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Abstract—Closure certificates (CCs), function analogs of
transition invariants, provide a framework to verify discrete-
time dynamical systems against w-regular specifications.
Such certificates are similar to barrier certificates (BCs) yet
are less conservative than BCs when leveraged to verify
w—regular properties. However, CCs are defined over pairs
of states of the system rather than over the state of the
system, and seek to overapproximate the transitive closure
of the transition relation. Thus, finding these certificates
is often harder and computationally more demanding than
BCs, especially for large-scale systems. To address this
challenge, we propose a dissipativity-inspired approach to
construct closure certificates for interconnected systems.
In such a setting, we assume our large-scale system to
be an interconnection of subsystems under a linear map.
We then find local certificates for these subsystems. These
local certificates are then composed to form a closure
certificate for the interconnected system, acting as proof of
the satisfaction of a desired w-regular specification. Finally,
we illustrate our approach with a numerical simulation.

Index Terms—Verification, omega-regular specifications,
compositionality, interconnected systems, dissipativity.

|. INTRODUCTION

LOSURE certificates (CCs) proposed in [1] are a tech-
Cnique to verify dynamical systems against w-regular
specifications. These certificates seek to overapproximate the
transitive closure of the transition relation of a system by
characterizing all elements in this set as being above a level
set of a function. Imposing a well-foundedness argument on
such a function acts as a proof that a set of accepting states
are visited finitely often and can thus be used to verify
w-regular specifications [2]. As CCs capture the behavior of
system transitions, they are defined over pairs of system states.
Thus, using conventional approaches such as sum-of-squares
(SOS) [3] solvers to find such a function is computationally
challenging as the dimension grows. To address this, we
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present a compositional approach to synthesize CCs for large-
scale systems modeled as interconnections of subsystems.

Contributions: In this letter, we propose a compositional
approach to construct CCs to verify large-scale systems against
safety and more general w-regular specifications described by
Universal co-Biichi Automata (UCA). Here, we assume that
the large-scale system can be modeled as an interconnection of
smaller subsystems connected via a linear map. We construct
a product of the system and the UCA and project the product
onto these subsystems. We then provide local certificates for
these projections. The conditions of these local certificates
rely on strengthening the conditions of a CC to make them
amenable to easy composition. We then compose these local
certificates to form a CC for the interconnected system using
a dissipativity-inspired approach. This allows us to provide a
proof that the large-scale system satisfies a given w-regular
specification.

Related work: One approach to verify dynamical systems
against w-regular specifications leverages abstraction-based
methods [4], where one quantizes the state set to create a
finite-state abstraction. Then, ensuring that the abstraction
satisfies the specification also provides a guarantee for the
original system. Although such methods are easily automat-
able, they suffer from the curse of dimensionality. The
construction of such an abstraction suffers exponentially as the
system dimension grows. To address this issue, one can lean
towards a compositional approach to construct abstractions [5],
or instead, may use abstraction-free approaches. One such
approach is the use of barrier certificates (BCs) [6] to prove
safety of dynamical systems.

The success of BCs has inspired their use in proving w-
regular specifications given by automata. The authors of [7]
presented a “triplets” approach that decomposes the spec-
ification into a finite collection of straightforward safety
constraints. To do so, they partition consecutive automaton
transitions or “triplets” of states and form safety arguments
over these. Even though there are works that address the
problem of computing such BCs for large-scale systems
(see [8], [9] and references therein), this approach is poten-
tially conservative; i.e., even though the system satisfies
the specification, one cannot always find the required BC
that guarantees its satisfaction [10], [11]. The result in [12]
proposed a notion of co-Biichi barrier certificates (CBBC) that
acts as proof that the accepting states of the automaton are
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visited only finitely often by keeping track of the number of
visitations via a counter. This approach is inspired by bounded
verification and synthesis approaches [13], [14]. Here, one
selects an a priori upper bound for the counter and tries
to prove that the counter value never exceeds the upper
bound via a safety argument. If the CBBC is not found,
the upper bound may be iteratively increased until a desired
certificate is found, providing a more general framework than
the one provided by the “triplets” approach. Moreover, the
results in [15] provide a compositional approach for large-
scale systems using CBBC, addressing the time complexity
issues. Similar to how BCs act as function analogs of state
invariants, the CCs act as function analogs of transition
invariants. Transition invariants were introduced in [2] as
a framework to verify program termination and programs
against w-regular specifications. This approach has since been
implemented to demonstrate program termination [16], [17],
and has also seen use in the verification of stability and safety
for hybrid systems [18], [19]. The use of CCs deals with the
conservatism of the “triplets” approach while simultaneously
removing the necessity of fixing an a priori bound on the
number of visitations. Though CCs may provide flexibility
and benefits over BCs and CBBCs in specific scenarios, their
computation becomes intractable for large-scale systems as
they are defined over pairs of system states rather than over
states of the system directly.

[I. NOTATION AND PRELIMINARIES

We denote by N and R the natural (including zero) and
the real numbers. Given a € R, we use N>, (resp. R>,) to
denote all values in N (resp. R) greater than or equal to a.
Notations [a, b], ]a, bl, [a, b[, and ]a, b] denote closed, open,
and half-open sets in R. Likewise, [a; b], la; b[, [a; b[ and
la; b] denote closed, open, and half-open sets in N. Given sets
X1, ..., Xm, for some m € N>, we denote the product by
X1 x X X ...x Xy, or more compactly by ]_[:"= 1 X;. Moreover,
we denote an element (xp, ..., x;) € [[X; of the product set
by []xi, where x; € X; for all i € [1; m]. Similarly, we denote
the projection of x € X on the subset X; by proj;(x) = x;. Note
that we drop the counter index from the product when it is
clear from the context. Given sets A and B, we represent the
set difference as AAB:={x €A |x¢B}. Weusef :A 2B
to denote a set-valued map, whereas f : A — B denotes a
single-valued map. Additionally, we use f(A) to denote the set
{f(a) € B| for all a € A}. Given a set A, we denote the set
of infinite-length sequences A“ = {s | s = (ap,ay,...) s.t.
ap, ai, ... € A}. We say that an infinite sequence s € A® visits
a € A at most k times if there are k distinct indices i € N such
that @; = a with a; appearing in s. Let Inf(s) be the set of
elements a € A that occur infinitely many times in s. Lastly,
a symmetric real matrix P is called negative semidefinite and
denoted by P < 0 if all its eigenvalues are non-positive.

A. Universal co-Blichi Automata

In this letter, we consider specifications or properties
expressed by universal co-Biichi automata defined as follows.

Definition 1: A universal co-Biichi automaton [20] (UCA)
is a tuple A = (Q, Qo, Qu, 8, ), where Q is a finite set
of states, Qp < Q is the set of initial states, Q, is the
set of final or accepting states, X is a finite alphabet, and
8 : Q x ¥ = Qis a transition map. A run of the UCA A over
a word s = (09, 01, 02, ...) € X is an infinite state sequence
q = (g0, 91, q2, - -.) € O with go € Qo and g;+1 € 8(gi, 07).
We say that an infinite word s = (o9, 01, ...) € X is accepted
by A if for every run q of A over s, we have Inf(q) NQ, = 0.
We define the language of the UCA A by the set of words it
accepts and denote this by L(A).

B. Dynamical Systems

We consider large-scale systems that can be decomposed
into interconnected subsystems modeled as follows.

Definition 2 (System): A discrete-time dynamical subsys-
tem S is a tuple S = (X, Xo, W, f, Y, h), where X is the state
set, Xo € X is the set of initial states, W the internal input set,
Y the output set, f : X x W — X is the transition function,
and & : X — Y is the output map. The state evolution of &
and the output are given by

X(1+1) =f(x(), w(®), and y(©) = h(x(1)), ey

respectively, where x € X with x(0) € Xo, w € W®, and
y € Y are called state run, internal input run, and output run,
respectively.

The internal input w € W is leveraged for interconnection
with other subsystems. We now define the model of the
interconnected as follows.

Definition 3 (Interconnected System): Consider N € N
subsystems S; = (X;, Xoi, Wi, fi, Yi, hi), and a linear
interconnection map M of appropriate dimension. The
interconnected system is a tuple J(S) = (X, Xo,f), whose
evolution is described by the difference equation

x(t+ 1) = f(x(0), (2)
where X = ]_[f-vlei, Xy = ]_[f-V:IXOi, and f(x) =
(fl(xl, Wl), - ,fN(xN, WN)), where x = (xl, ey xN) S X, and

the interconnection variables are restricted as (wq, ..
My, ..., yn).

To verify an interconnected system J(S) against an
w-regular specification, we associate the state runs of the
system with words over an automaton via a labeling function.

Definition 4: Consider an interconnected system J(S) com-
posed of N € Nxp subsystems S; = (X;, Xoi;, Wi, fi, Yi, i)
as in Definition 3 and measurable functions L; : X; — X;.
A labeling function is defined as L : X — X (with ¥ =
[1%) where L(x) = (L (x1), ..., Ly(xyn)). Moreover, a trace
or word associated with a run X is an infinite sequence L(x) =
(L(x(0)), L(x(1)), ...). We define the set of all such words by
TR(3(S), L).

We say that a system J(S), under a labeling function L,
satisfies a desired w-regular specification characterized by
UCA A, if TR(3(S)), L) € L(A). In the following section, we
discuss how CCs provide a framework for verifying systems
against w-regular specifications.

L WN) =
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C. Closure Cetrtificates

To verify whether a system J(S) = (X, Xo,f) satisfies
an w-regular specification, we make use of the notion of
closure certificates [1]. Our approach relies on computing
local certificates for each subsystem and composing these
certificates to form a closure certificate for the system J(S).
To achieve this, we modify the conditions of CCs to attain
our main compositionality result in Section III. First, we
demonstrate how CCs can be used to verify the safety of a
system with respect to a set of unsafe states. We say that an
interconnected system J(S) as in Definition 3 is safe with
respect to a set of unsafe states X, C X, if for every state run
x, we have x(¢) ¢ X,, for all t € N.

Definition 5 (Closure Certificate for Safety): Consider an
interconnected system J(S) = (X, Xo,f) as in Definition 3.
Then, a function T : X x X — Rs¢ is a Closure Certificate
(CC) for J(S) with respect to a unsafe set X, C X if there
exists o, € R, with o < ¥, and constant parameter A €
R>¢ such that for all states x,x’ € X, xT = f(x), and states
xo € Xo, x, € X, the following holds:

’]I‘(x, x+) <o, (3a)
T(x,x') < AT(x", %) + o(1 — 1), (3b)
T(x0, x,) = D. 30)

Notice that there are differences between the definition
of CC in [1, Def. 3.1] and the conditions in Definition 5.
First, we require T to be non-negative; hence, we consider
bounds o and ¢ for the initial and unsafe states to obtain
conditions (3a) and (3c). Moreover, condition (3b) implies
(T(xT,x) <0) = (T(x,x) <p) forall x,x € X,x" =
f(x), similar to the implication1 in [1, eq. (12)]. Observe that
one may construct a certificate T’(x, x') = —(T(x, ') — 0) as
in [1, Def. 3.1] from the certificate T(x, x") in Definition 5.
Thus, the existence of such a certificate guarantees the system
to be safe [1, Th. 2]. We discuss the utility of the changes
to [1, Def. 3.1] after the proof of Theorem 2.

We now illustrate how one may use CCs to verify a
system against an w-regular specification described by a UCA
A. Similar to existing automata-theoretic approaches, such
a CC depends on the states of the system J(S) and the
states of the automaton A = (Q, Qop, Qu, 8, X). Hence, we
define the product system 3(S) x A = (Z,Zy,f4), where
Z = X x Q denotes the set of states of the product,
Zo = Xop X Qq denotes the initial set of states, Z, = X X
Q, denotes the set of accepting states, and the transition
function f4 : Z = Z denotes the evolution of the system as
follows:

X(r4+ 1) =fx(@),
q(+1) €8(q(n), Lx()).

Now, we state the following definition.

Definition 6 (Closure Certificate for UCA Specifications):
Consider a system J(S) = (X, Xo,f) as in Definition 3. Let
UCA A = (Q, Qo, Qs, 8, X), as in Definition 1, represent a

z(t+ 1) € fa@(®) = {

IBoth conditions are equivalent under additional assumptions, e.g.,
assumptions for the S-procedure [21].

desired w-regular specification, and L : X — X denote a label-
ing function as in Definition 4. Consider the corresponding
product J(S) x A. A function T : Z — Rs¢ is a Closure
Certificate for J(S) x A if there exist g, ¢ € R. ¢, and constant
parameters i, A2, A3 € R>q such that for all states z,7 € Z,
7T e f4(2), all initial states zo € Zo and for all accepting states
Za, 2y € Z4, the following inequalities hold:

T(z.z") <o,

T(z,2) < MT(z%, ) + o1 — 1),

T(z0. za) — T(20. 2,) < 22T (20, 2a) + 23T (24, )
—(6 + A0+ 230). (40)

(4a)
(4b)

The conditions in (4) strengthen those given in [1, Def. 3.3]
while also requiring T to be non-negative. We note that
condition (4b) implies (T(z",7) < 0) = (T(z,7) < o),
and condition (4c) implies (T(zo,za) < ©) A (T(z4,2,) <
0) = (T(20,za) < T(z0,2,) — <), which resemble [1, eq.
(18)-(19)], respectively.

Now we show how the existence of a CC for the product
system, as in Definition 6, guarantees that J(S) satisfies the
w-regular specification described by UCA A.

Proof: Let us assume there is a run z of the system that
visits Z, infinitely many times, and there exists T as in
Definition 6. Let z, be a subsequence of the run z such that
z,(f) € Z, for all ¥ € N. From (4a)-(4b) and backwards
induction over the first argument we have T(z(0), z, (t’z)) <o
and T(z.(1)), 2a(ty)) < ¢ for all ¥, > 1} with 7,7, e N.
Now, from (4c) and induction over the second argument,
we have T(z(0),2,(0)) =< T(z(0),z.(13) — st5 < o —
ct, for any #, € N.o. For this to be true, the value of
T(z(0), z,(0)) must be negative as t/2 goes to infinity. This
contradicts the assumption of T being non-negative. Therefore,
TR(I(S),L) € L(A). |

Remark 1: Note that if a UCA describes a safety spec-
ification, we can recover similar conditions to those stated
in Definition 5 from Definition 6 by setting A» = 1 and
A3 = 0. However, these conditions must hold for J(S) x
A with an accepting state set Z, = X x Q, (where clearly
projx(Z,) = X) in contrast to the unsafe set X, C X. Hence,
a CC for J(S) x A following Definition 6 might have a more
complex structure than a CC found under Definition 5. See
also [1, Sec. 6.1] for an example where a linear CC exists
following [1, Definition 3.1] (similar to Definition 5 here) but
a linear CC for the product of the system and UCA cannot be
found.

These CCs may be easier to find compared to traditional
BCs in some cases (see [1, Sec. 3]); however, they are
always defined over pairs of states. Hence, they are more
computationally expensive to compute compared to barrier
certificates. The time complexity of finding a polynomial
closure certificate T of degree 2d, if it exist;, using an SOS
2 2”;2‘1 ). where |Qf? is
the maximum number of possible transitions for a given UCA,
and n corresponds to the dimension of the state set of J(S)
(X C RM), [1, Sec. 4.2]. Hence, given the system, the UCA
specification, and a fixed degree for T, the time complexity is

approach is polynomial in O(|Q
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polynomial in n?. Therefore, in the next section, we propose
a divide-and-conquer approach by computing local certificates
for each subsystem &;, whose composition results in a CC for
the interconnected system.

Problem definition: Given an interconnected system J(S) =
(X, Xo,f) as in Definition 3, a labeling function L as in
Definition 4 and an w-regular specification characterized by a
UCA A as in Definition 1, determine whether TR(J(S), L) C
L(A) through the use of only local certificates for each
subsystem ;.

1. MAIN COMPOSITIONALITY RESULT

We adopt a compositional approach to find a CC for the
interconnected system J(S) by designing local certificates for
its N subsystems S;. To do so, we leverage dissipativity-
inspired conditions to construct these local certificates [22],
which provide the interconnected system with a guarantee of
satisfaction of the desired specifications.

A. Safety

The following result provides sufficient conditions for
the composition of local certificates over the subsystems to
imply safety of the interconnected system given an unsafe
set X,. First, we present the definition of local certifi-
cate for safety and then show how these certificates may
be composed to form a certificate for the interconnected
system.

Definition 7 (Local Certificate for Safety): Consider the
system J(S) = (X, Xo, f) as in Definition 3 composed of N €
N> subsystems S; = (X;, Xoi, Wi, fi, Yi, h;) interconnected via
the linear map M and a given set of unsafe states X, = [ [ X,;
withi € [1;N]. Let A € R>o and consider symmetric matrices
Y;, I'; of appropriate dimension, and parameters o;, ¥; € R~o,
with o; < 9, and A; € [0, A]. Then, T, : X; x X; — R>p is
a local certificate for safety for subsystem S; if for all states
xi, x; € X, x;’ = fi(x;,w;), and all initial states xo; € Xo;,
unsafe states x,; € Xy, internal inputs w; € W;, and output
vi = h;(x;), the following inequalities hold:

Ti(xi, %) < 0i + i y) Ti(wi yi),
T;(xi, x}) < ATi(x, xf) + 0i(1 — %)
+0wi, ) Tiwi, yi), (5b)

(5¢)

(5a)

T; (xoi, xui) = O,

where T T d¥Y T
= | i | o]

Observe that a local certificate is not a CC by itself.
However, these local certificates can be composed to form a
CC for J(S) as illustrated in the following theorem.

Theorem 1: Consider a system J(S) = (X, Xo,f) as in
Definition 3 composed of N € Ns; subsystems S; =
(Xi, Xoi, Wi, fi, Yi, h;) interconnected via the linear map M and
a given set of unsafe states X, = [][X, with i € [1; N].
Assume that there is a local certificate for safety for each
subsystem S; as in Definition 7 and conditions (6) and (7)

hold. Then, the function ) T; is a CC that guarantees the
safety of J(S) with respect to the unsafe set X,.

! r? i
— i F,{,é M
T = <0.
(e ¥ [
ry ry
! T2 T
- " 1! TI{,.Z M
T = =<0.(7
R P
21 22
L Ty Ty

The proof of Theorem 1 follows similarly to that of
Theorem 2 and is omitted for brevity.

Notice that X is a hyperparameter for the interconnected
system and an upper bound for A;. Moreover, the gap
A; — » must be considered in the local certificate’s design,
as we illustrate next. Consider a subsystem with index j €
[1; N] and assume that for all xj,x]’- € Xj, and w; € W,
T;(f;(xj, wj), x;) < oj. Then, the local condition (5b) takes the
following form:

- T
0 < Tj(x, z7) < 0i(1+ A — &) + (wj )" i (wj, »j)-

Thus, if in addition A; — A< -1, (WJ,yj)TTj(WJ-,yj) must
be positive to compensate the negative term contributed by
oj(1 +kj—X). Hence, having Y; not being negative semidefinite
provides freedom in the design of T;. However, the summation
of all Y; must be negative semidefinite to ensure the conditions
of a CC. An extended discussion on the feasibility of T and
Y is presented in [22].

Theorem 1 provides a local certificate for each S; to
guarantee safety for J(S). Next, we show how one can
leverage local certificates for subsystems to ensure w-regular
specifications for the overall interconnected system.

B. UCA Specifications

In order to provide local certificates for subsystems in the
case of UCA specifications, one needs to project the product
system J(S) x A onto the local subsystems. First, we retrieve
the local labeling functions L; : X; — X;, and define local
UCAs A; = (0O, Qui, Qui, 8i, i), where Q; = Q denotes
the state set, Qp; = Qo denotes the initial set of states,
Q4 = Q4 denotes the set of accepting states, and §; : Q; X
¥; == Q; denotes the transition relation, where §;(g;, 0;) =
8(gi,» proj—'o7). Then, the local product system S; x A; for all
i € [1;N] is defined as S; x A; = (Z;, Zoi, fa;), where we
use Z; = X; x Q; to denote the set of states, Zy; = Xo; X Qo
denotes the set of initial states, Z,; := X; x Q,; denotes the set
of accepting states of the local product, y; = izi(z,-) = h;(x;)
denotes the local output, and the transition function f4; : Z; X
W; = Z; is defined for all z; € Z; and w; € W; as follows:

zi(t + 1) € fai(zi(1), wi(1))

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on April 21,2025 at 17:39:42 UTC from IEEE Xplore. Restrictions apply.



GALARZA-JIMENEZ et al.: COMPOSITIONAL VERIFICATION FOR LARGE-SCALE SYSTEMS VIA CCs 2173
= X+ D =), wi@), +> oi(1=%1) + > wi y) " Yilwi, i)
qi(r+ 1) € 8i(qi(n), Li(xi(1))). N Tt o -
. < maxAj; iz, z) + —
Having defined the local product system, we now present cer- - 1 Z i(&i"2i) + o — 1)
tificates for these local products, which can then be composed +O1, v YN T O YNs Y1 -5 YN)

to form a certificate for the interconnected system.

Definition 8 (Local Certificate for UCA Specifications):
Consider an interconnected system J(S) = (X, Xo,f) as
in Definition 3 composed of N € Nsj subsystems S; =
(Xi, Xoi, Wi, fi, Yi, hi) interconnected via the linear map M.
Consider a UCA A = (Q, Qp, Qu, 8, X) as in Definition 1,
a labeling function L : X — ¥ as in Definition 4, and the
corresponding local product system S; x A;. Let A, A2, A3 €
R>po and consider symmetric matrices Y;, I'; of appropriate
dimension, and parameters g;, ¢; € R, and Aj; € [0, il
A2i € [0,A2], A3 € [0, 23]. Then, T; : Z; x Z; — Rsg is a
local certificate for UCA specifications for subsystem S; x A;
if for all states z,-,z; € Z;, internal inputs w; € W;, state
Z;’ € fai(zi, wi), all initial states zo; € Zy;, all accepting states
Zai» 2y € Zai» and output y; = hi(z)) = hi(x;), the following
inequalities hold:

T; (le ) < o0i + (wi, y:) Li(wi, yi),
Ti(zi. 7)) < MiTile 2) + ei(1 — 1)
+(wi, )T Ti(wi, yi), (8b)
Ti(20i zai) — Ti(z0i, 7)) < —(si + *20i + 2301)
+12iTi (200, Zai) + 37 Ti(Zais 247)
11 pI2 11 ~r12
where I'; = [??1 ??2] and Y; = [%21 %22:|

Now, we show how these local certificates can be leveraged
to verify the interconnected system J(S) against a desired
w-regular specification.

Theorem 2: Consider a system J(S) = (X, Xo,f) com-
posed of N € N> subsystems S; = (X;, Xoi, Wi, fi, Yi, hi)
interconnected via a linear map M as in Definition 3. Consider
also a UCA A = (0, Qo, Qs, 8, %) as in Definition 1, a
labeling function L : X — X as in Definition 4, and the
corresponding local product systems S; x A;. Assume that
there is a local certificate for a UCA specification for each
S;x A; as in Definition 8 and conditions (6) and (7) hold. Then,
the function ) T; is a CC that guarantees TR(J(S),L) C
L(A).

Proof: The proof follows the same steps as in the proof
of Theorem 1. We show that given XI,XZ,X3, the function
T = Y T; is a CC for J(S) x A as in Definition 6. First,
denote z = [z and 2, z0, 24, 2, in a similar fashion. For given
TV, i wi), let 25 € ([T, 57 | 57 € fai(zi, wi), for all i €
[1; N1}. Note that since Ti(z;, z;) > 0 for all z;, Z; € Z;, then,
T(z,z) = > Ti(zi,z)) = 0 for all z,z € Z. Now, for all
Z, Z+ € Z, we obtain condition (4a) from (8b) as follows:

= Ti(zz) =)o+ Y iy Titwi, yi)

SQ+(YL...,yN,y1,-.-,yN) TOL oo YN YL - -
<o

(8a)

(8c)

sJ’N)

where ¢ := Y 0;. Now, for all z, 7, z", since T;(z}",z}) > 0,
and Ay; is bounded, one obtains (4b) from (8b) as follows:

T(.2) =Y Ti(z.7) < Y aiTi(s . 7))

< MT(EH ) +o(1 =)

Finally, since T; > 0 and Ay;, A3, are bounded, we obtain (3b)

from (5b) as follows:
T (20.2,) — TG0 2a) = Y _ Tilz0i- %) — Y, Ti(20i 2ai)

=- Z(Si +220i + A30i) + Z)»ziT'(ZOb Zai)

+ ZM;
< —(s + 220 + A30) + max Az Y Ti20i, Zai)
+max A3; Z T (2ais Zi)

< —(s + 220+ 230) + 22T (20, 20) + 23T (24 2,,)

where ¢ := ) ;. Then, according to Definition 6, T =) T;
is a CC for the interconnected system J(S) x A. Hence, by
[1, Th. 6] we conclude that TR(J(S), L) € L(A). [ |

Notice that the fact of T; being non-negative is necessary
to obtain the upperbound Y A4 T;(-, -) < max Ay Ti(-, -), with
¢ e {1,2,3}. Moreover, the strengthened conditions (8b)
and (8b) provide the inequalities that allow the use of T =
> T; as the CC for the interconnected system, which cannot
be readily used under conditions [1, eq. (18)-(19)].

Additionally, we are now able to decompose the problem
of finding T into finding individual T; for all i € [1; N]
and concurrently checking compositionality conditions on T
and Y, for example, via the Alternating Direction Method
of Multipliers (ADMM). Then, if we use an SOS approach
to compute every T;, th€2 time complexity of finding T is
BNl
plexity of solving two semidefinite programs (SDPs) that is
O(|F1|3) and O(’TIP), respectively, where 1 is a column
vector of ones of appropriate dimension and |-| denotes the
dimension of the vector in the argument. Hence, if we fix
the same polynomial degree for the monolithic CC and the
composed CC, we see an improvement in the computation of
the latter since ) ; O(n%) << 0%, ni)?.

Zat ,

), in addition to the time com-

IV. NUMERICAL EXAMPLE

We study the temperature control for a building modeled
as an interconnection of N rooms. The temperature of each
room is affected by the temperature of the exterior of the
building and adjacent rooms. The specification of interest
requires the building temperature to visit the region b finitely
often. This specification can be modeled as the UCA in
Fig. 1. The temperature of the system J(S) is given by x(z +
1) = Ax(t) + uTpu(t) + 6T,, where x = (x1,x2,...,XN),

= (ur,up,...,un), Tn, = (Tp1,Tpa, ..., Tpn), and T, =
(Tel, 2, - .., Ton). The matrix A € RV*N is filled with zeros
except for the elements A; ; = 1 —20—0 — pu;(t), and A; ;11 =
Ait1,;=A1 N =Ayn1 =« for all i € [1; N — 1]; which means
hat the rooms form a circular interconnection. The parameters
o, 8, u are the conduction factors between a given room and
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Fig. 1. This UCA models a specification that requires the system to be

in a state with label b only finitely often.

the adjacent one, the exterior, and the heater, respectively. The
alphabet ¥ = {a, b, ¢} and local alphabet ¥; = {a;, b;, ci}
where a = [[a;, b=1[]bi, and ¢ =[] c;.

In particular, we set ¢ = 0.001, 6 = 0.06, u = 0.145,
Tpn; = 30, T,; = 0, and u;(z) = 1.3 for all i € [I;N].
Moreover, the initial state set is Xo; = [18,22] and the
labeling function L; : X; — %; is defined as follows: a; =
Li(x;), for all x; € [0, 10], b; = L;(x;), for all x; € ]10, 20],
and ¢; = L;(x;), for all x; € 120, 30].

We note that the value of u;(r) = 1.3 for all r € N renders
x; = 22.57 globally asymptotically stable for all i € [1; N].
Therefore, there exists no BC with initial states in the set
L~ Y(@)UL™!(c) and unsafe states in the set L~!(b). Hence, we
cannot obtain a BC following the “triplets” approach as in [7]
nor in a compositional fashion as in [8]. Now, since every room
has the same dynamics, we assign the same local certificate for
each subsystem. We construct a piece-wise function T; with
respect to the transitions of .A;, namely, for each (g;,q) €
Qi x Qj; such that for each transition (z;,2z) € Z; X Z;
with z; = (x;,¢), z; = (x},q}); the function Ti(-, gi, -, q})
is a polynomial of degree 2 with respect to x;,x; as
shown.

T;(x;, 0, %, 0) = 5917.2 — 202.8x] + 4771.6x; + 172.3x}
+0.1x7 — 154.3x%,

T;(x, 0, %, 1) = 6864.8 — 361.3x] 4 4005. 1x; — 10.7x7
+7.2x7 — 109.6x:x,

T;(xi, 1, x},0) = 7154.2 — 257.3x] 4 586 1x; + 297.1x7
+0.1x7? — 194.141287384x.x;

T;(x;, 1, %}, 1) = 10447.2 — 558.8x] + 7107.4x; + 221.5x7

+7x? — 266.3x;x. )
We also obtain p; = 100, ¢ = 2.8328, A;; =
Xl = 20, Xy = XQ = 1, i3 = X3 = 1,
and matrices T — 0.0125 6.8894¢ — 05] T
! 6.8894¢ — 05 —0.1266 |© '
0.0124 4.3253¢ — 06
[4.32536 —06 —62.8787 |

We synthesized local certificates for our specification
N = 1000. However, one can readily verify that these local
certificates satisfy conditions in Theorem 2 for any N by
confirming that T, YT <0.

V. CONCLUSION

We leveraged the notion of closure certificates to provide
a formal guarantee that a given large-scale interconnected
system satisfies a universal co-Biichi automaton specification.

To ease the computation of such a certificate for large-
scale systems, we propose a compositional approach. Under
the assumption that the large-scale system is represented as
an interconnection of smaller subsystems connected via a
linear map, we compute local certificates for these subsys-
tems and provide a closure certificate for the interconnected
system by composing these local certificates. A promising
direction for future research is to investigate whether such
certificates can be adapted to stochastic and continuous-time
systems.
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