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Abstract

Identifying and understanding various causal relations are fundamental to climate
dynamics for improving the predictive capacity of Earth system modeling. In particular,
causality in Earth systems has manifest temporal periodicities, like physical climate
variabilities. To unravel the characteristic frequency of causality in climate dynamics, we
develop a data-analytic framework based on a combination of causality detection and
Hilbert spectral analysis, using longterm temperature and precipitation dataset in
contiguous United States. Using the Huang-Hilbert transform, we identify the intrinsic
frequencies of cross-regional causality for precipitation and temperature, ranging from
interannual to interdecadal time scales. In addition, we analyze the spectra of the physical
climate variabilities, including El Nifio-Southern Oscillation and Pacific Decadal
Oscillation. It is found that the intrinsic causal frequencies are positively associated with
the physics of the oscillations in the global climate system. The proposed methodology
provides fresh insights into the causal connectivity in Earth’s hydroclimatic system and its
underlying mechanism as regulated by the characteristic low-frequency variability

associated with various climatic dynamics.

Keywords: Convergent cross mapping, Empirical mode decomposition, Hilbert-Huang

transform; Hydroclimate systems; Low-frequency variability
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1. Introduction

The Earth’s climate system involves a complex interplay of dynamic processes that
are closely coupled and more importantly, causally influence each other. An important
characteristic of the climate system is the coexistence and nonlinear interactions of
multiple subsystems, processes, and scales (Ghil and Lucarini 2020). Successful
identification of causality provides an approach to understand the complex dynamics and
the underlying physical mechanisms of the climate system (Runge et al. 2019a; van Nes et
al. 2015). Methods based on pairwise association, such as correlation-based measures, are
common tools for analyzing the relationships among the variables in the climate system,
but the statistical-association based methods are often inadequate for infer causality
(Runge et al. 2019b; Gao et al. 2022). To detect causality from time series, a celebrated
framework is the Granger causality (GC) method (Granger 1969). In climate sciences, the
GC method has been widely used in applications such as identifying the temperature and
wind patterns (McGraw and Barnes 2018) or climate teleconnections (Silva et al. 2021).
Mathematically, the GC method is based on the assumption that the underlying dynamical
system is decriable as a linear stochastic process. For nonlinear and nonseparable complex
systems, the GC method can be ineffective in distinguishing causation from simple
correlation (Hannart et al., 2016).

Recent years have witnessed the use of a number of nonlinear and complex
dynamical systems-based algorithms of causality detection in Earth system sciences. For
example, Hannart et al. (2016) proposed a causal counterfactual theory for the attribution
of weather and climate-related events, which makes a valuable contribution to theoretical

tools for understanding the climate crisis from Hasselmann’s programme (Lucarini and
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Chekroun, 2023). In addition, a framework of causality detection based on deterministic
dynamics has been proposed and evaluated for nonlinear dynamic systems based on the
convergent cross mapping (CCM) method (Sugihara et al. 2012; Runge et al. 2015;
Kretschmer et al. 2016; Runge et al. 2019a; Leng et al. 2020). The fundamental idea of
CCM is that when causation is unilateral, the information of the cause can be inferred from
that of its effect (Sugihara et al. 2012). In addition, the method involves the property of
convergence, viz. the skill of cross-mapped estimates improves with the length of time
series, that distinguishes it from simple correlation.

The CCM method has been applied to earth and climate systems for detecting the
causal feedback and relationships among climate variables (van Nes et al. 2015) and
atmospheric interactions (Runge et al. 2015). Quite recently, advances in data collection,
archiving, and availability have greatly benefited causal inference in Earth system
sciences (Runge et al. 2019a, b). For example, data-intense methods such as those based on
complex network analysis (Boers et al. 2019; Tsonis et al. 2008; Wang and Wang, 2020),
critical transitions (Wang et al. 2020; Yang et al. 2022a), and machine learning (Li et al.
2022) have been introduced.

The dynamical behavior of the climate system is much more complicated than those
associated with equilibrium or periodic oscillations (Ghil 2002). Relatively small changes
in external forcing arising from various anthropogenic and/or natural sources can
contribute to large climate variability on a wide spectrum of temporal and spatial scales
(Lucarini et al. 2014; Ghil and Lucarini 2020). Critical mechanisms involved in climate
variability and periodicity include air-sea interaction, equatorial wave dynamics, and

radiative forcing by the seasonal cycle (Bjerknes, 1969). In general, there are three kinds of
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natural climate variability (Ghil 2002): (1) those driven by a purely periodic force such as
the daily and the seasonal cycle and orbital forcing, or the solar irradiance, (2) those due to
the nonlinear complex interplay of feedbacks within the climate system, and (3) those that
are related to the random stochastic fluctuations in physical or chemical forcing, such as
the volcanic eruptions or weather fluctuations in the climate system. Among the current
debate on the relative roles of natural and anthropogenic variability, interdecadal and
centennial climate oscillations are of pivotal importance and have attracted a great deal of
interest (Dijkstra and Ghil 2005).
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Figure 1. A schematic illustration of the power spectra of climate variability. Shown is the
spectrum of the 335-year Central English Temperature record and the tentative physical

causes of the spectrum peaks (after Plaut et al. 1995).

To quantify the temporal variability in the climate system, the traditional tools such
as Fourier spectrum or the singular spectrum methods were used to analyze climate

oscillations (Ghil and Vautard 1991; Ghil et al. 2002), where the spectral peaks, for

_4-
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example, can be related to certain forcing mechanisms (Ghil and Lucarini 2020; Ghil et al.
2002; Plaut et al. 1995). Figure 1 presents an example: the spectrum of the 335-year
Central English Temperature record and the tentative physical causes of the spectral peaks
(Plaut et al. 1995). The climate variability on multiple timescales can be identified by a
singular spectrum, with each peak in the spectrum potentially attributable to a different
physical mechanism (Ghil and Lucarini 2020; Ghil et al. 2002; Plaut et al. 1995). For
example, the climate oscillations with interannual (7 to 8-year) and interdecadal (14- and
25-year) periods are likely correlated to the North Atlantic’s wind-driven and thermohaline
circulation, respectively (Dijkstra and Ghil 2005; Plaut et al. 1995). The peak with a period
around 5.5 year can be attributed to the effect of low-frequency El Nifio-Southern
Oscillation (ENSO) (Ghil and Robertson, 2000). Fourier transform has been the standard
approach to analyzing the frequency distributions of signals. However, the Fourier analysis
is most suited for linear and stationary systems. Difficulties can arise when the system
generating the signal is nonlinear or non-stationary (Huang et al. 1998; Huang and Wu
2008).

For signals from complex, nonlinear or chaotic, and non-stationary dynamical
systems, the methodology of empirical mode decomposition (EMD) in combination with
Hilbert transform and instantaneous frequency-based analysis have been demonstrated to
be effective for identifying the significant “physical frequencies” of the underlying system
(Huang et al. 1998; Huang and Wu 2008; Yal¢inkaya and Lai 1997; Lai 1998; Huang et al.
2017). To appreciate this, recall a defining feature of a sinusoidal signal: in its time
evolution a local maximum is followed by a zero, then by a local minimum, and by a local

maximum again, and so on. Physically, such a signal is the projection of a proper rotation
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in the plane onto an arbitrary one-dimensional axis, where the term “proper” is referred to
as the existence of a unique center of rotation. For signals corresponding to a proper
rotation, the Hilbert transform can be performed to yield a complex analytic signal for
which the frequency of rotation in the complex plane can be identified unambiguously.
Complex signals from the real world often do not possess such a proper structure of
rotation, so a direct application of the Hilbert transform will lead to ambiguities with
misleading results.

A remedy is then to first decompose it into a small number of modes, each
corresponding to a proper rotation, the so-called empirical modes (Huang et al. 1998). For
each empirical mode, Hilbert transform is well defined and can be carried out to yield the
specific frequency of rotation of the corresponding analytic signal in the complex plane.
Note that the frequencies so obtained are physically meaningful because of the underlying
rotation structure, and they differ fundamentally from the frequencies of the Fourier
transform associated with various harmonics. Because EMD typically yields a
comparatively small number of modes, the number of distinct physical frequencies is
equally small, in contrast to the mathematical Fourier frequencies that can often be infinite
in number. In literature, the combination of empirical-mode decomposition and Hilbert
transform is often referred to as Hilbert-Huang transform (HHT) (Huang and Wu 2008).
The major limitation of EMD is that it is empirically based, and lacks sound theoretical
foundation as compared to, e.g. Fourier transform (Boashash, 2016).

The Earth system and climatic dynamics are undoubtedly highly nonstationary and
nonlinear, rendering appropriate use of the HHT for analyzing the time variations and

detecting the dominant physical frequencies. In the past, the HHT has been used to study a
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wide variety of climatological phenomena such as the diurnal cycle, front passages, or
seasonal cycles (Duffy 2004; Huang and Wu 2008). Moreover, HHT has been applied to
capture episodic phenomena such as snowmelt and heavy precipitation events (Duffy
2004), near-Hermean environment (Alberti et al., 2021), extreme sea level events (Alberti
et al., 2023), as well as to identify possible links between river flow variability and the
global climate regime fluctuations (Massei and Fournier 2012). These existing studies
highlighted that HHT can be an effective, though hitherto underexplored, tool to detect
climate variability and its underlying climatic events in Earth system.

To analyze the temporal variability and identify the possible periodicities of
hydroclimatic causation in the contiguous United States (CONUS), we first apply the
convergent crossing mapping (CCM) method to quantify the causality interactions among
different climate regions of the U.S., based on the long-term monthly precipitation and
temperature time series. As presented in our recent studies (Yang et al. 2022b, 2023a), our
network causality analysis revealed that the Ohio Valley acts as a regional atmospheric
gateway in mediating the propagation of temperature perturbations. We then invoke HHT
to analyze the causality signal, which allows several distinct physical frequencies
underlying the temporal variations of the hydroclimatic causation to be detected. The HHT
analysis reveals that the hydroclimatic causality possesses characteristic periodicities,
ranging from interannual to interdecadal scales. Surprisingly, the observed periodicities are
quite distinct, enabling us to identify the underlying physical causes and the mechanisms
as regulated by characteristic low-frequency variability associated with various climatic

dynamics.
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2. Method

2.1. Dataset retrieval and processing

In this study, we use the monthly mean near-surface precipitation (P) and
temperature (T) over the period 1901-2018, obtained from Climatic Research Unit (CRU)
Time-Series (TS) version 4.03 produced by the Center for Environmental Data Analysis
(CEDA) Archive, to assess the periodicity of hydroclimate causation in CONUS. We first
anomalize the spatially gridded (0.5° x 0.5°) temperature and precipitation time series by
removing the long-term trends (Harris et al., 2020). The anomalization process is
conducted by subtracting the annual trends from the original time series, e.g. the anomaly
of precipitation or temperature in January is obtained by subtracting the average of 118
January P/T values over the study period of 1901-2018. This way, we minimize the impact

of high frequency (subseasonal to annual) variability in subsequent analyses.

Figure 2. The map of nine climate regions in the contiguous United States, including
Northwest (NW), West (WE), Southwest (SW), Northern Rockies and Plains (NRP), South

(SO), Upper Midwest (UM), Ohio Valley (OV), Southeast (SE), and Northeast (NE).
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The time series of gridded anomalies is then aggregated (averaged over gridcells)
into nine climatic regions following the Geographical Reference Maps of National Centers
for Environmental Information of National Oceanic and Atmospheric Administration
(NOAA). These climatic regions, as shown in Fig. 2, include Northwest (NW), West
(WE), Southwest (SW), Northern Rockies and Plains (NRP), South (SO), Upper Midwest
(UM), Ohio Valley (OV), Southeast (SE), and Northeast (NE), which are consistent with
the nine principal components identified using the principal component analysis (PCA)
method (Vejmelka et al., 2015; Runge et al., 2015). The subseasonal and seasonal
periodicity is also removed by subtracting the monthly averages from the time series of the
aggregated temperature and precipitation anomalies in nine regions. This treatment
removes the high-frequency variability in the hydroclimate system, which also renders the

application of CCM method more tractable.

2.2. Causal inference by convergent cross mapping

Mathematically, the CCM algorithm for causal inference is developed based on the
classic delay-coordinate embedding theory for nonlinear time series analysis (Takens,
1981), and a nearest-neighbors algorithm for reconstruction of the cross-mapping estimate
(Sugihara and May 1990, Sugihara et al. 2012). This method is particularly suitable for
detecting the directed causal influence in moderately-coupled nonlinear dynamic systems.
Despite its prior applications (e.g. see Runge et al. 2015; van Nes et al. 2015; Yang et al.,
2022b), the potential of CCM in detecting causal relations in Earth’s climate systems is

hitherto under-explored.
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The fundamental idea of the CCM algorithm is that if causality exists between a
pair of generic variables, represented by two time series X(¢) and Y(¢) respectively, then the
cross-mapping dynamics of one variable can be reconstructed from the information of the
other. Technically, we can first construct a shadow manifold Mx from X(7) by re-arranging
the original time series into a lagged-coordinate vector, denoted as x(¢) = [X(¢), X(¢-7), ...,
X(t—(E-1)7)], where rand E are the time delay and embedding dimension, respectively. A

shadow manifold y(¢) and My can be constructed likewise. Using the shadow manifold, we
then construct their cross-mapping estimates. For example, the cross-mapping Y @M,

can be constructed using a simple projection of the £+1 nearest neighbors of vector x(¢) in
the manifold of My, with exponentially weighted distances. Mathematically, time indices

of the E+1 points on Mx are used to identify the corresponding neighbors in Y, i.e., ¥(#1),

Y(%2), ..., Y(te+1). Thus, the cross-mapping estimate of Y (¢) | M , is calculated as,

E+1

YOIM, =3 @Y. ()

where wi(?) are the weighting coefficients given by

U, (t ) (2)

w,() = & ’

>0

with

M} ©

4t =exp { d[x(0),x(1,)]

where d[x(¢), x(¢:)] is the Euclidean distance between x(¢) and x(#;) in Mx.

It follows that the causality from Y to X is measured by the correlation coefficient

Py, between the original Y(7) and the cross-mapping estimate Y(1)| M v » given by

-10 -
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0,0,

where E, 1, and o are the statistical expectation, average, and standard deviation,

respectively. A larger value p,,, implies a stronger casual influence, while Y is not causal

to X'if Pyiar, <0. Likewise, the causality from X to Y can be quantified using the same

procedure by constructing the cross-mapping estimate X (t)| M, and finding its correlation

to the original data series of X(¢) as illustrated above.

In addition, the accuracy of the CCM algorithm depends largely on the proper choice
of the time delay 7and the embedding dimension £, which can be determined using the
correlation integral and dimension method (Grassberger and Procaccia 1983; Lai and Ye
2003). More specifically, our previous analysis shows that 7= 1 and E = 3 for temperature
(Yang et al. 2022b), and 7= 1 and E = 17 for precipitation (Yang et al. 2023a),
respectively (Results regarding choice of £ and 7 are also included in Supplementary Figs.
1 and 2 in the Supplementary Information). It can be interpreted as that the time lag of one
month is used to construct the lagged-coordinate embeddings of precipitation and
temperature, while the suitable dimension of the shadow manifolds is 3 for temperature
and 17 for precipitation for causal inference. Applying the CCM algorithm to the
temperature and precipitation dataset in CONUS enables us to generate the directed causal
network of nine nodes, each representing one climate region. Furthermore, two additional
indices are defined to measure the causal effect and causal sensitivity for individual

climate regions, viz. the average causal effect (ACE) and the average causal susceptibility
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(ACS). ACE and ACS for a given region R are calculated by averaging each column and

rows of the adjacency matrix of the causality network, respectively (Runge et al., 2015):

ACE, (1) = Z Py )

- 1¢R

ACS, (t)= Z Py, > (6)

- 1¢R
where Nr is the total number of climate regions. In this study, we also compute their

running averages to study their temporal variation using a sliding window of size w, as

_ | FHen2

ACEr ) =— ACE(j), (7)
W j—k—(w-1)/2

_ | EHn2

ACSri =— ACS(j). (8)
W jmk—(w-1)/2

where £ is the time (year) centered at each moving window [k—(w—1)/2, k+(w—1)/2]. After
sensitivity tests (Yang et al., 2023a), we use a moving window w = 15 years in this study.
It is understood that a larger ACE value signals stronger causal effect of the climatic region
of interest to mediate the thermal (temperature) or moisture (precipitation) perturbations in
other regions. Similarly, larger ACS values mean that the region is more susceptible to the

influence caused by other regions.

2.3. The empirical mode decomposition

The EMD method is a data-adaptive technique that decomposes a time series signal
into rotational components of different frequencies, termed as the intrinsic mode function
(IMF) (Huang et al. 1998; Huang and Wu 2008). Each IMF represents an oscillation mode

embedded in the data and an IMF can have time-varying amplitude and frequency.
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Intuitively, an IMF is a function with the same number of extrema and zero crossings,
whose envelops are symmetric with respect to zero (Huang et al. 1998). More specifically,
an IMF is a function satisfying the two conditions: (1) the number of extrema and the
number of zero-crossings in the data time series must either be equal or differ at most by
one (IMF is sinusoidal-like function); and (2) the mean value of the envelops defined by
the local maxima and minima is zero at any point. The decomposition method due to
Huang (Huang et al. 1998) identifies the upper and lower envelopes defined by the local
maxima and minima, respectively, through a shifting process. All the local maxima are
connected by a cubic spine line as the upper envelop, and the same procedure applies for
the local minima. The procedure is repeated until the upper and lower envelopes cover all
the data points in between. The difference between the mean m1 of envelopes and the
original time series gives the first component /1:

h1=X(t)—m,, 9
Ideally, 41 should be an IMF. However, there is no guarantee that the two defining
conditions of an IMF would be met by /1, as new extrema can be generated since changing
the local zero from a rectangular to a curvilinear system. The shifting process was
introduced to solve this problem by repeating the process in Eq. (9) & times until the
resulting signal component meets the two IMF conditions:

e = By =y s (10)
which gives the first IMF component ci:

¢ = hy. (11)

The criterion for the sifting process to stop is determined by limiting the size of the

normalized squared difference between two successive shifting processes, defined as,

- 13-
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(12)

The typical value of this squared difference SD can be set as a small fraction (Huang et al.
1998). In our study, we choose SD = 0.2.

The first IMF component c1 so obtained contains the finest time scale or the shortest
period component of the signal. By extracting ¢1 from the original causality signal C(7), we
can get the residue of the first component r1:

r=C(t)—c¢,. (13)
Since the information of longer period component can be contained in the residue, 71 is
then treated as the new data, subject to the same sifting process. This procedure can be
repeated on all the subsequent residues to yield

B—=Cy =Ty,..,F,

n-1"—

cn = rn ’ (14)
where ¢ is the nth component, and 7 is the nth residue. The process is stopped when cx or
r» becomes adequately small from which no more IMF can be extracted. The

decomposition into n-empirical modes of the data and residue 7, can be obtained by

summing up Eq. (13) and (14),
C(t):chﬁ—rn. (15)
i=1

The residue is either a monotonic function or a function with only one extremum that does
not contain information to be further decomposed into a physically meaningful oscillatory
component. Or equivalently, the final residue represents the temporal trend of the quantity

(physical or causal) represented in the time series C(¢). The original time series can be

- 14 -



292  reconstructed from the IMFs by successively adding components with increasing
293  frequency.
294

295  2.4. Hilbert spectral analysis

296 After the IMFs are obtained, Hilbert spectral analysis can be carried out, for each
297  IMF, to obtain the instantaneous frequency as function of time. The resulting Hilbert

298  spectrum is a frequency-time distribution of the signal amplitude (or energy), which

299  enables us to identify the localized features of the original data that correspond to natural
300  phenomena and/or admit physical interpretation. The Hilbert transform Hc(#) of a generic
301  time series C(7) is defined as

302 H.(1)=1 ~C) 4 (16)

T t—7

303  where P is the principal Cauchy value of the integral. The time series C(f) and its Hilbert
304  Transform Hc(f) form the complex conjugate pair, from which an analytical signal Z(#) can

305  be calculated as

306 Z(t)=C(t)+iH (t)=a(t) ", (17)

307  where i = +—1 is the imaginery unit and a is the instantaneous amplitude given by

308 a(t)=\C*(t)+ H (1) , (18)
309  with

_ He(1)
310 Q(t)—arctan{ C(t) } : (19)

311  The instantaneous frequency is then defined as

- 15 -
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) (20)

After performing the Hilbert transform on each IMF component j, we have the complex

representation of the original signal C(¢) as
' - i|w;(s)ds
C()=a ()" @)
j=1

where both the amplitude and the frequency of each component are functions of time. The
frequency-time distribution of the amplitude is designated as the Hilbert amplitude
spectrum or simply Hilbert spectrum. The time localities of the events are preserved and
the instantaneous frequency and energy, rather than the global properties as in the
conventional Fourier spectral analysis, are involved. The frequency-time distribution in the
Hilbert spectrum is more physically meaningful than that from the Fourier analysis, as
spurious harmonics are always generated in the Fourier-based analysis due to nonlinearity
and non-stationarity. In the Hilbert spectral analysis, the intrawave frequency modulations
not only present a clear physical picture of the motion but are also effective in mitigating

the spurious harmonics (Huang et al. 1998).

3. Results and Discussion

3.1. Regional hydroclimatic causal networks in the CONUS

We first construct the pair-wise directed causal networks of hydroclimate among the
nine CONUS climate regions for precipitation and temperature anomalies. The results of
constructed causal graphs and comparison of precipitation and temperature causation are
illustrated in Fig. 3, where the causality strength p is calculated using Eq. (4). Naturally,
the causal networks of precipitation and temperature are asymmetric because of the causal

- 16 -



334  influence between two regions are directed, i.e., the causal influence of region 4 on B is
335 not necessarily reciprocated with the same strength. The degree of asymmetry is not very
336  high in Fig. 3 possibly due to the fact that the causal relation was determined between a
337  pair of like variables (temperature with temperature) in different regions. The asymmetry
338  of causal relation becomes much more manifest between different variables, e.g. between

339  temperature and pressure or carbon fluxes (Yang et al., 2023b; Wang et al., 2024).

(a) Cause Cause
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341  Figure 3. Results of CCM causal analysis. Shown are the directed causal networks for (a)
342  precipitation and (b) temperature, respectively, among climate regions over the CONUS.
343  The time delay and embedding dimension for constructing the manifold in CCM is 7= 1, F
344 =17 for precipitation and 7= 1, £= 3 for temperature. Self-links are removed. The white
345  diagonal cells represent negligible causality strength (with zero or negative values).

346

347 A comparison between the two causal graphs suggests that, in general, the cross-

348  regional causation on temperature anomalies is often much stronger than that in

349  precipitation. This is physically meaningful because the transport of heat and propagation
350  of thermal anomalies are likely less disturbed by other confounding variables, such as

-17 -
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humidity, pressure, wind, than the transport of moisture (Yang et al., 2023a, Wang et al.,
2024). Furthermore, the formation of precipitation is not completely determined by the
atmospheric content of water vapor, but rather depends on many meteorological factors
and even atmospheric chemistry, while the thermal environment of region is almost
exclusively determined by temperature.

Despite the apparent difference in the strength of causation, there is similarity in the
spatial pattern of both causal graphs in Fig. 3. The regions that are causally active in both
precipitation and temperature include Northern Rockies and Plains, Ohio Valley, and
Upper Midwest, all playing important roles in the regulating the cross-regional transport of
heat and moisture. This could be potentially attributed to the planetary waves modulated
by the Rockies. On the contrary, the Northwest and West regions are less causally
influenced by other regions except their mutual causality, such that the two regions form a

rather isolated hydroclimate cluster in the CONUS.

3.2. Averaged hydroclimatic causal effect and susceptibility

With the causal networks constructed, we study the cross-regional connectivity of
hydroclimatic causation over the entire study period of 118 years. This is done by applying
the CCM method with a 15-year sliding window to the precipitation and temperature
anomalies in the same time span. The regional causal effect and susceptibility are
quantified using the indicators of ACE and ACS, as defined in Eq. (7) and (8), respectively.
The time series of ACE and ACS are then averaged over the entire period of the data series

for each climate region, the results are shown in Fig. 4.
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Figure 4. Map distribution of the averaged causal effect and susceptibility for precipitation
and temperature over the CONUS. The results are averaged from ACE and ACS time series

over the entire period of 1901-2018.

It can be seen that the Ohio Valley stands out as a regional atmospheric gateway in
the CONUS hydroclimatic network, with the highest value of ACE and ACS in both
precipitation and temperature. The fact that the Ohio Valley plays an important role in
regulating the transport of heat and moisture in CONUS is consistent with the results of
observation and physical modeling reported in the literature. For example, it was found
that the Ohio Valley region has the strongest geostrophic wind components in CONUS
(Walsh et al. 1982) and is significantly influenced by ENSO conditions (Gershunov and
Barnett 1998), along with high climate variability (Konapala and Mishra 2017; Zhang et al.

2010). In addition to cross-regional causal interactions over the nine climate regions, we
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also conducted the state-level causality analysis with each state in CONUS as an individual
node. The resulted causal graphs of state-level analysis (results are included in
Supplementary Fig. 3 in Supplementary Information) are in good agreement with those in

Fig. 4, in particular, with all states in the Ohio Valley exhibiting strong causality strength.

3.3. Intrinsic modes of precipitation and temperature

Hydroclimatic causation is time-varying, whose temporal variability can be quite
complicated with many local extrema but no zero crossings since the directed graphs are of
positive causal strength. We apply the EMD analysis and decompose the time series of
ACE and ACS of the precipitation and temperature causality into a collection of intrinsic
modes (IMFs) for each climate region. The EMD method was previously applied to Earth
system studies and generated novel and informative results. For example, the
decomposition of Vostok temperature from ice cores reveals the role of three Milankovitch
cycles that related to the Earth’s eccentricity (about 100 ka), axial tilt (about 41 ka), and
precession (about 23 ka), which impact the Earth’s climate system in a nonlinear fashion
(Huang and Wu 2008). The analysis of length-of-day by EMD identified a low-frequency
variability (with interannual timescale) that can be related to the El Nino years (Gross et al.
1996; Huang and Wu 2008).

Since Ohio valley represents the causal gateway of hydroclimatic dynamics (Fig. 4),
we choose it for HHT analysis. The time series of ACE and ACS and their correspondingly
decomposed IMFs and residues are shown in Figs. 5 and 6, respectively. All the IMF are
obtained from the repeated sifting processes, from which we extracted a total of 4

components (ci to cs), revealing that the causality can be separated into 4 locally non-
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overlapping time scale components. Despite the apparent difference in strength (Fig. 3),
the IMFs of precipitation and temperature causality exhibit similar magnitudes in all
modes. The first IMF ci has the highest frequency, corresponding to the fastest oscillating
component in the time variability of causation. The residues of each panel signify the
general trend of the causality variability, after all IMFs are subtracted from the ACE or
ACS time series. We perform the EMD analysis for all nine CONUS climatic regions and
found similar decomposition of IMFs (see Supplementary Fig. 4 for the results of
decomposition of temperature causal signal for all climate regions) with recurrence ranging

from interannual to interdecadal scales.
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Figure 5. Results of EMD analysis for the time-varying causal effect. Shown are the ACE

values in the Ohio Valley region for (a) precipitation and (b) temperature, respectively.
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The top panels in (a) and (b) are the original ACE time series, while the lower panels from
c1 to ca represent decomposed IMFs from high to low frequency. The time series of ACE is
obtained using moving temporal average with 15-year sliding window through the period

of 1901-2018.
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Figure 6. Results of EMD analysis for the time-varying causal effect. Shown are the ACS
values in the Ohio Valley region for (a) precipitation and (b) temperature, respectively.
The top panels in (a) and (b) are the original 4ACS time series, while the lower panels from
c1 to ca represent decomposed IMFs from high to low frequency. A 15-year moving

average is used here, same as in Fig. 5.
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These decomposed IMFs in Figs. 5 and 6 can be physically related to or interpreted
by natural oscillations in Earth’s hydroclimatic system reported in the literature. First, the
IMF components c1 and c2 for both precipitation and temperature causality exhibit
significant high-frequency periodicities at the interannual (1-10 years) scales. We believe
this mode is related to the ENSO-related phenomena with internal modes of the ocean-
atmosphere system in the tropical Pacific (Neelin et al. 1998), or some natural climate
variability associated with the North Atlantic Oscillation, the Pacific Decadal Oscillation,
or the Arctic Oscillation (Ghil and Lucarini 2020). As illustrated in Fig. 1, the natural
climate variability with recurrence period of about 5.2 years is often attributable to the
remote effect of ENSO low-frequency mode, where the ~7.7-year cycle is likely due to the
North Atlantic mode of variability that arises from the Gulf Stream’s interannual cycle of
meandering and intensification (Plaut et al. 1995). Furthermore, an important component
of interannual climate variability, due to El Nino in the tropical Pacific Ocean, appears
about every 2-7 years, which is largely characterized by the sea surface temperature
anomalies (Ghil and Lucarini 2020; Philander 1983).

For the IMF components ¢3 and c4, a periodicity of interdecadal scale (20-40 years) is
found in both precipitation and temperature causation. This interdecadal mode is closely
linked with the climate variability with about 14 and 25 years recurrence as shown in Fig.
1, which appears to be associated with the oscillations in the global ocean’s thermohaline
circulation and its coupling to the atmosphere above (Ghil and Lucarini 2020; Plaut et al.
1995). In addition, results of previous works on a complete decomposition of geopotential
height (Coughlin and Tung 2004a, b) extracted a clear 11-year cycles in stratosphere,

which can be potentially attributed to the cycle of solar activity and its downward
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propagation to the lower troposphere. This could also be a potential source of the
interdecadal variability and inherited by the IMF components ¢3 and c4 in cross-regional
hydroclimatic causation found here.

To better understand the different IMFs of causality variability, as well as to
strengthen the link with physical components in the climate system, we extend the EMD
analysis to frequently used indices of climate oscillations, viz. ENSO and the Pacific
Decadal Oscillation (PDO). More specifically, we choose ENSO Longitude Index (ELI)

from Lawrence Berkely National Laboratory (https://cascade.lbl.gov/enso-longitude-index-

eli/) and PDO indices from NOAA (https://www.ncei.noaa.gov/access/monitoring/pdo/),

and extract the time variability during the same time period as the causality analysis. In
particular, ELI tracks the average longitude of tropical Pacific deep convection and
characterizes the diversity of ENSO in a single index. In addition, ELI accounts for the
nonlinear response of deep convection to sea surface temperature (SST) and provides a
continuous time series for analyses of ENSO dynamics (Williams and Patricola. 2018). On
the other hand, PDO is often described as a long-live El Nifio-like pattern of Pacific
climate variability (Zhang et al. 1997). The index PDO is based on NOAA’s extended
reconstruction of SSTs. Extremes in the PDO patterns are marked by widespread variations
in the Pacific Basin and North American climate.

The results of EMD decomposition are shown in Fig. 7. The four IMFs of both
ENSO and PDO indices are similar with those of causality variability in hydroclimate
(Figs. 5 and 6). In addition, the comparison of their characteristic (mean) periods is
summarized in Table 1. It is clear that the mean periods of climate oscillations and

causality variability are generally in good agreement, suggesting that the causality of
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regional climatology in the U.S. has a strong correlation with the physical climate
variability, potentially through climate teleconnections. It is also noteworthy that the
discrepancy increases for lower frequency, i.e. ¢3 and c4., which might be due to potential

hysteresis effect for long-term climate oscillations to be manifest in causal interactions.
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Figure 7. The EMD decompositions of climate oscillations indices in (a) ENSO ELI and

(b) POD. c1 and c4 are the four IMFs extracted from the time series (top panels).

Table 1. Results of comparison between characteristic (mean) periods of representative

climate variability and those of causal variability in U.S. hydroclimate.

Index/mean period (Year) Cl C2 C3 C4
Climate ELI 3.5 8 18 39
variability PDO 3.4 7.5 18 51
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P (ACE) 3.1 9 22 53

Causal P (ACS) 32 7 16 42
variability T (ACE) 3.5 9.6 27 40+
T (ACS) 3.6 10 25 58

490

491 3.4. The Hilbert spectrum

492 To understand the structures of the causality variability on precipitation and

493  temperature in the long-term time series, the detailed information of the signal dispersion
494  and the energy-frequency distribution is required. We calculate the Hilbert spectrum for
495  each decomposed IMF. The results are weighted non-normalized joint amplitude-

496  frequency-time distributions, which can be seen as four overlapping Hilbert spectra

497  (corresponding to each of the 4 IMFs). Unlike Fourier analysis, the HHT analysis

498  preserves the time localities of climate events, based on the instantaneous, rather than the
499  global, frequency and energy. As shown in Fig. 8, the Hilbert spectrum is highly nodular
500 (localized and spiky) especially in the high frequency range, indicating the causality

501  variability is nonstationary for precipitation or temperature. In addition, the main

502  component is intrawave modulated, signaling that both the precipitation and temperature
503  causations are nonlinear. The presence of fewer components in the Hilbert spectrum as
504  compared to the Fourier spectrum analysis is primarily due to the empirical nature of HHT,
505  suggesting that it often yields more realistic energy-frequency distribution through

506  eliminating spurious harmonics.
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Figure 8. Hilbert spectrum (energy-frequency-time distribution) of the causality
variability. Shown are the Hilbert spectra of ACE and ACS for (a, b) precipitation and (c,

d) temperature, respectively.

The results in Fig. 8 also reveal a pattern of energy concentration in the low-
frequency range, or with high-amplitude and low-infrequency wave variations. Most
energy is concentrated in the low-frequency range with the frequency less than 0.1 year™.
In the temporal dimension, the Hilbert spectrum exhibits sharp energy peaks around year
1930s and 1990s. where the former can be the system response to the change in external
forcing in the 1930s when Earth’s climate system experienced significant warming

together with enhanced climate variability (Diaz and Brandley 1995). The peak around
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1990s coincides with a recently discovered potential early-warning signal of drastic
changes in system dynamics in the CONUS hydroclimate (Wang et al. 2020; Yang et al.
2022a), where the underlying mechanism of this abrupt change remains obscure though.
Furthermore, it is known that ENSO influences the precipitation and temperature along the
U.S. East Coast, and the signatures can be identified by peaks in the Hilbert spectrum
(Duffy 2004). The Hilbert spectrum from HHT applied to each component of daily Seine
river flow detected the concentrating or localized amplitudes around the climate phase
change around 1970s, which matches with the increasing amplitude of annual winter-

months NAO variability phenomenon (Massei and Fournier 2012).

4. Concluding remarks

In this study, we combined causal inference with spectrum analysis to investigate the
dynamics in the complex hydroclimatic system in the CONUS and its intrinsic periodicity.
The reconstructed causal networks of precipitation and temperature anomalies indicate that
the Ohio Valley region plays a key role in regulating the cross-regional atmospheric
connection, while some regions such as Northwest have relatively weak causal interactions
except with the West region. The results of HHT analysis reveal that the temporal
variability of hydroclimate causation cross different regions of the CONUS contains
manifest periodicities, primarily around the interannual and interdecadal scales. The
variability of hydroclimatic causality is found to share similar intrinsic modes and
characteristic frequencies with the recurrence on climate oscillations, such as ENSO and
PDO dynamics. Moreover, the Hilbert spectrum exhibits a bi-modal distribution in the

time dimensions, with peaks around 1930s and 1990s, both can be well correlated to the
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changes in external forcing or system dynamics. To the best of our knowledge, this is a
pioneering study that looks into causal interactions in hydroclimate system and links their
variability to oscillations of physical climate indices.

In the broader context, the results of the current study suggest a promising
perspective through the potential link between hydroclimatic causation and the physical
climate variability. While this study represents an attempt in characterizing the cross-
regional causal attribution and its intrinsic variability, the methods developed in this study
can be used to infer how causal linkages change over time when being impacted by climate
dynamics. Results from such hydroclimatic analysis show a potential to inform cross-
regional water resource management that adapts to changing climate dynamics. Moreover,
the proposed method can be further improved and incorporated into a holistic framework
using multiple data-driven techniques. This toolkit includes, for example, complex network
analysis to identify spatial patterns of hydroclimatic causal networks, physical emergence
to correlate the peak Hilbert spectrum to abrupt and potentially catastrophic transitions in
nonlinear dynamic systems, and machine learning to infer causality from archived earth
system data. In particular, in complex systems that involves a wide spectrum of scales in
their dynamics, such as the climate system evolves in the spectrum ranging from
turbulence to synoptic scales, the cross-scale causation will lead to the causal emergence
(Hoel et el., 2013) in macro-states from the information in microcosm. Such cross-scale
causal interactions need necessarily be driven by big data describing the system evolution,
that can be practically handled by machine learning techniques, such as deep neural

networks (Marrow et al., 2020). When applied to the hydroclimate system, the method of
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causal emergence will shed new lights on the causality in hydroclimate system to physical

components, especially the low-frequency (macro-scale) climate variabilities.
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