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Abstract—In this letter, we introduces a data-driven
framework for synthesizing controllers that enforce proper-
ties expressed by so-called ¢ universal co-Biichi automata
(£-UCA) over control systems with finite input sets and
unknown mathematical models. The proposed framework
leverages the notion of co-Biichi control barrier certificates
(CBC). These certificates, together with their correspond-
ing controllers, guarantee that a region in the state set is
visited finitely often as the system evolves, limiting visits
to at most ¢ times. The CBC is defined over a domain
that augments the system and the ¢-UCA, incorporating
a counter variable to track the number of visits to the
accepting states of ¢-UCA. However, constructing these
CBCs typically requires precise knowledge of the dynamics
of the system, which is often unavailable in real-world
applications. Therefore, we propose a data-driven scheme
where we initially formulate the CBC conditions as a robust
optimization program (ROP). Since the unknown model
appears in some of the ROP constraints, we employ sam-
pled data points collected from the system’s trajectories
to formulate a scenario optimization program (SOP) asso-
ciated with the ROP. By solving the corresponding SOP,
we construct CBCs and controllers that enforce ¢-UCA
properties for the unknown system with a formal correct-
ness guarantee. The efficacy of our data-driven approach is
demonstrated by applying it to a three-tank system whose
dynamics is assumed to be unknown.

Index Terms—Data driven control, co-Biichi control
barrier certificates, universal co-Biichi automata.

[. INTRODUCTION

N THE last two decades, formal methods have gained
Iconsiderable attention in the hybrid systems community.
They offer formal analyses for complex dynamical systems.
However, it remains highly challenging to provide formal
verification and controller synthesis frameworks for complex
systems to enforce high-level logic properties. These prop-
erties, such as those formally expressed as temporal logic
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formulae or languages specified by automata [1], require sig-
nificant efforts to ensure their satisfaction. Challenges include
the continuity of state sets, the handling of complex logic
requirements, and the absence of closed-form mathematical
models in numerous real-world applications.

To address these challenges, there is a growing focus on
employing data-driven abstraction-based methods to synthe-
size controllers that are correct-by-construction for systems
with (partially) unknown dynamics [2]. Examples of such
efforts include the results in [3], [4], [5], [6], which predom-
inantly utilize discretization-based approaches. The proposed
schemes in those results provide formally correct controllers
for w-regular properties.

An alternative approach, which is discretization free, ini-
tially proposed in [7], involves utilizing barrier certificates
as an abstraction-free method for formally verifying and
synthesizing controllers for dynamical systems. Barrier certifi-
cates are similar to Lyapunov functions, with level sets that
separate an unsafe region from the trajectories of the system
originating from a given initial set. Consequently, the existence
of such a function offers a (probabilistic) safety guarantee
for the concrete system. However, in the automata-theoretic
verification approach, the primary concern is determining
whether a set of states can be visited only finitely often. Recent
results in [8], inspired by bounded synthesis methods [9], [10],
introduce an abstraction-free method for automata-theoretic
verification of discrete-time dynamical systems. This approach
introduces the notion of co-Biichi barrier certificates (CBC),
which provide sufficient conditions to verify systems against
w-regular properties described by universal co-Biichi automata
(UCA).

A co-Biichi barrier certificate is a real-valued function
defined over the product of a system and an automaton, whose
conditions ensure that the accepting states of the automaton
are visited only finitely often. This certificate incorporates a
counter value, which tracks the number of times an accepting
state is visited. The search for this certificate is based on
a preselected upper bound on the number of visits. Upon
a successful search, the system can be verified to meet the
specification represented by the automaton. Unfortunately, the
framework for constructing CBCs, as described in [8], requires
precise models for the corresponding analyzes. Consequently,
these techniques cannot be employed when the system model
is unknown, which is often the case in real-world applications.
In this letter, we introduce a novel data-driven technique for
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constructing CBCs, without performing any system identifica-
tion, as done in [11], [12].

Contributions: The main goal of this letter is to introduce a
data-driven technique for constructing CBCs and synthesizing
controllers to ensure that an unknown system satisfies an w-
regular property described by an ¢-UCA in which ¢ bounds
the number of visits to the accepting states of the automaton.
We consider systems with finite input sets and unknown
mathematical models. We begin by formulating the conditions
of CBC as a robust optimization program (ROP). Since the
unknown model appears in some of the ROP’s constraints,
we utilize sampled data points collected from the system’s
trajectories to formulate a scenario optimization program
(SOP) associated with the ROP. By solving the resulting SOP,
we construct CBCs together with controllers that formally
guarantee the enforcement of the ¢-UCA properties for the
unknown system.

Related Work: In recent years, limited studies have explored
the formal analysis of unknown dynamical systems using
data-driven and abstraction-free approaches. Our method is
applicable to all classes of nonlinear discrete-time control
systems, unlike the approach in [13], which is tailored solely
to nonlinear polynomial-type systems. While the findings
in [14], [15] concentrate on data-driven methods for unknown
dynamical systems using control barrier certificates with cer-
tain probabilistic confidence levels, our approach is designed
to construct CBCs with a confidence level of 1 using noise-free
data. Additionally, we assume that an accurate upper bound
for the system’s Lipschitz constant is available. The methods
in [13], [14], [15], [16] provide control barrier certificates and
controllers to ensure that the trajectories of an unknown system
originating from a given set never reach an unsafe region. Our
approach distinguishes itself by developing a systematic data-
driven framework to construct CBCs. It generalizes classic
barrier certificates to ensure that the trajectories of an unknown
system visit a specified region at most a fixed number of
times. This enhancement broadens the applicability of barrier
certificates for w-regular properties, providing a more general
framework for system analysis and design. We direct interested
readers to [8] for a comprehensive understanding of the
differences between CBC and traditional barrier certificates.

II. PRELIMINARIES AND DEFINITIONS
A. Notation

Symbols R and Rx( represent sets of real and non-negative
real numbers, respectively. Notation N, U, and \ indicate,
respectively, set intersection, union and set difference. The
symbol N denotes the set of natural numbers including 0 and
forany n € N, N>, = {i € N | i > n}. In the case where
a,b € N and a < b, we employ the notations (a; b), and
[a; b] to represent, respectively, the open and closed intervals
in N. Similarly, for a,b € R and a < b, we use (a, b), and
[a, b] to represent the corresponding intervals in R. For any
non-empty set Q, notation C4(Q) depicts the cardinality of Q,
while O® indicates the set of infinite-length sequences from Q,
ie, Q= {(wi)2, | wi € Q Vi € N}. We denote the indicator
function of A € Q by 14:Q0 — {0, 1}, where 14(x) = 1 if

and only if x € A, and O otherwise. Given K vectors v; € Rk,
ki e N, and [ € [1; K], we use v = [vy;...; vg] to denote the
corresponding column vector of dimension ), k;. Assuming
¢ € R", ||c|| means the infinity norm of ¢. For any B C R” and
¢ > 0, notation ®,(b) is interpreted as {b € B | lb—b| < &).
Therefore, we create a partition of B into cells CIDS(IB) such
that B C U,;E[B]e <I>g(l;), where [B]. denotes a finite set of
representative points picked from those partition sets.

B. Universal Co-Blichi Automaton

Here, in accordance with the definition outlined in [9], we
first introduce a variation of a deterministic universal co-Biichi
automaton, whose acceptance criterion encompasses an atmost
£ visitation to the accepting states for some £ € N.

Definition 1: Given £ € N, a deterministic £-Universal Co-
Biichi Automaton (£-UCA) A is a tuple (Q, A, 0, Qo, OF),
where: Q is a finite set of states, A is a finite alphabet, 0:0 x
A — (Q is a transition map, where C4(0(q,¢)) < 1 Vg €
Q and V¢ € A, and Qp, Or < O, respectively, denotes the
initial and final (accepting) set of states, where the acceptance
condition is that Qr is visited at most £ times. Consider a
word v = (6i)2, € A®. A run of A over v is an infinite
sequence of states, q = (g;)7°, € Q“, where go € Qo and
gi+1 = 0(qi, i) Vi € N. Therefore, we say the word v € A®
is accepted by A if for every run q of A over v, it holds that
Ca(lgi € Q| q = (g:)2, € Q“} N QF) < L. In essence, every
run of A over v visits some accepting states at most £ times.
We define the language of a £-UCA A, denoted by L(A), as
the collection of words accepted by it.

Note that to consider non-deterministic £-UCA, one requires
to deal with deterministic Rabin or Streett automata [17]. Due
to space limitations, we focuses on deterministic £-UCA here.

C. Discrete-Time Control Systems

In this letter, we define the underlying model as discrete-
time control systems.
Definition 2: A discrete-time control system (dt-CS) E is
represented as a tuple (X, Xo, U, f), where:
e X C R" is the state set and Xy C X denotes the set of
initial states;
e U={u; e R" | iel[l;M]} with M € N>y, is the finite
input set;
e f 1 X x U — X is the transition function, whereby for an
input signal v:N — U, the state evolves as

x(t+ 1) =f(x(®), v()), VteN. (1)

Furthermore, we denote the state trajectory of dt-CS E,
under the input trajectory v(-), and starting from xo € Xo by
Xxow = (Xr)op € X, such that xy (1) = x, and x,41 =
f(xz, v(t)), Vt € N. We introduce a labeling function, denoted
as L : X — A, which assigns a symbol from a finite alphabet
A to each state of the dt-CS. This concept naturally extends
to sequences, allowing us to map a sequence (x;);°, € X*
to a sequence of symbols (L(x/));2, € A”. Consequently, we
have the flexibility to assign different labels from A to regions
within X.

We assume that the map f in (1) is unknown throughout
this letter. Our primary objective is to synthesize controllers
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for a dt-CS with unknown f to guarantee that it adheres to
a property defined by a given ¢-UCA. We will formalize this
objective in the next subsection.

D. Co-Blichi Control Barrier Certificates

Consider a dt-CS E = (X, Xy, U,f) and an ¢-UCA A =
(0, A, 0, Qo, OF) as in Definitions 2 and 1, respectively. Let
L : X — A be a labeling function. A state sequence X =
(xi)2y € X“ of & is accepted by the £-UCA A if the
augmented state sequence X = ((x;, ‘Ii)>§§o € (X x Q) has at
most £-states in X x Qf, where (xg, go) € Xo x Qp. If so, we
say that dt-CS E satisfies .A. To establish this, we employ the
notion of co-Biichi barrier certificate[8], which is defined next.
Here, a counter variable is appended to the state space, which
tracks the number of times an augmented state (x,g) € X x Q
has appeared in X x QF.

Definition 3: Consider a dt-CS E and an ¢-UCA A as in
Definitions 2 and 1, respectively, with L : X — A being
a labeling function. For any (q,r) € Q x N, characterized
function B, , : X — R is a co-Biichi barrier certificate (CBC)
for E over the property specified by A if there exists A, y € R
such that A > y and

Bq,O(x) S ys Vx € X09 q € QO \ QFa (2)
By 1(x) <y, VxeXo,q e QoNOF, 3)
Byer1(x) > A, VxeX,q € Qr, 4)

and for all states x € X, ¢ € Q, counter values r € [0; £], one
has

min {By.r(fx,w)} < Byr(x), (5

;o 2 A if ¢ ¢ Or

where ¢ = 0(q, L(x)) and ¥ = {r—}— | otherwise, (6)
Note that for any (¢q,7) € Q x [0; £], one can develop a
set-valued controller «, : X = U built on the CBC B,,, as

follows:

Kgr(x) = {u eU| Bq/,r’(f(xa u)) < Bq,r(x)}’

where ¢’ and ' are defined as in (6).

Remark 1: Given equation (7), the controller is enforcing
the specifications outlined by an ¢-UCA over a dt-CS and
operates within the augmented space X x Q x [0; £]. This
controller is history-dependent, relying on the state of the
dt-CS, ¢-UCA, and the counter variable.

Although the underlying dynamics of dt-CS are deemed
unknown, its trajectories are accessible. For a suitable grid
parameter ¢ > 0, these trajectories are sampled as N x M data
points in a set

(7

DN,s = {(5(,‘, uj,f(fci, u])) |i,’ € [X]g and uj € U,

Vie[1;N], j€[1; M]}. ()

Noted that f(%;, u;) in (8) is the one time step transition of the
unknown dt-CS starting from X; under input u;.

In Section III, we elaborate on how the controller «, , is
designed relying on the data set Dy for any (g, r) € O x
[0; £]. Next, we proceed to formalize the major problem that
we aim to address in this letter.

-

Problem 2.1: Suppose Z is a dt-CS with map f being
unknown and let A be an £-UCA as in Definition 2 and 1,
respectively. Given a labeling function L, develop a data-driven
approach based on the data set Dy . to design a controller «, so
that for all state trajectory (x;)7°, of &, we have (L(x;));2, €
L(A).

In this letter, we derive a controller to address Problem 2.1
by utilizing the concept of CBCs. Inspired by [8, Th. 6], the
following theorem illustrates the effectiveness of CBCs, as
outlined in Definition 3, in meeting the specifications set forth
by an £-UCA.

Theorem 1: Consider a dt-CS E and an ¢-UCA A with a
given labeling map L. For any (q, r) € O x [0; £+ 1], suppose
that B, , is a CBC for E and A as in Definition 3. Then
the augmented state sequence ((xi, gi));>, € (X x Q) visits
X x QF at most £ times.

Proof: We establish the proof by contradiction. Suppose
there exists an augmented state sequence X = {(x;, qi))?io €
(X x Q) that visits X x QF more than ¢ times, where x;;] =
fGv(@®) and gry1 = 0(qr, L(x1)), Vi € N. Let /' € Ny
be the first index when X visits X x Qp for the (¢ + 1)th
time. Based on this assumption, we can infer that for every
trajectory xy,,(s) of &, where s < ¢ and v(s) € k(x(s)),
it visits X x Qf at most £; < £ times. Thus, proceeding
inductively on s results in (2) or (3) achieving B, ¢, (x5) < y.
Now, we apply (5) for xy and xy_1, to recursively show that
By, e+1(xr) < By, | e(xy—1) < y. Therefore, condition (4)
yields A < qu,,gﬂ (x¢) <y, which contradicts condition y <
A and thus ends the proof. |

Il1. DATA-DRIVEN CONSTRUCTION OF CBC

Here, our focus is on constructing CBC using data acquired
from the trajectories of the system, as in (8). Within our data-
driven framework and for any (q,7) € Q x [0; £ + 1], we fix
the CBC structure as By (c,x) = Z],';l prg’ (x) with user-
defined (possibly nonlinear) basis functions ¢/(x) and p =
k x C4(Q) x (£ + 1) unknown coefficients, which are stacked
in a vector ¢ € RP. It is noteworthy that the basis functions
¢ can assume any arbitrary form. For instance, they can take
the form of monomials over x if a polynomial-type CBC is
desired.

Designing a controller that solves Problem 2.1 involves
simply constructing a CBC as in Definition 3. Therefore, to
achieve this objective, we frame the search for the CBC as the
next robust optimization program (ROP):

mp

s.t. max{y — A, gs(x,d)} <n, Vs € [1; 3] and
Vx € X, Vg€ Q, Vr e [0; ]
with ¢’ and ' defined in (6),
min {By (¢, f(x, u)} = By.r(e,x) <1,

ceRPandd = [n;y; ;¢ € RPH3,
where Vx € X, Vg € O:

(9a)

(9b)

g1(x, d) = (Bgo(c, x) — ¥)1x, ()10 (@),
g2(-xv d) = (qul(c, X) - V)IX() (x)lQ()ﬂQF (Q)v
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g3(x,d) = (—Bq,(+1 (c,x) + )‘)1QF (@.

It is evident that if » < 0, a solution to the ROP in (9a)
guarantees the fulfillment of conditions (2)—(5) as outlined
in Definition 3. However, solving the ROP presents two
significant challenges. Firstly, the ROP involves infinitely
many constraints due to the continuous state set of the discrete-
time control system (dt-CS), where x € X € R”. Secondly,
solving the ROP requires knowledge of the map f, which
remains unknown in our work. To overcome these challenges,
we propose a data-driven approach to construct CBCs without
directly solving the ROP. Utilizing the sampled data in (8),
we introduce a subsequent optimization problem associated
with the ROP, which is called scenario optimization program
(SOP):

(10)

mﬂ}n n,
s.t. max{y — A, gs(x;,d)} < n, Vs € [1; 3] and

Vi e [1; N], Vg € Q, Vr € [0; £]

with ¢’ and ' defined in (6),

I,}éizr} {Bq’,r’(c’f(;ci, M))} — Byr(c, X)) <n, (1la)
(11b)

ceRPand d = [r;; Vi A; c] e RPH3,

where g1, g2, and g3 are the functions defined in (10). Note that
conditions (11a) can be reformulated as max-min constraints:

Jmax [ min By (e /G )} = By e )] < 0. (12)
q€Q\QF,
re[0;¢]
Typically, an optimization problem with max-min constraints
can be equivalently represented as a series of optimization
problems with inequality constraints. Handling such a problem
may pose computational challenges due to the extensive
collection involved. Therefore, we adopt the strategy proposed
in [18], converting this condition into a nonlinear programming
problem. The condition is then expressed as a single inequality
constraint, defined as follows, for all ¢ € Q, i € [1; N], and
r e [0; £]:

M
Z ’Oj(Bq/v’/ (C’f(xl" ”/)) - Bq,r(C, )NC,)) <n,

J=1

13)

where Z]Ai 1P = 1 such that pj € Rsp. One can
employ [18, Proposition 2.1] to demonstrate the equivalence
between the conditions in (13) and the max-min constraints
in (12). Consequently, the vector of decision variables of
SOP (11a) as in (11b) becomes d = [n; v; A; ¢; p1; ... pm] €
RM+P+3 One can readily utilize available software tools to
solve the resulting optimization problem. In the next section,
we establish a formal relation between a feasible solution of
SOP in (11a) and that of ROP in (9a).

IV. SATISFACTION GUARANTEE

In this section, we unveil a result, which establishes that a
solution to the SOP in (11a) constructs a CBC for an unknown
dt-CS, and accordingly provides a controller that enforces the
satisfaction of the specification expressed by a given ¢-UCA

over an unknown dt-CS. To achieve this, we first introduce the
ensuing assumption.

Assumption 1: Suppose that for all (g,r) € O x [0; ],
By v (c,f(x,u)) — By, (c,x) and By ,(c, x) are Lipschitz con-
tinuous with respect to x with Lipschitz constants .Z, and .Z,
respectively, for any input u € U where ¢’ and ' are defined
in (6).

Remark 2: Note that the methods proposed in [19], par-
ticularly [16, Algorithm 1], offer a technique for estimating
the Lipschitz constants .Z, and £}, utilizing a finite dataset
from an unknown system. However, for the scope of this letter,
we assume that accurate upper bounds for these constants
are known. Additionally, we presume that the data sampled
from system trajectories are noise-free. Consequently, we are
able to present our main results (cf. Theorem 2) with a 100%
correctness guarantee.

Remark 3: To gather data points in (8) for a given param-
eter ¢, the number of samples N can be determined by the
relation: Vol(X) = Ne&", where Vol(-) denotes the volume of
a set. Consequently, the required number of samples grows
exponentially with the dimension of the system. Moreover,
selecting a smaller ¢ results in more sampled data, thus
increasing the number of constraints in the SOP, and extending
the time required to solve the SOP. It is also worth noting
that the number of constraints in SOP (11a) using (13) are
at most of the order of N, for a fixed number of CBC basis
functions. Therefore, the complexity of solving the problem is
polynomial in N2Cyz(Q)Cyq(A).

In accordance with Assumption 1, the following result
introduces a data-driven approach for constructing a CBC with
a 100% correctness guarantee.

Theorem 2: Given an unknown dt-CS as in (1), an £-UCA
A as in Definition 1 and let Assumption 1 hold. Suppose that
SOP (11a) is solved using the data set Dy in (8), resulting
in an optimal solution d* = [n?; y*, A*; ¢*] in (11b). If

Le+n5 <0, (14)

with . = max{.%,, Z»}, then for all (¢,r) € Q x [0; £],
functions B, constructed by solving SOP in (11a) are CBC
for the unknown dt-CS.

Proof: We show that under condition (14), the constructed
By, via solving SOP in (11a) ensures that dt-CS satisfies the
property expressed by £-UCA A, in the sense of Theorem 1.
One can easily verify that (14) implies ng < 0. Therefore,
condition y* < A* is always satisfied. Note that for every
x € X, there is a data point X; such that x € ®.(x;). Thus,
Vi € [1; N], Vx € Xp and Vg € Qo \ OF, one gets

Bq,o(c*, x) — y* = Bq’o(c*, x) — quo(c*,)?,‘) + Bq,o(c*,fc,-)
—y* < Dpllx = Xill +n5 < Le+n5 < 0.

The same line of reasoning as described above can be
employed to establish that

Bq,l(c*,x) —y* <0
- q’g_H(c*,x) +A* <0

Vx € Xo, g € Qo N Qf and
Vx e X, q € OF.

Furthermore, it can be readily observed from (11a), that for
all x;, i € [1;N], there is a u € U, denoted as u*, such
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that Y(g, r) € Q x [0; £] with ¢ = o(q, L(x;)), the following
conditions hold:

o if ¢ ¢ O then By (c*, f (i, u")) < By o (c*, %);

o if C]/ € Qr then Bq’,rJrl (c*, f(&i,u*)) < Bq,r(c*s Xi).
Therefore, for all x € X and Vi € [1; N], one has:

Bq/,,(c*,f(x, u*)) — Bq,r(c*, x) = Bq/,,(c*,f(x, u*)) -
Byr(¢", x) = (By (", f i u")) = By r(c*, %)) +
(By (¢, f Gy u)) = Byr(c*, %)) < Lallx = Fill +
<Ze+ns<0 ifq ¢ Or.
Similarly, the above argument can be leveraged to show that
By r1(c*, fx, u*)) — Byr(c*, x) <0 whenever g € Q.

Therefore, for any (¢, r) € Qx[0; £], the function B, , derived
by solving SOP in (11a) serves as a CBC for unknown dt-CS
in (1), thereby concluding the proof. |

Whenever condition (14) of Theorem 2 holds, there is a
set-valued controller «, , as defined in (7), guaranteeing the
fulfillment of the ¢£-UCA property by the unknown dt-CS as
in Theorem 1. Specifically, we mold the set-valued map «g,,
for any (g, r) € Q x [0; £], and any x € X, i € [1; N] with ¢’
and 7’ defined in (6), as follows:

kg r(x) = {u eU | Bq’,r’(f(;cia u)) — Bq,r(ii)

< n§, such that x € @, (%)} (15)

It is worth noting that the non-emptiness of data set (8) and the
solvability of SOP in (11a) imply that the set-valued controller
Kq,r 1S also not empty.

Remark 4: Note that nearly all data-driven approaches
aimed at validating the satisfaction of properties by
unknown systems with a formal correctness guarantee
(e.g., [14], [15], [16]), similar to our method, encounter a
sample complexity bottleneck-i.e., the required data volume
to provide guarantees grows exponentially with the system’s
dimension. This challenge was also evident in our work.

Remark 5: We assume the labeling map L is such that there
always exists a choice of ¢ where L(x) = L(x;) whenever
x € O (x;) for all i € [1; N]. This ensures the satisfaction
of Assumption 1 when B, , and f are Lipschitz continuous.
Furthermore, in an effort to potentially reduce the required
number of samples, one might consider initiating sample
collection with a larger value of ¢ when addressing the SOP
in (11a). If the condition (14) is not satisfied with the chosen
(possibly larger) ¢, it becomes necessary to opt for a smaller
¢ and re-address the SOP.

The set-valued map k- in (15), which enforces the £-UCA
property, can be utilized during runtime as follows: for any
state measurement x € X, one can identify the e-closest data
point X;, where i € [1; N], such that x € ®.(X;). Consequently,
control inputs valid for X; are also valid for x.

V. CASE STUDY

Here, the effectiveness of our data-driven results is demon-
strated on applying them to a three-tank model whose
dynamics is assumed to be unknown, with respect to the
properties outlined by an £-UCA. We consider {-UCA A =

(Q. A, 0,00, QF) as in Definition 1, where O = {qo, g1},
A = {a, b}, and Qo = QOFr = {qo}. The transitions between

Fig. 1. This ¢£-UCA specifies that the system to be in a state with label
a only finitely often.

states are specified by the edges of the graph depicted in
Fig. 1, which define the transition function 0. We consider a
three-tank system arranged in a cascade configuration, with
its model adopted from [20]. The system is discretized with a
sampling time T = 10s and is modeled by a dt-CS, where the
state evolves as follows:

5 2
xit+1) = [\/(%) +x1(t)+w(t)—§]
T\2 7
xi<r+1>=[\/(z) +xi<z>+r\/xi1(z+1>—§], (16)

where i € {2,3}. For any i € [1;3], the state x;(f) and
Jxi(t) denote, respectively, the level of fluid and the outflow
rate of the i-th tank at time ¢ € N. The inflow rate v(r)
into the first tank takes values from the set of control inputs
U = {0,1.5,4.5,7.5,9}. We consider the set of states X =
[0, 100]3, initial states Xy = [0, 6]> x [60, 66], and a labelling
function L : X — A defined as:

L(x) =b V¥x € (10,60)> and L(x) = a Vx € X\ (10,60)>. (17)

Based on the ¢-UCA depicted in Fig. 1, our objective
is to systematically develop a data-driven CBC and its
corresponding controller. Our aim is to regulate the fluid
levels in the tanks, ensuring that as they evolve from a point
in Xo, they reach the region labeled a finitely often. This
approach could be practically beneficial for preventing both
the emptying and overflowing of the tanks simultaneously. We
consider the model in (16) to be unknown to us. However,
we employ the model solely to collect samples as in (8), with
the number of samples N = 64000 and the discretization
parameter ¢ = 2.5. Our primary objective is to construct a
CBC by solving SOP in (11a) while synthesizing a controller
kgq,r for any (g,r) € Q x [0; £] in which the unknown dt-CS
satisfies the specification expressed by the £-UCA A in Fig. 2.
We select £ = 10; therefore, we aim for a controller kg, that
ensures that (16) visits the region with label a at most 10
times as it evolves. We fix the CBC structure as piece-wise
quadratic functions By, ,(x) = 2;21 P (x) Vx € X, Vg e
Q and Vr € [0; € + 1], where basis functions (¢/ (x)>]!21 =
(1,xl,xz,X3,x%,xlxz,x1x3,x2x3,x%,x§). We solve SOP
in (11a) using the acquired data set Degooo,5 and compute the
CBC coefficients together with other decision variables in the
SOP, which are presented as follows: A* = 3.301, y* = —10,
ng = —13.2995, and

0.1 if (g, r,j) € @,
' -0.1 if (g, r,)) € Q,
ci“ = 1 0.07797 if (g, 7,j) € {q1} x {1, 3, 6} x {5},
0.0838  if (g, r,)) € {q1} x {2} x {9},

0.0829  if (g, r,)) € {q1} x {7} x {9},
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Fig. 2. A closed-loop state trajectory from initial state
[x1(0); x2(0); x3(0)] = [0; O; 66] for unknown three-tank system (16).
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Fig. 3. An input trajectory synthesized for the unknown three-tank
system during 140 time steps using (15).

where Q1 = ({go} x [0;11] x [1;10]) U ({gi} x
{0,4,5,8,9,10} x[2;: 10D U({g1} x {1, 3, 6} x ([2; 10]\{5}) U
({g1}x{2, 7} x([2; 101\ {9})) and €22 = ({¢1} x [0; 10] x{1HU
({g1} x {11} x [1; 10]). Due to the structure of the CBC, we
use [15, Lemma 5.4] to obtain . = 5.315. Since Le +ng =
—1211.64 x 107> < 0, in accordance with Theorem 2, it is
assured that a controller kg, exists for any (g, r) € Q x [0; £]
that enforces the specification expressed by A over the system
in (16).

Fig. 2 illustrates the closed-loop trajectory of the unknown
three-tank system regulated by the synthesized controller. It
also demonstrates that the CBC constructed from the data
satisfies the conditions highlighted in Definition 3. It can be
observed that none of the three tanks visits the region with
label a more than 10 times. The synthesized controller is
constructed according to (15), which is then applied to the
unknown dt-CS as depicted in Fig. 3. The implementation for
constructing the data-driven CBC has been carried out using
the GUROBI solver [21] under Python on a 64GB RAM (3.2
GHz) MacBook Pro. The whole computation took 2.2 minutes.

VI. CONCLUSION

In this letter, the primary goal was to develop a data-driven
approach to construct CBC using available data. The aim is to
ensure the satisfaction of an £-UCA property by a discrete-time
control system with unknown dynamics. To achieve this goal,
we leveraged data collected from the trajectories of unknown
systems to implement a scenario optimization program (SOP).

The successful solution of the SOP enabled us to establish
a CBC along with its respective controller, which enforces
an ¢-UCA property with formal guarantees. The effectiveness
of our data-driven approach was demonstrated using a three-
tank system. However, the scalability challenge posed in this
letter is outlined in Remark 4. Possible strategies to alleviate
this computational burden include employing compositional
approaches such as divide and conquer tactics or adapting
parallelization across SOP. These methods remain areas for
future exploration.
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