

The impact of roof systems on cooling and building energy efficiency

Yihang Wang^a, Zhi-Hua Wang^{a*}, Negar Rahmatollahi^a, Haoran Hou^b

^a *School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, USA*

^b *State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China*

* Corresponding author. Email: zhwang@asu.edu. Tel: +1-480-727-2933

1 **Abstract**

2 The excessive warming in the built environment, due to urbanization and anthropogenic
3 heat emissions, has adverse effects on building energy consumption. Diverse technology using,
4 e.g., vegetated roofs or innovative roof materials, have been proposed to ameliorate both indoor
5 and outdoor thermal environments and reduce energy consumption. In this study, we apply a
6 state-of-the-art urban canopy model to simulate the thermal performance of multiple roof
7 technology, viz. the white, green, and hybrid roofs, in the contrasting urban environments of
8 Princeton, NJ and Phoenix, AZ, USA. In addition, we estimate the combined energy-water
9 saving potential for green roofs with five different irrigation schemes. It is found that green roofs
10 can achieve a combined energy-water saving of 9.68 m^{-2} roof area in Phoenix with moisture-
11 controlled irrigation, and 5.23 m^{-2} in Princeton without irrigation. These results can help to
12 promote building energy efficiency by adapting to flexible and sustainable roof technology for
13 heat mitigation.

14

15 **Keywords:** Albedo; Energy-water trade-off; Green roofs; Heat mitigation; Urban irrigation;
16 Urban canopy model

17 **1. Introduction**

18 Urban areas accommodate 56% of world population, consume over two thirds of world's
19 energy, and produce about 70% of global carbon emissions today [1][2]. The global urbanization
20 has led to critical environmental challenges, including excessive heat stress, air pollution,
21 infrastructure vulnerability, and degraded ecosystems [3][4][5], to name a few. Many of the
22 adverse environmental effect of urbanization can be traced back to or strongly regulated by the
23 exacerbated thermal environment in cities, a prominent example being the urban heat island
24 (UHI) effect [6]. The change of urban thermal environment, especially ambient air temperature,
25 has induced notable increase in building energy consumption [9][10], which accounts for 60% of
26 the global primary energy requirement and generates about 33% of all the greenhouse gas (GHG)
27 emissions [1]. Such a large amount of energy consumption, in turn, elevates the warming trend
28 of the urban environment, imposing critical challenges for climate change mitigation and the
29 development of sustainable cities [12].

30 While background climate conditions, e.g. radiative forcings or synoptic pressure systems,
31 are critical in regulating the urban thermal environment [13], it is the landscape characteristics
32 that can be actively managed by urban planners for sustainable urban development. Among
33 many landscape contributors to the exacerbation of urban thermal environment, the lack of green
34 spaces and changes of thermal properties of pavement materials, especially the reflectivity to
35 solar radiation (i.e. albedo), are the primary attributes [14]. Among the built-up surfaces, roofs
36 have comparable horizontal coverage, but relatively higher degree of freedom and lower
37 deployment and maintenance cost for heat mitigation strategies, as compared to street canyon
38 facets (walls, roads, and ground) [15]. Such advantage makes roof engineering a promising
39 solution to ameliorate the livability of urban environment and, in particular, to cut back building

40 energy consumption. The most commonly adopted roof engineering technology includes the use
41 of white or super-white roofs (with high to ultra-high albedo) and green roofs (vegetated with
42 irrigation). White roofs (also known as “cool” roofs) help to reduce the skin temperature of
43 paved surfaces and the indoor energy consumption [16][18]. According to previous studies, by
44 reflecting more shortwave radiation back to the atmosphere, white roofs are capable of lowering
45 temperatures of roof surfaces, indoor ceilings, and ambient air significantly, hence reducing the
46 indoor cooling demand for 5-50% [19]. Nevertheless, the cooling and energy saving potentials of
47 white roofs are often accompanied by unintended consequences such as heating penalty, i.e. the
48 increase of heating load in cold seasons due to lowered indoor temperatures, or other adverse
49 effects [20].

50 One particular countermeasure to the heating penalty was proposed by reducing the roof
51 albedo (black roofs) for buildings in the cool season, hence, enhancing the building energy
52 efficiency [23]. More generally, engineering of temperature-adaptive roofs that are capable of
53 adjusting its surface albedo according to the ambient temperature by using thermochromic
54 materials, i.e. the hybrid roof, were proposed and tested, which is effective for providing cooling
55 in summer and warming effect in winter [24]. In the past decades, several different hybrid roof
56 structures have been designed and implemented, with most of them containing multiple layers
57 that consist of metal and nonmetal compounds like VO_2 , MgF_2 , and BaF_2 that could change the
58 albedo in a certain temperature interval, and metals like tungsten W and germanium Ge, which
59 could modulate the transition temperature of thermal properties of the roof structures [26].
60 Related studies show that hybrid roofs can save up to 11% of the annual energy consumption of
61 buildings in comparison to conventional roofs [29]. Though showing promising potentials on
62 energy savings, challenges remain which limit the practical applications of hybrid roofs. To

63 achieve the maximum energy savings, the transition temperatures of the roof structure need to be
64 controlled within a small interval that vary with climates (generally from 20°C to 28°C), while
65 the transition temperatures of different thermochromic materials vary significantly (from -170°C
66 to 100°C). This make the design of hybrid roofs challenging since the components need to be
67 controlled accurately to achieve the desired transition temperatures. Besides, due to the
68 complexity of the components and structures of temperature-adaptive roofs, the fabrication
69 procedures are complicated and time-consuming, which also hinders their promotion in practical
70 engineering [25].

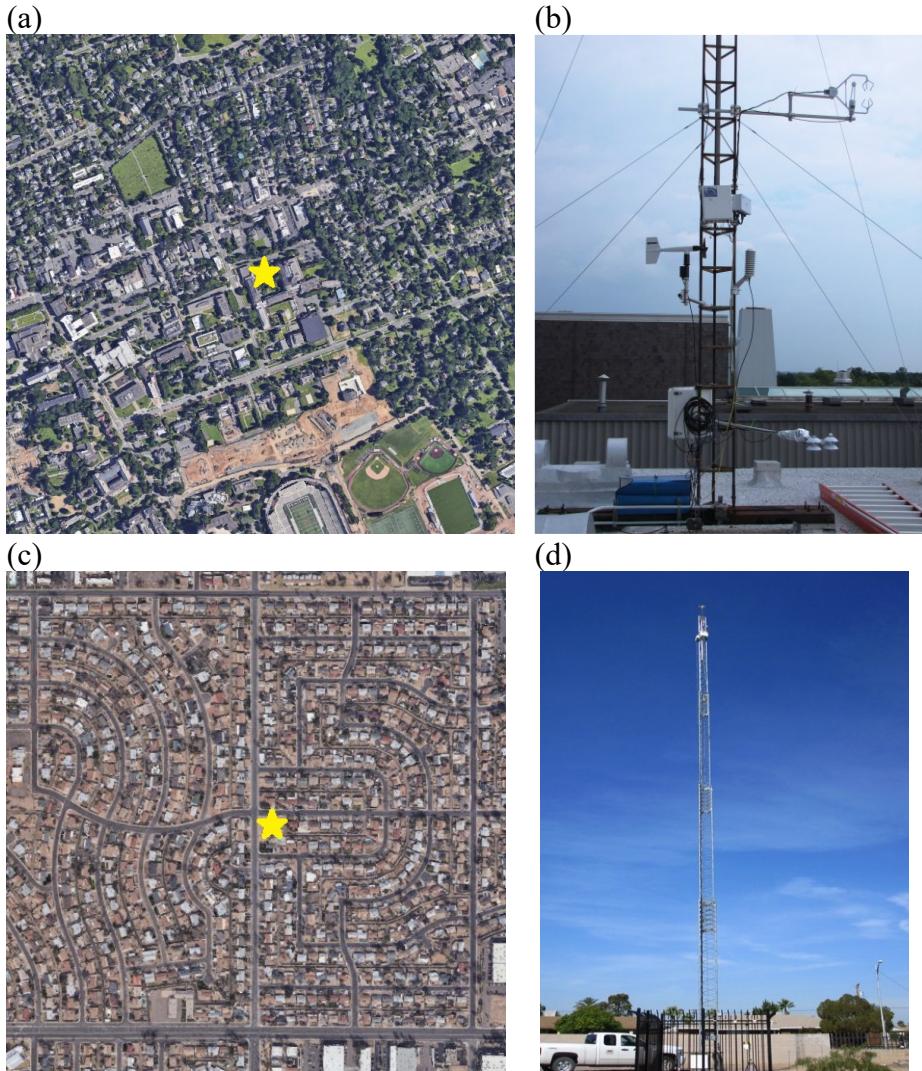
71 The technology of white or hybrid roofs is based purely on the change of surface albedo of
72 roof surfaces and aims to provide a “simple” solution to the excessive heat problem in urban
73 areas, especially for UHI mitigation. Nevertheless, it is becoming increasingly clear that UHI is
74 not a stand-alone problem but instead closely interwoven with other anthropogenically induced
75 environmental issues, such as the concentrated emission of anthropogenic GHGs (CO₂ in
76 particular) and the degradation of air quality in urban areas [5]. Modifying the surface albedo of
77 roofs has little co-benefit, or even causes adverse effects, on improving air quality or reducing
78 CO₂ emissions. Thus, to improve the overall livability of urban environment, nature-based
79 solutions, such as green roofs/walls, urban lawns, shade trees, etc. have lately emerged as a more
80 sustainable alternative for heat mitigation and energy saving [35]. In particular, green roofs, in
81 contrast to white/hybrid roofs, can provide cooling via evapo-transpiration during the hot season,
82 while preventing heating penalty in the cold season through the insulation by the additional soil
83 layer [39]. For example, it was found that green roofs had the potential to reduce the roof surface
84 temperature by 4-12°C and lower the annual energy consumption by 2.2-16.7% [42].

85 The efficacy of cooling and building energy saving potentials of green roofs, in general,
86 depends on the background climate conditions and management practices of the local cities.
87 Moreover, in arid or semi-arid cities, it requires regular irrigation in order to maintain green
88 roofs and their biological functions. Hence, heat mitigation using green roofs supported by urban
89 irrigation is essentially reduced to the question “how much water does it take for cooling?” [43]
90 that involves the heat-water trade-off. Thus, in arid and semi-arid cities, it is imperative to design
91 and implement *smart* irrigation schemes that are capable of maximizing the total (combined)
92 energy-water saving potential [44] of green roofs.

93 In past decades, tremendous effort and resources have been devoted to the study of
94 performance of diverse roof engineering technology in terms of cooling and building energy
95 saving. Despite that, most previous work was focused exclusively on case studies of single roof
96 technology (e.g. white or green roofs), whereas the intercomparison of different engineering
97 approaches in contrasting climate conditions remains scarce. In this study, we adopt a state-of-art
98 urban canopy model (UCM) to investigate the year-long energy saving potential of different roof
99 engineering technology, including white, hybrid, and green (vegetated with different irrigation
100 schemes) roofs. More specifically, the model is applied to two contrasting built environments,
101 i.e. the sub-urban area of Princeton University campus and the urban residential area in Phoenix
102 metropolitan, to demonstrate the adaptivity and suitability of different roofs to the locality of the
103 urban environment. We then quantify the combined monetary building energy-water saving
104 based on the local prices of water and electricity during the study period.

105

106 **2. Study Areas and Method**


107 2.1. Study areas

108 In this study, we selected two contrasting urban environments, viz. the sub-urban Princeton
109 campus and the Phoenix metropolitan area as our study areas. In addition, Princeton, New Jersey
110 has a humid continental climate, while Phoenix, Arizona, is characterized as an arid subtropical
111 desert climate. According to the U.S. Monthly Climate Normal (1991-2020), obtained from
112 National Centers for Environmental Information (NECI) of the National Oceanic and
113 Atmospheric Administration (NOAA)

114 (<https://www.nci.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C01620/html>),
115 Princeton has an annual mean temperature of 12.3 °C and an annual precipitation of 1159.0 mm
116 that is roughly evenly distributed in all the 12 months, while in Phoenix the annual mean
117 temperature is as high as 24.2 °C and the annual precipitation is merely 183.4 mm.

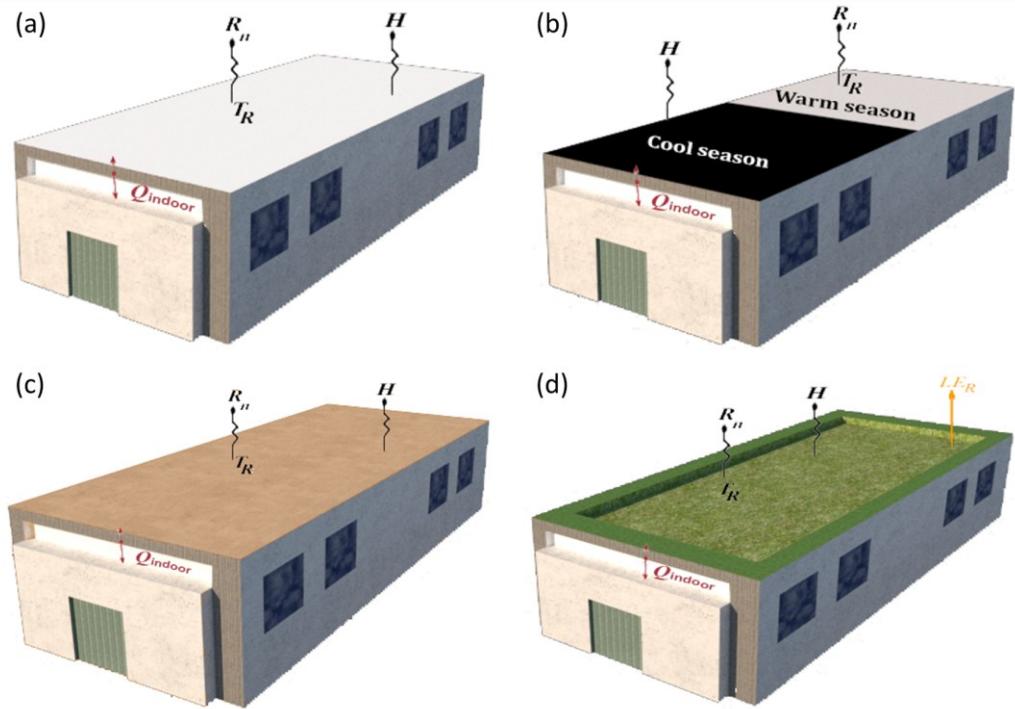
118 Each study area was equipped with eddy covariance (EC) flux towers with long-term
119 monitoring of the built environment, which facilitates the model setup and validation in
120 subsequent analysis. The map of both study areas and the locations of the EC towers are shown
121 in **Figure 1**. The simulation periods of both areas are an entire calendar year, in the period May
122 1, 2010 – April 30, 2011, for Princeton, and January 1 - December 31, 2012, for Phoenix.
123 Moreover, located in the Sonoran Desert, Phoenix has tremendous cooling demands and
124 irrigation water consumption (up to 70% of outdoor household water use) due to the tedious
125 summer, while New England, where Princeton is located, has more significant demands for
126 heating due to the temperate climate [46].

127

128 **Figure 1.** The study areas of Princeton: (a) the google map of Princeton University campus
 129 where (b) the eddy covariance (EC) tower (marked as yellow star) is located, and Phoenix: (c)
 130 the map of neighborhoods in West Phoenix, Arizona, with (d) the EC tower.

131

132 2.2. Roof designs and irrigation schemes


133 Located in the mid-latitudes, both Phoenix and Princeton have high seasonal variability of
 134 temperature, which induces cooling demands in summer and heating demands in winter for
 135 buildings in both areas. To realistically estimate the energy consumption of buildings with
 136 different roofs, we split the whole year into the warm and cold seasons, where only the

137 cooling/heating demand is considered for the warm/cold season. For the Phoenix metropolitan
138 area, the warm season is defined as the period from April 1 to October 31, while the cool season
139 is defined as the remaining period from November 1 to March 31. For the Princeton metropolitan
140 area, the warm season is from June 1 to August 31 and the cool season is from September 1 to
141 May 31.

142 In this study, we evaluate the cooling and energy saving potentials of three different types
143 of roofs, viz. the white, hybrid, and green roofs, in contrast to the conventional roof system, as
144 sketched in **Figure 2**. More specifically, for the green roofs, we consider different irrigation
145 schemes to achieve the optimal monetary saving for energy-water trade-off, which is particularly
146 important for Phoenix as a desert city. The values of roof surface albedo and changes of soil
147 water content per different irrigation schemes are summarized in **Table 1**. The conventional roof,
148 which also serves the baseline scenario in this study, mainly consists of concrete and gravels
149 with an albedo of 0.20. The white roof, with an albedo of 0.60, could lower the temperature in
150 the whole year, and thus cut back the cooling demands in the warm season but increase the
151 heating demands in the cool season. The hybrid roof is intended to maximize energy savings by
152 adopting temperature-adaptive albedos for different seasons. In this study, the albedo of the
153 hybrid roof is 0.60 in the warm season and 0.10 in the cool season, which enables the all-season
154 reduction of both the heating and cooling demands. The green roof has more sophisticated
155 engineering design with layered structure, including vegetation, soil, drainage, pavement, and
156 insulation layers. The surface albedo of green roof is largely determined by the leaf area of
157 vegetation and the soil water content, which varies irrigation amount as well as seasonal
158 vegetation dynamics. But as the governing mechanism of green roofs as a heat mitigation

159 strategy is evapo-transpirative cooling (rather than reflectivity), we use a fixed albedo of 0.15 for
160 green roof in this study.

161

162

163 **Figure 2.** Schematics of different roof systems for heat mitigation: (a) white roof, (b) hybrid roof
164 by modifying the roof surface albedo, (c) conventional roof, and (d) green roof with
165 environmental-controlled irrigation schemes.

166

167 In addition, for the green roof system, we adopt four different irrigation schemes, which can
168 facilitate the evapotranspiration of the vegetation and thus ameliorate the ambient thermal
169 environment, in contrast to the baseline case (no irrigation). In Princeton, the vegetation in the
170 green roof can survive without irrigation in the monsoon season due to the plenty precipitation.
171 In Phoenix, on the contrary, the soil moisture will fall below the wilting point without irrigation

172 due to the inadequate precipitation, which only allows the growth of limited species of arid and
173 semi-arid vegetation. For consistency, we use the same irrigation schemes for both study areas.

174

175 **Table 1.** The albedos of different roof types and irrigation amount of five irrigation schemes

Roof type	Roof code	Albedo α (-)
Conventional roof	CR	0.20
White roof	WR	0.60
Hybrid roof	HR	0.60 (warm season), 0.10 (cool season)
Green roof	GR	0.15
Irrigation schemes	Irrigation scheme code	Irrigation amount in terms of the increase of volumetric water content ($\text{cm}^3 \text{cm}^{-3}$) of the top (10-cm) soil layer
No irrigation (baseline)	GR0	0
Moisture-controlled I	GR1	$0.1, \theta_{\text{threshold}} = 0.15$
Moisture-controlled II	GR2	$0.1, \theta_{\text{threshold}} = 0.24$
Daily constant	GR3	Vary monthly, per city's guidance
Flood irrigation	GR4	Fully saturated with ponding water depth of 2 cm (in the warm season) or 1 cm (in the cool season)

176

177 The first two schemes are both soil moisture-controlled but with different threshold of soil
178 water content $\theta_{\text{threshold}}$ (at which irrigation is activated) of 0.15 (moisture-controlled Scheme I)
179 and 0.24 (Scheme II), respectively. These values are determined based on the observational and
180 modeling results for several different xeric (Phoenix) and mesic (Princeton) landscapes in
181 Phoenix metropolitan, where the wilting points range from 0.15 to 0.24 [47]. Thus, we set
182 $\theta_{\text{threshold}} = 0.15$ and 0.24 for soil moisture-controlled irrigation Scheme I and II, respectively, to
183 maintain the topsoil moisture above the wilting point. Irrigation is activated when the top-soil
184 water content drops below these threshold values and stops when the top-soil (10-cm) water
185 content increases by 10% ($0.1 \text{ cm}^3 \text{cm}^{-3}$) to adequately support the biological functions of
186 vegetated green roofs. The third is a daily constant irrigation scheme that is automated to operate
187 at 9 pm LST. The daily irrigation amount of this scheme is estimated by the *in-situ* measurement
188 of the monthly total outdoor irrigation water use [48], divided by number of days in the month.

189 The last scheme is the flood irrigation of urban vegetation, applied weekly or biweekly at 9 pm
190 LST during the warm or cool seasons, respectively. Flood irrigation is still widely used in old
191 neighborhood in Phoenix, which results in the saturation of the top-soil layer and water ponding
192 immediately after the irrigation. Per field observation, the ponding water depth is estimated to be
193 2 cm and 1 cm during the warm and cool seasons, respectively.

194

195 2.3. Modeling urban land surface processes

196 In this study, we adopt a state-of-the-art urban land surface model, namely, the Arizona
197 Single-Layer Urban canopy Model (ASLUM) that has been developed and continuously
198 improved over past decades [49]. ASLUM realistically resolves the physics of land surface
199 processes in the urban canopy layer (UCL), including the transport of heat, moisture, and scalar
200 quantities (e.g., carbon dioxide) over built terrains. In particular, the model incorporates urban
201 vegetation dynamics, the green roof system in particular, and urban hydrological processes that
202 have been tested and extensively applied to study the impact of various urban heat mitigation
203 strategies in diverse urban environments [33]. According to a recent global intercomparison of
204 30 urban land surface models in the Urban-PLUMBER project, ASLUM (v2.0 and v3.0) were
205 both among the best, based on their numerical performance [57].

206 The surface energy balance that drives the heat transport in the UCL is given by,

207
$$R_n = H + LE + G_0, \quad (1)$$

208 where H , LE and G_0 are anthropogenic, sensible, latent, and ground soil heat fluxes, respectively,
209 and R_n is the net radiation as the sum of radiative components,

210
$$R_n = S_{\text{net}} + L_{\text{net}} = (S_{\text{down}} - S_{\text{up}}) + (L_{\text{down}} - L_{\text{up}}), \quad (2)$$

211 with S and L the shortwave and longwave radiation, and subscripts ‘down’ and ‘up’ standing for
 212 upwelling and downwelling direction, respectively. At the roof level, the net shortwave radiation
 213 is calculated as,

214
$$S_{\text{net}} = (1 - a)(S_D + S_Q), \quad (3)$$

215 where S_D and S_Q are the measured direct and the diffuse solar radiation received by a horizontal
 216 surface respectively, and a is the surface albedo. The net longwave radiation is given by,

217
$$L_{\text{net}} = L_{\text{down}} - \varepsilon \sigma T_R^4, \quad (4)$$

218 where ε is the emissivity, σ is the Stefan–Boltzmann constant, and T_R is the roof surface
 219 temperature.

220 The profile (vertical distribution) of roof temperatures and soil heat fluxes are obtained by
 221 solving the one-dimensional (1D) heat conduction equation analytically using Green’s function
 222 approach [49], as

223
$$T(z, t) = T_0 + \int_0^t f_1(t - \tau) dg(z, \tau) - \int_0^t f_2(t - \tau) dg(d - z, \tau) \quad (5)$$

224
$$G(z, t) = -k \frac{\partial T}{\partial z} = -k \left[\int_0^t f_1(t - \tau) dg'(z, \tau) - \int_0^t f_2(t - \tau) dg'(d - z, \tau) \right] \quad (6)$$

225 where z is the depth from the roof surface (positive downward), k is the thermal conductivity, f_1
 226 and f_2 are the heat fluxes at the exterior (exposed to sun) and interior boundaries of the roofs,
 227 respectively, T_0 is the initial temperature profile inside the solid which is assumed to be
 228 uniform), $g(z, t)$ is the fundamental (Green’s function) solution of 1D heat diffusion with
 229 homogeneous boundary conditions, and $g' = \partial g / \partial z$ is the spatial derivative of g . In particular, the
 230 surface (skin) temperature of different roofs can be obtained by setting $z = 0$, viz. $T_R = T(0, t)$.

231 The turbulent transport of heat from rooftop to the atmosphere, including sensible heat flux
 232 and latent heat fluxes, are calculated as follows,

233

$$H = \frac{c_p \rho_a (T_R - T_a)}{r_a}, \quad (7)$$

234

$$LE = \beta_e \frac{L_v \rho_a (q_R^* - q_a)}{r_a}, \quad (8)$$

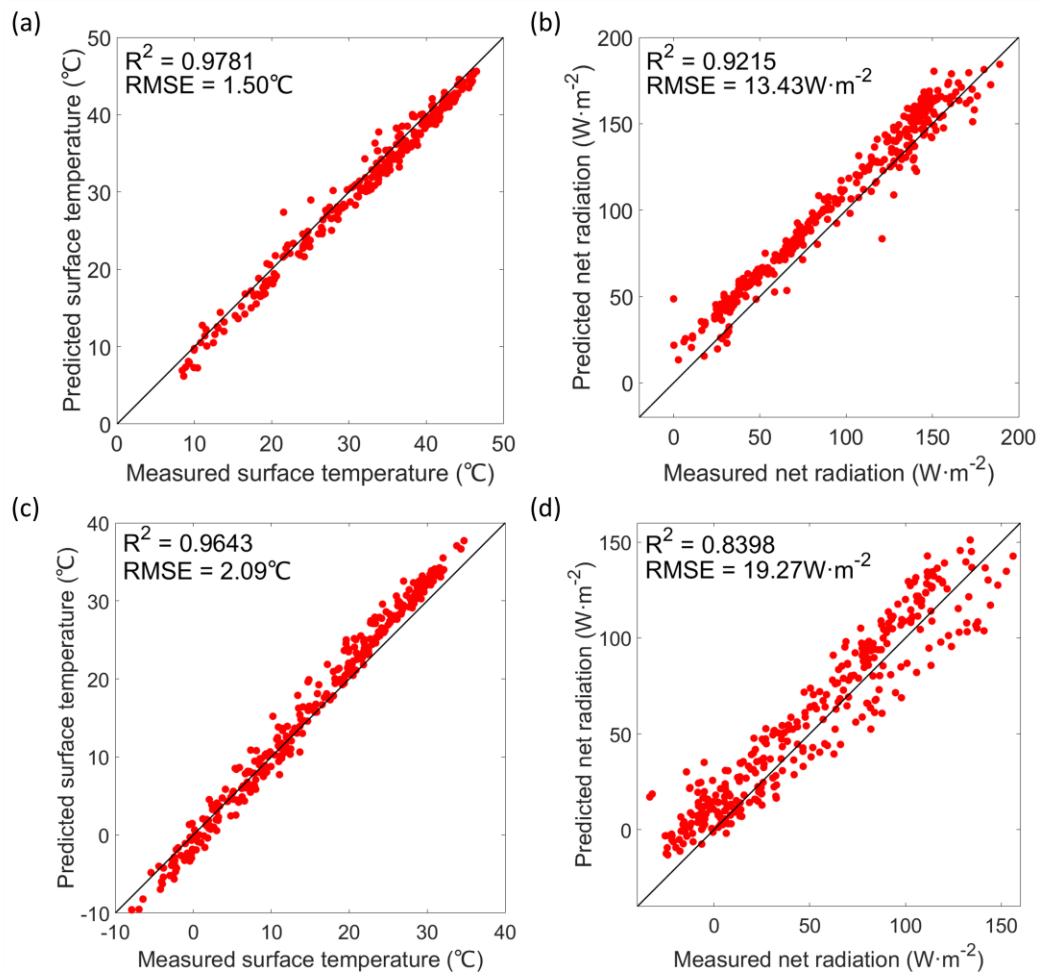
235 where c_p , ρ_a , and T_a are the specific heat, density, and temperature of air, r_a is the aerodynamic
 236 resistance, L_v is the latent heat of vaporization, q is the specific humidity, the superscript star
 237 stands for saturation, and β_e is a reduction factor for non-saturated surface as a function of soil-
 238 water content, which can be approximated as [58],

239

$$\beta_e = \frac{\theta - \theta_r}{\theta_s - \theta_r}, \quad (9)$$

240 where θ is the volumetric soil water content, θ_s the soil-water content at saturation and θ_r the
 241 soil-water content at which evaporation is suppressed.

242


243 **3. Results and Discussion**

244 3.1. Model validation

245 We first evaluate the model performance for the baseline cases in Phoenix and Princeton,
 246 respectively. The annual *in situ* datasets at the two study areas were measured by the EC tower
 247 deployed at Princeton University campus (**Fig. 1c**) during May 1, 2010 – April 30, 2011, and
 248 Maryvale, West Phoenix (**Fig. 1d**) throughout January 1 - December 31, 2012, respectively. The
 249 results of comparisons of predicted and measured roof surface temperatures (T_R) and net
 250 radiation (R_n) are shown as scatter plots in **Figure 3**. For the entire simulation period, the root
 251 mean square errors (RMSE) are 1.50 °C and 2.09 °C for T_R in Phoenix and Princeton,
 252 respectively, and 13.43 W m⁻² and 19.27 W m⁻² for R_n in Phoenix and Princeton, respectively.
 253 The values of coefficient of determination, R^2 , as a fitted curve of the scatters, are 0.9781,

254 0.9215, 0.9643, 0.8398, of the four subplots in **Fig. 3**, respectively. The results indicate that the
 255 predictions of ASLUM agree reasonably well with the field observations. The model
 256 performance is in general better in the arid environment under clear conditions, as the presence
 257 of clouds and precipitations complicates the heat-moisture interactions, thus leading to reduced
 258 accuracy of model predictions.

259

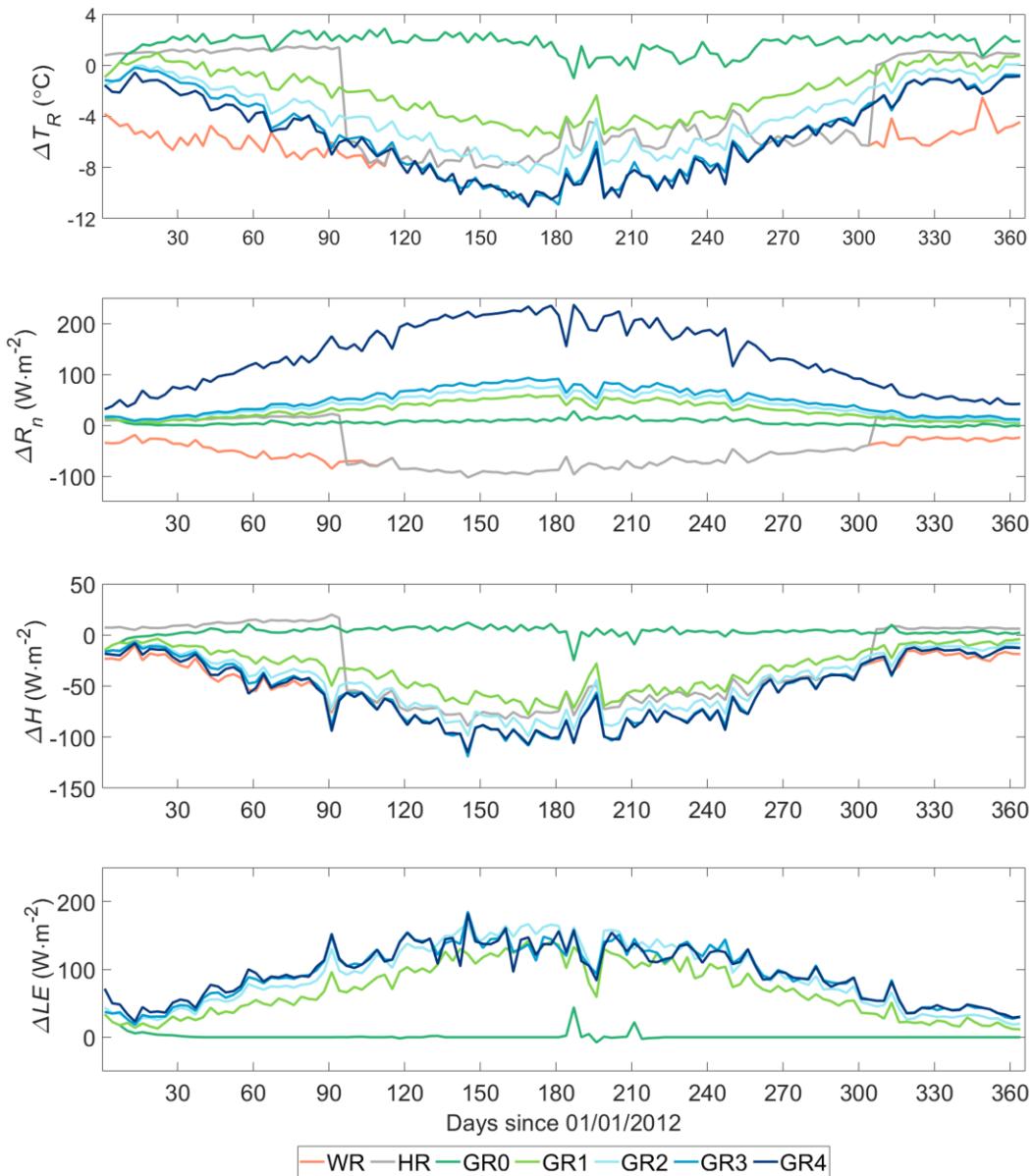
260
 261 **Figure 3.** Comparisons of predicted and measured (a) T_R and (b) R_n in Phoenix, and (c) T_R and
 262 (d) R_n in Princeton.

263

264 3.2. The impact on roof thermal performance

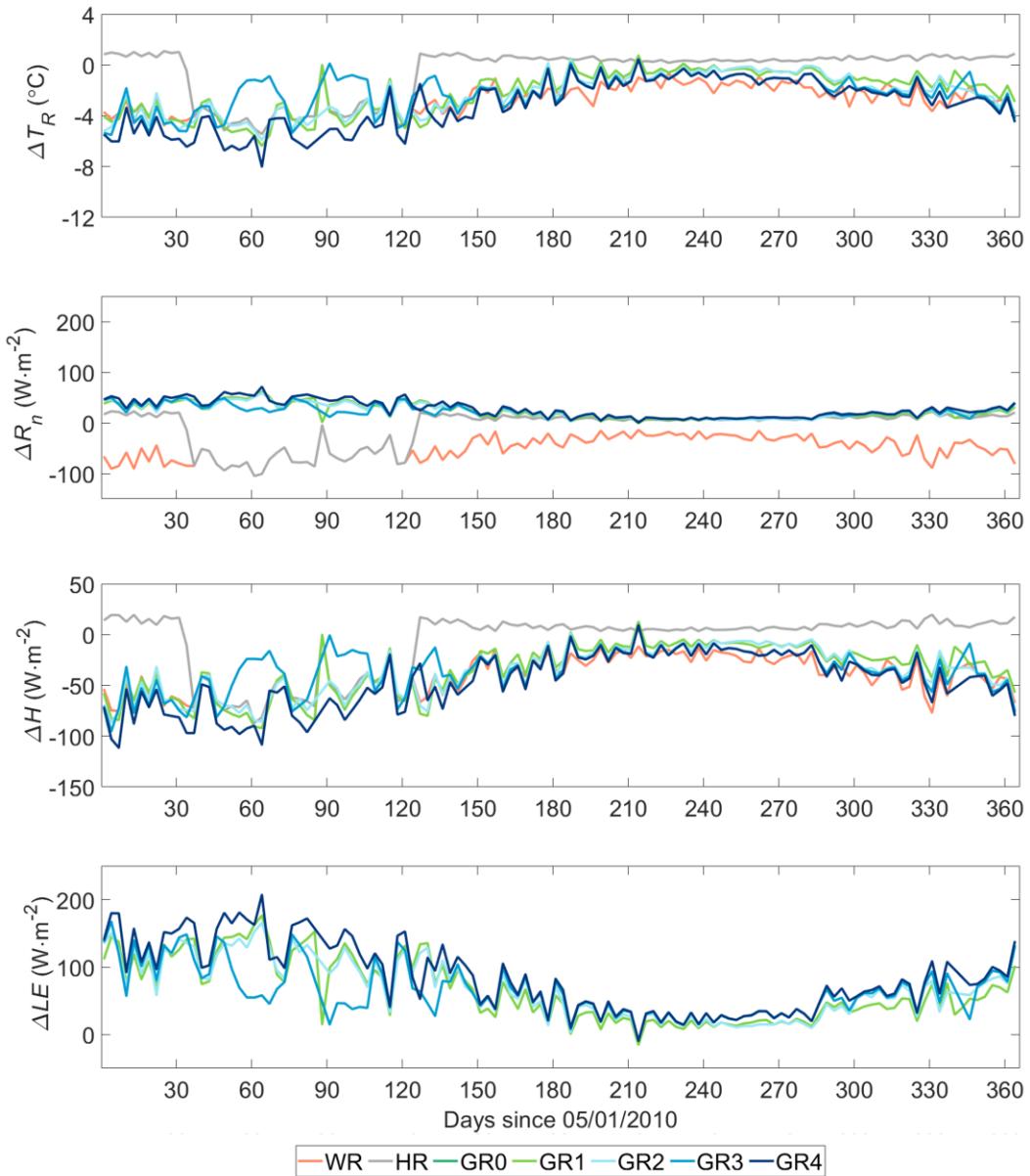
265 In this study, the surface albedo of white and hybrid roofs and irrigation schemes of green
266 roofs are two main factors that modify the thermal performance of roofs. **Figures 4 and 5** show
267 the thermal responses of different roof systems to the change of these parameters (Table 1),
268 including the changes of roof surface temperature (T_R), net radiation (R_n), sensible heat (H), and
269 latent heat (LE), with respect to those of the conventional roof (baseline), in Phoenix and
270 Princeton, respectively. We find that in both areas, the white roof and green roofs with irrigation
271 have the cooling effect throughout the year. In contrast, the hybrid roof reduces roof temperature
272 during the warm season but has a warming effect in the cool season due to surface darkening,
273 thus effectively avoid heating penalty.

274 In Phoenix, as shown in **Fig. 4**, the green roof without irrigation induces a warming effect
275 on roof surface temperature due to the lower albedo (0.15) than that of the conventional roof
276 (0.20). From May to September, green roofs in Phoenix with flood irrigation and daily constant
277 irrigation has the most significant cooling effects, which has the maximum reduction in T_R of
278 11.1°C in late June; the moisture-controlled scheme II induces a larger roof surface reduction
279 than the moisture-controlled scheme I due to the higher moisture threshold and thus a larger
280 irrigation amount. From October to April, the white roof cools the roof surface most, while the
281 reductions in roof surface temperatures of green roof are less significant than in summer,
282 especially in December and January. The surface cooling of green roofs with adequate irrigation
283 is directly related to the evapotranspiration of vegetation, which is controlled by the supply of
284 available energy ($R_n - H - LE$) impinged on the roof surface. Therefore, the green roof with
285 irrigation has a better cooling capability in summer when stronger solar radiation exists. The
286 changes of R_n on roofs without irrigation (in comparison to the conventional roof) (**Fig. 4b**), i.e.,


287 white roof, hybrid roof, and non-irrigated green roof, are nearly identical to those of the surface
288 temperature (**Fig. 4a**).

289 Furthermore, green roofs in Phoenix with irrigation induce increases in the net radiation,
290 which is especially significant in summer. This is primarily because the strong surface cooling
291 induced by irrigated green roofs, in turn, results in the reduced upwelling longwave radiation, as
292 well as the decreased sensible heat, which outweighs the increase in latent heat due to
293 evapotranspiration. For the white roof, the net shortwave radiation decreases due to higher
294 shortwave reflectivity and thus causes the reduction in the total net radiation. Likewise, the
295 dominant effect of albedo causes a slight increase of net radiation due to roof darkening in the
296 cool season and the same trend as the white roof in the warm season. Sensible heat flux, on the
297 other hand, is strongly regulated by the surface temperature, thus its changes (**Fig. 4c**) are very
298 similar to that of the surface temperature (**Fig. 4a**). For the latent heat flux arising from the roof
299 surfaces, all green roofs with irrigation induce increase of the latent heat flux, which is more
300 significant in summer than in winter due to the stronger evapotranspiration in summer. There is
301 slight (and very sporadic) increase of latent heat on the green roof without irrigation, which is
302 due to evaporation of scarce natural precipitation in Phoenix.

303 There are some noticeable differences between the thermal performances in Phoenix and
304 Princeton. First, the shorter duration of warm season in Princeton is responsible for the lesser
305 cooling effect of white and hybrid roofs, and the total energy-water trade-off (detailed in Section
306 4.3 below). In addition, as shown in **Figure 5**, the thermal behavior of green roofs with no
307 irrigation and moisture-controlled scheme I (limited irrigation above wilting point) are nearly the
308 same. This is because that the precipitation in Princeton is sufficient to keep the soil water
309 content of green roofs above the lower limit of wilting point ($\theta_{\text{threshold}} = 0.15$) throughout the


310 year. For the same reason, green roof without irrigation does not exhibit a warming effect in
 311 Princeton (Fig. 5a) in comparison to that in Phoenix (Fig. 4a).

312

313

314 **Figure 4.** 3-day averaged changes of the thermal performance of different roofs in Phoenix, in
 315 comparison to the conventional roof (baseline case), including changes of (a) roof temperature
 316 ΔT_R , (b) net radiation ΔR_n , (c) sensible heat ΔH , and (d) latent heat ΔLE .

317

318 **Figure 5.** Same as Figure 4, but in the study area of Princeton.

319

320 3.3. The impact on energy-water trade-off and combined saving

321 In this study, we focus on the building energy consumption by heating and air conditioning
 322 (HAC) systems as they are directly related to the indoor thermal response to outdoor thermal
 323 environment through roofs. For simplicity, we use the conductive heat flux, computed by Eq. (6),

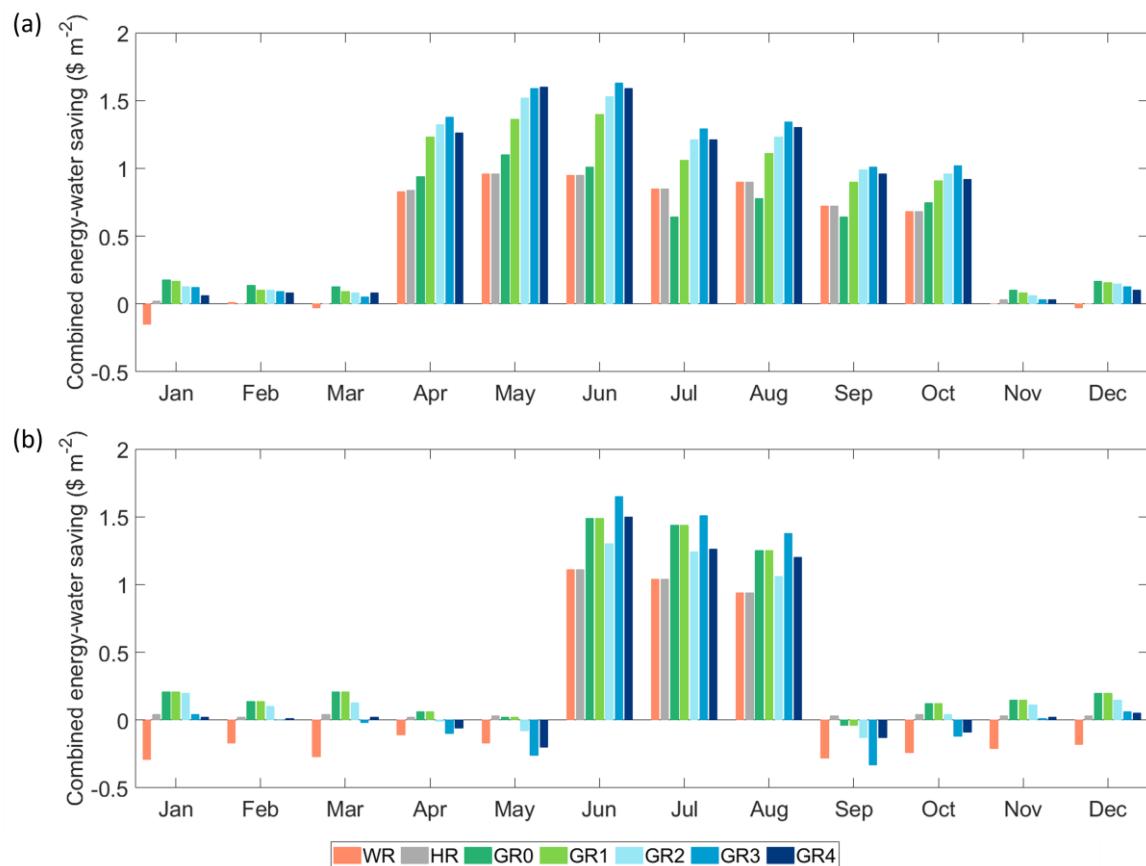
324 to estimate the required HAC load in order to maintain a constant indoor temperature of 24 °C.
 325 Note that though there are occasions when the indoor temperature may drop below the threshold
 326 during the warm season (e.g., a cool summer night in Princeton), indoor heating is not activated
 327 considering the customary working mechanism of air conditioning systems, likewise for cooling
 328 need during the cool season. Thus, in this study, we take consideration of cooling demand in the
 329 warm season and heating demand in the cool season exclusively for both study areas. In addition,
 330 the water consumption is considered for green roofs with irrigation based on the amount of
 331 irrigation water use.

332

333 **Table 2** The unit prices of electricity and water in Phoenix and Princeton

Study area	Phoenix	Princeton
Average price of electricity (¢ kWh ⁻¹)	11.31	14.80
Price of water (\$ m ⁻³)		
January	1.49	2.05
February	1.49	2.05
March	1.49	2.05
April	1.70	2.05
May	1.70	2.05
June	1.86	2.05
July	1.86	2.05
August	1.86	2.05
September	1.86	2.05
October	1.70	2.05
November	1.70	2.05
December	1.49	2.05

334

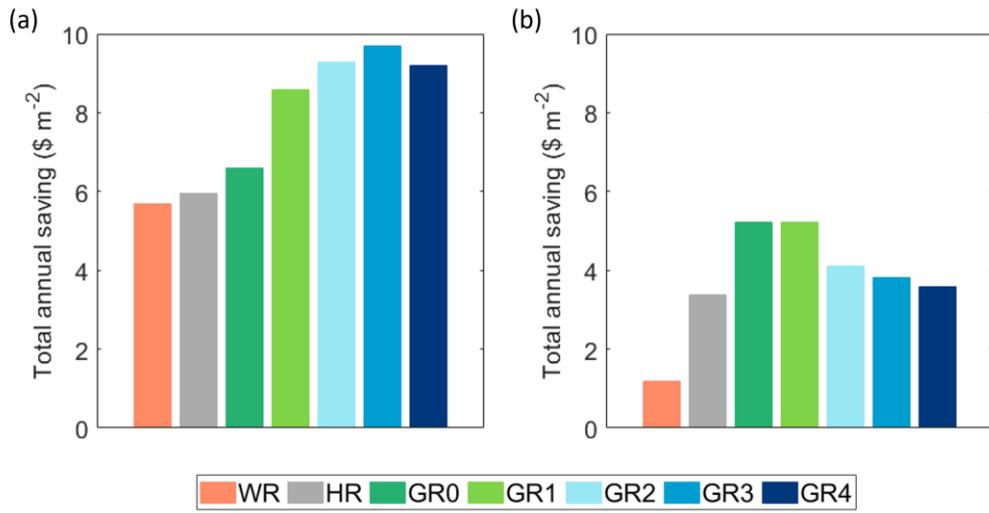

335 The resultant *total* cost per unit roof area (\$ m⁻²) of combined energy (electricity) and water
 336 consumption is therefore given by,

337
$$\text{Cost}_{\text{total}} = P_{\text{water}} V_{\text{water}} + P_{\text{electricity}} \sum_t Q_{\text{indoor}}, \quad (10)$$

338 where P_{water} and $P_{\text{electricity}}$ are the unit prices of water (per m³) and electricity (per kWh)
 339 respectively, V_{water} is the irrigation amount per unit area (m³ m⁻²), Q_{indoor} is the model predicted

340 indoor heat flux through the roof (kW m^{-2}) [44]. The total cost is in dollar per square meter roof
 341 area. As shown in **Table 2**, The average electricity rate of Arizona and New Jersey is obtained
 342 from the report of U.S. Energy Information Administration
 343 (<https://www.eia.gov/electricity/state/>); The water prices in Phoenix and Princeton are acquired
 344 from the city of Phoenix (<https://www.phoenix.gov/waterservices/customerservices/rateinfo>) and
 345 New Jersey American Water (<https://www.amwater.com/njaw/>) respectively. The combined
 346 *savings* per unit roof area ($\$ \text{m}^{-2}$) of different roof systems are calculated as the difference
 347 between the total cost of a given roof and that of the conventional roof.

348


349

350 **Figure 6.** The results of monthly savings of different roof types and irrigation schemes in (a)
 351 Phoenix and (b) Princeton, in comparison to the conventional roof.

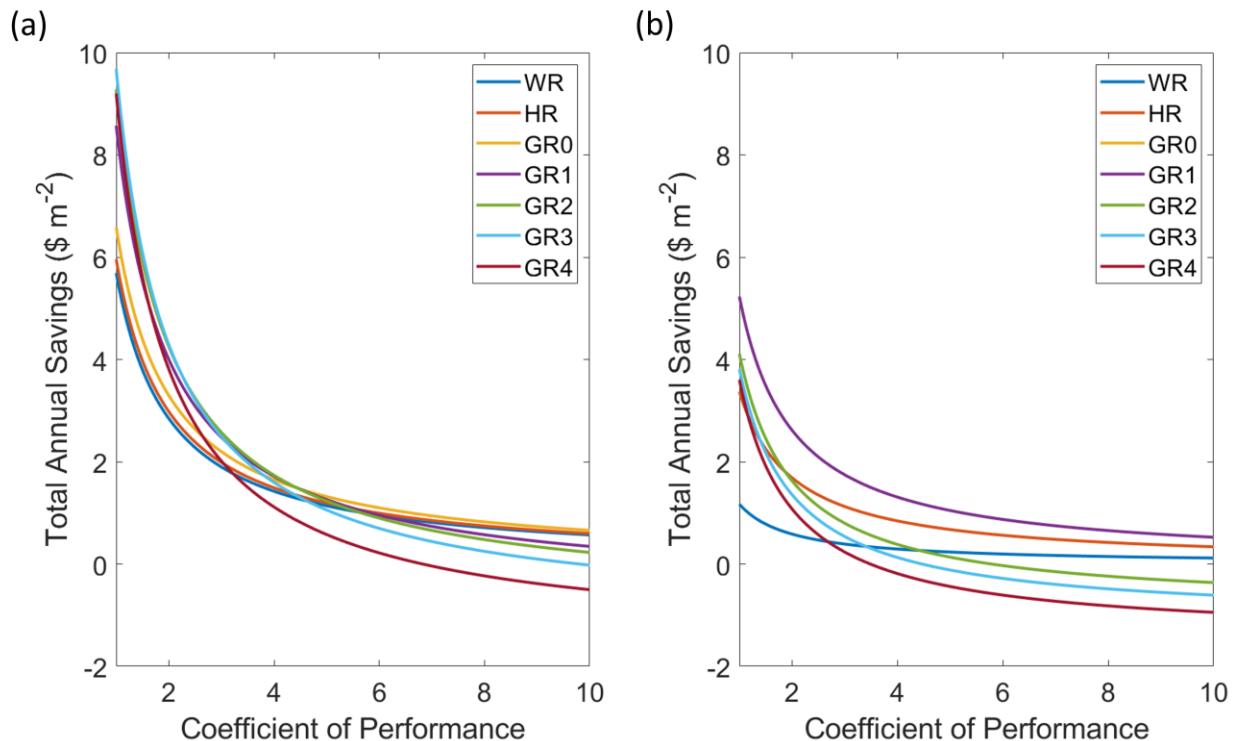
352 The monthly combined energy-water savings of different roofs and irrigation schemes, as
353 compared to the conventional roof, in Phoenix and Princeton are presented in **Figure 6**. In both
354 study areas, since the white roof has cooling effects in the whole year, it increases the energy
355 consumption in the cool season (the heating penalty) and reduce energy consumption in the
356 warm season. The hybrid roof, on the other hand, can successfully avoid the heating penalty, and
357 achieves positive savings in all seasons. Some of the irrigation schemes, especially flood
358 irrigation and daily constant irrigation, lead to increased consumption in April, May, September,
359 and October in Princeton. Except for the aforementioned cases, all the roofs reduce the total
360 costs, which are more significant in summer. In Phoenix, in particular, the maximum monthly
361 saving in the cool season is generated by the green roof without irrigation since its warming
362 effects as no water demand is needed. Irrigated green roofs have savings higher than roofs
363 without irrigation in the warm season, leading to a maximum saving of $\$1.63 \text{ m}^{-2}$ by green roofs
364 with daily constant irrigation in June. In Princeton, the green roof with no irrigation has the same
365 monthly savings as moisture-controlled scheme I, resulting in maximum saving in the cool
366 season. In the warm season, green roofs with daily constant irrigation attain the maximum
367 saving, up to $\$1.65 \text{ m}^{-2}$ in July.

368 The total annual savings of different roofs and irrigation schemes in Phoenix and Princeton
369 are shown in **Figure 7**. The least annual savings are attributed to the white roof in both study
370 areas, amounting to $\$5.70 \text{ m}^{-2}$ and $\$1.17 \text{ m}^{-2}$ in Phoenix and Princeton, respectively. In Phoenix,
371 the maximum annual saving is $\$9.68 \text{ m}^{-2}$, from green roofs with moisture-controlled scheme II
372 due to the significant cooling effects in the warm season but controlled use of irrigation water. In
373 Princeton, the maximum total annual saving is $\$5.23 \text{ m}^{-2}$, resulted from the use green roof with
374 no irrigation (by natural precipitation). The sufficient precipitation in Princeton enables the

375 vegetation on the green roof to keep enough moisture needed for the biological functions and
376 evapotranspiration of the vegetation. Therefore, green roofs in Princeton is able to achieve
377 significant cooling effects without minimal irrigation need.

378

379 **Figure 7.** The results of annual savings of different roof types and irrigation schemes in (a)
380 Phoenix and (b) Princeton, in comparison to the conventional roof.


381

382 3.4. Sensitivity of energy savings to coefficient of performance

383 In this study, the heating and cooling systems are implicitly assumed to response
384 spontaneously to incident heat fluxes into the building through roofs to maintain a constant
385 indoor temperature of 24 °C. To quantify the impact of thermodynamic coefficient of
386 performance (COP) on the overall annual savings, we calculated the total annual savings of all
387 roof types and irrigation schemes in Phoenix and Princeton corresponding to the COP values.

388 The results are shown in **Figure 8**. To analyze the sensitivity of total savings to COP, we select
389 the values from 1 to 10 that could cover the common interval (from 2 to 4) in practical
390 applications [59]. Since with the improvement of COP, the electricity consumed by the HAC
391 system to transfer the same amount of heat decreases, the differences of the electricity

392 consumption among different roofs and irrigation schemes reduce and thus result in lowered
 393 savings. Total savings of roofs with irrigation decreases faster with COP than roofs without
 394 irrigation. It is notable that the savings of green roofs with irrigation will be negative when COP
 395 is higher than a certain threshold (5.83 in Phoenix and 2.49 in Princeton), resulting from the
 396 reduced savings of electricity that cannot compensate the water consumption.

397
 398 **Figure 8.** The changes of annual savings of different roof types and irrigation schemes in (a)
 399 Phoenix and (b) Princeton versus COP (scaled from 1 to 10).
 400

401 **4. Concluding Remarks**

402 In this study, we used a state-of-the-art urban land surface model, i.e., ASLUM to evaluate
 403 the potential of diverse roof systems for ameliorating the thermal environment and improving the
 404 efficiency of building energy-water trade-off in two contrasting built environments. Though both
 405 white roofs (aka “cool” roofs) and green roofs (aka “eco-roofs”) are popular heat mitigating

406 strategies that are widely adopted by urban planners and practitioners, it was found that the
407 nature-based solution, i.e., green roofs, are the preferred heat mitigation in both arid metropolitan
408 and temperate sub-urban areas (**Fig. 7**). Despite the fact that the use of irrigation for green roofs
409 incurs additional cost of water consumption, this water use can be strategically controlled to
410 yield optimal heat-water trade-off and maximize the combined energy-water savings. With the
411 assumption of spontaneous response of HAC systems, the maximum total annual savings of the
412 green roof can be up to $\$9.68 \text{ m}^{-2}$ and 5.23 m^{-2} , in Phoenix and Princeton respectively. In
413 climate regions with sufficient precipitation, the advantage of green roofs is more manifest as the
414 use of irrigation water can be further reduced. The total annual saving is more prominent in the
415 arid city of Phoenix (vary from $\$5.70 \text{ m}^{-2}$ to $\$9.68 \text{ m}^{-2}$) than the sub-urban Princeton town (vary
416 from $\$1.17 \text{ m}^{-2}$ to $\$5.23 \text{ m}^{-2}$), as the former experiences more severe UHI and thus has more
417 potential for heat mitigation and building energy saving. The use of hybrid roofs with reduced
418 albedo in cool seasons helps to avoid the heating penalty incurred by pure white roofs; the
419 difference is more prominent in Princeton ($\$2.20 \text{ m}^{-2}$) where a temperate climate and long cool
420 seasons requires substantial heating demand. The results of this study are informative to
421 homeowners and urban planners in selecting the optimal solutions to heat mitigation and
422 building energy saving and then further alleviate energy shortages in this era with increasing
423 energy demands, especially in the areas with higher temperatures and less precipitation.
424 According to the results, in the contiguous United States, green roofs without irrigation is an
425 ideal solution to energy saving in areas with sufficient precipitation, viz. the regions of humid
426 continental and humid subtropical climate located to the east of the Rocky Mountains; while in
427 the Rocky Mountains area, where precipitation is much less, more irrigation is needed to sustain
428 the green roofs.

429 However, there are a few caveats of the method used in this study. First, the estimate of
430 building energy consumption by HAC systems and the amount of irrigation water are based on a
431 number of simplified assumptions, including, constant indoor temperature, exact balance of
432 indoor heat fluxes by HAC systems, instantons increase of soil water content by irrigation, no
433 vegetation dynamics, etc. Thus, the values of estimated savings should not be taken as
434 quantitatively exact, but rather qualitatively informative. Secondly, to maintain the consistency
435 in intercomparison of different scenarios, we decoupled the urban land-atmosphere interactions
436 in our numerical modeling, so that the cooling of roof surface has no feedback to the ambient air
437 temperature. In addition, we performed the numerical experiments in an annual cycle of a
438 particular year in each study area, thus the results are subject to the influence of particular
439 hydrometeorological conditions, especially the amount of precipitation on the demand of
440 irrigation water use (Phoenix in particular). Thus, the presence of hydroclimatic extremes, e.g.,
441 heatwaves or extreme droughts, could be decisive in modifying the building energy as well as
442 urban water use patterns.

443 Nevertheless, the proposed modeling method in this study can be used to guide future work
444 to improve the quantification of the trade-off between building energy and water irrigation for
445 green roofs to estimate more accurate saving potential. Such improvements can be developed by
446 including: (1) more sophisticated building energy models to the urban canopy layer physics, (2)
447 urban vegetation dynamics (e.g. growth and wilting) and land-atmosphere feedback, (3) life
448 cycle analysis of different roof systems (e.g., cost of implementation and maintenance of roof
449 vegetation and pavement albedo) and secondary energy-water nexus (e.g., energy to transport
450 irrigation water), and (4) the impact of regional climate change, especially the presence of
451 hydroclimate extremes on different roof systems and their performance. The current study can

452 also be readily extended to other cities in the U.S. or worldwide. The key factors determining the
453 building energy efficiency in different cities are diverse, including, for example, the local urban
454 microclimate, prices and accessibility of different forms of energy (e.g. fossil fuels, electricity,
455 renewable energy, etc.) and water resources, or even the preference of residents in cities (e.g.
456 vegetated versus painted roofs), to name a few. It is also important to note that if energy-water-
457 saving roof systems are to be adopted in massive scales in the built environment, especially those
458 in close spatial proximity to mega cities (i.e., urban clustering [60]), the effect might be
459 influencing one another [61, 62] due to cross-regional atmospheric transport in complex urban
460 climate networks. Quantification of the energy saving potential in different cities with mutual
461 side effect or co-benefit will, therefore, be informative to urban planners for their selection of
462 fitful roof systems for heat mitigation with desirable cost-saving benefits.

463

464 **Acknowledgement**

465 This study is supported by the U. S. National Science Foundation (NSF) under Grant No.
466 AGS-2300548, Arizona Board of Regents (ABOR) under the project “Smart Tree Watering in
467 Arizona’s Urban Environment”, and Arizona State University-Salt River Project Joint Research
468 Project.

469 **References:**

470 [1] Department of Economic and Social Affairs, United Nations. (2019). Urban and rural
471 population growth and world urbanization prospects. *World Urbanization Prospects: The*
472 *2018 Revision*, New York, NY, United States of America, 9.

473 [2] The United Nations Human Settlements Programme, United Nations. (2020). *The Value of*
474 *Sustainable Urbanization*, United Nations Human Settlements Programme. *World Cities*
475 *Report 2020*, Nairobi, Kenya, 377.

476 [3] Antognelli, S., and Vizzari, M. (2016). Ecosystem and urban services for landscape livability:
477 A model for quantification of stakeholders' perceived importance. *Land Use Policy*, 50,
478 277-292.

479 [4] Kumar, P., Druckman, A., Gallagher, J., Gatersleben, B., Allison, S., Eisenman, T.S., et al.
480 (2019). The nexus between air pollution, green infrastructure and human health.
481 *Environment International*, 133, 105181.

482 [5] Wang, C., Li, Q., and Wang, Z.H. (2018). Quantifying the impact of urban trees on passive
483 pollutant dispersion using a coupled large-eddy simulation-Lagrangian stochastic model.
484 *Building and Environment*, 145, 33-49.

485 [6] Oke, T.R. (1967). City size and the urban heat island. *Atmospheric Environment*, 7, 769-779.

486 [7] Oke, T.R. (1982). The energetic basis of the urban heat island. *Quarterly Journal of the*
487 *Royal Meteorological Society*, 108(455), 1-24.

488 [8] Wang, Z.H. (2022). Reconceptualizing urban heat island: Beyond the urban-rural dichotomy.
489 *Sustainable Cities and Society*, 77, 103581.

490 [9] Zinzi, M., Carnielo, E., and Mattoni, B. (2018). On the relation between urban climate and
491 energy performance of buildings. A three-years experience in Rome, Italy. *Applied Energy*,

492 221, 148-160.

493 [10] Yang, X., Peng, L.L.H., Jiang, Z., Chen, Y., Yao, L., He, Y., et al. (2020). Impact of urban
494 heat island on energy demand in buildings: Local climate zones in Nanjing. *Applied
495 Energy*, 260, 114279.

496 [11] Li, X., Zhou, Y., Yu, S., Jia, G., Li, H., Li, W. (2019). Urban heat island impacts on
497 building energy consumption: A review of approaches and findings. *Energy*, 174, 407-419.

498 [12] Kang, J.N., Wei, Y.M., Liu, L.C., Han, R., Yu, B.Y., and Wang, J.W. (2020). Energy
499 systems for climate change mitigation: A systematic review. *Applied Energy*, 263, 114602.

500 [13] Wang, Y., Yang, X., and Wang, Z.H. (2024). Causal mediation of urban temperature by
501 geopotential height in U.S. cities, *Sustainable Cities and Society*, 100, 105010.

502 [14] Hou, H., Longyang, Q., Su, H., Zeng, R., Xu, T., and Wang, Z.H. (2023). Prioritizing
503 environmental determinants of urban heat islands: A machine learning study for major
504 cities in China. *International Journal of Applied Earth Observation and Geoinformation*,
505 122, 103411.

506 [15] Akbari, H., and Rose, L.S. (2008). Urban surfaces and heat island mitigation potentials.
507 *Journal of Human–Environment System*, 11(2), 85–101.

508 [16] Xu, T.F., Sathaye, J., Akbari, H., Garg, V., and Tetali, S. (2012). Quantifying the direct
509 benefits of cool roofs in an urban setting: Reduced cooling energy use and lowered
510 greenhouse gas emissions. *Building and Environment*, 48, 1-6.

511 [17] Baniassadi, A., Sailor, D.J., and Ban-Weiss, G.A. (2019). Potential energy and climate
512 benefits of super-cool materials as a rooftop strategy. *Urban Climate*, 29, 100495.

513 [18] Wang, C., Wang, Z.H., Kaloush, K.E., and Shacat, J. (2021a). Cool pavements for urban
514 heat island mitigation: A synthetic review. *Renewable & Sustainable Energy Reviews*, 146,

515 111171.

516 [19] Testa, J., and Krarti, M. (2017). Evaluation of energy savings potential of variable reflective
517 roofing systems for US buildings. *Sustainable Cities and Society*, 31, 62–73.

518 [20] Yang, J., Wang, Z.H., and Kaloush, K.E. (2015a). Environmental impacts of reflective
519 materials: Is high albedo a 'silver bullet' for mitigating urban heat island? *Renewable and*
520 *Sustainable Energy Reviews*, 47, 830-843.

521 [21] He, Y., Yu, H., Ozaki, A., and Dong, N. (2020). Thermal and energy performance of green
522 roof and cool roof: A comparison study in Shanghai area. *Journal of Cleaner Production*,
523 267, 122205.

524 [22] Wang, Z.H. (2021). Compound environmental impact of urban mitigation strategies: Co-
525 benefits, trade-offs, and unintended consequence. *Sustainable Cities and Society*, 75,
526 103284.

527 [23] Ramamurthy, P., Bou-Zeid, E., Smith, J., Wang, Z., Baeck, M., Hom, J., et al. (2014).
528 Influence of sub-facet heterogeneity and material properties on the urban surface energy
529 budget. *Journal of Applied Meteorology and Climatology*, 53(9), 2114-2129.

530 [24] Morin, F.J. (1959). Oxides which show a metal-to-insulator transition at the Neel
531 temperature. *Physical review letters*, 3(1), 34-36.

532 [25] Tian, D., Zhang, J., and Gao, Z. (2023). The advancement of research in cool roof: super
533 cool roof, temperature-adaptive roof and crucial issues of application in cities. *Energy and*
534 *Buildings*, 291, 113131.

535 [26] Kim, C., Shin, J., and Ozaki, H. (2007). Effect of W doping in metal–insulator transition
536 material VO₂ by tunnelling spectroscopy. *Journal of Physics: Condensed Matter*, 19(9),
537 096007.

538 [27] Zhao, D., Aili, A., Zhai, Y., Xu, S., Tan, G., Yin, X., and Yang, R. (2019). Radiative sky
539 cooling: Fundamental principles, materials, and applications. *Applied Physics Reviews*,
540 6(2), 021306.

541 [28] Ono, M., Chen, K., Li, W., and Fan, S. (2018). Self-adaptive radiative cooling based on
542 phase change materials. *Optics express*, 26(18), A777-A787.

543 [29] Park, B., and Krarti, M. (2016). Energy performance analysis of variable reflectivity
544 envelope systems for commercial buildings. *Energy and Buildings*, 124, 88-98.

545 [30] Chai, J., Chen, J., Kang, Z., Lu, L., Tang, C., and Fan, J. (2023). Temperature-adaptive
546 rooftop covering with synergetic modulation of solar and thermal radiation for maximal
547 energy saving. *Iscience*, 26(8), 107388.

548 [31] Li, P., and Wang, Z.H. (2021). Environmental co-benefits of urban greening for mitigating
549 heat and carbon emissions. *Journal of Environmental Management*, 293, 112963.

550 [32] Li, P., Xu, T., Wei, S., and Wang, Z.H. (2022). Multi-objective optimization of urban
551 environmental system design using machine learning. *Computers, Environment and Urban*
552 *Systems*, 94, 101796.

553 [33] Li, P., Wang, Z.-H., and Wang, C. (2024). The potential of urban irrigation for
554 counteracting carbon-climate feedback, *Nature Communications*, 15(1), 2437.

555 [34] Yang, X., Li, P., and Wang, Z.H. (2023). The impact of urban irrigation on the temperature-
556 carbon feedback in U.S. cities. *Journal of Environmental Management*, 344, 118452.

557 [35] Sun, T., Bou-Zeid, E., Wang, Z.H., Zerba, E., and Ni, G.H. (2013). Hydrometeorological
558 determinants of green roof performance via a vertically-resolved model for heat and water
559 transport. *Building and Environment*, 60, 211-224.

560 [36] Song, J., and Wang, Z.H. (2015a). Impacts of mesic and xeric urban vegetation on outdoor

561 thermal comfort and microclimate in Phoenix, AZ. *Building and Environment*, 94(2), 558-
562 568.

563 [37] Wang, Z.H., Zhao, X., Yang, J., and Song, J. (2016). Cooling and energy saving potentials
564 of shade trees and urban lawns in a desert city. *Applied Energy*, 161(3), 437-444.

565 [38] Upreti, R., Wang, Z.H., and Yang, J. (2017). Radiative shading effect of urban trees on
566 cooling the regional built environment. *Urban Forestry & Urban Greening*, 26, 18-24.

567 [39] Dvorak, B., and Volder, A. (2010). Green roof vegetation for North American ecoregions: a
568 literature review. *Landscape and urban planning*, 96(4), 197-213.

569 [40] Manso, M., Teotonio, I., Silva, C.M., and Cruz, C.O. (2021). Green roof and green wall
570 benefits and costs: A review of the quantitative evidence. *Renewable and Sustainable
571 Energy Reviews*, 135, 110111.

572 [41] Mihalakakou, G., Souliotis, M., Papadaki, M., Menounou, P., Dimopoulos, P., Kolokotsa,
573 D., et al. (2023). Green roofs as a nature-based solution for improving urban sustainability:
574 Progress and perspectives. *Renewable and Sustainable Energy Reviews*, 180, 113306.

575 [42] Rawat, M., and Singh, R.N. (2022). A study on the comparative review of cool roof thermal
576 performance in various regions. *Energy and Built Environment*, 3(3), 327-347.

577 [43] Gober, P., Brazel, A., Quay, R., Myint, S., Grossman-Clarke, S., Miller, A., et al. (2010).
578 Using watered landscapes to manipulate urban heat island effects: How much water will it
579 take to cool Phoenix? *Journal of the American Planning Association*, 76(1), 109-121.

580 [44] Yang, J., and Wang, Z.H. (2015). Optimizing urban irrigation schemes for the trade-off
581 between energy and water consumption. *Energy and Buildings*, 107, 335-344.

582 [45] Wang, C., Wang, Z.H., and Yang, J. (2019). Urban water capacity: Irrigation for heat
583 mitigation. *Computers, Environment and Urban Systems*, 78, 101397.

584 [46] Sivak, M. (2008). Where to live in the United States: combined energy demand for heating
585 and cooling in the 50 largest metropolitan areas. *Cities*, 25(6), 396-398.

586 [47] Volo, T.J., Vivoni, E.R., Martin, C.A., Earl, S., and Ruddell, B.L. (2014). Modelling soil
587 moisture, water partitioning, and plant water stress under irrigated conditions in desert
588 urban areas. *Ecohydrology*, 7(5), 1297-1313.

589 [48] Martin, C. A., and Stabler, L.B. (2002). Plant gas exchange and water status in urban desert
590 landscapes. *Journal of Arid Environments*, 51(2), 235-254.

591 [49] Wang, Z.H., Bou-Zeid, E., and Smith, J.A. (2011). A spatially-analytical scheme for surface
592 temperatures and conductive heat fluxes in urban canopy models. *Boundary-Layer
593 Meteorology*, 138(2), 171-193.

594 [50] Wang, Z.H., Bou-Zeid, E., and Smith, J.A. (2013). A coupled energy transport and
595 hydrological model for urban canopies evaluated using a wireless sensor network.
596 *Quarterly Journal of the Royal Meteorological Society*, 139(675), 1643-1657.

597 [51] Yang, J., Wang, Z.H., Chen, F., Miao, S., Tewari, M., Voogt, J., et al. (2015b). Enhancing
598 hydrologic modeling in the coupled Weather Research and Forecasting - urban modeling
599 system. *Boundary-Layer Meteorology*, 155(1), 87-109.

600 [52] Ryu, Y.H., Bou-Zeid, E., Wang, Z.H., and Smith, J.A. (2016). Realistic representation of
601 urban trees in an urban canopy model. *Boundary-Layer Meteorology*, 159, 193-220.

602 [53] Li, P., and Wang, Z.H. (2020). Modeling carbon dioxide exchange in a single-layer urban
603 canopy model, *Building and Environment*, 184, 107243.

604 [54] Wang, C., Wang, Z.H., and Ryu, Y.H. (2021b). A single-layer urban canopy model with
605 transmissive radiation exchange between trees and street canyons. *Building and
606 Environment*, 191, 107593.

607 [55] Song, J., and Wang, Z.H. (2015b). Interfacing the urban land–atmosphere system through
608 coupled urban canopy and atmospheric models. *Boundary-layer meteorology*, 154, 427-
609 448.

610 [56] Yang, J., Wang, Z.H., Georgescu, M., Chen, F., and Tewari, M. (2016), Assessing the
611 impact of enhanced hydrological processes on urban hydrometeorology with application to
612 two cities in contrasting climates, *Journal of Hydrometeorology*, 17, 1031-1047.

613 [57] Lipson, M.J., Grimmond, S., Best, M., Abramowitz, G., Coutts, A., Tapper, N., et al.
614 (2024), Evaluation of 30 urban land surface models in the Urban-PLUMBER project:
615 Phase 1 results, *Quarterly Journal of the Royal Meteorological Society*, 150(758), 126-169.

616 [58] Brutsaert, W. (2005). *Hydrology—An Introduction*, Cambridge University Press, Cambridge,
617 605.

618 [59] Sun, T., Bou-Zeid, E., and Ni, G.H. (2014). To irrigate or not to irrigate: Analysis of green
619 roof performance via a vertically-resolved hygrothermal model. *Building and Environment*,
620 73, 127-137.

621 [60] Wang, C., Wang, Z.H., and Li, Q. (2020), Emergence of urban clustering among U.S. cities
622 under environmental stressors, *Sustainable Cities and Society*, 63, 102481.

623 [61] Yang, X., Wang, Z.H., Wang, C., and Lai, Y.C. (2022), Detecting the causal influence of
624 thermal environments among climate regions in the United States, *Journal of
625 Environmental Management*, 322, 116001.

626 [62] Yang, X., Wang, Z.H., Wang, C., and Lai, Y.C. (2024), Megacities are causal pacemakers
627 of extreme heatwaves, *npj Urban Sustainability*, 4, 8.