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ABSTRACT

Coiled carbon nanotubes (CCNTs) belong to one of the prominent classes of carbon nanostruc-
tures with unique mechanical properties and vibrational behavior due to their helical geometries.
In this paper, the free transverse vibration behavior of single-walled CCNTs is investigated by
molecular dynamics (MD) simulations and the adaptive intermolecular reactive empirical bond-
order (AIREBO) potential under different boundary conditions (B.Cs.). The beating phenomenon is
observed in CCNTs due to the presence of longitudinal, transverse, and torsional coupled vibra-
tions and the proximity of their corresponding frequency. Generally, the frequency of the CCNTs
decreases by increasing the length (L) or the number of pitches (n,). Moreover, the pitch angle
(@) plays a more decisive role compared to other geometric parameters. At constant length (L) of
CCNTs, the frequency increases by enhancing the pitch angle (@). Furthermore, the fundamental
frequency range of the studied CCNTs is obtained less than 331.9 GHz for lengths greater than
2nm under different boundary conditions. This indicates that CCNTs have a higher vibration sensi-
tivity than straight CNTs. Therefore, CCNTs can be a proper alternative to straight CNTs in sensors.
The results of this study can be used in the design and analysis of nanoelectromechanical systems
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(NEMs) with CCNTs elements as well as to calibrate continuum mechanics methods.

1. Introduction

Carbon nanotubes (CNTs) are discovered by Ijima in 1991
and have several applications in different materials [1-6].
Different arrangements of non-hexagonal rings, such as the
pentagons and heptagons, in the hexagonal network of
CNTs, create positive and negative curvatures that can bend
and twist CNTs to form other morphologies, such as coiled
carbon nanotubes (CCNTSs) [7].

Catalytic chemical vapor deposition (CCVD) is a common
technique for the synthesis of CCNTs. Xie et al. [8] used
thermal filament and microwave CCVD techniques to pre-
pare CCNTs. Figure 1 represents the images taken from the
CCNTs’ morphology using the scanning electron microscope
(SEM) and the transmission electron microscope (TEM).

CCNTs have shown potential applications in various fields
due to their unique spiral structures and extraordinary phys-
ical characteristics. An essential application of CCNTs is to
operate as sensors. CCNTs with attached electrodes can be
used as self-sensing mechanical resonators to detect the fun-
damental resonances ranging from 100 to 400 MHz. The self-
sensing CCNT's sensors are sensitive to mass change and well
suited for measuring small forces and masses in the femto-
gram range [9]. Moreover, CCNTSs can be applied as high-
resolution force sensors in conjunction with visual

displacement measurement as well as electromechanical sen-
sors [10]. Another application of CCNTSs involves their usage
in reinforced high-strain composites due to their higher
toughness compared to the carbon fibers. In comparison with
CNTs, they can be better anchored in their embedding matrix
[11]. Some other applications of CCNTs include their appli-
cation in nano-electromechanical systems (NEMS) [12] such
as nano-spring, nano-actuators, nano-gears, and nano-
receivers as well as nonvolatile random access memory
(NVRAM) [13]. Furthermore, they could be employed in
nano-switches and electromagnetic nano-transformers as
molecular nano-solenoids [14]. The mechanical properties
and vibrational behavior of CCNTs should be well under-
stood to establish a better paradigm of their applications.
Theoretical methods are preferred since experimental studies
at nanoscale size are quite expensive and time-consuming.
Atomic-scale methods such as molecular dynamics (MD)
simulation can be useful in the study of nanostructures
[15-20]. Nguyen et al. [15] investigated through molecular
dynamics finite element method with Tersoff potential the
buckling behavior of boron nitride (BN) nanotubes under
bending. Shima et al. [19] performed molecular dynamics
simulations of multi-walled carbon nanotubes under hydro-
static pressure to elucidate the novel class of radial buckling
in the systems. Ansari et al. [20] studied the effects of initial
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Figure 1. Images of CCNTs that synthesized using CCVD technique. (a) SEM, (b) TEM [8].
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Figure 2. (a) Primary unit cell, (b) New unit cell (parametric rectangular plane)
mapped from primary unit cell.

thermal loading on the vibrational behavior of embedded sin-
gle-walled carbon nanotubes (SWCNTs) based on the nonlo-
cal shell model and examined the accuracy of their model by
comparison with molecular dynamics simulation results.
Furthermore, several theoretical studies were carried out
to assess the mechanical properties of single-walled CCNTs
and CCNT-reinforced nanocomposites. Fonseca et al. [21]
used the Kirchhoff rod model to derive a series of expres-
sions for determining Young’s modulus and Poisson’s ratio
of CCNTs. Liu et al. [22] employed the density functional
theory (DFT) and tight-binding (TB) to assess the Young’s
modulus and elastic constant of a set of CCNTs built from
the armchair single-walled CNTs and predicted their supere-
lastic behavior. Ghaderi and Hajiesmaili [23] used an MD-
based finite element method to determine fracture strain,
fracture load, and energy storage density of the CCNTs.
Wang et al. [24] applied the MD simulations and the second
generation of the reactive empirical bond order (REBO)
potential and Lennard-Jones (L]) potential to evaluate the
mechanical properties of a CCNT under compression, ten-
sion, re-compression, re-tension, and pullout from a poly-
ethylene (PE) matrix. They obtained spring constants,
yielding strains, and pullout force of the CCNT. Wu et al.
[25] used the MD simulations and the adaptive intermolecu-
lar reactive empirical bond-order (AIREBO) potential to
study the stretching instability and reversibility of tightly
wound CCNTs and determine their stiffness and gravimetric
toughness. Sharifian et al. [26] investigated the role of

chemical doping in the large deformation behavior of the
CCNTs via the MD simulations and the AIREBO potential.
They identified mechanical properties such as tensile
strength, ultimate failure strain, and toughness during the
tensile test stages for various ranges of geometries and
chemical doping percentages. Khani et al. [27], Kianfar et al.
[28], and Yarali et al. [29] adopted a new representative vol-
ume element (RVE) algorithm to study the elastic properties
of CCNTs-reinforced polymer nanocomposites and the ther-
momechanical properties of CCNTs-reinforced shape mem-
ory polymer nanocomposites. In these studies, the effect of
volume fraction, orientation, and geometrical parameters of
CCNTs were also examined on the elastic and thermome-
chanical properties.

So far, the free vibration behavior of CCNTs has been
investigated in several theoretical studies [30-34]. Fakhrabadi
et al. [30], examined the vibrational behavior of the single-
walled CCNTs using molecular mechanics (MM) based finite
element method and 3-D elastic beam elements. They deter-
mined the natural frequencies and mode shapes of CCNTs
with different geometries and in various boundary conditions.
Darvishi and Rahmani [32] investigated the free longitudinal
vibration of single-walled CCNTs via the MD simulations
with aid of the REBO potential. They evaluated the influence
of different parameters, including the diameter of tubes,
number of pitches, and various boundary conditions on the
fundamental frequencies. Mohammadi and Farid [33] ana-
lyzed free vibration of helically coiled carbon nanotubes con-
sidering nonlocal effects using a spatial curved-beam model.
They used finite element method to solve the resulting equa-
tions, numerically. The results obtained from the proposed
method by neglecting nonlocal effects were compared with
those of ANSYS simulation. Besides, the effects of different
boundary conditions and various parameters including the
helix radius, pitch, number of turns, and nonlocal parameter
on the natural frequencies were studied. Darvishi and
Rahmani [34] investigated the size-dependent vibration
behavior of doubly clamped single-walled coiled carbon
nanotubes (CCNTSs) via nonlocal helical beam model. Their
model was based on Washizu’s beam model and taking into
account transverse shear deformations. They solved the non-
local governing equations, by the generalized differential
quadrature method (GDQM). Then, the natural frequencies
and corresponding mode shapes were determined for the
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CCNT (2,2,2,2,1)
TCNT (2,2,2,2)/ HSP=1

TCNT (2,2,2,2)

TCNT (2,2,2,2)/ HSP=2

CCNT (2,2,2,2,2)

Figure 3. (a) Dsp-symmetric TCNT with indices (2,2,2,2), (b) TCNT(2,2,2,2) with HSP =1, () TCNT(2,2,2,2) with HSP =2, (d) CCNT(2,2,2,2,1) made of
TCNT(2,2,2,2) with HSP = 1, (e) CCNT(2,2,2,2,2) made of TCNT(2, 2, 2,2) with HSP = 2.

Figure 5. Image of six pitches of CCNTs—B.
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Table 1. Geometric characteristics of CCNT samples.

CCNTs—A CCNT 1A (2,2,2,2,1) > d=0.546 nm; D =1.474 nm; p = 1.032 nm; & = 12.57°
L 2.226 3.368 4.348 5327 6.306 7.449 8.428
n, 2.157 3.264 4.213 5.162 6.111 7.218 8.167
Nq 648 984 1272 1560 1848 2184 2472
CCNT 1A (2,2,2,3,1) > d=0.546 nm; D =1.974 nm; p = 1.448 nm; & = 13.14°
LoC 3.174 4.542 5.909 7.503 8.815 10.238 11.834
n, 2.192 3.137 4.081 5.182 6.088 7.071 8.173
Nq 872 1256 1640 2088 2472 2856 3304
CCNT A (2,2,2,4,1) > d=0.546 nm; D =2.072 nm; p =3.112 nm; & = 25.55°
L 6.202 9.420 12.271 15.482 18.697 21.915 25.129
n, 1.993 3.027 3.943 4.975 6.008 7.042 8.075
Nqg 968 1448 1864 2344 2824 3304 3784
CCNTs—B CCNT IB (3,1,1,2,5) > d =0.584 nm; D =0.998 nm; p = 1.888 nm; & = 31.04°
L 3.455 5.128 7.220 9.291 11.402
n, 1.830 2.716 3.824 4.921 6.039
Nq 538 762 1042 1322 1602
CCNT 1B (4,1,1,2,6) > d=0.757 nm; D= 1.244 nm; p = 1.890 nm; & = 25.81°
L 3.530 5.553 7.577 9.599 11.217
n, 1.868 2.938 4.009 5.079 5.935
Nq 678 1162 1562 1962 2282
CCNT B (5,1,1,2,7) > d=0.989 nm; D =1.525 nm; p = 1.734 nm; & = 19.90°
L 3.392 5171 6.952 8.731 10511
n, 1.956 2.982 4.009 5.035 6.062
Nqg 1438 2138 2838 3538 4238

Clamped! B:C*

Clamped! B!C!

Free! BIC:

Figure 6. Applying the boundary conditions and displacement to establish the
initial excitation of CCNTs. (a) C—C boundary conditions (b) C—F boundary
conditions.

clamped-clamped boundary conditions. After that, a paramet-
ric study on the effect of different parameters, including the
helix cylinder to tube diameters ratio (D/d), number of
pitches, helix pitch angle, and nonlocal parameter on the nat-
ural frequencies of CCNTs was conducted. As can be seen
from the literature review, studies in the field of the vibra-
tional behavior of CCNTs are very limited, necessitating fur-
ther research to broaden our insight into the vibrational
behavior of the CCNTs.

The main purpose of this paper is thus the investigation
of the free transverse vibration behavior of the CCNTs. First,
CCNTs are modeled and their fundamental transverse fre-
quencies are determined by MD simulations based on
AIREBO potential. The complex and unique geometric form

of these nanostructures and the simultaneous occurrence of
tensile, flexural, and torsional deformations led to vibrational
coupling, which is examined in detail in the present study.
Moreover, the effects of geometrical parameters of CCNTs as
well as boundary conditions are evaluated on the fundamen-
tal transverse frequencies.

2. Methodology
2.1. Modeling of the CCNTs

In this research, CCNTs are modeled using the dual space
topological approach proposed in [35, 36]. According to
Figure 2a, a balloon-shaped cut is first made in the perfect
graphene sheet which is considered as a unit cell in terms of
four parametric indices (n7s,n77,nss5,5). n75 is the vertical
topological distance between adjacent heptagons (red-rings)
and pentagons (green-rings), ny; represents the topological
distance between adjacent heptagons, nss shows the topo-
logical distance between adjacent pentagons, and s denote
the length of the unit cell. This unit cell is then meshed into
equilateral triangles (called dual space) such that the atoms
inside the unit cell are at the center of these triangles. Then,
the atoms inside the unit cell are mapped to a new unit cell,
called a parametric rectangular plane, in terms of coordi-
nates (0.¢) as shown in Figure 2b. Note that heptagons
(red-rings) and pentagons (green-rings) are Stone-Wales
defects, thus, the presence of these carbon rings is necessary
for the formation of TCNTs and CCNTs.

TCNT is modeled by repeating n of the new unit cells in
the ¢ direction followed by its rolling in the O direction,
and then geometrical optimization (Figure 3a). Two types of
symmetry can be considered for TCNTs: D,-symmetric
TCNT resembling hollow-prism, and D,4-symmetric TCNT,
which is similar to hollow-antiprism.

According to Figure 3b and 3c, a distortion process,
called the horizontal shifting process (HSP), is carried out to
create CCNTs. In general, the HSP operation leads to



Table 2. Minimization process of the CCNT IIA for optimization of the
structure.

CONT 11A (2,2,2,3,1)

Number Minimization stats
of Initial Final Cohesive Initial Final Iterations
pitches energy energy energy E.*  pressure  pressure
(eV) (eV) (eV) (bar) (bar)
2.192 -6181.54 -6246.71 7.1637  -176.43344 -0.00036 1627
3.137 -8919.44 -9012.20 71753  -316.22761 -0.00043 2652
4.081 -11657.34 -11777.70  7.1815  -289.94351 -0.00011 3516
5.182 -14851.56 -15004.10 7.1859  -439.45249 -0.00020 4957
6.088 -17589.46 -17769.60 7.1883  -483.51109 -0.00006 6018
7.071 -20327.36 -20535.09 7.1902  -521.70451 0.00065 6922
8.173 —23521.58 -23761.50 7.1917 -560.41004 0.00014 9699
9.117 —-26259.48 -26526.99 7.1928  -589.43324 0.00001 10910
“Cohesive energy E.(eV) ~ Final energy per atom (eV/atom)
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Figure 7. Variations of the potential energy and pressure of the CCNT IlA with
np = 9.117 in the relaxation process (the temperature was controlled at 1K by
Nose-Hoover thermostat).

considerable strain and consequently high structural
unstability in the TCNT. The distorted TCNT can release its
additional strain by cutting out the bonds on a certain lon-
gitude and recoils to form a CCNT. The pitch angle of
CCNT in HSP =2 is larger than HSP =1 because of the
larger distortion and strain energy (Figure 3d and 3e) [35].
From now on, CCNTs can be expressed with five parametric
indices (n7s, ny7, nss, s, HSP).

In the present study, two classes of D,-symmetric
CCNTs are modeled: CCNTs—A and CCNTs—B. According
to Figures 4 and 5, the CCNTs—A includes three samples
CCNT IA (2,2,2,2,1), CCNT IIA(2,2,2,3,1), and CCNT
MIIA(2,2,2,4,1) whereas the CCNTs—B encompassed three
samples of CCNT 1B(3,1,1,2,5), CCNT IIB(4,1,1,2,6), and
CCNT IIIB(5,1,1,2,7). The geometric characteristics, number
of pitches (1,) and number of atoms (N,) of these CCNTs
are listed in Table 1. In which d, D, D,, p, @, and L are
diameter, coil median diameter, coil outer diameter, pitch
length, pitch angle, and lenght of the CCNTs, respectively. It
should be noted that D, = D + d and L = n,p.

2.2. Molecular dynamics simulation

In the present study, the large-scale atomic/molecular mas-
sively parallel simulator (LAMMPS) package software [37] is
utilized for MD simulations of free vibration behavior of the
CCNTs. Interatomic interactions of the CCNTs is modeled
with the aid of the AIREBO potential which can be
expressed by the following equation:
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Figure 8. Variation of the potential energy, kinetic energy, and total energy of
the CCNT IIA with n, = 9.117 in the free vibration process under C—C boundary
conditions.
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The AIREBO potential includes three types of potentials:
the REBO potential for bonded interatomic interactions, the
L] potential for nonbonded interatomic interactions, and
dihedral torsion potential for torsional interatomic interac-
tions. The LJ potential in AIREBO potential considers long-
range interactions greater than 2°A up to the maximum
cutoff radius r._max (ie. 2°A <re_fj < re_max). The max-
imum cutoff radius of the LJ potential is often considered
Te—max = 10.2°A [25]. Excessively large selection of the cutoff
radius for LJ potential, leads to excessive stiffness and conse-
quently higher frequencies in CCNTs, which can be undesir-
able. The shrink-wrapped (s) type non-periodic boundary
conditions (NPBCs) are considered for the walls of the
simulation box in all three directions of x, y, and =z.
The time step of the simulation is 1 femtosecond (fs) and
the unit of measure is Metal. The simulation steps involve
the following stages:

1. Minimization: After modeling the CCNTs, the energy
minimization process is performed by the conjugate
gradient (CG) method to optimize the geometry of
these nanostructures. By iterative adjustment of the
coordinates of the atoms and satisfying one of the stop-
ping criteria, the configuration of the structure reaches
the local potential energy minimum.

2. Relaxation: At this stage, the initial velocity of the
atoms is first allocated based on the Maxwell-
Boltzmann distribution [38] at temperature of 1 K.
Newtonian equations of motion are then numerically
integrated using the Velocity-Verlet algorithm [39] to
update the positions and velocities of the atoms. The
relaxation process is performed by the canonical (NVT)
ensemble at 1 K so that the temperature is controlled
through the Nose-Hoover thermostat [40]. At the end
of this process, the CCNTs reach an equilibrium state.
It is worth noting that in the MD simulation of free
vibration of straight CNTs, the temperature value was
taken into account as 1 K to prevent the effect of the
temperature on the natural frequencies and coupling of
transverse and longitudinal vibrations [41]. Forasmuch
as the coupling of transverse, longitudinal, and torsional
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Figure 9. Transverse displacement-time diagrams (left) and frequency domain signal diagrams (right) of CCNT IIA with different number of pitches under C—C and
C—F boundary conditions.

vibrations is significantly evident in the CCNTs, by clamped (C—C) and clamped-free (C—F) boundary con-

choosing a temperature of 1 K, the vibrations coupling
tried to be prevented as much as possible.

Applying the boundary conditions and initial excitation:
In this study, the initial excitation technique is used to
analyze the free transverse vibration of CCNTs. This
technique is one of the most widely used techniques for
experimental evaluation of the frequency response of
the structure [42]. After the relaxation process of
CCNTs at 1 K, the canonical (NVT) ensemble is can-
celed and the initial excitation process of CCNTs is car-
ried out to determine free vibration the
microcanonical (NVE) ensemble under clamped-

in

ditions. For the C—C boundary conditions as shown in
Figure 6a, two regions with four atomic layers on the
left (green region) and right (purple region) of CCNTs
are entirely fixed in all three directions. Whereas for the
C—F boundary conditions (Figure 6b), only one region
with four atomic layers on the left (green region) of
CCNTs is fully fixed in all three directions.

The initial excitation must be appropriately applied to
the desired vibrating mode with the predetermined
mode shape. For the first mode shape, the initial excita-
tion zones in the C—C and C—F boundary conditions
are at the middle and end of the CCNT, respectively
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Figure 10. Transverse displacement-time diagrams (left) and frequency domain signal diagrams (right) of CCNT IIB with different number of pitches under C—C
and C—F boundary conditions.

(zones marked with green frameworks in Figure 6). The boundary conditions. Within this time range, the trans-

initial excitation amplitude W is considered to be 5% of verse displacement-time history of the center of mass of

the CCNTs length, namely: the atoms of the CCNTs is recorded in each timestep as

W= 5% x L @) a time-domain response. Next, the time dom.ain signals

of the transverse displacement are converted into a fre-

4.  Free Vibration: After applying a displacement with amp- quency domain signals using the fast Fourier transform
litude W to atoms of the excitation zone, they are (FFT) method in MATLAB software.

released so that CCNTs begin to vibrate freely. To ignore
the effect of initial excitation, free vibration analysis is
performed after 30,000 fs. A time range of 500,000 to
2,500,000 fs is considered to establish the free vibration Table 2 presents the status of the CCNT IIA minimization
process depending on the length of CCNTs and for different number of pitches. The structure of the

3. Results and discussions
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Table 3. Fundamental transverse frequencies of CCNTs—A obtained from MD simulation under C—C and C—F boundary conditions.

Fundamental transverse frequency (GHz)

CCNT IA Lenght of CCNTs (nm)
. 2.226 3.368 4.348 5.327 6.306 7.449 8.428 9.408
c-C 213.6 1459 101.1 74.39 56.27 43.87 3433 28.61
C—F 67.71 3433 21.93 15.26 10.49 7.629 5.722 4.768
CCNT IIA Lenght of CCNTs (nm)
. 3.174 4.542 5.909 7.503 8.815 10.238 11.834 13.201
c-C 130.7 88.69 61.04 41.96 32.42 24.80 19.07 16.21
C—F 38.15 20.98 12.40 7.629 5.722 3.815 3.338 2.861
CCNT IIIA Lenght of CCNTs (nm)
BE 6.202 9.420 12.271 18.697 21915 25.129 28.347
c-C 92.51 54.36 35.29 16.21 12.40 9.537 7.629
C—F 20.98 9.537 5.722 2.384 1.907 1431 1.192
CCNT IA>d = 0.546nm; D = 1.474nm; D, = 2.020nm; p = 1.032nm; & = 12.57°
CCNT IIA>d = 0.546nm; D = 1.974nm;D, = 2.520nm; p = 1.448nm; o = 13.14°
CCNT IIA>d = 0.546nm; D = 2.072nm; D, = 2.618nm; p = 3.112nm; & = 25.55°
Table 4. Fundamental transverse frequencies of CCNTs—B obtained from MD simulation under C—C and C—F boundary conditions.
Fundamental transverse frequency (GHz)
CCNT 1B Lenght of CCNTs (nm)
B 3455 5128 7.220 9.291 11.402
c-C 331.9 185.0 100.1 62.94 42.92
C—F 59.13 28.61 15.26 9.537 6.199
CCNT 11B Lenght of CCNTs (nm)
EC 3.530 5.553 7.577 9.599 11.217
c-C 312.8 149.7 84.88 54.36 41.01
C—F 55.31 23.84 1335 8.106 5.993
CCNT 1B Lenght of CCNTs (nm)
B 3392 5171 6.952 8731 10511
c-C 206.9 1125 67.71 44.82 3242
C—F 40.05 19.07 10.49 7.153 4.768

CCNT IB>d = 0.584nm; D = 0.998nm; D, = 1.582nm; p = 1.888nm; a = 31.04°
CCNT IIB>d = 0.757nm; D = 1.244nm; D, = 2.001Tnm; p = 1.890nm; & = 25.81°
CCNT 1lIB>d = 0.989nm; D = 1.525nm; D, = 2.514nm; p = 1.734nm; & = 19.90°

CCNT reaches its energy minima and residual pressure or
stress is eliminated with energy-based stopping tolerance
of etol=107" and force-based stopping
of ftol = 1073%V /°A.

The average cohesive energy (energy per unit atom) for
the CCNT IIA, at end of the minimization, is obtained as
7.184eV. Milosevic et al. [43] determined the cohesive
energy for a group of CCNTs via density functional tight
binding (DFTB) method in the range of 7.46-8.00eV. This
implies that the results of the present study are in good
agreement with them. The energy level of the CCNT
decreases by elevating the number of pitches and atoms.

The relaxation process for n, = 9.117 of the CCNT IIA
is presented in Figure 7. The potential energy and pressure
fluctuate around a constant value over a time of 30,000 fs.
This state indicates the equilibrium conditions and stability
of the CCNTs.

In the following, the variations of the potential energy,
kinetic energy, and total mechanical energy for n, = 9.117
of the CCNT IIA are presented in Figure 8 during the free
vibration under C—C boundary conditions. As can be seen,
the total mechanical energy of the CCNTs remains constant
due to the adiabatic conditions of the system in the micro-
canonical (NVE) ensemble

tolerance

Figures 9 and 10, respectively, illustrate how to determine
the values of fundamental transverse frequencies of CCNT
ITA and CCNT IIB with different lengths (or number of
pitches) under C—C and C—F boundary conditions. The
transverse displacement-time domain signal diagrams are
also depicted on the left side while the frequency domain
signal diagrams determined from fast Fourier transform
(FFT) are demonstrated on the right side. The first peak in
the frequency domain signal diagram represents the funda-
mental transverse frequency (first mode).

As shown in the transverse displacement-time diagrams,
after applying the initial transverse excitation to CCNTs
along the x-direction (Figure 6), the vibration amplitude
increases and decreases continuously over time, and CCNTs
displays a behavior similar to the beating phenomenon.
Since there is no excitation force in free vibration to induce
the beating phenomenon, the origin of this phenomenon
can be explained as follows:

The vibrational coupling (longitudinal along the z-direc-
tion, transverse along the x, y-directions, and torsion along
the s-direction) occurs in CCNTs due to the co-occurrence
of tensile, bending, and torsional deformations. In other
words, the vibrations of CCNTs can simultaneously occur in
three directions. As we know, the beating phenomenon
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Table 5. Fundamental transverse frequencies of CCNTs obtained from MM-based finite element method by Fakhrabadi et al. [30] under C—C and C—F bound-

ary conditions.

Fundamental transverse frequency (GHz)

CCNT a Lenght of CCNTs (nm)
ES 2.990 4.485 5.980 7.475 8.970 10.465 11.960 13.455 14.950
(e 306.88 171.15 115.08 79.672 59.016 39.379 29.508 23.606 17.705
C—F 86.029 41.912 24.265 15.441 13.235 8.823 6.618 4412 2.206
CCNT b Lenght of CCNTs (nm)
S 4.090 6.135 8.180 10.225 12.270 14.315 16.360 18.405 20.450
c—C 369.00 168.60 101.79 76.346 50.897 31.811 25.449 19.086 12.724
C—F 77.080 33.034 17.618 11.011 6.607 4.404 2.202 0.971 0.485
CCNT ¢ c Lenght of CCNTs (nm)
B 3.680 5.520 7.360 9.200 11.040 12.880 14.720 16.560 18.400
c-C 617.65 277.94 150.98 96.078 65.196 41.176 27.451 24.020 20.588
C—F 92.232 35.323 19.624 15.699 9.812 7.849 5.887 3.925 1.962
CCNT a> d = 0.734nm; D = 1.224nm;D, = 1.958nm; p = 1.495nm; o = 21.24°
CCNT b> d =0.786nm; D = 0.916nm;D, = 1.702nm; p = 2.045nm; o = 35.40°
CCNT ¢c> d =0.877nm; D = 1.188nm; D, = 2.065nm; p = 1.840nm; o = 26.24°
330 i i i -
T T P Iy —— . The findings of Fakhrabadi et al. [30] on the free vibra
_300f CCNT a: d=0.734 nm, D=1.224 nm, p=1.495 nm, a=21.24° tion of the three samples CCNTs (namely:
T 70k CCNT g, CCNT b, and CCNT c) are reported in Table 5.
o —@—— CCNTIIB (C-C), Present study . . . . s
> 20l — —@— - CCNTIIB (C-F), Present study They investigated the vibrational modal analysis of the
5 ——@—— CCNTa(C-C), Fakhrabadi etal (2013) CCNTs using a molecular mechanics (MM)-based finite
g 210F — @~ - CCNTa(CF), Fakhrabadi et al 2013) element method, in which bonds were considered as elastic
=
5 180f beam elements whose constants were determined by the
= 150k force field.
=1 .
E 120 To validate the present study, the results of CCNT IIB
E: are compared with the results of CCNT a (Figure 11).
g 90 These two CCNTs have almost identical diameters (d) and
g 60 coil median diameters (D). It can be seen that the results of
P | the present method are in good agreement with the method
o of Fakhrabadi et al. [30]. The slight difference in the results
2 16 can be due to the difference in the computational method

Lenght of CCNTs (nm)

Figure 11. A comparison between the results of CCNT IIB in the present study
with the results of CCNT a obtained by Fakhrabadi et al. [30] for almost identi-
cal geometric parameters.

occurs when the excitation frequency is close to the natural
frequencies (not exactly equal to it). Let f, shows the fre-
quency corresponding to a given transverse free vibration
(for example, along the x-direction) and f; represent the fre-
quency corresponding to vibrations along other directions.
In that case, CCNTs face specific situations in which the
beating phenomenon are expected to occur because of prox-
imity of the frequencies values f to the transverse frequency
values f,.

Also, the beating phenomenon occurs earlier for lower
length (or the number of pitches) due to intense coupling
between transverse, longitudinal, and torsional vibrations, as
well as the proximity of their frequencies to each other.
Moreover, as shown in the frequency signal diagrams, the
first peak emerges earlier when the length (or the number of
pitches) 1is increased, indicating an inverse relationship
between frequency and length.

The results of free vibration of the CCNTs—A and
CCNTs—B are reported in Tables 3 and 4 for different
lengths under C—C and C—F boundary conditions.

and values of the pitch angle (%) these two CCNTs.

As can be seen from Tables 4 and 5, the fundamental
transverse frequency of the CCNTs decreases as the length
(or the number of pitches) increases. Moreover, the type of
boundary conditions significantly affects the vibration fre-
quencies of CCNTs. The C—C boundary conditions always
result in higher frequencies than C — F boundary conditions.
In the C— C boundary conditions, the stiffness of the
CCNTs increases by reducing the degrees of freedom (DoF)
of the structure, leading to higher frequencies.

In the CCNTs—A, which have the same diameter (d),
the fundamental frequency increases by elevating the coil
median diameter (D) and the pitch angle () for the same
length (L) under both C—C and C—F boundary
conditions.

In the CCNTs—B, however, the rise the diameter (d) and
coil median diameter (D) and a decline in the pitch angle
(@) decrements the fundamental frequency decreases for the
same length (L) under both boundary conditions. On the
other hand, Fakhrabadi et al. [30] did not report a specific
trend for the frequency of CCNTSs versus the geometric
parameters. In general, it can be said that the pitch angle
(%) has a more decisive role on the vibrational behavior of
CCNTs than other geometric parameters, and the frequency
values are directly related to it.
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Table 6. Fundamental transverse frequencies of straight CNTs obtained from MD simulation under C—C and C—F boundary conditions [39,40].

Fundamental transverse frequency (GHz)

Ansari et al. [44] CNT (5,5) Lenght of CNTs (nm)
A 2428 3.671 4.897 6.123 7.349 8.592 9.818
(e 1977.7 954.1 5544 343.8 199.3 1233 52.04
C—F 435.6 208.9 119.0 69.40 52.22 34.37 27.10
CNT (10,10) Lenght of CNTs (nm)
PSS 2428 3.671 4.897 6.123 7.349 8.592 9.818
c-C 22423 1164.4 771.8 547.0 407.2 307.6 234.0
C-F 667.6 343.0 193.0 126.2 89.23 67.42 48.25
Hu et al. [40] CNT (5,5) Lenght of CNTs (nm)
- 1.698 2912 4124 5.333 8.974
c-C - 1065.5 659.3 - 179.3
C—F 560.3 231.7 1371 80.40 33.09
CNT (10, 10) Lenght of CNTs (nm)
- 1.698 2912 4124 5.333 8.974
c-C - 1200.8 816.1 - 2833
C—F 778.5 3914 228.0 141.9 5591
CNT (15,15) Lenght of CNTs (nm)
BE 1.698 2912 4124 5.333 8.974
C—F 849.2 458.9 295.4 189.9 73.85
CNT (20,20) Lenght of CNTs (nm)
. 1.698 2912 4.124 5333 8.974
C—F 865.0 4853 319.8 - 94.94
CNT (5,5)>D, = 0.678nm ; CNT (10,10) > D, = 1.357nm
CNT (15,15) > D, = 2.035nm ; CNT (20,20) > D, = 2.714nm
2400 380
CCNTIB: D,=1.582 nm CCNTIA : D,=2.020 nm
_ 2200 | CNT (10,10) : D =1.357 nm 800 | CCNT IIB : D,=2.001 nm
N ] o
i 2000 —B— CONTIB (C-C) , Present study % 70k e et
= 1800 F — —@— - CCNTIB (C-F), Present study = :
g ——@— CNT(10,10) (C-C) , Ansari et al (2012) g 640t - gg% :;}3((%_?)’ P;fj:;;tsstffg
2 1600 | — -@— - CNT(10,10) (C-F), Ansari et al (2012) g © : Y
g & seof ——A—— CNT (15,15) (C-F), Huetal (2011)
= 1400 £ o
2 o B
§ 1200 - 4
2] >
g 1000 | g 400
e e
= =
g 600} Q 5 240
S \ E
5 400f T 160
55
200 |- 80 |
0 1 .-.I— p—
0 2 4 6 8 10 12 14 %

Lenght of CCNT and CNT (nm)

Figure 12. A comparison between the results of CCNT IB in the present study
with the results of CNT (10,10) obtained by Ansari et al. [44] for the same
length (L) and outer diameter (D).

In the following, the free vibration behavior of CCNTs is
compared with the straight CNTs. The fundamental trans-
verse frequencies of straight CNTs are reported in Table 6.
These results were obtained by Ansari et al. [44] and Hu
et al. [45] using molecular dynamics (MD) simulations. In
straight CNTs, the frequencies increases by enlarging the
outer diameter (D,) for the same length (L). The frequency
values are always greater in C—C boundary conditions as
compared with C—F boundary conditions. To compare the
fundamental transverse frequencies, CCNTs and CNTs are
considered with similar outer diameters (D,) and lengths
(L). The CCNT IB and CNT (10,10) have approximately the
same outer diameter (i.e. D, = 1.582nm and D, = 1.357nm,
respectively).

Lenght of CCNT and CNT (nm)

Figure 13. A comparison between the results of CCNT IA and CCNT IIB in the
present study with the results of CNT (15, 15) obtained by Hu et al. [45] for the
same length (L) and outer diameter (D,).

Also, the CCNT IA, CCNT IIB, and CNT (15,15) have the
same outer diameter (i.e. D, = 2.202nm, D, = 2.001nm, and
D, = 2.035nm, respectively). As shown in Figures 12 and 13,
the fundamental transverse frequencies of the straight CNTs
are considerably larger than the CCNTs for the same outer
diameter (D,) and length (L). It means that CCNTs have
lower stiffness than straight CNTs for the same diameter and
length. Furthermore, it can be said that CCNTs have a higher
vibration sensitivity than straight CNTs.

4, Conclusions

In this paper, the free transverse vibration behavior of
CCNTs was studied using the molecular dynamics (MD)



simulations. For this purpose, first, two classes of the
CCNTs with different geometric characteristics were mod-
eled, then the interatomic interactions were described in
them using the AIREBO potential. After the energy mini-
mization and relaxation processes, CCNTs vibrated by
applying initial transverse excitation under clamped-clamped
(C—C) and clamped-Free (C—F) boundary conditions.
Finally, the fundamental transverse frequencies of the
CCNTs were determined for different lengths (or number of
pitches) using the fast Fourier transform (FFT) of the time
domain signal to the frequency domain signal. The results
revealed that:

e The beating phenomenon occurred in the CCNTs due
to the vibration coupling (longitudinal along the z-dir-
ection, transverse along the x, y-directions, and torsion
along the s -direction). This phenomenon took place
earlier for shorter lengths (or fewer number of
pitches).

e In general, as the length (or the number of pitches) of
the CCNTs increased, the fundamental transverse fre-
quency decremented.

e The pitch angle (a) played a more decisive role on the
vibrational behavior of CCNTs compared to other geo-
metric parameters, and frequency values were directly
related to it.

e In the case of CCNTs, the C—C boundary conditions
always result in higher frequencies compared to the C—F
boundary conditions.

e The results indicated the higher vibration sensitivity of
CCNTs compared to straight CNTs. Thus, CCNTs can
be a proper alternative to straight CNTs in sensing
applications.
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