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Abstract 1 

Identifying and understanding various causal relations are fundamental to climate 2 

dynamics for improving the predictive capacity of Earth system modeling. In particular, 3 

causality in Earth systems has manifest temporal periodicities, like physical climate 4 

variabilities. To unravel the characteristic frequency of causality in climate dynamics, we 5 

develop a data-analytic framework based on a combination of causality detection and 6 

Hilbert spectral analysis, using longterm temperature and precipitation dataset in 7 

contiguous United States. Using the Huang-Hilbert transform, we identify the intrinsic 8 

frequencies of cross-regional causality for precipitation and temperature, ranging from 9 

interannual to interdecadal time scales. In addition, we analyze the spectra of the physical 10 

climate variabilities, including El Niño-Southern Oscillation and Pacific Decadal 11 

Oscillation. It is found that the intrinsic causal frequencies are positively associated with 12 

the physics of the oscillations in the global climate system. The proposed methodology 13 

provides fresh insights into the causal connectivity in Earth’s hydroclimatic system and its 14 

underlying mechanism as regulated by the characteristic low-frequency variability 15 

associated with various climatic dynamics.  16 

 17 

Keywords: Convergent cross mapping; Empirical mode decomposition; Hilbert-Huang 18 

transform; Hydroclimate systems; Low-frequency variability  19 



- 2 - 

 

1.  Introduction 20 

The Earth’s climate system involves a complex interplay of dynamic processes that 21 

are closely coupled and more importantly, causally influence each other. An important 22 

characteristic of the climate system is the coexistence and nonlinear interactions of 23 

multiple subsystems, processes, and scales (Ghil and Lucarini 2020). Successful 24 

identification of causality provides an approach to understand the complex dynamics and 25 

the underlying physical mechanisms of the climate system (Runge et al. 2019a; van Nes et 26 

al. 2015). Methods based on pairwise association, such as correlation-based measures, are 27 

common tools for analyzing the relationships among the variables in the climate system, 28 

but the statistical-association based methods are often inadequate for infer causality 29 

(Runge et al. 2019b; Gao et al. 2022). To detect causality from time series, a celebrated 30 

framework is the Granger causality (GC) method (Granger 1969). In climate sciences, the 31 

GC method has been widely used in applications such as identifying the temperature and 32 

wind patterns (McGraw and Barnes 2018) or climate teleconnections (Silva et al. 2021). 33 

Mathematically, the GC method is based on the assumption that the underlying dynamical 34 

system is decriable as a linear stochastic process. For nonlinear and nonseparable complex 35 

systems, the GC method can be ineffective in distinguishing causation from simple 36 

correlation (Hannart et al., 2016).  37 

Recent years have witnessed the use of a number of nonlinear and complex 38 

dynamical systems-based algorithms of causality detection in Earth system sciences. For 39 

example, Hannart et al. (2016) proposed a causal counterfactual theory for the attribution 40 

of weather and climate-related events, which makes a valuable contribution to theoretical 41 

tools for understanding the climate crisis from Hasselmann’s programme (Lucarini and 42 



- 3 - 

 

Chekroun, 2023). In addition, a framework of causality detection based on deterministic 43 

dynamics has been proposed and evaluated for nonlinear dynamic systems based on the 44 

convergent cross mapping (CCM) method (Sugihara et al. 2012; Runge et al. 2015; 45 

Kretschmer et al. 2016; Runge et al. 2019a; Leng et al. 2020).  The fundamental idea of 46 

CCM is that when causation is unilateral, the information of the cause can be inferred from 47 

that of its effect (Sugihara et al. 2012). In addition, the method involves the property of 48 

convergence, viz. the skill of cross-mapped estimates improves with the length of time 49 

series, that distinguishes it from simple correlation.  50 

The CCM  method has been applied to earth and climate systems for detecting the 51 

causal feedback and relationships among climate variables (van Nes et al. 2015) and 52 

atmospheric interactions (Runge et al. 2015). Quite recently, advances in data collection, 53 

archiving, and availability have greatly  benefited causal inference in Earth system 54 

sciences (Runge et al. 2019a, b). For example, data-intense methods such as those based on 55 

complex network analysis (Boers et al. 2019; Tsonis et al. 2008; Wang and Wang, 2020), 56 

critical transitions (Wang et al. 2020; Yang et al. 2022a), and machine learning (Li et al. 57 

2022) have been introduced.  58 

The dynamical behavior of the climate system is much more complicated than those 59 

associated with equilibrium or periodic oscillations (Ghil 2002). Relatively small changes 60 

in external forcing arising from various anthropogenic and/or natural sources can 61 

contribute to large climate variability on a wide spectrum of temporal and spatial scales 62 

(Lucarini et al. 2014; Ghil and Lucarini 2020). Critical mechanisms involved in climate 63 

variability and periodicity include air-sea interaction, equatorial wave dynamics, and 64 

radiative forcing by the seasonal cycle (Bjerknes, 1969). In general, there are three kinds of 65 



- 4 - 

 

natural climate variability (Ghil 2002): (1) those driven by a purely periodic force such as 66 

the daily and the seasonal cycle and orbital forcing, or the solar irradiance, (2) those due to 67 

the nonlinear complex interplay of feedbacks within the climate system, and (3) those that 68 

are related to the random stochastic fluctuations in physical or chemical forcing, such as 69 

the volcanic eruptions or weather fluctuations in the climate system. Among the current 70 

debate on the relative roles of natural and anthropogenic variability, interdecadal and 71 

centennial climate oscillations are of pivotal importance and have attracted a great deal of  72 

interest (Dijkstra and Ghil 2005).  73 

 74 

Figure 1. A schematic illustration of the power spectra of climate variability. Shown is the 75 

spectrum of the 335-year Central English Temperature record and the tentative physical 76 

causes of the spectrum peaks (after Plaut et al. 1995). 77 

 78 

To quantify the temporal variability in the climate system, the traditional tools such 79 

as Fourier spectrum or the singular spectrum methods were used to analyze climate 80 

oscillations (Ghil and Vautard 1991; Ghil et al. 2002), where the spectral peaks, for 81 
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example, can be related to certain forcing mechanisms (Ghil and Lucarini 2020; Ghil et al. 82 

2002; Plaut et al. 1995). Figure 1 presents an example: the spectrum of the 335-year 83 

Central English Temperature record and the tentative physical causes of the spectral peaks 84 

(Plaut et al. 1995). The climate variability on multiple timescales can be identified by a 85 

singular spectrum, with each peak in the spectrum potentially attributable to a different 86 

physical mechanism (Ghil and Lucarini 2020; Ghil et al. 2002; Plaut et al. 1995). For 87 

example, the climate oscillations with interannual (7 to 8-year) and interdecadal (14- and 88 

25-year) periods are likely correlated to the North Atlantic’s wind-driven and thermohaline 89 

circulation, respectively (Dijkstra and Ghil 2005; Plaut et al. 1995). The peak with a period 90 

around 5.5 year can be attributed to the effect of low-frequency El Niño-Southern 91 

Oscillation (ENSO) (Ghil and Robertson, 2000). Fourier transform has been the standard 92 

approach to analyzing the frequency distributions of signals. However, the Fourier analysis 93 

is most suited for linear and stationary systems. Difficulties can arise when the system 94 

generating the signal is nonlinear or non-stationary (Huang et al. 1998; Huang and Wu 95 

2008).  96 

For signals from complex, nonlinear or chaotic, and non-stationary dynamical 97 

systems, the methodology of empirical mode decomposition (EMD) in combination with 98 

Hilbert transform and instantaneous frequency-based analysis have been demonstrated to 99 

be effective for identifying the significant “physical frequencies” of the underlying system 100 

(Huang et al. 1998; Huang and Wu 2008; Yalçınkaya and Lai 1997; Lai 1998; Huang et al. 101 

2017). To appreciate this, recall a defining feature of a sinusoidal signal: in its time 102 

evolution a local maximum is followed by a zero, then by a local minimum, and by a local 103 

maximum again, and so on. Physically, such a signal is the projection of a proper rotation 104 
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in the plane onto an arbitrary one-dimensional axis, where the term “proper” is referred to 105 

as the existence of a unique center of rotation. For signals corresponding to a proper 106 

rotation, the Hilbert transform can be performed to yield a complex analytic signal for 107 

which the frequency of rotation in the complex plane can be identified unambiguously. 108 

Complex signals from the real world often do not possess such a proper structure of 109 

rotation, so a direct application of the Hilbert transform will lead to ambiguities with 110 

misleading results.  111 

A remedy is then to first decompose it into a small number of modes, each 112 

corresponding to a proper rotation, the so-called empirical modes (Huang et al. 1998). For 113 

each empirical mode, Hilbert transform is well defined and can be carried out to yield the 114 

specific frequency of rotation of the corresponding analytic signal in the complex plane. 115 

Note that the frequencies so obtained are physically meaningful because of the underlying 116 

rotation structure, and they differ fundamentally from the frequencies of the Fourier 117 

transform associated with various harmonics. Because EMD typically yields a 118 

comparatively small number of modes, the number of distinct physical frequencies is 119 

equally small, in contrast to the mathematical Fourier frequencies that can often be infinite 120 

in number. In literature, the combination of empirical-mode decomposition and Hilbert 121 

transform is often referred to as Hilbert-Huang transform (HHT) (Huang and Wu 2008). 122 

The major limitation of EMD is that it is empirically based, and lacks sound theoretical 123 

foundation as compared to, e.g. Fourier transform (Boashash, 2016). 124 

The Earth system and climatic dynamics are undoubtedly highly nonstationary and 125 

nonlinear, rendering appropriate use of the HHT for analyzing the time variations and 126 

detecting the dominant physical frequencies. In the past, the HHT has been used to study a 127 
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wide variety of climatological phenomena such as the diurnal cycle, front passages, or 128 

seasonal cycles (Duffy 2004; Huang and Wu 2008). Moreover, HHT has been applied to 129 

capture episodic phenomena such as snowmelt and heavy precipitation events (Duffy 130 

2004), near-Hermean environment (Alberti et al., 2021), extreme sea level events (Alberti 131 

et al., 2023), as well as to identify possible links between river flow variability and the 132 

global climate regime fluctuations (Massei and Fournier 2012). These existing studies 133 

highlighted that HHT can be an effective, though hitherto underexplored, tool to detect 134 

climate variability and its underlying climatic events in Earth system.  135 

To analyze the temporal variability and identify the possible periodicities of 136 

hydroclimatic causation in the contiguous United States (CONUS), we first apply the 137 

convergent crossing mapping (CCM) method to quantify the causality interactions among 138 

different climate regions of the U.S., based on the long-term monthly precipitation and 139 

temperature time series. As presented in our recent studies (Yang et al. 2022b, 2023a), our 140 

network causality analysis revealed that the Ohio Valley acts as a regional atmospheric 141 

gateway in mediating the propagation of temperature perturbations. We then invoke HHT 142 

to analyze the causality signal, which allows several distinct physical frequencies 143 

underlying the temporal variations of the hydroclimatic causation to be detected. The HHT 144 

analysis reveals that the hydroclimatic causality possesses characteristic periodicities, 145 

ranging from interannual to interdecadal scales. Surprisingly, the observed periodicities are 146 

quite distinct, enabling us to identify the underlying physical causes and the mechanisms 147 

as regulated by characteristic low-frequency variability associated with various climatic 148 

dynamics. 149 

 150 
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2.  Method 151 

2.1. Dataset retrieval and processing 152 

In this study, we use the monthly mean near-surface precipitation (P) and 153 

temperature (T) over the period 1901–2018, obtained from Climatic Research Unit (CRU) 154 

Time-Series (TS) version 4.03 produced by the Center for Environmental Data Analysis 155 

(CEDA) Archive, to assess the periodicity of hydroclimate causation in CONUS. We first 156 

anomalize the spatially gridded (0.5o × 0.5o) temperature and precipitation time series by 157 

removing the long-term trends (Harris et al., 2020). The anomalization process is 158 

conducted by subtracting the annual trends from the original time series, e.g. the anomaly 159 

of precipitation or temperature in January is obtained by subtracting the average of 118 160 

January P/T values over the study period of 1901-2018. This way, we minimize the impact 161 

of high frequency (subseasonal to annual) variability in subsequent analyses.  162 

 163 

Figure 2. The map of nine climate regions in the contiguous United States, including 164 

Northwest (NW), West (WE), Southwest (SW), Northern Rockies and Plains (NRP), South 165 

(SO), Upper Midwest (UM), Ohio Valley (OV), Southeast (SE), and Northeast (NE). 166 
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The time series of gridded anomalies is then aggregated (averaged over gridcells) 167 

into nine climatic regions following the Geographical Reference Maps of National Centers 168 

for Environmental Information of National Oceanic and Atmospheric Administration 169 

(NOAA). These climatic regions, as shown in Fig. 2, include Northwest (NW), West 170 

(WE), Southwest (SW), Northern Rockies and Plains (NRP), South (SO), Upper Midwest 171 

(UM), Ohio Valley (OV), Southeast (SE), and Northeast (NE), which are consistent with 172 

the nine principal components identified using the principal component analysis (PCA) 173 

method (Vejmelka et al., 2015; Runge et al., 2015). The subseasonal and seasonal 174 

periodicity is also removed by subtracting the monthly averages from the time series of the 175 

aggregated temperature and precipitation anomalies in nine regions. This treatment 176 

removes the high-frequency variability in the hydroclimate system, which also renders the 177 

application of CCM method more tractable.  178 

 179 

2.2. Causal inference by convergent cross mapping 180 

Mathematically, the CCM algorithm for causal inference is developed based on the 181 

classic delay-coordinate embedding theory for nonlinear time series analysis (Takens, 182 

1981), and a nearest-neighbors algorithm for reconstruction of the cross-mapping estimate 183 

(Sugihara and May 1990, Sugihara et al. 2012). This method is particularly suitable for 184 

detecting the directed causal influence in moderately-coupled nonlinear dynamic systems. 185 

Despite its prior applications (e.g. see Runge et al. 2015; van Nes et al. 2015; Yang et al., 186 

2022b), the potential of CCM in detecting causal relations in Earth’s climate systems is 187 

hitherto under-explored.  188 



- 10 - 

 

The fundamental idea of the CCM algorithm is that if causality exists between a 189 

pair of generic variables, represented by two time series X(t) and Y(t) respectively, then the 190 

cross-mapping dynamics of one variable can be reconstructed from the information of the 191 

other. Technically, we can first construct a shadow manifold MX from X(t) by re-arranging 192 

the original time series into a lagged-coordinate vector, denoted as x(t) = [X(t), X(t−), …, 193 

X(t−(E−))], where  and E are the time delay and embedding dimension, respectively. A 194 

shadow manifold y(t) and MY can be constructed likewise. Using the shadow manifold, we 195 

then construct their cross-mapping estimates. For example, the cross-mapping ˆ( ) | XY t M196 

can be constructed using a simple projection of the E+1 nearest neighbors of vector x(t) in 197 

the manifold of MX, with exponentially weighted distances. Mathematically, time indices 198 

of the E+1 points on MX are used to identify the corresponding neighbors in Y, i.e., Y(t1), 199 

Y(t2), …, Y(tE+1). Thus, the cross-mapping estimate of 
^

( ) | XY t M  is calculated as, 200 

 
1^

1

( ) | ( ) ( )
E

X i i

i

Y t M w t Y t
+

=

=  , (1) 201 

where wi(t) are the weighting coefficients given by 202 
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u t
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=
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
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with 204 

 
1

[ ( ), ( )]
( ) exp

[ ( ), ( )]

i
i

d x t x t
u t

d x t x t

 
= − 

 
, (3) 205 

where d[x(t), x(ti)] is the Euclidean distance between x(t) and x(ti) in MX.  206 

It follows that the causality from Y to X is measured by the correlation coefficient 207 

XY M
  between the original Y(t) and the cross-mapping estimate ˆ( ) | XY t M , given by 208 
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

 
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=

E
,    (4) 209 

where E, , and  are the statistical expectation, average, and standard deviation, 210 

respectively. A larger value | XY M implies a stronger casual influence, while Y is not causal 211 

to X if 0
XY M

  . Likewise, the causality from X to Y can be quantified using the same 212 

procedure by constructing the cross-mapping estimate ˆ ( ) | YX t M  and finding its correlation 213 

to the original data series of X(t) as illustrated above. 214 

In addition, the accuracy of the CCM algorithm depends largely on the proper choice 215 

of the time delay  and the embedding dimension E, which can be determined using the 216 

correlation integral and dimension method (Grassberger and Procaccia 1983; Lai and Ye 217 

2003). More specifically, our previous analysis shows that  = 1 and E = 3 for temperature 218 

(Yang et al. 2022b), and  = 1 and E = 17 for precipitation (Yang et al. 2023a), 219 

respectively (Results regarding choice of E and  are also included in Supplementary Figs. 220 

1 and 2 in the Supplementary Information). It can be interpreted as that the time lag of one 221 

month is used to construct the lagged-coordinate embeddings of precipitation and 222 

temperature, while the suitable dimension of the shadow manifolds is 3 for temperature 223 

and 17 for precipitation for causal inference. Applying the CCM algorithm to the 224 

temperature and precipitation dataset in CONUS enables us to generate the directed causal 225 

network of nine nodes, each representing one climate region. Furthermore, two additional 226 

indices are defined to measure the causal effect and causal sensitivity for individual 227 

climate regions, viz. the average causal effect (ACE) and the average causal susceptibility 228 
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(ACS). ACE and ACS for a given region R are calculated by averaging each column and 229 

rows of the adjacency matrix of the causality network, respectively (Runge et al., 2015):  230 

 ( ) ( )|

1

1 R i
R X t M

i RR

ACE t
N




=
−

 , (5) 231 

 ( ) ( )|

1

1 i R
R X t M

i RR

ACS t
N




=
−

 , (6) 232 

where NR is the total number of climate regions. In this study, we also compute their 233 

running averages to study their temporal variation using a sliding window of size w, as  234 

 ( )
( )

( )1 /2

,

1 /2

1
k w

R k

j k w

ACE ACE j
w

+ −

= − −

=  ,  (7) 235 

 ( )
( )

( )1 /2

,

1 /2

1
k w

R k

j k w

ACS ACS j
w

+ −

= − −

=  . (8) 236 

where k is the time (year) centered at each moving window [k−(w−1)/2, k+(w−1)/2]. After 237 

sensitivity tests (Yang et al., 2023a), we use a moving window w = 15 years in this study. 238 

It is understood that a larger ACE value signals stronger causal effect of the climatic region 239 

of interest to mediate the thermal (temperature) or moisture (precipitation) perturbations in 240 

other regions. Similarly, larger ACS values mean that the region is more susceptible to the 241 

influence caused by other regions.  242 

 243 

2.3. The empirical mode decomposition 244 

The EMD method is a data-adaptive technique that decomposes a time series signal 245 

into rotational components of different frequencies, termed as the intrinsic mode function 246 

(IMF) (Huang et al. 1998; Huang and Wu 2008). Each IMF represents an oscillation mode 247 

embedded in the data and an IMF can have time-varying amplitude and frequency. 248 
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Intuitively, an IMF is a function with the same number of extrema and zero crossings, 249 

whose envelops are symmetric with respect to zero (Huang et al. 1998). More specifically, 250 

an IMF is a function satisfying the two conditions: (1) the number of extrema and the 251 

number of zero-crossings in the data time series must either be equal or differ at most by 252 

one (IMF is sinusoidal-like function); and (2) the mean value of the envelops defined by 253 

the local maxima and minima is zero at any point. The decomposition method due to 254 

Huang (Huang et al. 1998) identifies the upper and lower envelopes defined by the local 255 

maxima and minima, respectively, through a shifting process. All the local maxima are 256 

connected by a cubic spine line as the upper envelop, and the same procedure applies for 257 

the local minima. The procedure is repeated until the upper and lower envelopes cover all 258 

the data points in between. The difference between the mean m1 of envelopes and the 259 

original time series gives the first component h1:  260 

 ( )1 1h X t m= − , (9) 261 

Ideally, h1 should be an IMF. However, there is no guarantee that the two defining 262 

conditions of an IMF would be met by h1, as new extrema can be generated since changing 263 

the local zero from a rectangular to a curvilinear system. The shifting process was 264 

introduced to solve this problem by repeating the process in Eq. (9) k times until the 265 

resulting signal component meets the two IMF conditions: 266 

 
( )1 11 1k kk

h h m
−

= − , (10) 267 

which gives the first IMF component c1: 268 

 1 1kc h= . (11) 269 

The criterion for the sifting process to stop is determined by limiting the size of the 270 

normalized squared difference between two successive shifting processes, defined as, 271 
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The typical value of this squared difference SD can be set as a small fraction (Huang et al. 273 

1998). In our study, we choose SD = 0.2.  274 

The first IMF component c1 so obtained contains the finest time scale or the shortest 275 

period component of the signal. By extracting c1 from the original causality signal C(t), we 276 

can get the residue of the first component r1:  277 

 ( )1 1r C t c= − . (13) 278 

Since the information of longer period component can be contained in the residue, r1 is 279 

then treated as the new data, subject to the same sifting process. This procedure can be 280 

repeated on all the subsequent residues to yield 281 

 1 2 2 1,..., n n nr c r r c r−− = − = ,  (14) 282 

where cn is the nth component, and rn is the nth residue. The process is stopped when cn or 283 

rn becomes adequately small from which no more IMF can be extracted. The 284 

decomposition into n-empirical modes of the data and residue rn can be obtained by 285 

summing up Eq. (13) and (14),  286 

 ( )
1

n

i n

i

C t c r
=

= + .  (15) 287 

The residue is either a monotonic function or a function with only one extremum that does 288 

not contain information to be further decomposed into a physically meaningful oscillatory 289 

component. Or equivalently, the final residue represents the temporal trend of the quantity 290 

(physical or causal) represented in the time series C(t). The original time series can be 291 
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reconstructed from the IMFs by successively adding components with increasing 292 

frequency.  293 

 294 

2.4. Hilbert spectral analysis 295 

After the IMFs are obtained, Hilbert spectral analysis can be carried out, for each 296 

IMF, to obtain the instantaneous frequency as function of time. The resulting Hilbert 297 

spectrum is a frequency-time distribution of the signal amplitude (or energy), which 298 

enables us to identify the localized features of the original data that correspond to natural 299 

phenomena and/or admit physical interpretation. The Hilbert transform HC(t) of a generic 300 

time series C(t) is defined as 301 

 ( )
( )

C

C tP
H t d

t


 

+

−
=

− , (16) 302 

where P is the principal Cauchy value of the integral. The time series C(t) and its Hilbert 303 

Transform HC(t) form the complex conjugate pair, from which an analytical signal Z(t) can 304 

be calculated as 305 

 ( ) ( ) ( ) ( ) ( )i t

CZ t C t iH t a t e


= + = ,  (17) 306 

where 1i = − is the imaginery unit and a is the instantaneous amplitude given by 307 

 ( ) ( ) ( )2 2

Ca t C t H t= +  , (18) 308 

with  309 

 
( )

( )
( ) arctan

CH t
t

C t


 
=  

 
. (19) 310 

The instantaneous frequency is then defined as  311 
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
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After performing the Hilbert transform on each IMF component j, we have the complex 313 

representation of the original signal C(t) as 314 

 ( ) ( )
( )'

1

j

n
i w s ds

j

j

C t a t e
=

=  , (21) 315 

where both the amplitude and the frequency of each component are functions of time. The 316 

frequency-time distribution of the amplitude is designated as the Hilbert amplitude 317 

spectrum or simply Hilbert spectrum. The time localities of the events are preserved and 318 

the instantaneous frequency and energy, rather than the global properties as in the 319 

conventional Fourier spectral analysis, are involved. The frequency-time distribution in the 320 

Hilbert spectrum is more physically meaningful than that from the Fourier analysis, as 321 

spurious harmonics are always generated in the Fourier-based analysis due to nonlinearity 322 

and non-stationarity. In the Hilbert spectral analysis, the intrawave frequency modulations 323 

not only present a clear physical picture of the motion but are also effective in mitigating 324 

the spurious harmonics (Huang et al. 1998).  325 

 326 

3.  Results and Discussion 327 

3.1. Regional hydroclimatic causal networks in the CONUS 328 

We first construct the pair-wise directed causal networks of hydroclimate among the 329 

nine CONUS climate regions for precipitation and temperature anomalies. The results of 330 

constructed causal graphs and comparison of precipitation and temperature causation are 331 

illustrated in Fig. 3, where the causality strength  is calculated using Eq. (4). Naturally, 332 

the causal networks of precipitation and temperature are asymmetric because of the causal 333 
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influence between two regions are directed, i.e., the causal influence of region A on B is 334 

not necessarily reciprocated with the same strength. The degree of asymmetry is not very 335 

high in Fig. 3 possibly due to the fact that the causal relation was determined between a 336 

pair of like variables (temperature with temperature) in different regions. The asymmetry 337 

of causal relation becomes much more manifest between different variables, e.g. between 338 

temperature and pressure or carbon fluxes (Yang et al., 2023b; Wang et al., 2024). 339 

 340 

Figure 3. Results of CCM causal analysis. Shown are the directed causal networks for (a) 341 

precipitation and (b) temperature, respectively, among climate regions over the CONUS. 342 

The time delay and embedding dimension for constructing the manifold in CCM is  = 1,  343 

= 17 for precipitation and  = 1,  = 3 for temperature. Self-links are removed. The white 344 

diagonal cells represent negligible causality strength (with zero or negative values).  345 

 346 

A comparison between the two causal graphs suggests that, in general, the cross-347 

regional causation on temperature anomalies is often much stronger than that in 348 

precipitation. This is physically meaningful because the transport of heat and propagation 349 

of thermal anomalies are likely less disturbed by other confounding variables, such as 350 
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humidity, pressure, wind, than the transport of moisture (Yang et al., 2023a, Wang et al., 351 

2024). Furthermore, the formation of precipitation is not completely determined by the 352 

atmospheric content of water vapor, but rather depends on many meteorological factors 353 

and even atmospheric chemistry, while the thermal environment of region is almost 354 

exclusively determined by temperature.  355 

Despite the apparent difference in the strength of causation, there is similarity in the 356 

spatial pattern of both causal graphs in Fig. 3. The regions that are causally active in both 357 

precipitation and temperature include Northern Rockies and Plains, Ohio Valley, and 358 

Upper Midwest, all playing important roles in the regulating the cross-regional transport of 359 

heat and moisture. This could be potentially attributed to the planetary waves modulated 360 

by the Rockies. On the contrary, the Northwest and West regions are less causally 361 

influenced by other regions except their mutual causality, such that the two regions form a 362 

rather isolated hydroclimate cluster in the CONUS. 363 

 364 

3.2. Averaged hydroclimatic causal effect and susceptibility 365 

With the causal networks constructed, we study the cross-regional connectivity of 366 

hydroclimatic causation over the entire study period of 118 years. This is done by applying 367 

the CCM method with a 15-year sliding window to the precipitation and temperature 368 

anomalies in the same time span. The regional causal effect and susceptibility are 369 

quantified using the indicators of ACE and ACS, as defined in Eq. (7) and (8), respectively. 370 

The time series of ACE and ACS are then averaged over the entire period of the data series 371 

for each climate region, the results are shown in Fig. 4.  372 
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 373 

Figure 4. Map distribution of the averaged causal effect and susceptibility for precipitation 374 

and temperature over the CONUS. The results are averaged from ACE and ACS time series 375 

over the entire period of 1901-2018. 376 

 377 

It can be seen that the Ohio Valley stands out as a regional atmospheric gateway in 378 

the CONUS hydroclimatic network, with the highest value of ACE and ACS in both 379 

precipitation and temperature. The fact that the Ohio Valley plays an important role in 380 

regulating the transport of heat and moisture in CONUS is consistent with the results of 381 

observation and physical modeling reported in the literature. For example, it was found 382 

that the Ohio Valley region has the strongest geostrophic wind components in CONUS 383 

(Walsh et al. 1982) and is significantly influenced by ENSO conditions (Gershunov and 384 

Barnett 1998), along with high climate variability (Konapala and Mishra 2017; Zhang et al. 385 

2010). In addition to cross-regional causal interactions over the nine climate regions, we 386 
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also conducted the state-level causality analysis with each state in CONUS as an individual 387 

node. The resulted causal graphs of state-level analysis (results are included in 388 

Supplementary Fig. 3 in Supplementary Information) are in good agreement with those in 389 

Fig. 4, in particular, with all states in the Ohio Valley exhibiting strong causality strength. 390 

 391 

3.3. Intrinsic modes of precipitation and temperature 392 

Hydroclimatic causation is time-varying, whose temporal variability can be quite 393 

complicated with many local extrema but no zero crossings since the directed graphs are of 394 

positive causal strength. We apply the EMD analysis and decompose the time series of 395 

ACE and ACS of the precipitation and temperature causality into a collection of intrinsic 396 

modes (IMFs) for each climate region. The EMD method was previously applied to Earth 397 

system studies and generated novel and informative results. For example, the 398 

decomposition of Vostok temperature from ice cores reveals the role of three Milankovitch 399 

cycles that related to the Earth’s eccentricity (about 100 ka), axial tilt (about 41 ka), and 400 

precession (about 23 ka), which impact the Earth’s climate system in a nonlinear fashion 401 

(Huang and Wu 2008). The analysis of length-of-day by EMD identified a low-frequency 402 

variability (with interannual timescale) that can be related to the El Nino years (Gross et al. 403 

1996; Huang and Wu 2008). 404 

Since Ohio valley represents the causal gateway of hydroclimatic dynamics (Fig. 4), 405 

we choose it for HHT analysis. The time series of ACE and ACS and their correspondingly 406 

decomposed IMFs and residues are shown in Figs. 5 and 6, respectively. All the IMF are 407 

obtained from the repeated sifting processes, from which we extracted a total of 4 408 

components (c1 to c4), revealing that the causality can be separated into 4 locally non-409 
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overlapping time scale components. Despite the apparent difference in strength (Fig. 3), 410 

the IMFs of precipitation and temperature causality exhibit similar magnitudes in all 411 

modes. The first IMF c1 has the highest frequency, corresponding to the fastest oscillating 412 

component in the time variability of causation. The residues of each panel signify the 413 

general trend of the causality variability, after all IMFs are subtracted from the ACE or 414 

ACS time series. We perform the EMD analysis for all nine CONUS climatic regions and 415 

found similar decomposition of IMFs (see Supplementary Fig. 4 for the results of 416 

decomposition of temperature causal signal for all climate regions) with recurrence ranging 417 

from interannual to interdecadal scales.   418 

 419 

Figure 5. Results of EMD analysis for the time-varying causal effect. Shown are the ACE 420 

values in the Ohio Valley region for (a) precipitation and (b) temperature, respectively. 421 
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The top panels in (a) and (b) are the original ACE time series, while the lower panels from 422 

c1 to c4 represent decomposed IMFs from high to low frequency. The time series of ACE is 423 

obtained using moving temporal average with 15-year sliding window through the period 424 

of 1901-2018. 425 

 426 

 427 

Figure 6. Results of EMD analysis for the time-varying causal effect. Shown are the ACS 428 

values in the Ohio Valley region for (a) precipitation and (b) temperature, respectively. 429 

The top panels in (a) and (b) are the original ACS time series, while the lower panels from 430 

c1 to c4 represent decomposed IMFs from high to low frequency. A 15-year moving 431 

average is used here, same as in Fig. 5. 432 

 433 
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These decomposed IMFs in Figs. 5 and 6 can be physically related to or interpreted 434 

by natural oscillations in Earth’s hydroclimatic system reported in the literature. First, the 435 

IMF components c1 and c2 for both precipitation and temperature causality exhibit 436 

significant high-frequency periodicities at the interannual (1-10 years) scales. We believe 437 

this mode is related to the ENSO-related phenomena with internal modes of the ocean-438 

atmosphere system in the tropical Pacific (Neelin et al. 1998), or some natural climate 439 

variability associated with the North Atlantic Oscillation, the Pacific Decadal Oscillation, 440 

or the Arctic Oscillation (Ghil and Lucarini 2020). As illustrated in Fig. 1, the natural 441 

climate variability with recurrence period of about 5.2 years is often attributable to the 442 

remote effect of ENSO low-frequency mode, where the ~7.7-year cycle is likely due to the 443 

North Atlantic mode of variability that arises from the Gulf Stream’s interannual cycle of 444 

meandering and intensification (Plaut et al. 1995). Furthermore, an important component 445 

of interannual climate variability, due to El Nino in the tropical Pacific Ocean, appears 446 

about every 2-7 years, which is largely characterized by the sea surface temperature 447 

anomalies (Ghil and Lucarini 2020; Philander 1983). 448 

For the IMF components c3 and c4, a periodicity of interdecadal scale (20-40 years) is 449 

found in both precipitation and temperature causation. This interdecadal mode is closely 450 

linked with the climate variability with about 14 and 25 years recurrence as shown in Fig. 451 

1, which appears to be associated with the oscillations in the global ocean’s thermohaline 452 

circulation and its coupling to the atmosphere above (Ghil and Lucarini 2020; Plaut et al. 453 

1995). In addition, results of previous works on a complete decomposition of geopotential 454 

height (Coughlin and Tung 2004a, b) extracted a clear 11-year cycles in stratosphere, 455 

which can be potentially attributed to the cycle of solar activity and its downward 456 
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propagation to the lower troposphere. This could also be a potential source of the 457 

interdecadal variability and inherited by the IMF components c3 and c4 in cross-regional 458 

hydroclimatic causation found here. 459 

To better understand the different IMFs of causality variability, as well as to 460 

strengthen the link with physical components in the climate system, we extend the EMD 461 

analysis to frequently used indices of climate oscillations, viz. ENSO and the Pacific 462 

Decadal Oscillation (PDO). More specifically, we choose ENSO Longitude Index (ELI) 463 

from Lawrence Berkely National Laboratory (https://cascade.lbl.gov/enso-longitude-index-464 

eli/) and PDO indices from NOAA (https://www.ncei.noaa.gov/access/monitoring/pdo/), 465 

and extract the time variability during the same time period as the causality analysis. In 466 

particular, ELI tracks the average longitude of tropical Pacific deep convection and 467 

characterizes the diversity of ENSO in a single index. In addition, ELI accounts for the 468 

nonlinear response of deep convection to sea surface temperature (SST) and provides a 469 

continuous time series for analyses of ENSO dynamics (Williams and Patricola. 2018). On 470 

the other hand, PDO is often described as a long-live El Niño-like pattern of Pacific 471 

climate variability (Zhang et al. 1997). The index PDO is based on NOAA’s extended 472 

reconstruction of SSTs. Extremes in the PDO patterns are marked by widespread variations 473 

in the Pacific Basin and North American climate.  474 

The results of EMD decomposition are shown in Fig. 7. The four IMFs of both 475 

ENSO and PDO indices are similar with those of causality variability in hydroclimate 476 

(Figs. 5 and 6). In addition, the comparison of their characteristic (mean) periods is 477 

summarized in Table 1. It is clear that the mean periods of climate oscillations and 478 

causality variability are generally in good agreement, suggesting that the causality of 479 

https://cascade.lbl.gov/enso-longitude-index-eli/
https://cascade.lbl.gov/enso-longitude-index-eli/
https://www.ncei.noaa.gov/access/monitoring/pdo/
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regional climatology in the U.S. has a strong correlation with the physical climate 480 

variability, potentially through climate teleconnections. It is also noteworthy that the 481 

discrepancy increases for lower frequency, i.e. c3 and c4., which might be due to potential 482 

hysteresis effect for long-term climate oscillations to be manifest in causal interactions.  483 

 484 

Figure 7. The EMD decompositions of climate oscillations indices in (a) ENSO ELI and 485 

(b) POD. c1 and c4 are the four IMFs extracted from the time series (top panels).  486 

 487 

Table 1. Results of comparison between characteristic (mean) periods of representative 488 

climate variability and those of causal variability in U.S. hydroclimate. 489 

Index/mean period (Year) c1 c2  c3  c4   

Climate 

variability 

ELI 3.5 8 18 39  

PDO 3.4 7.5 18 51  
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Causal 

variability 

P (ACE) 3.1 9 22 53  

P (ACS) 3.2 7 16 42  

T (ACE) 3.5 9.6 27 40+  

T (ACS) 3.6 10 25 58  

 490 

3.4. The Hilbert spectrum 491 

To understand the structures of the causality variability on precipitation and 492 

temperature in the long-term time series, the detailed information of the signal dispersion 493 

and the energy-frequency distribution is required. We calculate the Hilbert spectrum for 494 

each decomposed IMF. The results are weighted non-normalized joint amplitude-495 

frequency-time distributions, which can be seen as four overlapping Hilbert spectra 496 

(corresponding to each of the 4 IMFs). Unlike Fourier analysis, the HHT analysis 497 

preserves the time localities of climate events, based on the instantaneous, rather than the 498 

global, frequency and energy.  As shown in Fig. 8, the Hilbert spectrum is highly nodular 499 

(localized and spiky) especially in the high frequency range, indicating the causality 500 

variability is nonstationary for precipitation or temperature. In addition, the main 501 

component is intrawave modulated, signaling that both the precipitation and temperature 502 

causations are nonlinear. The presence of fewer components in the Hilbert spectrum as 503 

compared to the Fourier spectrum analysis is primarily due to the empirical nature of HHT, 504 

suggesting that it often yields more realistic energy-frequency distribution through 505 

eliminating spurious harmonics. 506 
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 507 

Figure 8. Hilbert spectrum (energy-frequency-time distribution) of the causality 508 

variability. Shown are the Hilbert spectra of ACE and ACS for (a, b) precipitation and (c, 509 

d) temperature, respectively. 510 

 511 

The results in Fig. 8 also reveal a pattern of energy concentration in the low-512 

frequency range, or with high-amplitude and low-infrequency wave variations. Most 513 

energy is concentrated in the low-frequency range with the frequency less than 0.1 year-1. 514 

In the temporal dimension, the Hilbert spectrum exhibits sharp energy peaks around year 515 

1930s and 1990s. where the former can be the system response to the change in external 516 

forcing in the 1930s when Earth’s climate system experienced significant warming 517 

together with enhanced climate variability (Diaz and Brandley 1995). The peak around 518 
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1990s coincides with a recently discovered potential early-warning signal of drastic 519 

changes in system dynamics in the CONUS hydroclimate (Wang et al. 2020; Yang et al. 520 

2022a), where the underlying mechanism of this abrupt change remains obscure though. 521 

Furthermore, it is known that ENSO influences the precipitation and temperature along the 522 

U.S. East Coast, and the signatures can be identified by peaks in the Hilbert spectrum 523 

(Duffy 2004). The Hilbert spectrum from HHT applied to each component of daily Seine 524 

river flow detected the concentrating or localized amplitudes around the climate phase 525 

change around 1970s, which matches with the increasing amplitude of annual winter-526 

months NAO variability phenomenon (Massei and Fournier 2012).  527 

 528 

4.  Concluding remarks 529 

In this study, we combined causal inference with spectrum analysis to investigate the 530 

dynamics in the complex hydroclimatic system in the CONUS and its intrinsic periodicity. 531 

The reconstructed causal networks of precipitation and temperature anomalies indicate that 532 

the Ohio Valley region plays a key role in regulating the cross-regional atmospheric 533 

connection, while some regions such as Northwest have relatively weak causal interactions 534 

except with the West region. The results of HHT analysis reveal that the temporal 535 

variability of hydroclimate causation cross different regions of the CONUS contains 536 

manifest periodicities, primarily around the interannual and interdecadal scales. The 537 

variability of hydroclimatic causality is found to share similar intrinsic modes and 538 

characteristic frequencies with the recurrence on climate oscillations, such as ENSO and 539 

PDO dynamics. Moreover, the Hilbert spectrum exhibits a bi-modal distribution in the 540 

time dimensions, with peaks around 1930s and 1990s, both can be well correlated to the 541 
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changes in external forcing or system dynamics. To the best of our knowledge, this is a 542 

pioneering study that looks into causal interactions in hydroclimate system and links their 543 

variability to oscillations of physical climate indices.  544 

In the broader context, the results of the current study suggest a promising 545 

perspective through the potential link between hydroclimatic causation and the physical 546 

climate variability. While this study represents an attempt in characterizing the cross-547 

regional causal attribution and its intrinsic variability, the methods developed in this study 548 

can be used to infer how causal linkages change over time when being impacted by climate 549 

dynamics. Results from such hydroclimatic analysis show a potential to inform cross-550 

regional water resource management that adapts to changing climate dynamics. Moreover, 551 

the proposed method can be further improved and incorporated into a holistic framework 552 

using multiple data-driven techniques. This toolkit includes, for example, complex network 553 

analysis to identify spatial patterns of hydroclimatic causal networks, physical emergence 554 

to correlate the peak Hilbert spectrum to abrupt and potentially catastrophic transitions in 555 

nonlinear dynamic systems, and machine learning to infer causality from archived earth 556 

system data. In particular, in complex systems that involves a wide spectrum of scales in 557 

their dynamics, such as the climate system evolves in the spectrum ranging from 558 

turbulence to synoptic scales, the cross-scale causation will lead to the causal emergence 559 

(Hoel et el., 2013) in macro-states from the information in microcosm. Such cross-scale 560 

causal interactions need necessarily be driven by big data describing the system evolution, 561 

that can be practically handled by machine learning techniques, such as deep neural 562 

networks (Marrow et al., 2020). When applied to the hydroclimate system, the method of 563 
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causal emergence will shed new lights on the causality in hydroclimate system to physical 564 

components, especially the low-frequency (macro-scale) climate variabilities.  565 
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