∏N

i=1 X0i, and f (x) =

(f1(x1, w1), . . . , fN(xN, wN)), where x = (x1, . . . , xN) ∈ X, and

the interconnection variables are restricted as (w1, . . . , wN) =

M(y1, . . . , yN).

To verify an interconnected system I(S) against an

ω-regular specification, we associate the state runs of the

system with words over an automaton via a labeling function.

Definition 4: Consider an interconnected system I(S) com-

posed of N ∈ N≥1 subsystems Si = (Xi, X0i, Wi, fi, Yi, hi)

as in Definition 3 and measurable functions Li : Xi → �i.

A labeling function is defined as L : X → � (with � =
∏

�i) where L(x) = (L1(x1), . . . , LN(xN)). Moreover, a trace

or word associated with a run x is an infinite sequence L(x) =

〈L(x(0)), L(x(1)), . . .〉. We define the set of all such words by

TR(I(S), L).

We say that a system I(S), under a labeling function L,

satisfies a desired ω-regular specification characterized by

UCA A, if TR(I(S)), L) ⊆ L(A). In the following section, we

discuss how CCs provide a framework for verifying systems

against ω-regular specifications.
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C. Closure Certificates

To verify whether a system I(S) = (X, X0, f ) satisfies

an ω-regular specification, we make use of the notion of

closure certificates [1]. Our approach relies on computing

local certificates for each subsystem and composing these

certificates to form a closure certificate for the system I(S).

To achieve this, we modify the conditions of CCs to attain

our main compositionality result in Section III. First, we

demonstrate how CCs can be used to verify the safety of a

system with respect to a set of unsafe states. We say that an

interconnected system I(S) as in Definition 3 is safe with

respect to a set of unsafe states Xu ⊆ X, if for every state run

x, we have x(t) /∈ Xu for all t ∈ N.

Definition 5 (Closure Certificate for Safety): Consider an

interconnected system I(S) = (X, X0, f ) as in Definition 3.

Then, a function T : X × X → R≥0 is a Closure Certificate

(CC) for I(S) with respect to a unsafe set Xu ⊆ X if there

exists �, ϑ ∈ R>0 with � < ϑ , and constant parameter λ ∈

R≥0 such that for all states x, x′ ∈ X, x+ = f (x), and states

x0 ∈ X0, xu ∈ Xu the following holds:

T
(

x, x+
)

≤ �, (3a)

T
(

x, x′
)

≤ λT
(

x+, x′
)

+ �(1 − λ), (3b)

T(x0, xu) ≥ ϑ. (3c)

Notice that there are differences between the definition

of CC in [1, Def. 3.1] and the conditions in Definition 5.

First, we require T to be non-negative; hence, we consider

bounds � and ϑ for the initial and unsafe states to obtain

conditions (3a) and (3c). Moreover, condition (3b) implies

(T(x+, x′) ≤ �) =⇒ (T(x, x′) ≤ �) for all x, x′ ∈ X, x+ =

f (x), similar to the implication1 in [1, eq. (12)]. Observe that

one may construct a certificate T
′(x, x′) = −(T(x, x′) − �) as

in [1, Def. 3.1] from the certificate T(x, x′) in Definition 5.

Thus, the existence of such a certificate guarantees the system

to be safe [1, Th. 2]. We discuss the utility of the changes

to [1, Def. 3.1] after the proof of Theorem 2.

We now illustrate how one may use CCs to verify a

system against an ω-regular specification described by a UCA

A. Similar to existing automata-theoretic approaches, such

a CC depends on the states of the system I(S) and the

states of the automaton A = (Q, Q0, Qa, δ,�). Hence, we

define the product system I(S) × A = (Z, Z0, fA), where

Z := X × Q denotes the set of states of the product,

Z0 := X0 × Q0 denotes the initial set of states, Za := X ×

Qa denotes the set of accepting states, and the transition

function fA : Z ⇒ Z denotes the evolution of the system as

follows:

z(t + 1) ∈ fA(z(t)) :=

{

x(t + 1) = f (x(t)),

q(t + 1) ∈ δ(q(t), L(x(t))).

Now, we state the following definition.

Definition 6 (Closure Certificate for UCA Specifications):

Consider a system I(S) = (X, X0, f ) as in Definition 3. Let

UCA A = (Q, Q0, Qa, δ,�), as in Definition 1, represent a

1Both conditions are equivalent under additional assumptions, e.g.,
assumptions for the S-procedure [21].

desired ω-regular specification, and L : X → � denote a label-

ing function as in Definition 4. Consider the corresponding

product I(S) × A. A function T : Z → R≥0 is a Closure

Certificate for I(S)×A if there exist �, ς ∈ R>0, and constant

parameters λ1, λ2, λ3 ∈ R≥0 such that for all states z, z′ ∈ Z,

z+ ∈ fA(z), all initial states z0 ∈ Z0 and for all accepting states

za, z′
a ∈ Za, the following inequalities hold:

T
(

z, z+
)

≤ �, (4a)

T
(

z, z′
)

≤ λ1T
(

z+, z′
)

+ �(1 − λ1), (4b)

T(z0, za) − T
(

z0, z′
a

)

≤ λ2T(z0, za) + λ3T
(

za, z′
a

)

−(ς + λ2� + λ3�). (4c)

The conditions in (4) strengthen those given in [1, Def. 3.3]

while also requiring T to be non-negative. We note that

condition (4b) implies (T(z+, z′) ≤ �) =⇒ (T(z, z′) ≤ �),

and condition (4c) implies (T(z0, za) ≤ �) ∧ (T(za, z′
a) ≤

�) =⇒ (T(z0, za) ≤ T(z0, z′
a) − ς), which resemble [1, eq.

(18)-(19)], respectively.

Now we show how the existence of a CC for the product

system, as in Definition 6, guarantees that I(S) satisfies the

ω-regular specification described by UCA A.

Proof: Let us assume there is a run z of the system that

visits Za infinitely many times, and there exists T as in

Definition 6. Let za be a subsequence of the run z such that

za(t
′) ∈ Za for all t′ ∈ N. From (4a)-(4b) and backwards

induction over the first argument we have T(z(0), za(t
′
2)) ≤ �

and T(za(t
′
1), za(t

′
2)) ≤ � for all t′2 > t′1 with t′1, t′2 ∈ N.

Now, from (4c) and induction over the second argument,

we have T(z(0), za(0)) ≤ T(z(0), za(t
′
2)) − ς t′2 ≤ � −

ς t′2 for any t′2 ∈ N>0. For this to be true, the value of

T(z(0), za(0)) must be negative as t′2 goes to infinity. This

contradicts the assumption of T being non-negative. Therefore,

TR(I(S), L) ⊆ L(A).

Remark 1: Note that if a UCA describes a safety spec-

ification, we can recover similar conditions to those stated

in Definition 5 from Definition 6 by setting λ2 = 1 and

λ3 = 0. However, these conditions must hold for I(S) ×

A with an accepting state set Za = X × Qa (where clearly

projX(Za) = X) in contrast to the unsafe set Xu ⊂ X. Hence,

a CC for I(S) ×A following Definition 6 might have a more

complex structure than a CC found under Definition 5. See

also [1, Sec. 6.1] for an example where a linear CC exists

following [1, Definition 3.1] (similar to Definition 5 here) but

a linear CC for the product of the system and UCA cannot be

found.

These CCs may be easier to find compared to traditional

BCs in some cases (see [1, Sec. 3]); however, they are

always defined over pairs of states. Hence, they are more

computationally expensive to compute compared to barrier

certificates. The time complexity of finding a polynomial

closure certificate T of degree 2d, if it exists, using an SOS

approach is polynomial in O(|Q|2
(

2n + 2d

d

)2

), where |Q|2 is

the maximum number of possible transitions for a given UCA,

and n corresponds to the dimension of the state set of I(S)

(X ⊂ R
n), [1, Sec. 4.2]. Hence, given the system, the UCA

specification, and a fixed degree for T, the time complexity is
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polynomial in n2. Therefore, in the next section, we propose

a divide-and-conquer approach by computing local certificates

for each subsystem Si, whose composition results in a CC for

the interconnected system.

Problem definition: Given an interconnected system I(S) =

(X, X0, f ) as in Definition 3, a labeling function L as in

Definition 4 and an ω-regular specification characterized by a

UCA A as in Definition 1, determine whether TR(I(S), L) ⊆

L(A) through the use of only local certificates for each

subsystem Si.

III. MAIN COMPOSITIONALITY RESULT

We adopt a compositional approach to find a CC for the

interconnected system I(S) by designing local certificates for

its N subsystems Si. To do so, we leverage dissipativity-

inspired conditions to construct these local certificates [22],

which provide the interconnected system with a guarantee of

satisfaction of the desired specifications.

A. Safety

The following result provides sufficient conditions for

the composition of local certificates over the subsystems to

imply safety of the interconnected system given an unsafe

set Xu. First, we present the definition of local certifi-

cate for safety and then show how these certificates may

be composed to form a certificate for the interconnected

system.

Definition 7 (Local Certificate for Safety): Consider the

system I(S) = (X, X0, f ) as in Definition 3 composed of N ∈

N≥1 subsystems Si = (Xi, X0i, Wi, fi, Yi, hi) interconnected via

the linear map M and a given set of unsafe states Xu =
∏

Xui

with i ∈ [1; N]. Let λ ∈ R≥0 and consider symmetric matrices

ϒi, �i of appropriate dimension, and parameters �i, ϑi ∈ R>0,

with �i < ϑi, and λi ∈ [0, λ]. Then, Ti : Xi × Xi → R≥0 is

a local certificate for safety for subsystem Si if for all states

xi, x′
i ∈ Xi, x+

i = fi(xi, wi), and all initial states x0i ∈ X0i,

unsafe states xui ∈ Xui, internal inputs wi ∈ Wi, and output

yi = hi(xi), the following inequalities hold:

Ti

(

xi, x+
i

)

≤ �i + (wi, yi)
T�i(wi, yi), (5a)

Ti

(

xi, x′
i

)

≤ λiTi

(

x+
i , x′

i

)

+ �i

(

1 − λ
)

+(wi, yi)
Tϒi(wi, yi), (5b)

Ti(x0i, xui) ≥ ϑi, (5c)

where �i =

[

�11
i �12

i

�21
i �22

i

]

and ϒi =

[

ϒ11
i ϒ12

i

ϒ21
i ϒ22

i

]

.

Observe that a local certificate is not a CC by itself.

However, these local certificates can be composed to form a

CC for I(S) as illustrated in the following theorem.

Theorem 1: Consider a system I(S) = (X, X0, f ) as in

Definition 3 composed of N ∈ N≥1 subsystems Si =

(Xi, X0i, Wi, fi, Yi, hi) interconnected via the linear map M and

a given set of unsafe states Xu =
∏

Xui with i ∈ [1; N].

Assume that there is a local certificate for safety for each

subsystem Si as in Definition 7 and conditions (6) and (7)

hold. Then, the function
∑

Ti is a CC that guarantees the

safety of I(S) with respect to the unsafe set Xu.

� :=

[

M

I

]T

£

¤

¤

¤

¤

¤

¤

¤

¤

¤

¥

�11
1 �12

1

. . .
. . .

�11
N �12

N

�21
1 �22

1

. . .
. . .

�21
N �22

N

¦

§

§

§

§

§

§

§

§

§

¨

[

M

I

]

� 0. (6)

ϒ :=

[

M

I

]T

£

¤

¤

¤

¤

¤

¤

¤

¤

¤

¥

ϒ11
1 ϒ12

1

. . .
. . .

ϒ11
N ϒ12

N

ϒ21
1 ϒ22

1

. . .
. . .

ϒ21
N ϒ22

N

¦

§

§

§

§

§

§

§

§

§

¨

[

M

I

]

� 0. (7)

The proof of Theorem 1 follows similarly to that of

Theorem 2 and is omitted for brevity.

Notice that λ is a hyperparameter for the interconnected

system and an upper bound for λi. Moreover, the gap

λi − λ must be considered in the local certificate’s design,

as we illustrate next. Consider a subsystem with index j ∈

[1; N] and assume that for all xj, x′
j ∈ Xj, and wj ∈ Wj,

Tj(fj(xj, wj), x′
j) ≤ �j. Then, the local condition (5b) takes the

following form:

0 ≤ Tj

(

xj, zj

)

≤ �j

(

1 + λj − λ
)

+
(

wj, yj

)T
ϒj

(

wj, yj

)

.

Thus, if in addition λj − λ ≤ −1, (wj, yj)
Tϒj(wj, yj) must

be positive to compensate the negative term contributed by

�j(1+λj−λ). Hence, having ϒi not being negative semidefinite

provides freedom in the design of Tj. However, the summation

of all ϒi must be negative semidefinite to ensure the conditions

of a CC. An extended discussion on the feasibility of � and

ϒ is presented in [22].

Theorem 1 provides a local certificate for each Si to

guarantee safety for I(S). Next, we show how one can

leverage local certificates for subsystems to ensure ω-regular

specifications for the overall interconnected system.

B. UCA Specifications

In order to provide local certificates for subsystems in the

case of UCA specifications, one needs to project the product

system I(S)×A onto the local subsystems. First, we retrieve

the local labeling functions Li : Xi → �i, and define local

UCAs Ai = (Qi, Q0i, Qai, δi, �i), where Qi = Q denotes

the state set, Q0i = Q0 denotes the initial set of states,

Qai = Qa denotes the set of accepting states, and δi : Qi ×

�i ⇒ Qi denotes the transition relation, where δi(qi, σi) =

δ(qi, proj−1σi). Then, the local product system Si ×Ai for all

i ∈ [1; N] is defined as Si × Ai = (Zi, Z0i, fAi), where we

use Zi = Xi × Qi to denote the set of states, Z0i = X0i × Q0i

denotes the set of initial states, Zai := Xi ×Qai denotes the set

of accepting states of the local product, yi = h̃i(zi) = hi(xi)

denotes the local output, and the transition function fAi : Zi ×

Wi ⇒ Zi is defined for all zi ∈ Zi and wi ∈ Wi as follows:

zi(t + 1) ∈ fAi(zi(t), wi(t))
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:=

{

xi(t + 1) = fi(xi(t), wi(t)),

qi(t + 1) ∈ δi(qi(t), Li(xi(t))).

Having defined the local product system, we now present cer-

tificates for these local products, which can then be composed

to form a certificate for the interconnected system.

Definition 8 (Local Certificate for UCA Specifications):

Consider an interconnected system I(S) = (X, X0, f ) as

in Definition 3 composed of N ∈ N≥1 subsystems Si =

(Xi, X0i, Wi, fi, Yi, hi) interconnected via the linear map M.

Consider a UCA A = (Q, Q0, Qa, δ,�) as in Definition 1,

a labeling function L : X → � as in Definition 4, and the

corresponding local product system Si ×Ai. Let λ1, λ2, λ3 ∈

R≥0 and consider symmetric matrices ϒi, �i of appropriate

dimension, and parameters �i, ςi ∈ R>0, and λ1i ∈ [0, λ1],

λ2i ∈ [0, λ2], λ3i ∈ [0, λ3]. Then, Ti : Zi × Zi → R≥0 is a

local certificate for UCA specifications for subsystem Si ×Ai

if for all states zi, z′
i ∈ Zi, internal inputs wi ∈ Wi, state

z+
i ∈ fAi(zi, wi), all initial states z0i ∈ Z0i, all accepting states

zai, z′
ai ∈ Zai, and output yi = h̃i(zi) = hi(xi), the following

inequalities hold:

Ti

(

zi, z+
i

)

≤ �i + (wi, yi)
T�i(wi, yi), (8a)

Ti

(

zi, z′
i

)

≤ λ1iTi

(

z+
i , z′

i

)

+ �i

(

1 − λ1

)

+(wi, yi)
Tϒi(wi, yi), (8b)

Ti(z0i, zai) − Ti

(

z0i, z′
ai

)

≤ −
(

ςi + λ2�i + λ3�i

)

+λ2iTi(z0i, zai) + λ3iTi

(

zai, z′
ai

)

, (8c)

where �i =

[

�11
i �12

i

�21
i �22

i

]

and ϒi =

[

ϒ11
i ϒ12

i

ϒ21
i ϒ22

i

]

.

Now, we show how these local certificates can be leveraged

to verify the interconnected system I(S) against a desired

ω-regular specification.

Theorem 2: Consider a system I(S) = (X, X0, f ) com-

posed of N ∈ N≥1 subsystems Si = (Xi, X0i, Wi, fi, Yi, hi)

interconnected via a linear map M as in Definition 3. Consider

also a UCA A = (Q, Q0, Qa, δ,�) as in Definition 1, a

labeling function L : X → � as in Definition 4, and the

corresponding local product systems Si × Ai. Assume that

there is a local certificate for a UCA specification for each

Si×Ai as in Definition 8 and conditions (6) and (7) hold. Then,

the function
∑

Ti is a CC that guarantees TR(I(S), L) ⊆

L(A).

Proof: The proof follows the same steps as in the proof

of Theorem 1. We show that given λ1, λ2, λ3, the function

T =
∑

Ti is a CC for I(S) × A as in Definition 6. First,

denote z =
∏

zi and z′, z0, za, z′
a in a similar fashion. For given

∏N
i=1(zi, wi), let z+ ∈ {

∏N
i=1 z+

i | z+
i ∈ fAi(zi, wi), for all i ∈

[1; N]}. Note that since Ti(zi, z′
i) ≥ 0 for all zi, z′

i ∈ Zi, then,

T(z, z′) =
∑

Ti(zi, z′
i) ≥ 0 for all z, z′ ∈ Z. Now, for all

z, z+ ∈ Z, we obtain condition (4a) from (8b) as follows:

T
(

z, z+
)

=
∑

Ti

(

zi, z+
i

)

≤
∑

�i +
∑

(wi, yi)
T�i(wi, yi)

≤ � + (y1, . . . , yN , y1, . . . , yN)T�(y1, . . . , yN , y1, . . . , yN)

≤ �,

where � :=
∑

�i. Now, for all z, z′, z+, since Ti(z
+
i , z′

i) ≥ 0,

and λ1i is bounded, one obtains (4b) from (8b) as follows:

T(z, z′) =
∑

Ti

(

zi, z′
i

)

≤
∑

λ1iTi

(

z+
i , z′

i

)

+
∑

�i

(

1 − λ1

)

+
∑

(wi, yi)
Tϒi(wi, yi)

≤ max λ1i

∑

Ti

(

z+
i , z′

i

)

+ �
(

1 − λ1

)

+(y1, . . . , yN , y1, . . . , yN)T�(y1, . . . , yN , y1, . . . , yN)

≤ λ1T
(

z+, z′
)

+ �
(

1 − λ1

)

.

Finally, since Ti ≥ 0 and λ2i, λ3i are bounded, we obtain (3b)

from (5b) as follows:

T
(

z0, z′
a

)

− T(z0, za) =
∑

Ti

(

z0i, z′
ai

)

−
∑

Ti(z0i, zai)

≤ −
∑

(

ςi + λ2�i + λ3�i

)

+
∑

λ2iTi(z0i, zai)

+
∑

λ3iTi

(

zai, z′
ai

)

≤ −
(

ς + λ2� + λ3�
)

+ max λ2i

∑

Ti(z0i, zai)

+ max λ3i

∑

Ti

(

zai, z′
ai

)

≤ −
(

ς + λ2� + λ3�
)

+ λ2T(z0, za) + λ3T
(

za, z′
a

)

,

where ς :=
∑

ςi. Then, according to Definition 6, T =
∑

Ti

is a CC for the interconnected system I(S) × A. Hence, by

[1, Th. 6] we conclude that TR(I(S), L) ⊆ L(A).

Notice that the fact of Ti being non-negative is necessary

to obtain the upperbound
∑

λ�iTi(·, ·) ≤ max λ�iTi(·, ·), with

� ∈ {1, 2, 3}. Moreover, the strengthened conditions (8b)

and (8b) provide the inequalities that allow the use of T =
∑

Ti as the CC for the interconnected system, which cannot

be readily used under conditions [1, eq. (18)-(19)].

Additionally, we are now able to decompose the problem

of finding T into finding individual Ti for all i ∈ [1; N]

and concurrently checking compositionality conditions on �

and ϒ , for example, via the Alternating Direction Method

of Multipliers (ADMM). Then, if we use an SOS approach

to compute every Ti, the time complexity of finding T is

∑N
i=1 O(|Qi|

2

(

2ni + 2di

di

)2

), in addition to the time com-

plexity of solving two semidefinite programs (SDPs) that is

O(
∣

∣�1
∣

∣

3
) and O(

∣

∣ϒ1
∣

∣

3
), respectively, where 1 is a column

vector of ones of appropriate dimension and |·| denotes the

dimension of the vector in the argument. Hence, if we fix

the same polynomial degree for the monolithic CC and the

composed CC, we see an improvement in the computation of

the latter since
∑

i O(n2
i ) << O(

∑

i ni)
2.

IV. NUMERICAL EXAMPLE

We study the temperature control for a building modeled

as an interconnection of N rooms. The temperature of each

room is affected by the temperature of the exterior of the

building and adjacent rooms. The specification of interest

requires the building temperature to visit the region b finitely

often. This specification can be modeled as the UCA in

Fig. 1. The temperature of the system I(S) is given by x(t +

1) = Ax(t) + μThu(t) + θTe, where x = (x1, x2, . . . , xN),

u = (u1, u2, . . . , uN), Th = (Th1, Th2, . . . , ThN), and Te =

(Te1, Te2, . . . , TeN). The matrix A ∈ R
N×N is filled with zeros

except for the elements Ai,i = 1−2α−θ−μui(t), and Ai,i+1 =

Ai+1,i = A1,N = AN,1 = α for all i ∈ [1; N − 1]; which means

hat the rooms form a circular interconnection. The parameters

α, θ, μ are the conduction factors between a given room and
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Fig. 1. This UCA models a specification that requires the system to be
in a state with label b only finitely often.

the adjacent one, the exterior, and the heater, respectively. The

alphabet � = {a, b, c} and local alphabet �i = {ai, bi, ci}

where a =
∏

ai, b =
∏

bi, and c =
∏

ci.

In particular, we set α = 0.001, θ = 0.06, μ = 0.145,

Th,i = 30, Te,i = 0, and ui(t) = 1.3 for all i ∈ [1; N].

Moreover, the initial state set is X0i = [18, 22] and the

labeling function Li : Xi → �i is defined as follows: ai =

Li(xi), for all xi ∈ [0, 10], bi = Li(xi), for all xi ∈ ]10, 20],

and ci = Li(xi), for all xi ∈ ]20, 30].

We note that the value of ui(t) = 1.3 for all t ∈ N renders

xi = 22.57 globally asymptotically stable for all i ∈ [1; N].

Therefore, there exists no BC with initial states in the set

L−1(a)∪L−1(c) and unsafe states in the set L−1(b). Hence, we

cannot obtain a BC following the “triplets” approach as in [7]

nor in a compositional fashion as in [8]. Now, since every room

has the same dynamics, we assign the same local certificate for

each subsystem. We construct a piece-wise function Ti with

respect to the transitions of Ai, namely, for each (qi, q′
i) ∈

Qi × Qi; such that for each transition (zi, z′
i) ∈ Zi × Zi

with zi = (xi, qi), z′
i = (x′

i, q′
i); the function Ti(·, qi, ·, q′

i)

is a polynomial of degree 2 with respect to xi, x′
i as

shown.

Ti

(

xi, 0, x′
i, 0

)

= 5917.2 − 202.8x′
i + 4771.6xi + 172.3x2

i

+0.1x′2
i − 154.3xix

′
i

Ti

(

xi, 0, x′
i, 1

)

= 6864.8 − 361.3x′
i + 4005.1xi − 10.7x2

i

+7.2x′2
i − 109.6xix

′
i

Ti

(

xi, 1, x′
i, 0

)

= 7154.2 − 257.3x′
i + 5861xi + 297.1x2

i

+0.1x′2
i − 194.141287384x′

ixi

Ti

(

xi, 1, x′
i, 1

)

= 10447.2 − 558.8x′
i + 7107.4xi + 221.5x2

i

+7x′2
i − 266.3xix

′
i. (9)

We also obtain ρi = 100, ςi = 2.8328, λ1i =

λ1 = 20, λ2i = λ2 = 1, λ3i = λ3 = 1,

and matrices �i =

[

0.0125 6.8894e − 05

6.8894e − 05 − 0.1266

]

, ϒi =
[

0.0124 4.3253e − 06

4.3253e − 06 − 62.8787

]

.

We synthesized local certificates for our specification

N = 1000. However, one can readily verify that these local

certificates satisfy conditions in Theorem 2 for any N by

confirming that �,ϒ � 0.

V. CONCLUSION

We leveraged the notion of closure certificates to provide

a formal guarantee that a given large-scale interconnected

system satisfies a universal co-Büchi automaton specification.

To ease the computation of such a certificate for large-

scale systems, we propose a compositional approach. Under

the assumption that the large-scale system is represented as

an interconnection of smaller subsystems connected via a

linear map, we compute local certificates for these subsys-

tems and provide a closure certificate for the interconnected

system by composing these local certificates. A promising

direction for future research is to investigate whether such

certificates can be adapted to stochastic and continuous-time

systems.
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