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The Atlantic Meridional Overturning Circulation (AMOC) is a significant component of the global ocean system, 

which has so far ensured a relatively warm climate for the North Atlantic and mild conditions in regions such as 

Western Europe. The AMOC is also critical for the global climate. The complexity of the dynamical system underlying 

the AMOC is so vast that a long-term assessment of the potential risk of AMOC collapse is extremely challenging. 

However, short-term prediction can lead to accurate estimates of the dynamical state of the AMOC and possibly to 

early warning signals for guiding policy making and control strategies towards preventing AMOC collapse in the long 

term. We develop a model-free, machine-learning framework to predict the AMOC dynamical state in the short term 

by employing four datasets: MOVE and RAPID (observational), AMOC fingerprint (proxy records), AMOC simulated 

fingerprint and CESM AMOC (synthetic). We demonstrate the power of our framework in predicting the variability of 

the AMOC within the maximum prediction horizon of 12 or 24 months. A number of issues affecting the prediction 

performance are investigated. 

 

I. INTRODUCTION 

 

The Atlantic Meridional Overturning Circulation (AMOC) 

is a significant component of the global ocean system, trans- 

porting warmer, upper waters in the Atlantic northwards 

and colder, deeper waters southwards1. More specifically, 

the AMOC is defined as the zonally and vertically inte- 

grated northward volume transport in terms of Sverdrups (Sv, 
106m3s−1), i.e., as a function of latitude and depth2. The 

AMOC is the main reason that the climate of the North At- 

lantic is able to remain relatively warm, facilitating mild and 

livable conditions in regions such as Western Europe3. From 

the perspective of global climate system, the AMOC gov- 

erns the frequency of Atlantic hurricanes and storms, tropical 

monsoons, and even the global carbon equilibrium4,5. Alarm- 

ingly, studies of the subpolar AMOC suggested strong evi- 

dence of the weakening of the AMOC from the mid-1990s6,7. 

In recent years, measurements and model studies revealed 

considerable variabilities in the AMOC on time scales rang- 

ing from daily to multi-decadal1. There are multiple reasons 

for the variabilities: carbon emissions from human activi- 

ties8,9 as well as the internal interactions within the climate 

systems and external forcing such as volcanic eruptions and 

solar radiation. A fairly recent modeling study suggested, 

shockingly, that the AMOC may be currently on the verge of 

a potential collapse10, which can cause a significant tipping 

phenomenon in the Earth’s climate system11. 

Due to the global climate change and its tendency to con- 

tinue to accelerate, the likelihood of AMOC collapse is in- 

creasing. However, due to the vast complexity of the non- 

linear dynamical system underlying the AMOC, long-term 
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prediction of the AMOC, i.e., to forecast when such a col- 

lapse might occur with certain level of confidence, is a daunt- 

ing challenge. Even if a method is developed to predict that 

the collapse will occur in certain time period in the future, it 

would not provide specific criteria for devising countermea- 

sures that should be implemented now to prevent the collapse 

in the future, particularly because the physical system under- 

lying the AMOC is extremely complex and highly nonlinear, 

and subject to various stochastic forcing. Our point of view is 

that nowcasting - a term we use to coin short-term prediction 

of the dynamical behaviors of the AMOC, is also important 

and pertinent. In particular, we focus on the prediction hori- 

zon of one to two years and ask whether the detailed evolu- 

tion of some key physical variables characterizing the AMOC 

can be accurately predicted based on the available observa- 

tional data, modeling, and fingerprints (proxy records) of the 

AMOC. An advantage of nowcasting is that the presently 

available observations can be used to update the forecasting 

in a continuous manner, thereby guaranteeing the prediction 

accuracy. This is in fact an urgent problem, as successful and 

reliable nowcasting of the AMOC dynamics can provide a 

detailed and comprehensive picture of the AMOC evolution, 

e.g., whether it has deviated from the normal course. The 

ability to accurately assess the AMOC dynamics in the near 

future through reliable nowcasting can potentially lead to the 

discovery of critical early warning signals, based on which ef- 

fective policy change and control strategies can be devised to 

reverse any harmful deviations of the dynamical evolution of 

the AMOC. The purpose of this paper is to present a machine- 

learning framework to demonstrate that accurate nowcasting 

of AMOC in a future time window between 12 and 24 months 

are feasible. 

Past research demonstrated considerable variabilities in the 

AMOC, spanning spatially from the subtropics to the sub- 

polar regions, and temporally across time from daily, intra- 
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annual to interannual and decadal scales. The AMOC show- 
cases pronounced fluctuations across different timescales, 

and the variabilities can be as large as 100 % of its mean 
value on intra-annual and seasonal scales, whereas ranging 

between 10% − 30% on interannual to decadal scales12. In 

addition, the AMOC behavior also varies in different regions, 

e.g., it is largely dictated by high-frequency wind forces span- 

ning from sub-annual to interannual periods in the subtropical 

region. However, in the subpolar region, the variabilities pri- 

marily occur at lower frequencies on scales from interannual 

to decadal, where both wind and buoyancy forces come into 

play as significant influences13,14. 

The AMOC variabilities can be assessed through observa- 

tions, models and reanalyses, and proxy records. In particu- 

lar, observations or measurements provide a real-time win- 

dow into the AMOC dynamics. For example, the RAPID 

(Rapid Climate Change) monitoring program15, established 
across the Atlantic at 26◦N in 2004, uses an array of moor- 

ings to capture data related to the flow flux and temperature 

of the currents continuously. Based on the data, the AMOC 

is assessed by the combination of the strength of the ocean 

current through the strait, the near-surface Ekman transport 

from wind stress, and Gulf Stream transport from subma- 

rine cables16. Another program, The OSNAP (Overturning in 

the subpolar North Atlantic Program) focuses on the subpolar 

North Atlantic, aiming at capturing the intricate interactions 

among the currents, the atmosphere, and the cryosphere by 

stretching a line of observational instruments from Labrador 

to Scotland17. However, this program began in 2014, and due 

to its monthly timescale, there are currently not sufficient data 

points to evaluate the interannual or decadal variability. In 

addition to the RAPID and OSNAP programs, the MOVE 

(Meridional Overturning Variability Experiment) array, an- 
chored in the subtropical North Atlantic near 16◦N, provides 

crucial information about the AMOC variabilities in the upper 
to the deeper layers of the ocean. The positioning strategies in 

MOVE allow the dynamics of both warm, northward surface 

waters and the cold, southward deeper waters to be captured. 

While the observations from moorings are valuable datasets 

for analyzing the AMOC, there are issues such as missing 

data, noise, resolution and data point limitations. Comple- 

menting the real data analysis, models and reanalyses can be 

used to gain insights into the AMOC dynamics in terms of the 

structure of the ocean18–20. Such models can simulate the dy- 

namics of the ocean, atmosphere, and even the global climate 

system under different scenarios, which are particularly vital 

for analyzing and forecasting the AMOC changes in response 

to global warming or other large-scale disruptions. The third 

method is proxy records that serve as indirect indicators of the 

historical variabilities of the AMOC. These proxies, rooted 

in the mechanistic and statistical connections with AMOC, 

can leverage relationships discerned from models due to the 

scarcity of long-term observational data. One of the widely 

used proxies is derived from sea surface temperatures (SSTs) 

and subsurface temperatures10,21–23. 

Different available datasets measure physical quantities 

pertinent to the AMOC system on different timescales, e.g., 

intra-annual or interannual even decadal scales, in different 

regions of the North Atlantic. As a result, nowcasting or 

short-term prediction does not mean that the prediction hori- 

zon would or should be the same for different physical quan- 

tities. While methods were proposed in the past to predict 

AMOC changes10,24,25, the complex interplay of the physical 

variables and the vast datasets gathered demand a compre- 

hensive computational framework to address the nowcasting 

problem. Our idea is to exploit machine learning that has 

proven to be powerful for analyzing experimental and obser- 

vational datasets, uncovering hidden patterns, and making re- 

liable predictions26, e.g., in climate science27. Our convic- 

tion is that a neural network can be trained with the histor- 

ical data to learn the intricate dynamics of the AMOC and 

can then be used to forecast its future behavior, at least in 

short term. We exploit reservoir computing28–31, a class of 

recurrent neural networks32,33, which has been demonstrated 

recently being capable of accurate short-term prediction of 

the detailed dynamical evolution of nonlinear or even chaotic 

systems whose defining hallmark is sensitive dependence on 

initial conditions34–52. Here, we use the aforementioned four 

datasets: MOVE and RAPID (observational), AMOC fin- 

gerprint (proxy records), AMOC simulated fingerprint and 

CESM AMOC (synthetic) to demonstrate accurate and reli- 

able nowcasting of the AMOC dynamics in terms of the vari- 

abilities of the key underlying physical quantities within 12 

to 24 months. We also address a number of issues affecting 

the prediction performance. 

Our work has two unique features that go beyond the ex- 

isting works. First, no prior studies have utilized a model- 

free approach to short-term prediction of the AMOC. As de- 

scribed, traditional methods are typically based on highly 

simplified, phenomenological models that may not ade- 

quately describe the measurements or observations. Our 

methodology leverages a model-free approach to predict- 

ing nonlinear dynamics using reservoir computing. The 

adaptability and versatility of this recurrent neural-network 

machine-learning architecture make it well-suited for predict- 

ing the AMOC dynamics with real or simulated data sets. 

Differing from the traditional methods, our method requires 

no prior knowledge about the dynamics, rendering it broadly 

applicable to complex dynamical systems in situations where 

a model is unknown or too complicated to be constructed. 

Second, we conducted an extensive study with a focus on 

short-term predictions of the AMOC using both synthetic and 

real-world datasets, demonstrating the robustness and effec- 

tiveness of the proposed method. The datasets studied include 

real measurements of the AMOC (MOVE and RAPID), data 

generated by phenomenological models (Simulated AMOC 

fingerprint data and CESM data), and proxy records (AMOC 

fingerprint), showcasing predictions of different aspects of 

the AMOC. 

 

 
II. RESULTS 

 

The AMOC characterizes the movement of the water in 

the North Atlantic, where warm surface water is transported 

northward into high northern latitudes and becomes cold and 
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(b) 

(c) 

returns southward through the deep ocean after releasing heat 

into the atmosphere and sinking. The AMOC can have pro- 

found impacts on regional and global climate patterns, in- 

cluding the temperature and precipitation in the western Eu- 

rope, sea level along the east United States Coast, tropi- 

cal monsoons, and Atlantic hurricane activity. To under- 

stand the intricacies of the AMOC and its impact on the cli- 

mate, a variety of projects were set up to record and/or de- 

duce the temperatures, salinity, transports, fluxes, and so on. 

The generated datasets represent the available information for 

studying the variability, trends, and the associated phenom- 

ena of the AMOC. At the present, a large number of AMOC 

datasets are available. We choose the following datasets: the 

AMOC fingerprint, MOVE data, and RAPID array measure- 

ments, for the reason that they are relatively complete and 

provide sufficiently long time series for machine learning. 

Figure 1 shows the various geographic positions from which 

the AMOC measurements were performed. In addition to 

the three datasets, we use a stochastic differential equation to 

simulate the AMOC fingerprint for validating our machine- 

learning model. 

lar gyre (SG) region, as illustrated by the orange outline in 

Fig. 1, SST can characterize the strength of the AMOC21–23 

and therefore can act as an effective fingerprint of the AMOC. 

Figure 2(a) shows this preprocessed AMOC fingerprint for 

the period 1870-202010, where the original data was from 

the Hadley Centre Sea Ice and Sea Surface Temperature data 

set (HADISST)54. Here, the term “AMOC fingerprint” is 

defined10 as the SG anomaly minus twice the global mean 

anomaly so as to compensate for polar amplified global 

warming. More specifically, two factors need to be taken into 

account for compensating the SG anomaly: the seasonal cy- 

cle in the SST, which is governed by the surface radiation 

and is independent from the circulation, and the increasing 

trend in SST related to global warming. This requires that 

the global mean SST be taken away twice. The time interval 

between two adjacent data points in the AMOC fingerprint 

is one month. Altogether, the fingerprint dataset has 1812 

points. 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
FIG. 1: Illustration of AMOC measurement positions. The 

color map displays the sea surface temperature (SST) in 

January 2023. Three measurement arrays in the Atlantic 

Ocean are shown in the map: AMOC fingerprint, RAPID, 

and MOVE, from top to bottom as the orange contour, 

purple and green line segments, respectively. 

 

 

 
A. Data description and preprocessing 

 
1. AMOC fingerprint 

 

The AMOC has been continuously monitored since 2004 

using a combination of tools53, which seems to indicate a 

tendency for its strength to decline. However, to evaluate 

the trend and fluctuations, longer data sequences are neces- 

sary. Climate model simulations of the sea surface temper- 

ature (SST) suggested that, in the North Atlantic’s Subpo- 

FIG. 2: AMOC time series data. (a) AMOC fingerprint. (b) 

A representative segment of the simulated AMOC 

fingerprint time series from Eq. (1). (c) Transport time series 

of the MOVE dataset in units of Sv (106m3s−1). 

 

 

 

 
2. Simulated AMOC fingerprint data 

 

While real datasets are critical for detecting and predict- 

ing the AMOC dynamical trend, often they have limited time 

periods of observations, rendering difficult obtaining statisti- 

cally reliable results in some circumstances. In such a case, 

using simulated models to generate sufficient data can be use- 

ful for evaluating the capability of the proposed machine- 

learning prediction framework. 

Assume that the dynamics underlying the AMOC finger- 

print are in an equilibrium state (i.e., before a tipping point), 

the following one-dimensional stochastic differential equa- 

tion (SDE) has been used in the literature10 as an empirical 

AMOC fingerprint 

RAPID 

MOVE 
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J 

(a) 

(b) 

model: 
 

 
dX 

= −A(X − m)2 + λ + ξ, (1) 
dt 

where λ < 0 is a control or bifurcation parameter, which may 

cause the AMOC fingerprint to undergo a critical transition 
through a saddle-node bifurcation. The parameter m is de- 

fined as: m ≡ µ − |λ|/A, where µ is the stable fixed point 

and A is a parameter defining the time scale of the system. 

The noise term ξ is a Gaussian stochastic process injected 

into the dynamics at each time step, which has zero mean and 
variance σ2. In Ref.10, the parameter values of the empiri- 

cal SDE model were obtained through fitting with real data: 

m = −1.5, A = 0.93, σ = 0.01, and λ = −2.8. Figure 2(b) 
shows a representative segment of the simulated time series. 

 
3. MOVE 

 

At the present, the meridional overturning variability ex- 

periment (so-called MOVE) comprises two “geostrophic end- 

point moorings,” alongside a traditional current meter moor- 

ing on the slope. The primary objective of these installations 

was to gauge the transport variations across the section be- 

tween the Lesser Antilles (Guadeloupe) and the Mid-Atlantic 

Ridge55. The geostrophic transport can then be estimated ac- 

cording to the dynamic height and the bottom pressure vari- 

ations between the moorings. Figure 2(c) shows a represen- 

tative North Atlantic Deep Water (NADW) volume transport 

time series56, derived from the pressure gradients observed at 

the MOVE section endpoints and the continental slope trans- 

port obtained from the current meters on the western MOVE 

moorings. The NADW time series exhibits significant in- 

terannual fluctuations that the southward (negative) transport 

undergoes. Furthermore, the decadal-scale variability can be 

observed unequivocally in the evolution of the time series. 

The processed time series started in January 2000 and had 

been accessed until May 2018, with the time interval of one 

day. 

 
4. RAPID 

 

The RAPID program aims to continuously obtain the 

strength and variability of the AMOC, enabling the relation- 

ship with the climate patterns and ocean carbon sink to be 

determined on the interannual and decadal time scales15. The 
RAPID array is located at 26◦N, where the instruments are set 

across the Atlantic from Morocco to Florida, to measure the 

temperature, salinity, and current velocities from the surface 

to the floor of the ocean. By combining this array data with 

the observations from the Florida current and satellite-derived 

surface wind measurements, the overturning circulation can 

be calculated. Specifically, the AMOC data are obtained ac- 

cording to the combination of the velocity fields from three 

components: Florida Strait, Ekman, and density-driven trans- 

port16,57,58, as shown in Fig. 3. Denoted as the Gulf Stream, 

the Florida Straits transport is calculated and calibrated as the 

 

 

 

 

 

 

 

 

 

 

 

 
FIG. 3: Representative RAPID AMOC transport time series. 

Different colors indicate the AMOC (blue) and its 

components: the Florida Straits (green), the Ekman transport 

(orange), and the density-driven transport (purple). 

Transports are given in units of Sv (106m3s−1). 

 

induced voltage, which can be used as a continuous indicator 

of the strength of the ocean current through the strait. Ek- 

man transport is calculated from the wind stress acting on 

the ocean surface, which contributes to the largest variability 

in the AMOC. The density-driven transport denoted as Up- 

per Mid-Ocean, calculates the current velocities by measur- 

ing the vertical profiles of the seawater density at a number 

of different longitudes. The data starts from April 2004 to 

February 2022, with a 12-hour time interval between two ad- 

jacent points. 

 

 
5. CESM 

 

 

 

FIG. 4: Representative CESM transport time series. (a) 

Linearly increasing freshwater flux with time. (b) Simulated 

AMOC with CESM. 

 

The Community Earth System Model (CESM) was devel- 

oped to simulate global climate system behaviors59. It inte- 

grates various components of the Earth’s climate, including 
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I
t

 

the atmosphere, ocean, land, and sea ice to simulate complex 

interactions within the system. During the simulation, green- 

house gas concentrations, solar radiation, and aerosol levels 

are kept constant, while the primary forcing mechanism is the 

freshwater flux anomaly in the North Atlantic, between lati- 

tudes 20◦N and 50◦N, for generating the AMOC data. Specif- 

ically, the anomaly is a slowly linearly increasing function of 
time at the rate of 3 × 10−4 Sv per model year, as shown in 

Fig. 4(a), which describes the effects of the freshwater input 
from melting ice and increased precipitation. The generated 

data reveal variations in the AMOC strength under increasing 

freshwater forcing. Natural variability dominates the AMOC 

strength in the first 400 points, while a negative trend appears 
after t = 800 due to the increasing freshwater forcing. Fig- 

ure 4(b) presents a representative segment of the simulated 

AMOC data from the CESM. 

 

 
6. Data preprocessing 

 

The sampling rates of the different available datasets vary, 

e.g., from 12 hours to one year. Moreover, the AMOC fin- 

gerprint, its simulated time series, the MOVE data, and the 

CESM data are one-dimensional, but the RAPID data are 

four-dimensional. For all the simulated and real datasets, we 

use min-max normalization to preprocess the time series so 

that they are in the range [0,1]. For each dataset, we divide 

it into three segments for training (50%), validation (25%), 

and testing or prediction (25%), respectively. In particular, 

for training, both the input and target output are provided to 

determine the pertinent neural-network weights - all elements 

of the output matrix (open-loop reservoir computing). During 

the validation, input is still present but the true output is ab- 

sent (still open-loop operation but with a fixed output matrix). 

For testing (prediction), the output of the reservoir network is 

connected to the input to execute closed-loop operation. We 

perform multi-step predictions: at each time step, we predict 

Tp steps ahead. The following measure of root-mean-square 

errors is used to characterize the validation and testing per- 

formances: r
I Tp+i 

each time step, the trained reservoir computer generates Tp 
consecutive data points at once. The input is then updated 
using the real data, to prepare for the prediction at the next 
time step, and so on. For recursive prediction, at each time 
step, the output of the reservoir computer is fed back to the 

input, generating a closed-loop dynamical system capable of 

self evolution. The system evolves forward for Tp time steps, 

generating a Tp-step prediction. We present the results from 

recursive prediction here, while reporting these from direct 
prediction in Appendix. With respect to the four available 
datasets, the nowcasting results from the AMOC fingerprint, 
MOVE, and the CESM data are presented here, while those 

from simulated AMOC fingerprint and RAPID can be found 
in Appendix. 

 
1. Recursive prediction of AMOC fingerprint data 

 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIG. 5: Recursive prediction of AMOC fingerprint data. (a) 

The ground truth (blue), trained (orange) and predicted 

(green) AMOC fingerprint with the prediction horizon 
Tp = 24 months. (b) Training (orange) and prediction 

(green) errors. (c) Distribution of the prediction error. 

RMSE(y, yˆ) = 
1
 

Tp 

X 
[y(t) − yˆ(t)]2 (2) 

t=i 

 
For nowcasting of the AMOC fingerprint, we use reservoir 

neural networks of size n = 500. The hyperparameter val- 

where y(t) and yˆ(t) are the real and predicted signals, respec- 

tively. RMSEs can be obtained by taking the average over the 
whole validation or testing length (time interval). 

 

 
B. Results of recursive prediction 

 

The training of the reservoir neural network was done on 
two computers with RTX 4000 NVIDIA GPU using Python. 

There are two commonly used prediction methods: direct and 
recursive, both generating multiple-step predictions. In par- 

ticular, let Tp be the prediction horizon, i.e., the number of 

time steps of forward prediction. For direct prediction, at 

 

TABLE I: Optimal hyperparameter values for prediction 

with the four AMOC datasets 
 

Dataset α γ ρ p wb β 
 

Fingerprint 0.17 1.32 0.45 0.19 3.04 -5.30 

Simulated fingerprint 0.05 2.35 0.05 0.65 0.32 -2.30 

MOVE 0.95 0.67 1.74 0.50 1.65 -1.66 

RAPID 1.0 0.01 2.27 1.0 1.53 -3.84 

CESM 0.14 0.28 3.73 0.62 3.62 -1.70 

(b) 

(c) 
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FIG. 7: Recursive prediction of AMOC fingerprint data with 
95% confidence interval. The ground truth (blue), trained 

(orange) and predicted (green) AMOC fingerprint with the 

prediction horizon Tp = 24 months. The green shaded area 

denotes the 95% confidence interval calculated from 50 
independent sets of optimized hyperparameters. 

 

 

 

 

 

 

 

FIG. 6: Recursive prediction of AMOC fingerprint with 

different prediction horizons. (a, c, e) Reservoir-computing 

predicted fingerprint and the ground truth, for prediction 
horizons Tp = 12, 24, and 36 months, respectively. (b, d, f) 

The corresponding prediction errors. (g) Ensemble-averaged 

testing RMSE versus the prediction horizon Tp, where the 

error bars represent the standard deviation calculated from 
50 independent realizations. 

 

 

ues obtained through Bayesian optimization are displayed in 

Tab. I. For the available AMOC fingerprint time series that 

has 1812 monthly data points, we use 900 points for train- 

ing and the 300 points afterward for validation to obtain the 

hyperparameter values through Bayesian optimization. The 

testing or prediction phase corresponds to the time period as- 

sociated with validation segment and the remaining 612 data 

points (912 points in total), which are used to calculate the 

RMSEs. 

Figure 5 shows the nowcasting results with the prediction 
horizon Tp = 24 months, where the ground truth as well as 

the trained and predicted data are presented in Fig. 5(a), the 

corresponding RMSEs are shown in Fig. 5(b), and the distri- 

bution of the RMSEs in the testing phase is demonstrated in 

Fig. 5(c). Note that, for better visualization, the displayed 

prediction result in Fig. 5(a) is presented as the moving- 
window average of window size Tp = 24 time steps. It can 

be seen that the prediction result is faithful in that its moving- 

window average is fully embedded in the ground truth. In 

fact, the RMSE is relatively small: about 0.14. For com- 

parison, results for three different values of the prediction 
horizon are shown in Figs. 6(a-c) for Tp = 12, 24, and 36 

months, respectively, with the corresponding RMSEs shown 

in Figs. 6(d-f). The average RMSEs for the three cases are 

0.13, 0.14, and 0.16, respectively. In general, as the predic- 

tion horizon increases, the prediction deteriorates, as exem- 

plified in Fig. 6(g) - the result of a systematic computation 

of the RMSE versus the prediction horizon where, for each 

value of the prediction horizon, the average RMSE value over 

50 realizations is obtained by randomizing the training length 

between 880 and 900. 

To assess the reliability of the prediction, we incorpo- 

rate uncertainty quantification. This entails training multiple 

models, each with independently optimized sets of hyperpa- 

rameters, and aggregating the predictions to estimate the con- 

fidence intervals. Specifically, we optimize the hyperparam- 

eters with Bayesian optimization 50 times, generate an en- 
semble of predictions, and calculate the 95% prediction inter- 

val by approximately 1.96 standard deviations from the mean 

value of these predictions at each time step. Figure 7 illus- 
trates the recursive prediction of the AMOC fingerprint data 

along with the 95% confidence interval, denoted by the green 

shaded area. It can be seen that the confidence interval effec- 
tively captures the trend of the fingerprint data, demonstrating 

the reliability of the predictions. 

 

 
2. Recursive prediction of AMOC MOVE data 

 

For nowcasting of the MOVE data, the hyperparameter val- 

ues obtained through Bayesian optimization during validation 

are listed in Tab. I. The MOVE time series has 6710 points 

(i.e., 6710 days). The segments of the date for training and 

validation consist of 3000 and 1000 points, respectively. The 

validation segment together with the remaining (altogether 

3710 points) is for testing.  Figure 8(a) shows the trained 

(a) (b) 

(c) (d) 

(e) (f) 
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FIG. 8: Recursive prediction of MOVE dataset. (a) The 

ground truth (blue), training (orange) and predicted (green) 

MOVE dataset with the prediction horizon Tp = 40 days. 

(b) Training (orange) and prediction (green) errors. (c) 

Distribution of the prediction error. 

 

and predicted time series, together with the ground truth, 
for the prediction horizon Tp = 40 days. The correspond- 

ing RMSEs and their distribution are displayed in Figs. 8(b) 

and 8(c), respectively, with the ensemble-averaged RMSE of 
about 0.12. Figures 9(a-c) show the predicted MOVE time se- 

ries for Tp = 20, 40, and 100 days, respectively, with the cor- 

responding RMSEs shown in Figs. 9(d-f). Figure 9(g) shows 
the ensemble-averaged RMSE (together with the error bars) 

versus Tp. As Tp increases, the RMSE increases, rendering 

infeasible long-term prediction. Figure 10 shows the recur- 
sive prediction of the MOVE data along with the 95% confi- 

dence interval, as shaded by the green area. The confidence 

interval effectively captures the trend of the fingerprint data, 

demonstrating the reliability of the predictions. 

 

 
3. Recursive prediction of CESM data 

 

For nowcasting of the CESM data, the hyperparameter val- 

ues obtained through Bayesian optimization during valida- 

tion are listed in Tab. I. The CESM time series contains 1700 

points. The segments of the data for training and validation 

consist of 1000 and 300 points, respectively. The validation 

segment together with the remaining (altogether 700 points) 

is for testing. Figure 11(a) shows the trained and predicted 
time series, together with the ground truth, for the predic- 
tion horizon Tp = 24 days. The corresponding RMSEs and 

their distribution are displayed in Figs. 11(b) and 11(c), re- 

spectively, with the ensemble-averaged RMSE of about 0.06. 
Figures 12(a-c) show the predicted CESM time series for 

Tp = 12, 24, and 36 days, respectively, with the correspond- 

ing RMSEs shown in Figs. 12(d-f). Figure 12(g) shows the 
ensemble-averaged RMSE (together with the error bars) ver- 

sus Tp. As Tp increases, the RMSE increases, rendering in- 

 

 

 

FIG. 9: Recursive prediction MOVE dataset with varying 

prediction horizons. (a, c, e) Reservoir-computing predicted 

transport together with the ground truth for the prediction 
horizons Tp = 20, 40, and 100 days, respectively. (b, d, f) 

The corresponding RMSEs. (g) Ensemble-averaged testing 

RMSE versus Tp, with error bars being the standard 

deviation calculated from 50 independent simulations. 

 

FIG. 10: Recursive prediction of MOVE data with 95% 
confidence interval. The ground truth (blue), trained 

(orange) and predicted (green) AMOC fingerprint with the 

prediction horizon Tp = 40 months. The green shaded area 

denotes the 95% confidence interval calculated from 50 
independent sets of optimized hyperparameters. 

(a) 
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(c) 

(a) (b) 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) 

 

 
 

FIG. 11: Recursive prediction of CESM data. (a) The 
ground truth (blue), training (orange) and predicted (green) 

CESM dataset with the prediction horizon Tp = 24 points. 

(b) Training (orange) and prediction (green) errors. (c) 
Distribution of the prediction error. 

 

 

feasible long-term prediction. 

To characterize the uncertainties in the prediction results, 

we optimize the hyperparameters with Bayesian optimization 

50 times, generate an ensemble of predictions, and calcu- 
late the 95% prediction interval by approximately 1.96 stan- 

dard deviations from the mean value at each time step. Fig- 

ure 13 illustrates the recursive prediction of the CESM data 
along with the 95% confidence interval, denoted by the green 

shaded area. It can be seen that the confidence interval effec- 

tively captures the trend of the fingerprint data, demonstrating 

the reliability of the short-term prediction results. 

 

 
III. DISCUSSION 

 

In summary, we articulated a reservoir-computing based, 

model-free framework to predict the real-time dynami- 

cal evolution of some key physical variables characteriz- 

ing the AMOC and demonstrated the feasibility of ac- 

curate short-term prediction, using five different types of 

datasets: MOVE and RAPID (observational), AMOC fin- 

gerprint (proxy records), AMOC simulated fingerprint and 

CESM data (synthetic model). The two observational 

datasets and the proxy records are collected from different 

regions and describe variability on different timescales, even 

with distinct physical properties. Quantitatively, we found 

a monotonic increase of the prediction error with the hori- 

zon where the error tends to increase relatively more rapidly 

as the horizon increases, e.g., from 12 to 36 months. Em- 

pirically, we conclude that short-term prediction within 24 

months can be achieved, while any longer horizon would 

deem the prediction inaccurate and unreliable. Our machine- 

learning framework thus will not be able to address the ques- 

tion of any possible AMOC collapse in the future. Rather, 

 

 

 

FIG. 12: Recursive prediction CESM data with varying 

prediction horizons. (a,c,e) Reservoir-computing predicted 

transport together with the ground truth for the prediction 
horizons Tp = 12, 24, and 36 points, respectively. (b,d,f) 

The corresponding RMSEs. (g) Ensemble-averaged testing 

RMSE versus Tp, with error bars being the standard 

deviation calculated from 50 independent simulations. 

 

FIG. 13: Recursive prediction of CESM data with 95% 
confidence interval. The ground truth (blue), trained 

(orange) and predicted (green) AMOC fingerprint with the 

prediction horizon Tp = 24 months. The green shaded area 

denotes the 95% confidence interval calculated from 50 
independent sets of optimized hyperparameters. 
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the significance of the demonstrated achievable nowcasting of 

some key physical variables associated with the AMOC lies 

in the capability to detect any unusual trend or early warning 

for about 24 months ahead of time. This can provide a win- 

dow for devising control/mitigation strategies through policy 

making to reverse any adverse trend of the AMOC. 

Our general point of view is that long-term prediction of a 

possible collapse of the AMOC with the currently available 

data will remain to be a formidable challenge. While mathe- 

matical models of the AMOC with parameter values extracted 

from data suggested different collapse scenarios, including a 

fairly recent one predicting a potential collapse around the 

middle of the century based on one-dimensional stochastic 

differential equations10, the predictions are only suggestive. 

In view of the grave consequence of AMOC weakening and a 

potential collapse, even the speculations cannot be afforded to 

be ignored. The dynamical system underlying the AMOC is 

vastly complex and highly nonlinear with sensitivity on initial 

conditions, so predicting the state evolution of this dynamical 

system in the long run is fundamentally ruled out. It may be 

argued, however, that an AMOC collapse is a phenomenon 

of critical or tipping transition, thereby requiring no detailed 

knowledge about the state evolution. 

At the present, there are two main approaches to pre- 

dicting future critical transitions in nonlinear dynamical sys- 

tems. The first is based on finding the system equations from 

data60,61. A more recent approach62–71 was based on sparse 

optimization. If the accurate equations governing the un- 

derlying system can be found, when a bifurcation param- 

eter changes with time, a possible collapse of the system 

can be assessed. However, the applicability of the sparse 

optimization approach is limited to systems with a simple 

or “sparse” equation structure62,63. The second approach is 

based on machine learning, and it has been demonstrated that 

reservoir computing can be exploited to predict critical tran- 

sitions42,45,48. An advantage of this approach is that, in prin- 

ciple, it can be applied to any system, regardless of the under- 

lying mathematical structure of the governing equations. The 

disadvantage is that the amount of data required for training 

can be quite demanding. 

The focus of this work is on the short-term prediction of the 

AMOC using machine learning. Given the importance of the 

AMOC to the global climate, predicting the AMOC’s behav- 

ior even in short term is important and of considerable inter- 

est. However, the complexity of the dynamical system under- 

lying the AMOC makes accurate predictions challenging. In 

response to the challenges, we propose a model-free approach 

to short-term AMOC prediction. The proposed method aims 

to estimate the AMOC dynamics effectively into the near fu- 

ture, potentially providing early warning signals that can in- 

form policy-making and control strategies. With respect to 

the inherent uncertainties of any long-term predictions, short- 

term predictions can be more accurate and reliable to provide 

actionable insights. 

A significant challenge in AMOC research is data insuf- 

ficiency and inconsistency, particularly with observational 

records such as those from RAPID or OSNAP. Machine- 

learning methods generally require large amounts of high- 

quality data for effective training, creating a substantial hur- 

dle given the limited and often inconsistent AMOC data. 

Proxy records such as those derived from ocean sediments 

or sea ice may provide historical data to benefit prediction. 

Short-term AMOC predictions may also be improved by 

overcoming data insufficiency through the method of trans- 

fer learning. The main idea involves utilizing synthetic data 

generated from mathematical models to initially train the neu- 

ral networks and then, fine-tune the well-trained model using 

a limited number of real-world measurements. By so doing, 

the model may be capable of highly accurate prediction of the 

short-term dynamics of the AMOC, even with limited mea- 

surement data. 

Long-term prediction of the AMOC is currently a signifi- 

cant challenge, particularly concerning the probability of its 

collapse — a critical or tipping transition event. In non- 

linear and complex dynamics, at the present there are two 

possible approaches to predicting future critical transitions: 

finding the governing equations and machine learning. The 

first approach is effective if the underlying system equations 

meet the sparsity requirement but it is impractical for the 

AMOC. The machine-learning approach, while promising, 

faces its own challenges. For example, for long-term predic- 

tion, machine-learning models such as reservoir computing 

require knowledge about some key system parameters that 

vary over time. To determine such time-varying parameters 

for the AMOC from data is currently an open problem. A 

plausible speculation is that global climate change may be the 

main driving force behind a potential AMOC collapse, but the 

available climate data pertinent to the AMOC are quite lim- 

ited (within the past 100 years or so) and are far from suffi- 

cient for extrapolating how some key parameters may change 

into the future. Although machine-learning models can be 

trained with limited measurement data, their effectiveness is 

hampered by the lack of detailed knowledge about how these 

parameters vary over time. Without this information, these 

models cannot reliably predict a potential future collapse of 

the AMOC. 

 

 
IV. METHOD 

 
A.  Reservoir computing 

 

The core of reservoir computing is a recurrent neural net- 

work (RNN) with a non-Markovian type of dynamics in a 

single hidden layer. Differing from the conventional RNNs 

where the network link weights are trained by a gradient- 

based method, in reservoir computing the input matrix ele- 

ments and the internal weights of the RNN are randomly ini- 

tialized and remain fixed during training: all required to be 

trained is the weights of the output matrix that can be deter- 

mined by a standard linear regression. This unique character 

makes the training process computationally efficient, while 

capturing the information or dynamical climate of the target 

dynamical system and embedding it into the dynamics of the 

hidden-layer neural network28–31,72. 
Figure 14 shows the architecture of reservoir computing. 
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Input layer Hidden layer Output layer 

𝒖(𝒕) 𝒓(𝒕) 𝒐(𝒕) 

 

FIG. 14: Architecture of reservoir computing. A reservoir 

computer has three layers: the input, hidden, and the output 

layers, characterized by the matrices Win, A, and Wout, 

respectively. The input, hidden state, and the output vectors 

are u(t), r(t) and o(t), respectively. 

 

The low-dimensional input signal u(t) is mapped by the in- 

put matrix Win into the high-dimensional internal state vector 
r(t) in the hidden layer, which is updated step by step accord- 

ing to the following rule: 

r(t + 1) = (1 − α) · r(t)+ (3) 

α · tanh [A · r(t) + Win · u(t) + Wbias] , 

where α is the leakage parameter that determines the memory 
loss after each time step, the activation is achieved through 

a hyperbolic tangent function (tanh), the adjacency matrix 

A gives the links and connection structure of the reservoir 
network, and the components of the bias vector Wbias are 
an equal constant wb, whose role is to shift the values in- 
side the activation function from zero. The input signal of 

whole training length [I(1), I(2), · · · , I(t)] is concatenated 
into a matrix U and the recorded reservoir dynamical states 

[r(2), r(3), · · · , r(t + 1)] can be concatenated into a matrix 
R. The output matrix is determined by using Tikhonov regu- 
larization73 as 

Wout = U · R′⊺ · (R′ · R′⊺ + βI)−1, (4) 

where R′ = fs(R) is modified from R such that the elements 

in all its even rows are squared to minimize overfitting34, R′⊺ 
is the transpose of R′, β is the regularization coefficient, and 
I is the identity matrix. The output is 

o(t) = Wout · r(t). (5) 

The reservoir-computing architecture possesses a small num- 
ber of hyperparameters: the leakage parameter α, the scal- 

ing factor γ of the input matrix, the spectral radius ρ and 

link probability p of the reservoir network, the bias con- 

stant wb of the bias matrix, and the regularization coeffi- 

cient β. The values of these hyperparameters can have a 

significant effect on the performance, so it is necessary to 
find their optimal values, which is done commonly through 
Bayesian optimization by using74, e.g., the algorithm from 
Python (bayesian-optimization)75. 

DATA AND CODE AVAILABILITY 

Data and codes are available from GitHub: 

https://github.com/Zheng-Meng/AMOC 
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Appendix A: Simulated AMOC fingerprint 

 

The simulated AMOC fingerprint dataset has 105 data 

points. For nowcasting with this dataset, we set the size of the 
reservoir network to be n = 500. The hyperparameter values 

obtained through Bayesian optimization are listed in Tab. I in 
the main text. The training length is set to be 5,000, the length 

of the validation time series (after the training data) is 3,000, 

and the testing data length is 5,600 (including the validation 

data). 

Figure 15 shows the nowcasting results with the prediction 
horizon Tp = 40, where Fig. 15(a) displays the ground truth 

as well as the trained and predicted time series. The corre- 

sponding training and testing RMSEs are shown in Fig. 15(b), 

and the distribution of the testing RMSEs is presented in 

Fig. 15(c).  The ensemble-averaged RMSE is about 0.10. 
Three additional examples are shown in Fig. 16 for Tp = 20, 

40, and 100, respectively, where the left column shows the 

predicted AMOC fingerprint time series and the ground truth 

with the corresponding RMSEs shown in the right row. The 

averaged RMSE for the three cases are 0.08, 0.1, and 0.11, re- 

spectively. Figure 16(g) shows the testing RMSE versus the 

prediction horizon, where the mean and the standard devia- 

tion are obtained through an ensemble of simulated AMOC 

fingerprint data. As the prediction horizon increases, the 

RMSE increases. 
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Appendix B: RAPID 

 

The total length of the RAPID time series is 12183 (about 

6000 days). The training, validation, and testing (including 

validation) data segments have 6000, 3000, and 6183 points, 
respectively. For nowcasting with the RAPIC dataset, we set 
the size of the reservoir network to be n = 500. The hyper- 

parameter values obtained through Bayesian optimization are 

listed in Tab. I in the main text. The RAPID dataset is four- 

dimensional, so the input and output of the reservoir computer 

are four-dimensional. 

Figure 17 shows the nowcasting results for the RAPID 
dataset, where the prediction horizon is Tp = 40 (20 days). 

In particular, Figs. 17(a,c,e,g) display the trained and pre- 

dicted time series as well as the ground truth for MOC, Up- 

per Mid-Ocean, Gulf Stream, and Ekman, respectively, with 

the corresponding RMSEs shown in Figs. 17(b,d,f,h). The 

ensemble-averaged RMSEs associated with the four dimen- 

sions are about 0.09, 0.10, 0.12, and 0.09, respectively, sug- 

gesting accurate short-term prediction. Several examples of 
predicted RAPID time series with different prediction hori- 
zons are shown in Fig. 18, for Tp = 20, 40, and 70 (10, 20, 

and 70 days), respectively. Each column of Fig. 18 represents 

the prediction results and the corresponding errors. The av- 
eraged RMSEs for MOC for Tp = 20, 40, 70 are 0.06, 0.09, 

and 0.10, respectively. The averaged RMSEs for the Upper 
Mid-Ocean for Tp = 20, 40, 70 are 0.08, 0.10, and 0.13, 

respectively. The averaged RMSEs for the Gulf Stream for 
Tp = 20, 40, 70 are 0.09, 0.12, and 0.14, respectively. The 

averaged RMSEs for the Ekman for Tp = 20, 40, 70 are 0.07, 
0.09, and 0.09, respectively. Figure 19 shows the RMSE ver- 
sus the prediction horizon, where a shorter testing length of 

5000 points is used due to the large values of Tp in the range. 

In addition, to validate the robustness of the prediction re- 
sults, the training length was randomly set between 5900 and 
6000. The RMSE is small for short prediction horizon, but it 
increases with the prediction horizon. 

 

 
Appendix C: Comparison of two machine-learning 
prediction methods 

 

There are two common methods in time-series multi-step 
forecasting with machine learning: recursive and direct pre- 
diction, both with their own unique advantages and con- 
straints. The training process of the two methods is the same, 

and the difference lies in the prediction phase. In particular, as 
shown in Fig. 20(a), the recursive method, also known as the 
closed-loop iteration method, predicts one step ahead at each 
time step and then feeds the predicted value back into the 

machine-learning model as the input for the next time step. 
This procedure is iterated until a desired number of steps, 

i.e., the prediction horizon Tp, is reached. During the pre- 

diction, the hidden state of the reservoir network is recorded 
since the current and previous real data are needed at the be- 

ginning of each prediction step. For example, at time step t, 

the time series information and the hidden state r at 0, 1, . . . , t 
are needed to predict the next Tp time steps iteratively. The 

state vector r is updated until rt+Tp time steps are reached. 

To make the prediction at time step t + 1, the hidden state 

rt+1 is needed (not rt+Tp ). The recursive prediction method 
has the advantage of train easiness and flexibility, but error 
accumulation during the iteration is an issue. In comparison, 

in direct prediction, the reservoir machine is trained to pre- 

dict Tp time steps ahead, without the iterative feedback loop 

employed in recursive prediction. In the testing phase, the di- 

rect method predicts Tp at once, as illustrated in Fig. 20(b). 

Direct prediction has the advantage of reduced error propaga- 

tion, but it is susceptible to overfitting, especially with limited 
data. 

For the four AMOC datasets, while we have presented the 

prediction results from the recursive prediction method, the 
direct prediction method performs better for two datasets. 

Figures 21(a) and 21(b) show the ensemble-averaged testing 

RMSE versus the prediction horizon Tp of the AMOC finger- 

print and MOVE dataset, respectively. For these two datasets, 
the recursive method outperforms the direct method. The cor- 

responding results for the simulated AMOC fingerprint and 
RAPID datasets are shown in Figs. 21(c) and 21(d), respec- 
tively. For these two datasets, the direct method outperforms 
the recursive method. 

 

 
Appendix D: Effects of low-pass filtering 

 

An issue with the datasets is noise, which can be removed 
to certain extent by low-pass filtering. Will partial noise re- 

moval affect the machine-learning performance of short-term 
prediction of the AMOC? To address this question, we em- 
ploy a moving average method by using a rolling window of 

size Lw to smooth the training data segment. The validation 

and testing data remain in their raw, unfiltered state. Repre- 
sentative results are shown in Fig. 22. It can be seen that, for 
the four datasets, low-pass filtering does not lead to any ap- 

parent performance improvement. In fact, the RMSEs tend 

to increase with the window width Lw. A plausible explana- 

tion is that the noise-filtering procedure distorted the similar- 
ity between the training data and the real noisy data, leading 

to information loss and making it harder for the machine to 
learn the trend of the AMOC. 
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FIG. 15: Nowcasting of simulated AMOC fingerprint data. 

(a) The ground truth (blue), trained (orange) and predicted 
(green) time series with the prediction horizon Tp = 40. (b) 

RMSEs with the trained (orange) and predicted (green) data. 

(c) Distribution of the predicted error. 
 

 

 

(a) (b) 

 
 
 
 
 
 

 
FIG. 17: Nowcasting with RAPID dataset. (a, c, e, g) The 

ground truth (blue), trained (orange) and predicted (green) 

MOC, Upper Mid-Ocean, Gulf Stream, and Ekman, 
respectively, with the prediction horizon Tp = 40 (i.e., 20 

days). (b, d, f, h) The corresponding trained (orange) and 

predicted (green) errors. 

 

 

 

 

 

 

 

 

 

 

 

FIG. 16: Examples of nowcasting of simulated AMOC 

fingerprint with different prediction horizons. (a, c, e) 

Reservoir-computing predicted fingerprint together with the 
ground truth, for prediction horizons Tp = 20, Tp = 40, 

Tp = 100, respectively. (b, d, f) The corresponding 
prediction errors. (g) Ensemble-averaged testing RMSE 

versus the prediction horizon Tp, with the standard deviation 

calculated from 50 independent simulations. 
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FIG. 18: Nowcasting of RAPID dataset with different prediction horizons. The three columns correspond to prediction horizon 
Tp = 20, Tp = 40, and Tp = 100 (10, 20, and 70 days), respectively. The first, third, fifth, and seventh rows give the four 

predicted quantities associated with the RAPID data and the ground truth, with the corresponding RMSEs shown in the second, 

fourth, sixth, and eighth rows. T
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FIG. 19: Quantifying short-term prediction of the RAPID 

dataset through the RMSE. Shown is the ensemble-averaged 

testing RMSE versus the prediction horizon Tp, with the 

standard deviations calculated from 50 independent 

realizations. 

FIG. 21: Errors with recursive prediction and direct 

prediction. (a-d) Ensemble-averaged testing RMSE versus 

the prediction horizon Tp for AMOC fingerprint, MOVE, 

simulated AMOC fingerprint, and RAPID dataset, 
respectively. The error bars are obtained from 50 

independent realizations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 
 
 
 
 
 
 
 
 
 
 
 

 
(b) 

 

 

𝑇& 
 
 
 
 

 

FIG. 20: Illustration of two short-term prediction methods: 

recursive and direct prediction. 

FIG. 22: Effect of low-pass filtering on the performance of 

short-term prediction. (a-d) Ensemble-averaged testing 

RMSE versus the moving-window size LW for AMOC 

fingerprint, MOVE, simulated AMOC fingerprint, and 
RAPID dataset, respectively. Data-smoothing or low-pass 

filtering does not lead to any apparent performance 
improvement. 
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