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Data-Driven Controller Synthesis via Co-Büchi
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Abstract—In this letter, we introduces a data-driven
framework for synthesizing controllers that enforce proper-
ties expressed by so-called � universal co-Büchi automata
(�-UCA) over control systems with finite input sets and
unknown mathematical models. The proposed framework
leverages the notion of co-Büchi control barrier certificates
(CBC). These certificates, together with their correspond-
ing controllers, guarantee that a region in the state set is
visited finitely often as the system evolves, limiting visits
to at most � times. The CBC is defined over a domain
that augments the system and the �-UCA, incorporating
a counter variable to track the number of visits to the
accepting states of �-UCA. However, constructing these
CBCs typically requires precise knowledge of the dynamics
of the system, which is often unavailable in real-world
applications. Therefore, we propose a data-driven scheme
where we initially formulate the CBC conditions as a robust
optimization program (ROP). Since the unknown model
appears in some of the ROP constraints, we employ sam-
pled data points collected from the system’s trajectories
to formulate a scenario optimization program (SOP) asso-
ciated with the ROP. By solving the corresponding SOP,
we construct CBCs and controllers that enforce �-UCA
properties for the unknown system with a formal correct-
ness guarantee. The efficacy of our data-driven approach is
demonstrated by applying it to a three-tank system whose
dynamics is assumed to be unknown.

Index Terms—Data driven control, co-Büchi control
barrier certificates, universal co-Büchi automata.

I. INTRODUCTION

I
N THE last two decades, formal methods have gained

considerable attention in the hybrid systems community.

They offer formal analyses for complex dynamical systems.

However, it remains highly challenging to provide formal

verification and controller synthesis frameworks for complex

systems to enforce high-level logic properties. These prop-

erties, such as those formally expressed as temporal logic
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formulae or languages specified by automata [1], require sig-

nificant efforts to ensure their satisfaction. Challenges include

the continuity of state sets, the handling of complex logic

requirements, and the absence of closed-form mathematical

models in numerous real-world applications.

To address these challenges, there is a growing focus on

employing data-driven abstraction-based methods to synthe-

size controllers that are correct-by-construction for systems

with (partially) unknown dynamics [2]. Examples of such

efforts include the results in [3], [4], [5], [6], which predom-

inantly utilize discretization-based approaches. The proposed

schemes in those results provide formally correct controllers

for ω-regular properties.

An alternative approach, which is discretization free, ini-

tially proposed in [7], involves utilizing barrier certificates

as an abstraction-free method for formally verifying and

synthesizing controllers for dynamical systems. Barrier certifi-

cates are similar to Lyapunov functions, with level sets that

separate an unsafe region from the trajectories of the system

originating from a given initial set. Consequently, the existence

of such a function offers a (probabilistic) safety guarantee

for the concrete system. However, in the automata-theoretic

verification approach, the primary concern is determining

whether a set of states can be visited only finitely often. Recent

results in [8], inspired by bounded synthesis methods [9], [10],

introduce an abstraction-free method for automata-theoretic

verification of discrete-time dynamical systems. This approach

introduces the notion of co-Büchi barrier certificates (CBC),

which provide sufficient conditions to verify systems against

ω-regular properties described by universal co-Büchi automata

(UCA).

A co-Büchi barrier certificate is a real-valued function

defined over the product of a system and an automaton, whose

conditions ensure that the accepting states of the automaton

are visited only finitely often. This certificate incorporates a

counter value, which tracks the number of times an accepting

state is visited. The search for this certificate is based on

a preselected upper bound on the number of visits. Upon

a successful search, the system can be verified to meet the

specification represented by the automaton. Unfortunately, the

framework for constructing CBCs, as described in [8], requires

precise models for the corresponding analyzes. Consequently,

these techniques cannot be employed when the system model

is unknown, which is often the case in real-world applications.

In this letter, we introduce a novel data-driven technique for
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constructing CBCs, without performing any system identifica-

tion, as done in [11], [12].

Contributions: The main goal of this letter is to introduce a

data-driven technique for constructing CBCs and synthesizing

controllers to ensure that an unknown system satisfies an ω-

regular property described by an �-UCA in which � bounds

the number of visits to the accepting states of the automaton.

We consider systems with finite input sets and unknown

mathematical models. We begin by formulating the conditions

of CBC as a robust optimization program (ROP). Since the

unknown model appears in some of the ROP’s constraints,

we utilize sampled data points collected from the system’s

trajectories to formulate a scenario optimization program

(SOP) associated with the ROP. By solving the resulting SOP,

we construct CBCs together with controllers that formally

guarantee the enforcement of the �-UCA properties for the

unknown system.

Related Work: In recent years, limited studies have explored

the formal analysis of unknown dynamical systems using

data-driven and abstraction-free approaches. Our method is

applicable to all classes of nonlinear discrete-time control

systems, unlike the approach in [13], which is tailored solely

to nonlinear polynomial-type systems. While the findings

in [14], [15] concentrate on data-driven methods for unknown

dynamical systems using control barrier certificates with cer-

tain probabilistic confidence levels, our approach is designed

to construct CBCs with a confidence level of 1 using noise-free

data. Additionally, we assume that an accurate upper bound

for the system’s Lipschitz constant is available. The methods

in [13], [14], [15], [16] provide control barrier certificates and

controllers to ensure that the trajectories of an unknown system

originating from a given set never reach an unsafe region. Our

approach distinguishes itself by developing a systematic data-

driven framework to construct CBCs. It generalizes classic

barrier certificates to ensure that the trajectories of an unknown

system visit a specified region at most a fixed number of

times. This enhancement broadens the applicability of barrier

certificates for ω-regular properties, providing a more general

framework for system analysis and design. We direct interested

readers to [8] for a comprehensive understanding of the

differences between CBC and traditional barrier certificates.

II. PRELIMINARIES AND DEFINITIONS

A. Notation

Symbols R and R≥0 represent sets of real and non-negative

real numbers, respectively. Notation +, ,, and \ indicate,

respectively, set intersection, union and set difference. The

symbol N denotes the set of natural numbers including 0 and

for any n ∈ N, N≥n = {i ∈ N | i ≥ n}. In the case where

a, b ∈ N and a < b, we employ the notations (a; b), and

[a; b] to represent, respectively, the open and closed intervals

in N. Similarly, for a, b ∈ R and a < b, we use (a, b), and

[a, b] to represent the corresponding intervals in R. For any

non-empty set Q, notation Cd(Q) depicts the cardinality of Q,

while Qω indicates the set of infinite-length sequences from Q,

i.e., Qω := {〈wi〉∞i=0 | wi ∈ Q ∀i ∈ N}. We denote the indicator

function of A ⊆ Q by 1A:Q → {0, 1}, where 1A(x) = 1 if

and only if x ∈ A, and 0 otherwise. Given K vectors vl ∈ R
kl ,

kl ∈ N, and l ∈ [1; K], we use v = [v1; . . . ; vK] to denote the

corresponding column vector of dimension
∑

l kl. Assuming

c ∈ R
n, ‖c‖ means the infinity norm of c. For any B ⊆ R

n and

ε > 0, notation �ε(b̃) is interpreted as {b ∈ B | ‖b − b̃‖ ≤ ε}.
Therefore, we create a partition of B into cells �ε(b̃) such

that B ⊆
⋃

b̃∈[B]ε
�ε(b̃), where [B]ε denotes a finite set of

representative points picked from those partition sets.

B. Universal Co-Büchi Automaton

Here, in accordance with the definition outlined in [9], we

first introduce a variation of a deterministic universal co-Büchi

automaton, whose acceptance criterion encompasses an atmost

� visitation to the accepting states for some � ∈ N.

Definition 1: Given � ∈ N, a deterministic �-Universal Co-

Büchi Automaton (�-UCA) A is a tuple (Q,�, �, Q0, QF),

where: Q is a finite set of states, � is a finite alphabet, �:Q ×
� → Q is a transition map, where Cd(�(q, ς)) ≤ 1 ∀q ∈
Q and ∀ς ∈ �, and Q0, QF ⊆ Q, respectively, denotes the

initial and final (accepting) set of states, where the acceptance

condition is that QF is visited at most � times. Consider a

word v = 〈ςi〉∞i=0 ∈ �ω. A run of A over v is an infinite

sequence of states, q = 〈qi〉∞i=0 ∈ Qω, where q0 ∈ Q0 and

qi+1 = �(qi, ςi) ∀i ∈ N. Therefore, we say the word v ∈ �ω

is accepted by A if for every run q of A over v, it holds that

Cd({qi ∈ Q | q = 〈qi〉∞i=0 ∈ Qω} + QF) ≤ �. In essence, every

run of A over v visits some accepting states at most � times.

We define the language of a �-UCA A, denoted by L(A), as

the collection of words accepted by it.

Note that to consider non-deterministic �-UCA, one requires

to deal with deterministic Rabin or Streett automata [17]. Due

to space limitations, we focuses on deterministic �-UCA here.

C. Discrete-Time Control Systems

In this letter, we define the underlying model as discrete-

time control systems.

Definition 2: A discrete-time control system (dt-CS) 	 is

represented as a tuple (X, X0, U, f ), where:

• X ⊆ R
n is the state set and X0 ⊆ X denotes the set of

initial states;

• U = {ui ∈ R
m | i ∈ [1; M]} with M ∈ N≥1, is the finite

input set;

• f : X × U → X is the transition function, whereby for an

input signal ν:N → U, the state evolves as

x(t + 1) = f (x(t), ν(t)), ∀t ∈ N. (1)

Furthermore, we denote the state trajectory of dt-CS 	,

under the input trajectory ν(·), and starting from x0 ∈ X0 by

xx0,ν = 〈xt〉∞t=0 ∈ Xω, such that xx0,ν(t) = xt and xt+1 =
f (xt, ν(t)), ∀t ∈ N. We introduce a labeling function, denoted

as L : X → �, which assigns a symbol from a finite alphabet

� to each state of the dt-CS. This concept naturally extends

to sequences, allowing us to map a sequence 〈xt〉∞t=0 ∈ Xω

to a sequence of symbols 〈L(xt)〉∞t=0 ∈ �ω. Consequently, we

have the flexibility to assign different labels from � to regions

within X.

We assume that the map f in (1) is unknown throughout

this letter. Our primary objective is to synthesize controllers
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for a dt-CS with unknown f to guarantee that it adheres to

a property defined by a given �-UCA. We will formalize this

objective in the next subsection.

D. Co-Büchi Control Barrier Certificates

Consider a dt-CS 	 = (X, X0, U, f ) and an �-UCA A =
(Q,�, �, Q0, QF) as in Definitions 2 and 1, respectively. Let

L : X → � be a labeling function. A state sequence x =
〈xi〉∞i=0 ∈ Xω of 	 is accepted by the �-UCA A if the

augmented state sequence x̂ = 〈(xi, qi)〉∞i=0 ∈ (X × Q)ω has at

most �-states in X × QF , where (x0, q0) ∈ X0 × Q0. If so, we

say that dt-CS 	 satisfies A. To establish this, we employ the

notion of co-Büchi barrier certificate[8], which is defined next.

Here, a counter variable is appended to the state space, which

tracks the number of times an augmented state (x, q) ∈ X × Q

has appeared in X × QF .

Definition 3: Consider a dt-CS 	 and an �-UCA A as in

Definitions 2 and 1, respectively, with L : X → � being

a labeling function. For any (q, r) ∈ Q × N, characterized

function Bq,r : X → R is a co-Büchi barrier certificate (CBC)

for 	 over the property specified by A if there exists λ, γ ∈ R

such that λ > γ and

Bq,0(x) ≤ γ, ∀x ∈ X0, q ∈ Q0 \ QF, (2)

Bq,1(x) ≤ γ, ∀x ∈ X0, q ∈ Q0 + QF, (3)

Bq,�+1(x) > λ, ∀x ∈ X, q ∈ QF, (4)

and for all states x ∈ X, q ∈ Q, counter values r ∈ [0; �], one

has

min
u∈U

{

Bq′,r′(f (x, u))
}

≤ Bq,r(x), (5)

where q′ = �(q, L(x)) and r′ =
{

r if q′ /∈ QF

r + 1 otherwise,
(6)

Note that for any (q, r) ∈ Q × [0; �], one can develop a

set-valued controller κq,r : X ⇒ U built on the CBC Bq,r as

follows:

κq,r(x) =
{

u ∈ U | Bq′,r′(f (x, u)) ≤ Bq,r(x)
}

, (7)

where q′ and r′ are defined as in (6).

Remark 1: Given equation (7), the controller is enforcing

the specifications outlined by an �-UCA over a dt-CS and

operates within the augmented space X × Q × [0; �]. This

controller is history-dependent, relying on the state of the

dt-CS, �-UCA, and the counter variable.

Although the underlying dynamics of dt-CS are deemed

unknown, its trajectories are accessible. For a suitable grid

parameter ε > 0, these trajectories are sampled as N ×M data

points in a set

DN,ε =
{(

x̃i, uj, f (x̃i, uj)
)

| x̃i ∈ [X]ε and uj ∈ U,

∀i ∈ [1; N], j ∈ [1; M]
}

. (8)

Noted that f (x̃i, uj) in (8) is the one time step transition of the

unknown dt-CS starting from x̃i under input uj.

In Section III, we elaborate on how the controller κq,r is

designed relying on the data set DN,ε for any (q, r) ∈ Q ×
[0; �]. Next, we proceed to formalize the major problem that

we aim to address in this letter.

Problem 2.1: Suppose 	 is a dt-CS with map f being

unknown and let A be an �-UCA as in Definition 2 and 1,

respectively. Given a labeling function L, develop a data-driven

approach based on the data set DN,ε to design a controller κ , so

that for all state trajectory 〈xt〉∞t=0 of 	, we have 〈L(xt)〉∞t=0 ∈
L(A).

In this letter, we derive a controller to address Problem 2.1

by utilizing the concept of CBCs. Inspired by [8, Th. 6], the

following theorem illustrates the effectiveness of CBCs, as

outlined in Definition 3, in meeting the specifications set forth

by an �-UCA.

Theorem 1: Consider a dt-CS 	 and an �-UCA A with a

given labeling map L. For any (q, r) ∈ Q× [0; �+1], suppose

that Bq,r is a CBC for 	 and A as in Definition 3. Then

the augmented state sequence 〈(xi, qi)〉∞i=0 ∈ (X × Q)ω visits

X × QF at most � times.

Proof: We establish the proof by contradiction. Suppose

there exists an augmented state sequence x̂ = 〈(xi, qi)〉∞i=0 ∈
(X × Q)ω that visits X × QF more than � times, where xt+1 =
f (xt, ν(t)) and qt+1 = �(qt, L(xt)), ∀t ∈ N. Let t′ ∈ N≥1

be the first index when x̂ visits X × QF for the (� + 1)th

time. Based on this assumption, we can infer that for every

trajectory xx0,ν(s) of 	, where s < t′ and ν(s) ∈ κ(x(s)),

it visits X × QF at most �s ≤ � times. Thus, proceeding

inductively on s results in (2) or (3) achieving Bqs,�s(xs) ≤ γ .

Now, we apply (5) for xt′ and xt′−1, to recursively show that

Bqt′ ,�+1(xt′) ≤ Bqt′−1,�
(xt′−1) ≤ γ . Therefore, condition (4)

yields λ < Bqt′ ,�+1(xt′) ≤ γ , which contradicts condition γ <

λ and thus ends the proof.

III. DATA-DRIVEN CONSTRUCTION OF CBC

Here, our focus is on constructing CBC using data acquired

from the trajectories of the system, as in (8). Within our data-

driven framework and for any (q, r) ∈ Q × [0; � + 1], we fix

the CBC structure as Bq,r(c, x) =
∑k

j=1 c
j
q,rϕ

j(x) with user-

defined (possibly nonlinear) basis functions ϕj(x) and p :=
k × Cd(Q) × (� + 1) unknown coefficients, which are stacked

in a vector c ∈ R
p. It is noteworthy that the basis functions

ϕj can assume any arbitrary form. For instance, they can take

the form of monomials over x if a polynomial-type CBC is

desired.

Designing a controller that solves Problem 2.1 involves

simply constructing a CBC as in Definition 3. Therefore, to

achieve this objective, we frame the search for the CBC as the

next robust optimization program (ROP):
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

¬

min
d

η,

s.t. max{γ − λ, gs(x, d)} ≤ η, ∀s ∈ [1; 3] and

∀x ∈ X, ∀q ∈ Q, ∀r ∈ [0; �]

with q′ and r′ defined in (6),

min
u∈U

{

Bq′,r′(c, f (x, u))
}

− Bq,r(c, x) ≤ η, (9a)

c ∈ R
p and d =

[

η; γ ; λ; c
]

∈ R
p+3, (9b)

where ∀x ∈ X, ∀q ∈ Q:

g1(x, d) =
(

Bq,0(c, x) − γ
)

1X0
(x)1Q0\QF (q),

g2(x, d) =
(

Bq,1(c, x) − γ
)

1X0
(x)1Q0+QF (q),
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g3(x, d) =
(

−Bq,�+1(c, x) + λ
)

1QF (q). (10)

It is evident that if η ≤ 0, a solution to the ROP in (9a)

guarantees the fulfillment of conditions (2)–(5) as outlined

in Definition 3. However, solving the ROP presents two

significant challenges. Firstly, the ROP involves infinitely

many constraints due to the continuous state set of the discrete-

time control system (dt-CS), where x ∈ X ⊆ R
n. Secondly,

solving the ROP requires knowledge of the map f , which

remains unknown in our work. To overcome these challenges,

we propose a data-driven approach to construct CBCs without

directly solving the ROP. Utilizing the sampled data in (8),

we introduce a subsequent optimization problem associated

with the ROP, which is called scenario optimization program

(SOP):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

¬

min
d

η,

s.t. max{γ − λ, gs(x̃i, d)} ≤ η, ∀s ∈ [1; 3] and

∀i ∈ [1; N], ∀q ∈ Q, ∀r ∈ [0; �]

with q′ and r′ defined in (6),

min
u∈U

{

Bq′,r′(c, f (x̃i, u))
}

− Bq,r(c, x̃i) ≤ η, (11a)

c ∈ R
p and d =

[

η; γ ; λ; c
]

∈ R
p+3, (11b)

where g1, g2, and g3 are the functions defined in (10). Note that

conditions (11a) can be reformulated as max-min constraints:

max
i∈[1;N],
q∈Q\QF,
r∈[0;�]

[

min
u∈U

{

Bq′,r′(c, f (x̃i, u))
}

− Bq,r(c, x̃i)
]

≤ η. (12)

Typically, an optimization problem with max-min constraints

can be equivalently represented as a series of optimization

problems with inequality constraints. Handling such a problem

may pose computational challenges due to the extensive

collection involved. Therefore, we adopt the strategy proposed

in [18], converting this condition into a nonlinear programming

problem. The condition is then expressed as a single inequality

constraint, defined as follows, for all q ∈ Q, i ∈ [1; N], and

r ∈ [0; �]:

M
∑

j=1

ρj

(

Bq′,r′
(

c, f (x̃i, uj)
)

− Bq,r(c, x̃i)
)

≤ η, (13)

where
∑M

j=1 ρj = 1 such that ρj ∈ R≥0. One can

employ [18, Proposition 2.1] to demonstrate the equivalence

between the conditions in (13) and the max-min constraints

in (12). Consequently, the vector of decision variables of

SOP (11a) as in (11b) becomes d = [η; γ ; λ; c; ρ1; . . . ; ρM] ∈
R

M+p+3. One can readily utilize available software tools to

solve the resulting optimization problem. In the next section,

we establish a formal relation between a feasible solution of

SOP in (11a) and that of ROP in (9a).

IV. SATISFACTION GUARANTEE

In this section, we unveil a result, which establishes that a

solution to the SOP in (11a) constructs a CBC for an unknown

dt-CS, and accordingly provides a controller that enforces the

satisfaction of the specification expressed by a given �-UCA

over an unknown dt-CS. To achieve this, we first introduce the

ensuing assumption.

Assumption 1: Suppose that for all (q, r) ∈ Q × [0; �],

Bq′,r′(c, f (x, u)) − Bq,r(c, x) and Bq,r(c, x) are Lipschitz con-

tinuous with respect to x with Lipschitz constants L a and L b,

respectively, for any input u ∈ U where q′ and r′ are defined

in (6).

Remark 2: Note that the methods proposed in [19], par-

ticularly [16, Algorithm 1], offer a technique for estimating

the Lipschitz constants L a and L b utilizing a finite dataset

from an unknown system. However, for the scope of this letter,

we assume that accurate upper bounds for these constants

are known. Additionally, we presume that the data sampled

from system trajectories are noise-free. Consequently, we are

able to present our main results (cf. Theorem 2) with a 100%

correctness guarantee.

Remark 3: To gather data points in (8) for a given param-

eter ε, the number of samples N can be determined by the

relation: Vol(X) = Nεn, where Vol(·) denotes the volume of

a set. Consequently, the required number of samples grows

exponentially with the dimension of the system. Moreover,

selecting a smaller ε results in more sampled data, thus

increasing the number of constraints in the SOP, and extending

the time required to solve the SOP. It is also worth noting

that the number of constraints in SOP (11a) using (13) are

at most of the order of N, for a fixed number of CBC basis

functions. Therefore, the complexity of solving the problem is

polynomial in N�Cd(Q)Cd(�).

In accordance with Assumption 1, the following result

introduces a data-driven approach for constructing a CBC with

a 100% correctness guarantee.

Theorem 2: Given an unknown dt-CS as in (1), an �-UCA

A as in Definition 1 and let Assumption 1 hold. Suppose that

SOP (11a) is solved using the data set DN,ε in (8), resulting

in an optimal solution d∗ = [η∗
S; γ ∗; λ∗; c∗] in (11b). If

L ε + η∗
S ≤ 0, (14)

with L = max{L a,L b}, then for all (q, r) ∈ Q × [0; �],

functions Bq,r constructed by solving SOP in (11a) are CBC

for the unknown dt-CS.

Proof: We show that under condition (14), the constructed

Bq,r via solving SOP in (11a) ensures that dt-CS satisfies the

property expressed by �-UCA A, in the sense of Theorem 1.

One can easily verify that (14) implies η∗
S ≤ 0. Therefore,

condition γ ∗ < λ∗ is always satisfied. Note that for every

x ∈ X, there is a data point x̃i such that x ∈ �ε(x̃i). Thus,

∀i ∈ [1; N], ∀x ∈ X0 and ∀q ∈ Q0 \ QF , one gets

Bq,0

(

c∗, x
)

− γ ∗ = Bq,0

(

c∗, x
)

− Bq,0

(

c∗, x̃i

)

+ Bq,0

(

c∗, x̃i

)

− γ ∗ ≤ L b‖x − x̃i‖ + η∗
S ≤ L ε + η∗

S ≤ 0.

The same line of reasoning as described above can be

employed to establish that

Bq,1

(

c∗, x
)

− γ ∗ ≤ 0 ∀x ∈ X0, q ∈ Q0 + QF and

−Bq,�+1

(

c∗, x
)

+ λ∗ ≤ 0 ∀x ∈ X, q ∈ QF.

Furthermore, it can be readily observed from (11a), that for

all x̃i, i ∈ [1; N], there is a u ∈ U, denoted as u∗, such
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that ∀(q, r) ∈ Q × [0; �] with q′ = �(q, L(xi)), the following

conditions hold:

• if q′ /∈ QF then Bq′,r(c
∗, f (x̃i, u∗)) ≤ Bq,r(c

∗, x̃i);

• if q′ ∈ QF then Bq′,r+1(c
∗, f (x̃i, u∗)) ≤ Bq,r(c

∗, x̃i).

Therefore, for all x ∈ X and ∀i ∈ [1; N], one has:

Bq′,r
(

c∗, f (x, u∗)
)

− Bq,r

(

c∗, x
)

= Bq′,r
(

c∗, f (x, u∗)
)

−
Bq,r

(

c∗, x
)

−
(

Bq′,r
(

c∗, f (x̃i, u∗)
)

− Bq,r

(

c∗, x̃i

))

+
(

Bq′,r
(

c∗, f (x̃i, u∗)
)

− Bq,r

(

c∗, x̃i

))

≤ L a‖x − x̃i‖ + η∗
S

≤ L ε + η∗
S ≤ 0 if q′ /∈ QF.

Similarly, the above argument can be leveraged to show that

Bq′,r+1

(

c∗, f (x, u∗)
)

− Bq,r

(

c∗, x
)

≤ 0 whenever q ∈ QF.

Therefore, for any (q, r) ∈ Q×[0; �], the function Bq,r derived

by solving SOP in (11a) serves as a CBC for unknown dt-CS

in (1), thereby concluding the proof.

Whenever condition (14) of Theorem 2 holds, there is a

set-valued controller κq,r as defined in (7), guaranteeing the

fulfillment of the �-UCA property by the unknown dt-CS as

in Theorem 1. Specifically, we mold the set-valued map κq,r

for any (q, r) ∈ Q × [0; �], and any x ∈ X, i ∈ [1; N] with q′

and r′ defined in (6), as follows:

κq,r(x) :=
{

u ∈ U | Bq′,r′(f (x̃i, u)) − Bq,r(x̃i)

≤ η∗
S, such that x ∈ �ε(x̃i)

}

. (15)

It is worth noting that the non-emptiness of data set (8) and the

solvability of SOP in (11a) imply that the set-valued controller

κq,r is also not empty.

Remark 4: Note that nearly all data-driven approaches

aimed at validating the satisfaction of properties by

unknown systems with a formal correctness guarantee

(e.g., [14], [15], [16]), similar to our method, encounter a

sample complexity bottleneck-i.e., the required data volume

to provide guarantees grows exponentially with the system’s

dimension. This challenge was also evident in our work.

Remark 5: We assume the labeling map L is such that there

always exists a choice of ε where L(x) = L(xi) whenever

x ∈ �ε(xi) for all i ∈ [1; N]. This ensures the satisfaction

of Assumption 1 when Bq,r and f are Lipschitz continuous.

Furthermore, in an effort to potentially reduce the required

number of samples, one might consider initiating sample

collection with a larger value of ε when addressing the SOP

in (11a). If the condition (14) is not satisfied with the chosen

(possibly larger) ε, it becomes necessary to opt for a smaller

ε and re-address the SOP.

The set-valued map κq,r in (15), which enforces the �-UCA

property, can be utilized during runtime as follows: for any

state measurement x ∈ X, one can identify the ε-closest data

point x̃i, where i ∈ [1; N], such that x ∈ �ε(x̃i). Consequently,

control inputs valid for x̃i are also valid for x.

V. CASE STUDY

Here, the effectiveness of our data-driven results is demon-

strated on applying them to a three-tank model whose

dynamics is assumed to be unknown, with respect to the

properties outlined by an �-UCA. We consider �-UCA A =
(Q,�, �, Q0, QF) as in Definition 1, where Q = {q0, q1},
� = {a, b}, and Q0 = QF = {q0}. The transitions between

Fig. 1. This �-UCA specifies that the system to be in a state with label
a only finitely often.

states are specified by the edges of the graph depicted in

Fig. 1, which define the transition function �. We consider a

three-tank system arranged in a cascade configuration, with

its model adopted from [20]. The system is discretized with a

sampling time τ = 10s and is modeled by a dt-CS, where the

state evolves as follows:

x1(t + 1) =
[

√

(τ

2

)2
+ x1(t) + τν(t) − τ

2

]2

xi(t + 1) =
[

√

(τ

2

)2
+ xi(t) + τ

√

xi−1(t + 1) − τ

2

]2

, (16)

where i ∈ {2, 3}. For any i ∈ [1; 3], the state xi(t) and√
xi(t) denote, respectively, the level of fluid and the outflow

rate of the i-th tank at time t ∈ N. The inflow rate ν(t)

into the first tank takes values from the set of control inputs

U = {0, 1.5, 4.5, 7.5, 9}. We consider the set of states X =
[0, 100]3, initial states X0 = [0, 6]2 × [60, 66], and a labelling

function L : X → � defined as:

L(x) = b ∀x ∈ (10, 60)3 and L(x) = a ∀x ∈ X \ (10, 60)3. (17)

Based on the �-UCA depicted in Fig. 1, our objective

is to systematically develop a data-driven CBC and its

corresponding controller. Our aim is to regulate the fluid

levels in the tanks, ensuring that as they evolve from a point

in X0, they reach the region labeled a finitely often. This

approach could be practically beneficial for preventing both

the emptying and overflowing of the tanks simultaneously. We

consider the model in (16) to be unknown to us. However,

we employ the model solely to collect samples as in (8), with

the number of samples N = 64000 and the discretization

parameter ε = 2.5. Our primary objective is to construct a

CBC by solving SOP in (11a) while synthesizing a controller

κq,r for any (q, r) ∈ Q × [0; �] in which the unknown dt-CS

satisfies the specification expressed by the �-UCA A in Fig. 2.

We select � = 10; therefore, we aim for a controller κq,r that

ensures that (16) visits the region with label a at most 10

times as it evolves. We fix the CBC structure as piece-wise

quadratic functions Bq,r(x) =
∑10

j=1 c
j
q,rϕ

j(x) ∀x ∈ X, ∀q ∈
Q and ∀r ∈ [0; � + 1], where basis functions 〈ϕj(x)〉10

j=1 =
〈1, x1, x2, x3, x2

1, x1x2, x1x3, x2x3, x2
2, x2

3〉. We solve SOP

in (11a) using the acquired data set D64000,5 and compute the

CBC coefficients together with other decision variables in the

SOP, which are presented as follows: λ∗ = 3.301, γ ∗ = −10,

η∗
S = −13.2995, and

cj
q,r =

⎧

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

¬

0.1 if (q, r, j) ∈ �1,

−0.1 if (q, r, j) ∈ �2,

0.07797 if (q, r, j) ∈ {q1} × {1, 3, 6} × {5},
0.0838 if (q, r, j) ∈ {q1} × {2} × {9},
0.0829 if (q, r, j) ∈ {q1} × {7} × {9},
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Fig. 2. A closed-loop state trajectory from initial state
[x1(0); x2(0); x3(0)] = [0; 0; 66] for unknown three-tank system (16).

Fig. 3. An input trajectory synthesized for the unknown three-tank
system during 140 time steps using (15).

where �1 = ({q0} × [0; 11] × [1; 10]) , ({q1} ×
{0, 4, 5, 8, 9, 10}×[2; 10]),({q1}×{1, 3, 6}×([2; 10]\{5})),
({q1}×{2, 7}×([2; 10]\{9})) and �2 = ({q1}×[0; 10]×{1}),
({q1} × {11} × [1; 10]). Due to the structure of the CBC, we

use [15, Lemma 5.4] to obtain L = 5.315. Since L ε + η∗
S =

−1211.64 × 10−5 < 0, in accordance with Theorem 2, it is

assured that a controller κq,r exists for any (q, r) ∈ Q × [0; �]

that enforces the specification expressed by A over the system

in (16).

Fig. 2 illustrates the closed-loop trajectory of the unknown

three-tank system regulated by the synthesized controller. It

also demonstrates that the CBC constructed from the data

satisfies the conditions highlighted in Definition 3. It can be

observed that none of the three tanks visits the region with

label a more than 10 times. The synthesized controller is

constructed according to (15), which is then applied to the

unknown dt-CS as depicted in Fig. 3. The implementation for

constructing the data-driven CBC has been carried out using

the GUROBI solver [21] under Python on a 64GB RAM (3.2

GHz) MacBook Pro. The whole computation took 2.2 minutes.

VI. CONCLUSION

In this letter, the primary goal was to develop a data-driven

approach to construct CBC using available data. The aim is to

ensure the satisfaction of an �-UCA property by a discrete-time

control system with unknown dynamics. To achieve this goal,

we leveraged data collected from the trajectories of unknown

systems to implement a scenario optimization program (SOP).

The successful solution of the SOP enabled us to establish

a CBC along with its respective controller, which enforces

an �-UCA property with formal guarantees. The effectiveness

of our data-driven approach was demonstrated using a three-

tank system. However, the scalability challenge posed in this

letter is outlined in Remark 4. Possible strategies to alleviate

this computational burden include employing compositional

approaches such as divide and conquer tactics or adapting

parallelization across SOP. These methods remain areas for

future exploration.
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