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Abstract

The excessive warming in the built environment, due to urbanization and anthropogenic
heat emissions, has adverse effects on building energy consumption. Diverse technology using,
e.g., vegetated roofs or innovative roof materials, have been proposed to ameliorate both indoor
and outdoor thermal environments and reduce energy consumption. In this study, we apply a
state-of-the-art urban canopy model to simulate the thermal performance of multiple roof
technology, viz. the white, green, and hybrid roofs, in the contrasting urban environments of
Princeton, NJ and Phoenix, AZ, USA. In addition, we estimate the combined energy-water
saving potential for green roofs with five different irrigation schemes. It is found that green roofs
can achieve a combined energy-water saving of $9.68 m~2 roof area in Phoenix with moisture-
controlled irrigation, and $5.23 m~ in Princeton without irrigation. These results can help to
promote building energy efficiency by adapting to flexible and sustainable roof technology for

heat mitigation.

Keywords: Albedo; Energy-water trade-off; Green roofs; Heat mitigation; Urban irrigation;

Urban canopy model
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1. Introduction

Urban areas accommodate 56% of world population, consume over two thirds of world’s
energy, and produce about 70% of global carbon emissions today [1][2]. The global urbanization
has led to critical environmental challenges, including excessive heat stress, air pollution,
infrastructure vulnerability, and degraded ecosystems [3][4][5], to name a few. Many of the
adverse environmental effect of urbanization can be traced back to or strongly regulated by the
exacerbated thermal environment in cities, a prominent example being the urban heat island
(UHI) effect [6]. The change of urban thermal environment, especially ambient air temperature,
has induced notable increase in building energy consumption [9][10], which accounts for 60% of
the global primary energy requirement and generates about 33% of all the greenhouse gas (GHQG)
emissions [1]. Such a large amount of energy consumption, in turn, elevates the warming trend
of the urban environment, imposing critical challenges for climate change mitigation and the
development of sustainable cities [12].

While background climate conditions, e.g. radiative forcings or synoptic pressure systems,
are critical in regulating the urban thermal environment [13], it is the landscape characteristics
that can be actively managed by urban planners for sustainable urban development. Among
many landscape contributors to the exacerbation of urban thermal environment, the lack of green
spaces and changes of thermal properties of pavement materials, especially the reflectivity to
solar radiation (i.e. albedo), are the primary attributes [14]. Among the built-up surfaces, roofs
have comparable horizontal coverage, but relatively higher degree of freedom and lower
deployment and maintenance cost for heat mitigation strategies, as compared to street canyon
facets (walls, roads, and ground) [15]. Such advantage makes roof engineering a promising

solution to ameliorate the livability of urban environment and, in particular, to cut back building
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energy consumption. The most commonly adopted roof engineering technology includes the use
of white or super-white roofs (with high to ultra-high albedo) and green roofs (vegetated with
irrigation). White roofs (also known as “cool” roofs) help to reduce the skin temperature of
paved surfaces and the indoor energy consumption [16][18]. According to previous studies, by
reflecting more shortwave radiation back to the atmosphere, white roofs are capable of lowering
temperatures of roof surfaces, indoor ceilings, and ambient air significantly, hence reducing the
indoor cooling demand for 5-50% [19]. Nevertheless, the cooling and energy saving potentials of
white roofs are often accompanied by unintended consequences such as heating penalty, i.e. the
increase of heating load in cold seasons due to lowered indoor temperatures, or other adverse
effects [20].

One particular countermeasure to the heating penalty was proposed by reducing the roof
albedo (black roofs) for buildings in the cool season, hence, enhancing the building energy
efficiency [23]. More generally, engineering of temperature-adaptive roofs that are capable of
adjusting its surface albedo according to the ambient temperature by using thermochromic
materials, i.e. the hybrid roof, were proposed and tested, which is effective for providing cooling
in summer and warming effect in winter [24]. In the past decades, several different hybrid roof
structures have been designed and implemented, with most of them containing multiple layers
that consist of metal and nonmetal compounds like VO2, MgF2, and BaF: that could change the
albedo in a certain temperature interval, and metals like tungsten W and germanium Ge, which
could modulate the transition temperature of thermal properties of the roof structures [26].
Related studies show that hybrid roofs can save up to 11% of the annual energy consumption of
buildings in comparison to conventional roofs [29]. Though showing promising potentials on

energy savings, challenges remain which limit the practical applications of hybrid roofs. To
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achieve the maximum energy savings, the transition temperatures of the roof structure need to be
controlled within a small interval that vary with climates (generally from 20°C to 28°C), while
the transition temperatures of different thermochromic materials vary significantly (from —170°C
to 100°C). This make the design of hybrid roofs challenging since the components need to be
controlled accurately to achieve the desired transition temperatures. Besides, due to the
complexity of the components and structures of temperature-adaptive roofs, the fabrication
procedures are complicated and time-consuming, which also hinders their promotion in practical
engineering [25].

The technology of white or hybrid roofs is based purely on the change of surface albedo of
roof surfaces and aims to provide a “simple” solution to the excessive heat problem in urban
areas, especially for UHI mitigation. Nevertheless, it is becoming increasingly clear that UHI is
not a stand-alone problem but instead closely interwoven with other anthropogenically induced
environmental issues, such as the concentrated emission of anthropogenic GHGs (CO2 in
particular) and the degradation of air quality in urban areas [5]. Modifying the surface albedo of
roofs has little co-benefit, or even causes adverse effects, on improving air quality or reducing
COz emissions. Thus, to improve the overall livability of urban environment, nature-based
solutions, such as green roofs/walls, urban lawns, shade trees, etc. have lately emerged as a more
sustainable alternative for heat mitigation and energy saving [35]. In particular, green roofs, in
contrast to white/hybrid roofs, can provide cooling via evapo-transpiration during the hot season,
while preventing heating penalty in the cold season through the insulation by the additional soil
layer [39]. For example, it was found that green roofs had the potential to reduce the roof surface

temperature by 4-12°C and lower the annual energy consumption by 2.2-16.7% [42].
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The efficacy of cooling and building energy saving potentials of green roofs, in general,
depends on the background climate conditions and management practices of the local cities.
Moreover, in arid or semi-arid cities, it requires regular irrigation in order to maintain green
roofs and their biological functions. Hence, heat mitigation using green roofs supported by urban
irrigation is essentially reduced to the question “how much water does it take for cooling?” [43]
that involves the heat-water trade-off. Thus, in arid and semi-arid cities, it is imperative to design
and implement smart irrigation schemes that are capable of maximizing the total (combined)
energy-water saving potential [44] of green roofs.

In past decades, tremendous effort and resources have been devoted to the study of
performance of diverse roof engineering technology in terms of cooling and building energy
saving. Despite that, most previous work was focused exclusively on case studies of single roof
technology (e.g. white or green roofs), whereas the intercomparison of different engineering
approaches in contrasting climate conditions remains scarce. In this study, we adopt a state-of-art
urban canopy model (UCM) to investigate the year-long energy saving potential of different roof
engineering technology, including white, hybrid, and green (vegetated with different irrigation
schemes) roofs. More specifically, the model is applied to two contrasting built environments,
i.e. the sub-urban area of Princeton University campus and the urban residential area in Phoenix
metropolitan, to demonstrate the adaptivity and suitability of different roofs to the locality of the
urban environment. We then quantify the combined monetary building energy-water saving

based on the local prices of water and electricity during the study period.
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2. Study Areas and Method

2.1. Study areas

In this study, we selected two contrasting urban environments, viz. the sub-urban Princeton
campus and the Phoenix metropolitan area as our study areas. In addition, Princeton, New Jersey
has a humid continental climate, while Phoenix, Arizona, is characterized as an arid subtropical
desert climate. According to the U.S. Monthly Climate Normal (1991-2020), obtained from
National Centers for Environmental Information (NECI) of the National Oceanic and
Atmospheric Administration (NOAA)

(https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C01620/html),

Princeton has an annual mean temperature of 12.3 °C and an annual precipitation of 1159.0 mm
that is roughly evenly distributed in all the 12 months, while in Phoenix the annual mean
temperature is as high as 24.2 °C and the annual precipitation is merely 183.4 mm.

Each study area was equipped with eddy covariance (EC) flux towers with long-term
monitoring of the built environment, which facilitates the model setup and validation in
subsequent analysis. The map of both study areas and the locations of the EC towers are shown
in Figure 1. The simulation periods of both areas are an entire calendar year, in the period May
1,2010 — April 30, 2011, for Princeton, and January 1 - December 31, 2012, for Phoenix.
Moreover, located in the Sonoran Desert, Phoenix has tremendous cooling demands and
irrigation water consumption (up to 70% of outdoor household water use) due to the tedious
summer, while New England, where Princeton is located, has more significant demands for

heating due to the temperate climate [46].
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Figure 1. The study areas of Princeton: (a) the google map of Princeton University campus
where (b) the eddy covariance (EC) tower (marked as yellow star) is located, and Phoenix: (c)

the map of neighborhoods in West Phoenix, Arizona, with (d) the EC tower.

2.2. Roof designs and irrigation schemes

Located in the mid-latitudes, both Phoenix and Princeton have high seasonal variability of
temperature, which induces cooling demands in summer and heating demands in winter for
buildings in both areas. To realistically estimate the energy consumption of buildings with

different roofs, we split the whole year into the warm and cold seasons, where only the
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cooling/heating demand is considered for the warm/cold season. For the Phoenix metropolitan
area, the warm season is defined as the period from April 1 to October 31, while the cool season
is defined as the remaining period from November 1 to March 31. For the Princeton metropolitan
area, the warm season is from June 1 to August 31 and the cool season is from September 1 to
May 31.

In this study, we evaluate the cooling and energy saving potentials of three different types
of roofs, viz. the white, hybrid, and green roofs, in contrast to the conventional roof system, as
sketched in Figure 2. More specifically, for the green roofs, we consider different irrigation
schemes to achieve the optimal monetary saving for energy-water trade-off, which is particularly
important for Phoenix as a desert city. The values of roof surface albedo and changes of soil
water content per different irrigation schemes are summarized in Table 1. The conventional roof,
which also serves the baseline scenario in this study, mainly consists of concrete and gravels
with an albedo of 0.20. The white roof, with an albedo of 0.60, could lower the temperature in
the whole year, and thus cut back the cooling demands in the warm season but increase the
heating demands in the cool season. The hybrid roof is intended to maximize energy savings by
adopting temperature-adaptive albedos for different seasons. In this study, the albedo of the
hybrid roof is 0.60 in the warm season and 0.10 in the cool season, which enables the all-season
reduction of both the heating and cooling demands. The green roof has more sophisticated
engineering design with layered structure, including vegetation, soil, drainage, pavement, and
insulation layers. The surface albedo of green roof is largely determined by the leaf area of
vegetation and the soil water content, which varies irrigation amount as well as seasonal

vegetation dynamics. But as the governing mechanism of green roofs as a heat mitigation
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strategy is evapo-transpirative cooling (rather than reflectivity), we use a fixed albedo of 0.15 for

green roof in this study.

Figure 2. Schematics of different roof systems for heat mitigation: (a) white roof, (b) hybrid roof
by modifying the roof surface albedo, (c) conventional roof, and (d) green roof with

environmental-controlled irrigation schemes.

In addition, for the green roof system, we adopt four different irrigation schemes, which can
facilitate the evapotranspiration of the vegetation and thus ameliorate the ambient thermal
environment, in contrast to the baseline case (no irrigation). In Princeton, the vegetation in the
green roof can survive without irrigation in the monsoon season due to the plenty precipitation.

In Phoenix, on the contrary, the soil moisture will fall below the wilting point without irrigation
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due to the inadequate precipitation, which only allows the growth of limited species of arid and

semi-arid vegetation. For consistency, we use the same irrigation schemes for both study areas.

Table 1. The albedos of different roof types and irrigation amount of five irrigation schemes

Roof type Roof code Albedo a (-)

Conventional roof CR 0.20

White roof WR 0.60

Hybrid roof HR 0.60 (warm season), 0.10 (cool season)

Green roof GR 0.15

Irrigation schemes Irrigation Irrigation amount in terms of the increase of volumetric
scheme code  water content (cm’ cm™) of the top (10-cm) soil layer

No irrigation (baseline) GRO 0

Moisture-controlled I GR1 0.1, BGnreshold = 0.15

Moisture-controlled II GR2 0.1, BGnresholda = 0.24

Daily constant GR3 Vary monthly, per city’s guidance

Fully saturated with ponding water depth of 2 cm (in

Flood irrigation GR4 the warm season) or 1 cm (in the cool season)

The first two schemes are both soil moisture-controlled but with different threshold of soil
water content Gnreshold (at which irrigation is activated) of 0.15 (moisture-controlled Scheme I)
and 0.24 (Scheme II), respectively. These values are determined based on the observational and
modeling results for several different xeric (Phoenix) and mesic (Princeton) landscapes in
Phoenix metropolitan, where the wilting points range from 0.15 to 0.24 [47]. Thus, we set
Breshold = 0.15 and 0.24 for soil moisture-controlled irrigation Scheme I and II, respectively, to
maintain the topsoil moisture above the wilting point. Irrigation is activated when the top-soil
water content drops below these threshold values and stops when the top-soil (10-cm) water
content increases by 10% (0.1 cm? cm™) to adequately support the biological functions of
vegetated green roofs. The third is a daily constant irrigation scheme that is automated to operate
at 9 pm LST. The daily irrigation amount of this scheme is estimated by the in-sifu measurement

of the monthly total outdoor irrigation water use [48], divided by number of days in the month.

10
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The last scheme is the flood irrigation of urban vegetation, applied weekly or biweekly at 9 pm
LST during the warm or cool seasons, respectively. Flood irrigation is still widely used in old
neighborhood in Phoenix, which results in the saturation of the top-soil layer and water ponding
immediately after the irrigation. Per field observation, the ponding water depth is estimated to be

2 cm and 1 cm during the warm and cool seasons, respectively.

2.3. Modeling urban land surface processes

In this study, we adopt a state-of-the-art urban land surface model, namely, the Arizona
Single-Layer Urban canopy Model (ASLUM) that has been developed and continuously
improved over past decades [49]. ASLUM realistically resolves the physics of land surface
processes in the urban canopy layer (UCL), including the transport of heat, moisture, and scalar
quantities (e.g., carbon dioxide) over built terrains. In particular, the model incorporates urban
vegetation dynamics, the green roof system in particular, and urban hydrological processes that
have been tested and extensively applied to study the impact of various urban heat mitigation
strategies in diverse urban environments [33]. According to a recent global intercomparison of
30 urban land surface models in the Urban-PLUMBER project, ASLUM (v2.0 and v3.0) were
both among the best, based on their numerical performance [57].

The surface energy balance that drives the heat transport in the UCL is given by,
R =H+LE+G,, (1)

where H, LE and Go are anthropogenic, sensible, latent, and ground soil heat fluxes, respectively,

and Rx is the net radiation as the sum of radiative components,

R, =S+ Loy = (Supun = Sup )+ (Laown = L) (2)

11
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with S and L the shortwave and longwave radiation, and subscripts ‘down’ and ‘up’ standing for
upwelling and downwelling direction, respectively. At the roof level, the net shortwave radiation

is calculated as,
Snet :(l_a)(SD+SQ), (3)

where Sp and Sp are the measured direct and the diffuse solar radiation received by a horizontal

surface respectively, and « is the surface albedo. The net longwave radiation is given by,

Ly = Loy =0Ty, @
where ¢ is the emissivity, o is the Stefan—Boltzmann constant, and 7k is the roof surface
temperature.

The profile (vertical distribution) of roof temperatures and soil heat fluxes are obtained by

solving the one-dimensional (1D) heat conduction equation analytically using Green’s function

approach [49], as

T(z0)=T,+[ fit—2)dg(z.0)~[ f,(t-)dg(d ~=,7) 5)

G(z,0)= —ki—j = K[ fit-)dg' ) ft-D)dg'd=-zD)]  (6)

where z is the depth from the roof surface (positive downward), & is the thermal conductivity, fi
and /> are the heat fluxes at the exterior (exposed to sun) and interior boundaries of the roofs,
respectively, 7o is the initial temperature profile inside the solid which is assumed to be

uniform), g (z, t) is the fundamental (Green’s function) solution of 1D heat diffusion with

homogeneous boundary conditions, and g’ = dg / 0z is the spatial derivative of g. In particular, the

surface (skin) temperature of different roofs can be obtained by setting z = 0, viz. Tz = T (0, ?).
The turbulent transport of heat from rooftop to the atmosphere, including sensible heat flux

and latent hear fluxes, are calculated as follows,

12
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H: Cppa(TR _]—;)
r

a

; (7

LE:ﬂe vaa(Z.R_qa), (8)

where ¢p, pa, and T. are the specific heat, density, and temperature of air, 7, is the aerodynamic
resistance, Ly is the latent heat of vaporization, ¢ is the specific humidity, the superscript star
stands for saturation, and f. is a reduction factor for non-saturated surface as a function of soil-

water content, which can be approximated as [58],

p=2=5 ©)

where 6 is the volumetric soil water content, s the soil-water content at saturation and 6, the

soil-water content at which evaporation is suppressed.

3. Results and Discussion

3.1. Model validation

We first evaluate the model performance for the baseline cases in Phoenix and Princeton,
respectively. The annual in situ datasets at the two study areas were measured by the EC tower
deployed at Princeton University campus (Fig. 1¢) during May 1, 2010 — April 30, 2011, and
Maryvale, West Phoenix (Fig. 1d) throughout January 1 - December 31, 2012, respectively. The
results of comparisons of predicted and measured roof surface temperatures (7z) and net
radiation (Rx») are shown as scatter plots in Figure 3. For the entire simulation period, the root
mean square errors (RMSE) are 1.50 °C and 2.09 °C for Tz in Phoenix and Princeton,
respectively, and 13.43 W m and 19.27 W m™ for R, in Phoenix and Princeton, respectively.

The values of coefficient of determination, R?, as a fitted curve of the scatters, are 0.9781,

13
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255  predictions of ASLUM agree reasonably well with the field observations. The model
256  performance is in general better in the arid environment under clear conditions, as the presence
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258  accuracy of model predictions.
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In this study, the surface albedo of white and hybrid roofs and irrigation schemes of green
roofs are two main factors that modify the thermal performance of roofs. Figures 4 and 5 show
the thermal responses of different roof systems to the change of these parameters (Table 1),
including the changes of roof surface temperature (7r), net radiation (Rx), sensible heat (H), and
latent heat (LE), with respect to those of the conventional roof (baseline), in Phoenix and
Princeton, respectively. We find that in both areas, the white roof and green roofs with irrigation
have the cooling effect throughout the year. In contrast, the hybrid roof reduces roof temperature
during the warm season but has a warming effect in the cool season due to surface darkening,
thus effectively avoid heating penalty.

In Phoenix, as shown in Fig. 4, the green roof without irrigation induces a warming effect
on roof surface temperature due to the lower albedo (0.15) than that of the conventional roof
(0.20). From May to September, green roofs in Phoenix with flood irrigation and daily constant
irrigation has the most significant cooling effects, which has the maximum reduction in 7z of
11.1°C in late June; the moisture-controlled scheme II induces a larger roof surface reduction
than the moisture-controlled scheme I due to the higher moisture threshold and thus a larger
irrigation amount. From October to April, the white roof cools the roof surface most, while the
reductions in roof surface temperatures of green roof are less significant than in summer,
especially in December and January. The surface cooling of green roofs with adequate irrigation
is directly related to the evapotranspiration of vegetation, which is controlled by the supply of
available energy (R» — H — LE) impinged on the roof surface. Therefore, the green roof with
irrigation has a better cooling capability in summer when stronger solar radiation exists. The

changes of R, on roofs without irrigation (in comparison to the conventional roof) (Fig. 4b), i.e.,
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white roof, hybrid roof, and non-irrigated green roof, are nearly identical to those of the surface
temperature (Fig. 4a).

Furthermore, green roofs in Phoenix with irrigation induce increases in the net radiation,
which is especially significant in summer. This is primarily because the strong surface cooling
induced by irrigated green roofs, in turn, results in the reduced upwelling longwave radiation, as
well as the decreased sensible heat, which outweighs the increase in latent heat due to
evapotranspiration. For the white roof, the net shortwave radiation decreases due to higher
shortwave reflectivity and thus causes the reduction in the total net radiation. Likewise, the
dominant effect of albedo causes a slight increase of net radiation due to roof darkening in the
cool season and the same trend as the white roof in the warm season. Sensible heat flux, on the
other hand, is strongly regulated by the surface temperature, thus its changes (Fig. 4¢) are very
similar to that of the surface temperature (Fig. 4a). For the latent heat flux arising from the roof
surfaces, all green roofs with irrigation induce increase of the latent heat flux, which is more
significant in summer than in winter due to the stronger evapotranspiration in summer. There is
slight (and very sporadic) increase of latent heat on the green roof without irrigation, which is
due to evaporation of scarce natural precipitation in Phoenix.

There are some noticeable differences between the thermal performances in Phoenix and
Princeton. First, the shorter duration of warm season in Princeton is responsible for the lesser
cooling effect of white and hybrid roofs, and the total energy-water trade-off (detailed in Section
4.3 below). In addition, as shown in Figure 5, the thermal behavior of green roofs with no
irrigation and moisture-controlled scheme I (limited irrigation above wilting point) are nearly the
same. This is because that the precipitation in Princeton is sufficient to keep the soil water

content of green roofs above the lower limit of wilting point ( Ghreshold = 0.15) throughout the
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year. For the same reason, green roof without irrigation does not exhibit a warming effect in

Princeton (Fig. 5a) in comparison to that in Phoenix (Fig. 4a).

4 T T T T T T T T T T
§ o ﬂWWA/M\/\_
X -4 i
<]

8- i

12 | | | I 1 | | I I I
30 60 90 120 150 180 210 240 270 300 330 360
. 200~ i
B
=
- 100+ A
% m
EE: 0F — e |
<]
-100 - a
| | 1 1 1 | | 1 1 |
30 60 90 120 150 180 210 240 270 300 330 360
50 T T T
NI’_\ 0 MWMA——_"(
£
= 50 |
I
<1-100 - 1
-150 | | | 1 I | | I I I
30 60 90 120 150 180 210 240 270 300 330 360
T T T T T T
200 - .
£
=100 - |
4
SN AA
| | I 1 | | I I I

1
30 60 90 120 150 180 210 240 270 300 330 360
Days since 01/01/2012

~WR-—HR—GR0—GR1 GR2—GR3—GR4

Figure 4. 3-day averaged changes of the thermal performance of different roofs in Phoenix, in
comparison to the conventional roof (baseline case), including changes of (a) roof temperature

ATRr, (b) net radiation AR», (c) sensible heat AH, and (d) latent heat ALE.
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Figure 5. Same as Figure 4, but in the study area of Princeton.

3.3. The impact on energy-water trade-off and combined saving

In this study, we focus on the building energy consumption by heating and air conditioning
(HAC) systems as they are directly related to the indoor thermal response to outdoor thermal

environment through roofs. For simplicity, we use the conductive heat flux, computed by Eq. (6),
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to estimate the required HAC load in order to maintain a constant indoor temperature of 24 °C.
Note that though there are occasions when the indoor temperature may drop below the threshold
during the warm season (e.g., a cool summer night in Princeton), indoor heating is not activated
considering the customary working mechanism of air conditioning systems, likewise for cooling
need during the cool season. Thus, in this study, we take consideration of cooling demand in the
warm season and heating demand in the cool season exclusively for both study areas. In addition,
the water consumption is considered for green roofs with irrigation based on the amount of

irrigation water use.

Table 2 The unit prices of electricity and water in Phoenix and Princeton

Study area Phoenix Princeton
Average price of electricity (¢ kWh™) 11.31 14.80
Price of water ($ m™)

January 1.49 2.05
February 1.49 2.05
March 1.49 2.05
April 1.70 2.05
May 1.70 2.05
June 1.86 2.05
July 1.86 2.05
August 1.86 2.05
September 1.86 2.05
October 1.70 2.05
November 1.70 2.05
December 1.49 2.05

The resultant fotal cost per unit roof area ($ m~2) of combined energy (electricity) and water

consumption is therefore given by,

COSttotal = PwaterVwater + F;lectricity Z Qindoor s (10)
t

where Puwater and Pelectricity are the unit prices of water (per m?) and electricity (per kWh)

respectively, Vwater is the irrigation amount per unit area (m* m™2), Qindoor is the model predicted
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340  indoor heat flux through the roof (kW m~2) [44]. The total cost is in dollar per square meter roof
341  area. As shown in Table 2, The average electricity rate of Arizona and New Jersey is obtained
342 from the report of U.S. Energy Information Administration

343 (https://www.eia.gov/electricity/state/); The water prices in Phoenix and Princeton are acquired

344 from the city of Phoenix (https://www.phoenix.gov/waterservices/customerservices/rateinfo) and

345  New Jersey American Water (https://www.amwater.com/njaw/) respectively. The combined

346  savings per unit roof area ($ m~2) of different roof systems are calculated as the difference

347  between the total cost of a given roof and that of the conventional roof.
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350  Figure 6. The results of monthly savings of different roof types and irrigation schemes in (a)

351  Phoenix and (b) Princeton, in comparison to the conventional roof.
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The monthly combined energy-water savings of different roofs and irrigation schemes, as
compared to the conventional roof, in Phoenix and Princeton are presented in Figure 6. In both
study areas, since the white roof has cooling effects in the whole year, it increases the energy
consumption in the cool season (the heating penalty) and reduce energy consumption in the
warm season. The hybrid roof, on the other hand, can successfully avoid the heating penalty, and
achieves positive savings in all seasons. Some of the irrigation schemes, especially flood
irrigation and daily constant irrigation, lead to increased consumption in April, May, September,
and October in Princeton. Except for the aforementioned cases, all the roofs reduce the total
costs, which are more significant in summer. In Phoenix, in particular, the maximum monthly
saving in the cool season is generated by the green roof without irrigation since its warming
effects as no water demand is needed. Irrigated green roofs have savings higher than roofs
without irrigation in the warm season, leading to a maximum saving of $1.63 m~2 by green roofs
with daily constant irrigation in June. In Princeton, the green roof with no irrigation has the same
monthly savings as moisture-controlled scheme I, resulting in maximum saving in the cool
season. In the warm season, green roofs with daily constant irrigation attain the maximum
saving, up to $1.65 m~2 in July.

The total annual savings of different roofs and irrigation schemes in Phoenix and Princeton
are shown in Figure 7. The least annual savings are attributed to the white roof in both study
areas, amounting to $5.70 m2 and $1.17 m™ in Phoenix and Princeton, respectively. In Phoenix,
the maximum annual saving is $9.68 m™2, from green roofs with moisture-controlled scheme I1
due to the significant cooling effects in the warm season but controlled use of irrigation water. In
Princeton, the maximum total annual saving is $5.23 m™, resulted from the use green roof with

no irrigation (by natural precipitation). The sufficient precipitation in Princeton enables the
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vegetation on the green roof to keep enough moisture needed for the biological functions and
evapotranspiration of the vegetation. Therefore, green roofs in Princeton is able to achieve

significant cooling effects without minimal irrigation need.
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Figure 7. The results of annual savings of different roof types and irrigation schemes in (a)

Phoenix and (b) Princeton, in comparison to the conventional roof.

3.4. Sensitivity of energy savings to coefficient of performance

In this study, the heating and cooling systems are implicitly assumed to response
spontaneously to incident heat fluxes into the building through roofs to maintain a constant
indoor temperature of 24 °C. To quantify the impact of thermodynamic coefficient of
performance (COP) on the overall annual savings, we calculated the total annual savings of all
roof types and irrigation schemes in Phoenix and Princeton corresponding to the COP values.
The results are shown in Figure 8. To analyze the sensitivity of total savings to COP, we select
the values from 1 to 10 that could cover the common interval (from 2 to 4) in practical
applications [59]. Since with the improvement of COP, the electricity consumed by the HAC

system to transfer the same amount of heat decreases, the differences of the electricity
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consumption among different roofs and irrigation schemes reduce and thus result in lowered
savings. Total savings of roofs with irrigation decreases faster with COP than roofs without
irrigation. It is notable that the savings of green roofs with irrigation will be negative when COP
is higher than a certain threshold (5.83 in Phoenix and 2.49 in Princeton), resulting from the

reduced savings of electricity that cannot compensate the water consumption.
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Figure 8. The changes of annual savings of different roof types and irrigation schemes in (a)

Phoenix and (b) Princeton versus COP (scaled from 1 to 10).

4. Concluding Remarks

In this study, we used a state-of-the-art urban land surface model, i.e., ASLUM to evaluate
the potential of diverse roof systems for ameliorating the thermal environment and improving the
efficiency of building energy-water trade-off in two contrasting built environments. Though both

white roofs (aka “cool” roofs) and green roofs (aka “eco-roofs”) are popular heat mitigating
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strategies that are widely adopted by urban planners and practitioners, it was found that the
nature-based solution, i.e., green roofs, are the preferred heat mitigation in both arid metropolitan
and temperate sub-urban areas (Fig. 7). Despite the fact that the use of irrigation for green roofs
incurs additional cost of water consumption, this water use can be strategically controlled to
yield optimal heat-water trade-off and maximize the combined energy-water savings. With the
assumption of spontaneous response of HAC systems, the maximum total annual savings of the
green roof can be up to $9.68 m~2 and 5.23 m™2, in Phoenix and Princeton respectively. In
climate regions with sufficient precipitation, the advantage of green roofs is more manifest as the
use of irrigation water can be further reduced. The total annual saving is more prominent in the
arid city of Phoenix (vary from $5.70 m™ to $9.68 m~2) than the sub-urban Princeton town (vary
from $1.17 m~2 to $5.23 m2), as the former experiences more severe UHI and thus has more
potential for heat mitigation and building energy saving. The use of hybrid roofs with reduced
albedo in cool seasons helps to avoid the heating penalty incurred by pure white roofs; the
difference is more prominent in Princeton ($2.20 m™2) where a temperate climate and long cool
seasons requires substantial heating demand. The results of this study are informative to
homeowners and urban planners in selecting the optimal solutions to heat mitigation and
building energy saving and then further alleviate energy shortages in this era with increasing
energy demands, especially in the areas with higher temperatures and less precipitation.
According to the results, in the contiguous United States, green roofs without irrigation is an
ideal solution to energy saving in areas with sufficient precipitation, viz. the regions of humid
continental and humid subtropical climate located to the east of the Rocky Mountains; while in
the Rocky Mountains area, where precipitation is much less, more irrigation is needed to sustain

the green roofs.
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However, there are a few caveats of the method used in this study. First, the estimate of
building energy consumption by HAC systems and the amount of irrigation water are based on a
number of simplified assumptions, including, constant indoor temperature, exact balance of
indoor heat fluxes by HAC systems, instantons increase of soil water content by irrigation, no
vegetation dynamics, etc. Thus, the values of estimated savings should not be taken as
quantitatively exact, but rather qualitatively informative. Secondly, to maintain the consistency
in intercomparison of different scenarios, we decoupled the urban land-atmosphere interactions
in our numerical modeling, so that the cooling of roof surface has no feedback to the ambient air
temperature. In addition, we performed the numerical experiments in an annual cycle of a
particular year in each study area, thus the results are subject to the influence of particular
hydrometeorological conditions, especially the amount of precipitation on the demand of
irrigation water use (Phoenix in particular). Thus, the presence of hydroclimatic extremes, e.g.,
heatwaves or extreme droughts, could be decisive in modifying the building energy as well as
urban water use patterns.

Nevertheless, the proposed modeling method in this study can be used to guide future work
to improve the quantification of the trade-off between building energy and water irrigation for
green roofs to estimate more accurate saving potential. Such improvements can be developed by
including: (1) more sophisticated building energy models to the urban canopy layer physics, (2)
urban vegetation dynamics (e.g. growth and wilting) and land-atmosphere feedback, (3) life
cycle analysis of different roof systems (e.g., cost of implementation and maintenance of roof
vegetation and pavement albedo) and secondary energy-water nexus (e.g., energy to transport
irrigation water), and (4) the impact of regional climate change, especially the presence of

hydroclimate extremes on different roof systems and their performance. The current study can
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also be readily extended to other cities in the U.S. or worldwide. The key factors determining the
building energy efficiency in different cities are diverse, including, for example, the local urban
microclimate, prices and accessibility of different forms of energy (e.g. fossil fuels, electricity,
renewable energy, etc.) and water resources, or even the preference of residents in cities (e.g.
vegetated versus painted roofs), to name a few. It is also important to note that if energy-water-
saving roof systems are to be adopted in massive scales in the built environment, especially those
in close spatial proximity to mega cities (i.e., urban clustering [60]), the effect might be
influencing one another [61, 62] due to cross-regional atmospheric transport in complex urban
climate networks. Quantification of the energy saving potential in different cities with mutual
side effect or co-benefit will, therefore, be informative to urban planners for their selection of

fitful roof systems for heat mitigation with desirable cost-saving benefits.
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