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The Atlantic Meridional Overturning Circulation (AMOC) is a significant component of the global ocean system,
which has so far ensured a relatively warm climate for the North Atlantic and mild conditions in regions such as
Western Europe. The AMOC is also critical for the global climate. The complexity of the dynamical system underlying
the AMOC is so vast that a long-term assessment of the potential risk of AMOC collapse is extremely challenging.
However, short-term prediction can lead to accurate estimates of the dynamical state of the AMOC and possibly to
early warning signals for guiding policy making and control strategies towards preventing AMOC collapse in the long
term. We develop a model-free, machine-learning framework to predict the AMOC dynamical state in the short term
by employing four datasets: MOVE and RAPID (observational), AMOC fingerprint (proxy records), AMOC simulated
fingerprint and CESM AMOC (synthetic). We demonstrate the power of our framework in predicting the variability of
the AMOC within the maximum prediction horizon of 12 or 24 months. A number of issues affecting the prediction

performance are investigated.

. INTRODUCTION

The Atlantic Meridional Overturning Circulation (AMOC)
is a significant component of the global ocean system, trans-
porting warmer, upper waters in the Atlantic northwards
and colder, deeper waters southwards'. More specifically,
the AMOC is defined as the zonally and vertically inte-
grated northward volume transport in terms of Sverdrups (Sv,
106m3s71), i.e., as a function of latitude and depth’. The
AMOC is the main reason that the climate of the North At-
lantic is able to remain relatively warm, facilitating mild and
livable conditions in regions such as Western Europe®. From
the perspective of global climate system, the AMOC gov-
erns the frequency of Atlantic hurricanes and storms, tropical
monsoons, and even the global carbon equilibrium*®. Alarm-
ingly, studies of the subpolar AMOC suggested strong evi-
dence of the weakening of the AMOC from the mid-1990s%7.
In recent years, measurements and model studies revealed
considerable variabilities in the AMOC on time scales rang-
ing from daily to multi-decadal'. There are multiple reasons
for the variabilities: carbon emissions from human activi-
ties®? as well as the internal interactions within the climate
systems and external forcing such as volcanic eruptions and
solar radiation. A fairly recent modeling study suggested,
shockingly, that the AMOC may be currently on the verge of
a potential collapse!®, which can cause a significant tipping
phenomenon in the Earth’s climate system'!.

Due to the global climate change and its tendency to con-
tinue to accelerate, the likelihood of AMOC collapse is in-
creasing. However, due to the vast complexity of the non-
linear dynamical system underlying the AMOC, long-term
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prediction of the AMOC, i.e., to forecast when such a col-
lapse might occur with certain level of confidence, is a daunt-
ing challenge. Even if a method is developed to predict that
the collapse will occur in certain time period in the future, it
would not provide specific criteria for devising countermea-
sures that should be implemented now to prevent the collapse
in the future, particularly because the physical system under-
lying the AMOC is extremely complex and highly nonlinear,
and subject to various stochastic forcing. Our point of view is
that nowcasting - a term we use to coin short-term prediction
of the dynamical behaviors of the AMOC, is also important
and pertinent. In particular, we focus on the prediction hori-
zon of one to two years and ask whether the detailed evolu-
tion of some key physical variables characterizing the AMOC
can be accurately predicted based on the available observa-
tional data, modeling, and fingerprints (proxy records) of the
AMOC. An advantage of nowecasting is that the presently
available observations can be used to update the forecasting
in a continuous manner, thereby guaranteeing the prediction
accuracy. This is in fact an urgent problem, as successful and
reliable nowcasting of the AMOC dynamics can provide a
detailed and comprehensive picture of the AMOC evolution,
e.g., whether it has deviated from the normal course. The
ability to accurately assess the AMOC dynamics in the near
future through reliable nowcasting can potentially lead to the
discovery of critical early warning signals, based on which ef-
fective policy change and control strategies can be devised to
reverse any harmful deviations of the dynamical evolution of
the AMOC. The purpose of this paper is to present a machine-
learning framework to demonstrate that accurate nowcasting
of AMOC in a future time window between 12 and 24 months
are feasible.

Past research demonstrated considerable variabilities in the
AMOC, spanning spatially from the subtropics to the sub-
polar regions, and temporally across time from daily, intra-
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annual to interannual and decadal scales. The AMOC show-
cases pronounced fluctuations across different timescales,
and the variabilities can be as large as 100 % of its mean
value on intra-annual and seasonal scales, whereas ranging
between 10% — 30% on interannual to decadal scales'?. In
addition, the AMOC behavior also varies in different regions,
e.g., it is largely dictated by high-frequency wind forces span-
ning from sub-annual to interannual periods in the subtropical
region. However, in the subpolar region, the variabilities pri-
marily occur at lower frequencies on scales from interannual
to decadal, where both wind and buoyancy forces come into
play as significant influences >4,

The AMOC variabilities can be assessed through observa-
tions, models and reanalyses, and proxy records. In particu-
lar, observations or measurements provide a real-time win-
dow into the AMOC dynamics. For example, the RAPID
(Rapid Climate Change) monitoring program'®, established
across the Atlantic at 26°N in 2004, uses an array of moor-
ings to capture data related to the flow flux and temperature
of the currents continuously. Based on the data, the AMOC
is assessed by the combination of the strength of the ocean
current through the strait, the near-surface Ekman transport
from wind stress, and Gulf Stream transport from subma-
rine cables'®. Another program, The OSNAP (Overturning in
the subpolar North Atlantic Program) focuses on the subpolar
North Atlantic, aiming at capturing the intricate interactions
among the currents, the atmosphere, and the cryosphere by
stretching a line of observational instruments from Labrador
to Scotland'’. However, this program began in 2014, and due
to its monthly timescale, there are currently not sufficient data
points to evaluate the interannual or decadal variability. In
addition to the RAPID and OSNAP programs, the MOVE
(Meridional Overturning Variability Experiment) array, an-
chored in the subtropical North Atlantic near 16°N, provides
crucial information about the AMOC variabilities in the upper
to the deeper layers of the ocean. The positioning strategies in
MOVE allow the dynamics of both warm, northward surface
waters and the cold, southward deeper waters to be captured.
While the observations from moorings are valuable datasets
for analyzing the AMOC, there are issues such as missing
data, noise, resolution and data point limitations. Comple-
menting the real data analysis, models and reanalyses can be
used to gain insights into the AMOC dynamics in terms of the
structure of the ocean'® . Such models can simulate the dy-
namics of the ocean, atmosphere, and even the global climate
system under different scenarios, which are particularly vital
for analyzing and forecasting the AMOC changes in response
to global warming or other large-scale disruptions. The third
method is proxy records that serve as indirect indicators of the
historical variabilities of the AMOC. These proxies, rooted
in the mechanistic and statistical connections with AMOC,
can leverage relationships discerned from models due to the
scarcity of long-term observational data. One of the widely
used proxies is derived from sea surface temperatures (SSTs)
and subsurface temperatures'®2!-23,

Different available datasets measure physical quantities
pertinent to the AMOC system on different timescales, e.g.,
intra-annual or interannual even decadal scales, in different

regions of the North Atlantic. As a result, nowcasting or
short-term prediction does not mean that the prediction hori-
zon would or should be the same for different physical quan-
tities. While methods were proposed in the past to predict
AMOC changes!®*%, the complex interplay of the physical
variables and the vast datasets gathered demand a compre-
hensive computational framework to address the nowcasting
problem. Our idea is to exploit machine learning that has
proven to be powerful for analyzing experimental and obser-
vational datasets, uncovering hidden patterns, and making re-
liable predictions®, e.g., in climate science?’. Our convic-
tion is that a neural network can be trained with the histor-
ical data to learn the intricate dynamics of the AMOC and
can then be used to forecast its future behavior, at least in
short term. We exploit reservoir computing®®3!, a class of
recurrent neural networks®>33, which has been demonstrated
recently being capable of accurate short-term prediction of
the detailed dynamical evolution of nonlinear or even chaotic
systems whose defining hallmark is sensitive dependence on
initial conditions**2. Here, we use the aforementioned four
datasets: MOVE and RAPID (observational), AMOC fin-
gerprint (proxy records), AMOC simulated fingerprint and
CESM AMOC (synthetic) to demonstrate accurate and reli-
able nowcasting of the AMOC dynamics in terms of the vari-
abilities of the key underlying physical quantities within 12
to 24 months. We also address a number of issues affecting
the prediction performance.

Our work has two unique features that go beyond the ex-
isting works. First, no prior studies have utilized a model-
free approach to short-term prediction of the AMOC. As de-
scribed, traditional methods are typically based on highly
simplified, phenomenological models that may not ade-
quately describe the measurements or observations. Our
methodology leverages a model-free approach to predict-
ing nonlinear dynamics using reservoir computing. The
adaptability and versatility of this recurrent neural-network
machine-learning architecture make it well-suited for predict-
ing the AMOC dynamics with real or simulated data sets.
Differing from the traditional methods, our method requires
no prior knowledge about the dynamics, rendering it broadly
applicable to complex dynamical systems in situations where
a model is unknown or too complicated to be constructed.
Second, we conducted an extensive study with a focus on
short-term predictions of the AMOC using both synthetic and
real-world datasets, demonstrating the robustness and effec-
tiveness of the proposed method. The datasets studied include
real measurements of the AMOC (MOVE and RAPID), data
generated by phenomenological models (Simulated AMOC
fingerprint data and CESM data), and proxy records (AMOC
fingerprint), showcasing predictions of different aspects of
the AMOC.

Il. RESULTS

The AMOC characterizes the movement of the water in
the North Atlantic, where warm surface water is transported
northward into high northern latitudes and becomes cold and
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returns southward through the deep ocean after releasing heat
into the atmosphere and sinking. The AMOC can have pro-
found impacts on regional and global climate patterns, in-
cluding the temperature and precipitation in the western Eu-
rope, sea level along the east United States Coast, tropi-
cal monsoons, and Atlantic hurricane activity. To under-
stand the intricacies of the AMOC and its impact on the cli-
mate, a variety of projects were set up to record and/or de-
duce the temperatures, salinity, transports, fluxes, and so on.
The generated datasets represent the available information for
studying the variability, trends, and the associated phenom-
ena of the AMOC. At the present, a large number of AMOC
datasets are available. We choose the following datasets: the
AMOC fingerprint, MOVE data, and RAPID array measure-
ments, for the reason that they are relatively complete and
provide sufficiently long time series for machine learning.
Figure 1 shows the various geographic positions from which
the AMOC measurements were performed. In addition to
the three datasets, we use a stochastic differential equation to
simulate the AMOC fingerprint for validating our machine-
learning model.
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FIG. 1: Illustration of AMOC measurement positions. The
color map displays the sea surface temperature (SST) in
January 2023. Three measurement arrays in the Atlantic

Ocean are shown in the map: AMOC fingerprint, RAPID,

and MOVE, from top to bottom as the orange contour,
purple and green line segments, respectively.

A. Data description and preprocessing
1. AMOC fingerprint

The AMOC has been continuously monitored since 2004
using a combination of tools*, which seems to indicate a
tendency for its strength to decline. However, to evaluate
the trend and fluctuations, longer data sequences are neces-
sary. Climate model simulations of the sea surface temper-
ature (SST) suggested that, in the North Atlantic’s Subpo-

lar gyre (SG) region, as illustrated by the orange outline in
Fig. 1, SST can characterize the strength of the AMOC?!-23
and therefore can act as an effective fingerprint of the AMOC.
Figure 2(a) shows this preprocessed AMOC fingerprint for
the period 1870-2020'°, where the original data was from
the Hadley Centre Sea Ice and Sea Surface Temperature data
set (HADISST)*. Here, the term “AMOC fingerprint” is
defined'® as the SG anomaly minus twice the global mean
anomaly so as to compensate for polar amplified global
warming. More specifically, two factors need to be taken into
account for compensating the SG anomaly: the seasonal cy-
cle in the SST, which is governed by the surface radiation
and is independent from the circulation, and the increasing
trend in SST related to global warming. This requires that
the global mean SST be taken away twice. The time interval
between two adjacent data points in the AMOC fingerprint
is one month. Altogether, the fingerprint dataset has 1812
points.
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FIG. 2: AMOC time series data. (a) AMOC fingerprint. (b)
A representative segment of the simulated AMOC
fingerprint time series from Eq. (1). (¢) Transport time series

of the MOVE dataset in units of Sv (10°m3s71).

2. Simulated AMOC fingerprint data

While real datasets are critical for detecting and predict-
ing the AMOC dynamical trend, often they have limited time
periods of observations, rendering difficult obtaining statisti-
cally reliable results in some circumstances. In such a case,
using simulated models to generate sufficient data can be use-
ful for evaluating the capability of the proposed machine-
learning prediction framework.

Assume that the dynamics underlying the AMOC finger-
print are in an equilibrium state (i.e., before a tipping point),
the following one-dimensional stochastic differential equa-
tion (SDE) has been used in the literature'” as an empirical
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model:

dxX

dt
where A < 0 is a control or bifurcation parameter, which may
cause the AMOC fingerprint to undergo a critical transition
through a saddle-noge bifurcation. The parameter m is de-
fined as: m = u — |A|/A, where u is the stable fixed point
and A is a parameter defining the time scale of the system.
The noise term ¢ is a Gaussian stochastic process injected
into the dynamics at each time step, which has zero mean and
variance 2. In Ref.!°, the parameter values of the empiri-
cal SDE model were obtained through fitting with real data:
m=-15,A=0.93, 0 = 0.01, and A = —2.8. Figure 2(b)
shows a representative segment of the simulated time series.

—-AX-m2+A+¢§ (1)

3. MOVE

At the present, the meridional overturning variability ex-
periment (so-called MOVE) comprises two “geostrophic end-
point moorings,” alongside a traditional current meter moor-
ing on the slope. The primary objective of these installations
was to gauge the transport variations across the section be-
tween the Lesser Antilles (Guadeloupe) and the Mid-Atlantic
Ridge®. The geostrophic transport can then be estimated ac-
cording to the dynamic height and the bottom pressure vari-
ations between the moorings. Figure 2(c) shows a represen-
tative North Atlantic Deep Water NADW) volume transport
time series®®, derived from the pressure gradients observed at
the MOVE section endpoints and the continental slope trans-
port obtained from the current meters on the western MOVE
moorings. The NADW time series exhibits significant in-
terannual fluctuations that the southward (negative) transport
undergoes. Furthermore, the decadal-scale variability can be
observed unequivocally in the evolution of the time series.
The processed time series started in January 2000 and had
been accessed until May 2018, with the time interval of one
day.

4. RAPID

The RAPID program aims to continuously obtain the
strength and variability of the AMOC, enabling the relation-
ship with the climate patterns and ocean carbon sink to be
determined on the interannual and decadal time scales'>. The
RAPID array is located at 26°N, where the instruments are set
across the Atlantic from Morocco to Florida, to measure the
temperature, salinity, and current velocities from the surface
to the floor of the ocean. By combining this array data with
the observations from the Florida current and satellite-derived
surface wind measurements, the overturning circulation can
be calculated. Specifically, the AMOC data are obtained ac-
cording to the combination of the velocity fields from three
components: Florida Strait, Ekman, and density-driven trans-
port!®3738 "as shown in Fig. 3. Denoted as the Gulf Stream,
the Florida Straits transport is calculated and calibrated as the
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FIG. 3: Representative RAPID AMOC transport time series.
Different colors indicate the AMOC (blue) and its
components: the Florida Straits (green), the Ekman transport
(orange), and the density-driven transport (purple).

Transports are given in units of Sv (106m3s™1).

induced voltage, which can be used as a continuous indicator
of the strength of the ocean current through the strait. Ek-
man transport is calculated from the wind stress acting on
the ocean surface, which contributes to the largest variability
in the AMOC. The density-driven transport denoted as Up-
per Mid-Ocean, calculates the current velocities by measur-
ing the vertical profiles of the seawater density at a number
of different longitudes. The data starts from April 2004 to
February 2022, with a 12-hour time interval between two ad-
jacent points.

5. CESM
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FIG. 4: Representative CESM transport time series. (a)
Linearly increasing freshwater flux with time. (b) Simulated
AMOC with CESM.

The Community Earth System Model (CESM) was devel-
oped to simulate global climate system behaviors®. It inte-
grates various components of the Earth’s climate, including
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the atmosphere, ocean, land, and sea ice to simulate complex
interactions within the system. During the simulation, green-
house gas concentrations, solar radiation, and aerosol levels
are kept constant, while the primary forcing mechanism is the
freshwater flux anomaly in the North Atlantic, between lati-

tudes 20°N and 50°N, for generating the AMOC data. Specif-
ically, the anomaly is a slowly linearly increasing function of
time at the rate of 3 x 10™* Sv per model year, as shown in
Fig. 4(a), which describes the effects of the freshwater input

from melting ice and increased precipitation. The generated
data reveal variations in the AMOC strength under increasing
freshwater forcing. Natural variability dominates the AMOC
strength in the first 400 points, while a negative trend appears

after t = 800 due to the increasing freshwater forcing. Fig-
ure 4(b) presents a representative segment of the simulated

AMOC data from the CESM.

6. Data preprocessing

The sampling rates of the different available datasets vary,
e.g., from 12 hours to one year. Moreover, the AMOC fin-
gerprint, its simulated time series, the MOVE data, and the
CESM data are one-dimensional, but the RAPID data are
four-dimensional. For all the simulated and real datasets, we
use min-max normalization to preprocess the time series so
that they are in the range [0,1]. For each dataset, we divide
it into three segments for training (50%), validation (25%),
and testing or prediction (25%), respectively. In particular,
for training, both the input and target output are provided to
determine the pertinent neural-network weights - all elements
of the output matrix (open-loop reservoir computing). During
the validation, input is still present but the true output is ab-
sent (still open-loop operation but with a fixed output matrix).
For testing (prediction), the output of the reservoir network is
connected to the input to execute closed-loop operation. We
perform multi-step predictions: at each time step, we predict
T, steps ahead. The following measure of root-mean-square
errors is used to characterize the validation and testing per-
formances:

i- ’T‘ +7

RMSE(y, y ‘IZ >

t=i

@O -y @

where y(t) and y"(¢) are the real and predicted signals, respec-

tively. RMSEs can be obtained by taking the average over the
whole validation or testing length (time interval).

B. Results of recursive prediction

The training of the reservoir neural network was done on
two computers with RTX 4000 NVIDIA GPU using Python.
There are two commonly used prediction methods: direct and
recursive, both generating multiple-step predictions. In par-
ticular, let T, be the prediction horizon, i.e., the number of
time steps of forward prediction. For direct prediction, at

each time step, the trained reservoir computer generates T
consecutive data points at once. The input is then updated
using the real data, to prepare for the prediction at the next
time step, and so on. For recursive prediction, at each time
step, the output of the reservoir computer is fed back to the
input, generating a closed-loop dynamical system capable of
self evolution. The system evolves forward for T}, time steps,
generating a Tp-step prediction. We present the results from
recursive prediction here, while reporting these from direct
prediction in Appendix. With respect to the four available
datasets, the nowcasting results from the AMOC fingerprint,
MOVE, and the CESM data are presented here, while those
from simulated AMOC fingerprint and RAPID can be found
in Appendix.

1. Recursive prediction of AMOC fingerprint data
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FIG. 5: Recursive prediction of AMOC fingerprint data. (a)
The ground truth (blue), trained (orange) and predicted
(green) AMOC fingerprint with the prediction horizon

T, = 24 months. (b) Training (orange) and prediction
(green) errors. (c¢) Distribution of the prediction error.

For nowcasting of the AMOC fingerprint, we use reservoir
neural networks of size n = 500. The hyperparameter val-

TABLE I: Optimal hyperparameter values for prediction
with the four AMOC datasets

Dataset a 14 P p Wb p
Fingerprint 017 132 045 0.19 3.04 -530
Simulated fingerprint  0.05 235 0.05 0.65 032 -2.30
MOVE 095 067 174 050 1.65 -1.66
RAPID 1.0 001 227 10 153 -384
CESM 0.14 028 373 0.62 362 -1.70
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FIG. 6: Recursive prediction of AMOC fingerprint with
different prediction horizons. (a, c, €) Reservoir-computing
predicted fingerprint and the ground truth, for prediction
horizons T, = 12, 24, and 36 months, respectively. (b, d, f)
The corresponding prediction errors. (g) Ensemble-averaged
testing RMSE versus the prediction horizon T},, where the
error bars represent the standard deviation calculated from
50 independent realizations.

ues obtained through Bayesian optimization are displayed in
Tab. 1. For the available AMOC fingerprint time series that
has 1812 monthly data points, we use 900 points for train-
ing and the 300 points afterward for validation to obtain the
hyperparameter values through Bayesian optimization. The
testing or prediction phase corresponds to the time period as-
sociated with validation segment and the remaining 612 data
points (912 points in total), which are used to calculate the
RMSEs.

Figure 5 shows the nowcasting results with the prediction
horizon T, = 24 months, where the ground truth as well as
the trained and predicted data are presented in Fig. 5(a), the
corresponding RMSEs are shown in Fig. 5(b), and the distri-
bution of the RMSEs in the testing phase is demonstrated in
Fig. 5(c). Note that, for better visualization, the displayed
prediction result in Fig. 5(a) is presented as the moving-
window average of window size T, = 24 time steps. It can
be seen that the prediction result is faithful in that its moving-
window average is fully embedded in the ground truth. In
fact, the RMSE is relatively small: about 0.14. For com-
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FIG. 7: Recursive prediction of AMOC fingerprint data with
95% confidence interval. The ground truth (blue), trained
(orange) and predicted (green) AMOC fingerprint with the
prediction horizon T, = 24 months. The green shaded area
denotes the 95% confidence interval calculated from 50
independent sets of optimized hyperparameters.

parison, results for three different values of the prediction
horizon are shown in Figs. 6(a-c) for T, = 12, 24, and 36
months, respectively, with the corresponding RMSEs shown
in Figs. 6(d-f). The average RMSEs for the three cases are
0.13, 0.14, and 0.16, respectively. In general, as the predic-
tion horizon increases, the prediction deteriorates, as exem-
plified in Fig. 6(g) - the result of a systematic computation
of the RMSE versus the prediction horizon where, for each
value of the prediction horizon, the average RMSE value over
50 realizations is obtained by randomizing the training length
between 880 and 900.

To assess the reliability of the prediction, we incorpo-
rate uncertainty quantification. This entails training multiple
models, each with independently optimized sets of hyperpa-
rameters, and aggregating the predictions to estimate the con-
fidence intervals. Specifically, we optimize the hyperparam-
eters with Bayesian optimization 50 times, generate an en-
semble of predictions, and calculate the 95% prediction inter-
val by approximately 1.96 standard deviations from the mean
value of these predictions at each time step. Figure 7 illus-
trates the recursive prediction of the AMOC fingerprint data
along with the 95% confidence interval, denoted by the green
shaded area. It can be seen that the confidence interval effec-
tively captures the trend of the fingerprint data, demonstrating
the reliability of the predictions.

2. Recursive prediction of AMOC MOVE data

For nowcasting of the MOVE data, the hyperparameter val-
ues obtained through Bayesian optimization during validation
are listed in Tab. I. The MOVE time series has 6710 points
(i.e., 6710 days). The segments of the date for training and
validation consist of 3000 and 1000 points, respectively. The
validation segment together with the remaining (altogether
3710 points) is for testing. Figure 8(a) shows the trained
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FIG. 8: Recursive prediction of MOVE dataset. (a) The
ground truth (blue), training (orange) and predicted (green)
MOVE dataset with the prediction horizon T, = 40 days.
(b) Training (orange) and prediction (green) errors. (c)
Distribution of the prediction error.

and predicted time series, together with the ground truth,
for the prediction horizon T, = 40 days. The correspond-
ing RMSEs and their distribution are displayed in Figs. 8(b)

and 8(c), respectively, with the ensemble-averaged RMSE of
about 0.12. Figures 9(a-c) show the predicted MOVE time se-
ries for T, = 20, 40, and 100 days, respectively, with the cor-

responding RMSEs shown in Figs. 9(d-f). Figure 9(g) shows

the ensemble-averaged RMSE (together with the error bars)
versus Tp. As Ty, increases, the RMSE increases, rendering
infeasible long-term prediction. Figure 10 shows the recur-

sive prediction of the MOVE data along with the 95% confi-
dence interval, as shaded by the green area. The confidence

interval effectively captures the trend of the fingerprint data,
demonstrating the reliability of the predictions.

3. Recursive prediction of CESM data

For nowcasting of the CESM data, the hyperparameter val-
ues obtained through Bayesian optimization during valida-
tion are listed in Tab. I. The CESM time series contains 1700
points. The segments of the data for training and validation
consist of 1000 and 300 points, respectively. The validation
segment together with the remaining (altogether 700 points)
is for testing. Figure 11(a) shows the trained and predicted
time series, together with the ground truth, for the predic-
tion horizon T, = 24 days. The corresponding RMSEs and
their distribution are displayed in Figs. 11(b) and 11(c), re-
spectively, with the ensemble-averaged RMSE of about 0.06.
Figures 12(a-c) show the predicted CESM time series for
T, = 12, 24, and 36 days, respectively, with the correspond-
ing RMSEs shown in Figs. 12(d-f). Figure 12(g) shows the
ensemble-averaged RMSE (together with the error bars) ver-
sus Tp. As T increases, the RMSE increases, rendering in-
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FIG. 9: Recursive prediction MOVE dataset with varying
prediction horizons. (a, ¢, €) Reservoir-computing predicted
transport together with the ground truth for the prediction
horizons T, = 20, 40, and 100 days, respectively. (b, d, f)
The corresponding RMSEs. (g) Ensemble-averaged testing
RMSE versus Ty, with error bars being the standard
deviation calculated from 50 independent simulations.
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FIG. 11: Recursive prediction of CESM data. (a) The
ground truth (blue), training (orange) and predicted (green)
CESM dataset with the prediction horizon T, = 24 points.

(b) Training (orange) and prediction (green) errors. (c)

Distribution of the prediction error.

feasible long-term prediction.

To characterize the uncertainties in the prediction results,
we optimize the hyperparameters with Bayesian optimization
50 times, generate an ensemble of predictions, and calcu-
late the 95% prediction interval by approximately 1.96 stan-
dard deviations from the mean value at each time step. Fig-
ure 13 illustrates the recursive prediction of the CESM data
along with the 95% confidence interval, denoted by the green
shaded area. It can be seen that the confidence interval effec-
tively captures the trend of the fingerprint data, demonstrating
the reliability of the short-term prediction results.

lll. DISCUSSION

In summary, we articulated a reservoir-computing based,
model-free framework to predict the real-time dynami-
cal evolution of some key physical variables characteriz-
ing the AMOC and demonstrated the feasibility of ac-
curate short-term prediction, using five different types of
datasets: MOVE and RAPID (observational), AMOC fin-
gerprint (proxy records), AMOC simulated fingerprint and
CESM data (synthetic model). The two observational
datasets and the proxy records are collected from different
regions and describe variability on different timescales, even
with distinct physical properties. Quantitatively, we found
a monotonic increase of the prediction error with the hori-
zon where the error tends to increase relatively more rapidly
as the horizon increases, e.g., from 12 to 36 months. Em-
pirically, we conclude that short-term prediction within 24
months can be achieved, while any longer horizon would
deem the prediction inaccurate and unreliable. Our machine-
learning framework thus will not be able to address the ques-
tion of any possible AMOC collapse in the future. Rather,
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FIG. 12: Recursive prediction CESM data with varying
prediction horizons. (a,c,e) Reservoir-computing predicted
transport together with the ground truth for the prediction
horizons T, = 12, 24, and 36 points, respectively. (b,d,f)
The corresponding RMSEs. (g) Ensemble-averaged testing
RMSE versus Tp, with error bars being the standard
deviation calculated from 50 independent simulations.
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FIG. 13: Recursive prediction of CESM data with 95%
confidence interval. The ground truth (blue), trained
(orange) and predicted (green) AMOC fingerprint with the
prediction horizon T, = 24 months. The green shaded area
denotes the 95% confidence interval calculated from 50
independent sets of optimized hyperparameters.



the significance of the demonstrated achievable nowcasting of
some key physical variables associated with the AMOC lies
in the capability to detect any unusual trend or early warning
for about 24 months ahead of time. This can provide a win-
dow for devising control/mitigation strategies through policy
making to reverse any adverse trend of the AMOC.

Our general point of view is that long-term prediction of a
possible collapse of the AMOC with the currently available
data will remain to be a formidable challenge. While mathe-
matical models of the AMOC with parameter values extracted
from data suggested different collapse scenarios, including a
fairly recent one predicting a potential collapse around the
middle of the century based on one-dimensional stochastic
differential equations'?, the predictions are only suggestive.
In view of the grave consequence of AMOC weakening and a
potential collapse, even the speculations cannot be afforded to
be ignored. The dynamical system underlying the AMOC is
vastly complex and highly nonlinear with sensitivity on initial
conditions, so predicting the state evolution of this dynamical
system in the long run is fundamentally ruled out. It may be
argued, however, that an AMOC collapse is a phenomenon
of critical or tipping transition, thereby requiring no detailed
knowledge about the state evolution.

At the present, there are two main approaches to pre-
dicting future critical transitions in nonlinear dynamical sys-
tems. The first is based on finding the system equations from
data®®®!. A more recent approach®*’! was based on sparse
optimization. If the accurate equations governing the un-
derlying system can be found, when a bifurcation param-
eter changes with time, a possible collapse of the system
can be assessed. However, the applicability of the sparse
optimization approach is limited to systems with a simple
or “sparse” equation structure®»®, The second approach is
based on machine learning, and it has been demonstrated that
reservoir computing can be exploited to predict critical tran-
sitions*>*>4%, An advantage of this approach is that, in prin-
ciple, it can be applied to any system, regardless of the under-
lying mathematical structure of the governing equations. The
disadvantage is that the amount of data required for training
can be quite demanding.

The focus of this work is on the short-term prediction of the
AMOC using machine learning. Given the importance of the
AMOC to the global climate, predicting the AMOC’s behav-
ior even in short term is important and of considerable inter-
est. However, the complexity of the dynamical system under-
lying the AMOC makes accurate predictions challenging. In
response to the challenges, we propose a model-free approach
to short-term AMOC prediction. The proposed method aims
to estimate the AMOC dynamics effectively into the near fu-
ture, potentially providing early warning signals that can in-
form policy-making and control strategies. With respect to
the inherent uncertainties of any long-term predictions, short-
term predictions can be more accurate and reliable to provide
actionable insights.

A significant challenge in AMOC research is data insuf-
ficiency and inconsistency, particularly with observational
records such as those from RAPID or OSNAP. Machine-
learning methods generally require large amounts of high-

quality data for effective training, creating a substantial hur-
dle given the limited and often inconsistent AMOC data.
Proxy records such as those derived from ocean sediments
or sea ice may provide historical data to benefit prediction.
Short-term AMOC predictions may also be improved by
overcoming data insufficiency through the method of trans-
fer learning. The main idea involves utilizing synthetic data
generated from mathematical models to initially train the neu-
ral networks and then, fine-tune the well-trained model using
a limited number of real-world measurements. By so doing,
the model may be capable of highly accurate prediction of the
short-term dynamics of the AMOC, even with limited mea-
surement data.

Long-term prediction of the AMOC is currently a signifi-
cant challenge, particularly concerning the probability of its
collapse — a critical or tipping transition event. In non-
linear and complex dynamics, at the present there are two
possible approaches to predicting future critical transitions:
finding the governing equations and machine learning. The
first approach is effective if the underlying system equations
meet the sparsity requirement but it is impractical for the
AMOC. The machine-learning approach, while promising,
faces its own challenges. For example, for long-term predic-
tion, machine-learning models such as reservoir computing
require knowledge about some key system parameters that
vary over time. To determine such time-varying parameters
for the AMOC from data is currently an open problem. A
plausible speculation is that global climate change may be the
main driving force behind a potential AMOC collapse, but the
available climate data pertinent to the AMOC are quite lim-
ited (within the past 100 years or so) and are far from suffi-
cient for extrapolating how some key parameters may change
into the future. Although machine-learning models can be
trained with limited measurement data, their effectiveness is
hampered by the lack of detailed knowledge about how these
parameters vary over time. Without this information, these
models cannot reliably predict a potential future collapse of
the AMOC.

IV. METHOD
A. Reservoir computing

The core of reservoir computing is a recurrent neural net-
work (RNN) with a non-Markovian type of dynamics in a
single hidden layer. Differing from the conventional RNNs
where the network link weights are trained by a gradient-
based method, in reservoir computing the input matrix ele-
ments and the internal weights of the RNN are randomly ini-
tialized and remain fixed during training: all required to be
trained is the weights of the output matrix that can be deter-
mined by a standard linear regression. This unique character
makes the training process computationally efficient, while
capturing the information or dynamical climate of the target
dynamical system and embedding it into the dynamics of the
hidden-layer neural network?-3172,

Figure 14 shows the architecture of reservoir computing.
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FIG. 14: Architecture of reservoir computing. A reservoir
computer has three layers: the input, hidden, and the output
layers, characterized by the matrices Win, 4, and Wout,
respectively. The input, hidden state, and the output vectors

are u(t), r(t) and o(¢), respectively.

The low-dimensional input signal u(f) is mapped by the in-
put matrix Wi, into the high-dimensional internal state vector
r(t) in the hidden layer, which is updated step by step accord-
ing to the following rule:

r(t+1)=(1-a) r(t)+ 3)
a-tanh [4 - r(t) + Win - u(t) + Whias) ,

where a is the leakage parameter that determines the memory
loss after each time step, the activation is achieved through
a hyperbolic tangent function (tanh), the adjacency matrix
A gives the links and connection structure of the reservoir
network, and the components of the bias vector Whias are
an equal constant wy, whose role is to shift the values in-
side the activation function from zero. The input signal of
whole training length [I(1), I(2), --- , I(t)] is concatenated
into a matrix U and the recorded reservoir dynamical states
[r(2),r(3), - ,r(t+ 1)] can be concatenated into a matrix
R. The output matrix is determined by using Tikhonov regu-
larization” as

Wou = U -R7 - (R - R + BI) 1, @

where R = fs(R) is modified from R such that the elements
in all its even rows are squared to minimize overfitting®*, R'r
is the transpose of R', 3 is the regularization coefficient, and
1 is the identity matrix. The output is

O(t) = Wout r(t) (5)

The reservoir-computing architecture possesses a small num-
ber of hyperparameters: the leakage parameter a, the scal-
ing factor y of the input matrix, the spectral radius p and
link probability p of the reservoir network, the bias con-
stant wy of the bias matrix, and the regularization coeffi-
cient . The values of these hyperparameters can have a
significant effect on the performance, so it is necessary to
find their optimal values, which is done commonly through
Bayesian optimization by using’®, e.g., the algorithm from
Python (bayesian-optimization)™.
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DATA AND CODE AVAILABILITY

Data and codes are available from GitHub:
https://github.com/Zheng-Meng/ AMOC
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Appendix A: Simulated AMOC fingerprint

The simulated AMOC fingerprint dataset has 105 data
points. For nowcasting with this dataset, we set the size of the
reservoir network to be n = 500. The hyperparameter values
obtained through Bayesian optimization are listed in Tab. [ in
the main text. The training length is set to be 5,000, the length
of the validation time series (after the training data) is 3,000,
and the testing data length is 5,600 (including the validation
data).

Figure 15 shows the nowcasting results with the prediction
horizon T, = 40, where Fig. 15(a) displays the ground truth
as well as the trained and predicted time series. The corre-
sponding training and testing RMSEs are shown in Fig. 15(b),
and the distribution of the testing RMSEs is presented in
Fig. 15(c). The ensemble-averaged RMSE is about 0.10.
Three additional examples are shown in Fig. 16 for T, = 20,
40, and 100, respectively, where the left column shows the
predicted AMOC fingerprint time series and the ground truth
with the corresponding RMSEs shown in the right row. The
averaged RMSE for the three cases are 0.08, 0.1, and 0.11, re-
spectively. Figure 16(g) shows the testing RMSE versus the
prediction horizon, where the mean and the standard devia-
tion are obtained through an ensemble of simulated AMOC
fingerprint data. As the prediction horizon increases, the
RMSE increases.
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Appendix B: RAPID

The total length of the RAPID time series is 12183 (about
6000 days). The training, validation, and testing (including
validation) data segments have 6000, 3000, and 6183 points,
respectively. For nowcasting with the RAPIC dataset, we set
the size of the reservoir network to be n = 500. The hyper-
parameter values obtained through Bayesian optimization are
listed in Tab. I in the main text. The RAPID dataset is four-
dimensional, so the input and output of the reservoir computer
are four-dimensional.

Figure 17 shows the nowcasting results for the RAPID
dataset, where the prediction horizon is T, = 40 (20 days).
In particular, Figs. 17(a,c,e,g) display the trained and pre-
dicted time series as well as the ground truth for MOC, Up-
per Mid-Ocean, Gulf Stream, and Ekman, respectively, with
the corresponding RMSEs shown in Figs. 17(b,d,f;h). The
ensemble-averaged RMSEs associated with the four dimen-
sions are about 0.09, 0.10, 0.12, and 0.09, respectively, sug-
gesting accurate short-term prediction. Several examples of
predicted RAPID time series with different prediction hori-
zons are shown in Fig. 18, for T, = 20, 40, and 70 (10, 20,
and 70 days), respectively. Each column of Fig. 18 represents
the prediction results and the corresponding errors. The av-
eraged RMSEs for MOC for T, = 20, 40, 70 are 0.06, 0.09,
and 0.10, respectively. The averaged RMSEs for the Upper
Mid-Ocean for T, = 20, 40, 70 are 0.08, 0.10, and 0.13,
respectively. The averaged RMSEs for the Gulf Stream for
T, = 20,40, 70 are 0.09, 0.12, and 0.14, respectively. The
averaged RMSEs for the Ekman for T}, = 20, 40, 70 are 0.07,
0.09, and 0.09, respectively. Figure 19 shows the RMSE ver-
sus the prediction horizon, where a shorter testing length of
5000 points is used due to the large values of T}, in the range.
In addition, to validate the robustness of the prediction re-
sults, the training length was randomly set between 5900 and
6000. The RMSE is small for short prediction horizon, but it
increases with the prediction horizon.

Appendix C: Comparison of two machine-learning
prediction methods

There are two common methods in time-series multi-step
forecasting with machine learning: recursive and direct pre-
diction, both with their own unique advantages and con-
straints. The training process of the two methods is the same,
and the difference lies in the prediction phase. In particular, as
shown in Fig. 20(a), the recursive method, also known as the
closed-loop iteration method, predicts one step ahead at each
time step and then feeds the predicted value back into the
machine-learning model as the input for the next time step.
This procedure is iterated until a desired number of steps,
i.e., the prediction horizon T}, is reached. During the pre-
diction, the hidden state of the reservoir network is recorded
since the current and previous real data are needed at the be-
ginning of each prediction step. For example, at time step ¢,
the time series information and the hidden stater at0, 1, ..., ¢t
are needed to predict the next T}, time steps iteratively. The
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state vector r is updated until rs1, time steps are reached.
To make the prediction at time step t + 1, the hidden state
re1 is needed (not r«r,). The recursive prediction method
has the advantage of train easiness and flexibility, but error
accumulation during the iteration is an issue. In comparison,
in direct prediction, the reservoir machine is trained to pre-
dict T, time steps ahead, without the iterative feedback loop
employed in recursive prediction. In the testing phase, the di-
rect method predicts T}, at once, as illustrated in Fig. 20(b).
Direct prediction has the advantage of reduced error propaga-
tion, but it is susceptible to overfitting, especially with limited
data.

For the four AMOC datasets, while we have presented the
prediction results from the recursive prediction method, the
direct prediction method performs better for two datasets.
Figures 21(a) and 21(b) show the ensemble-averaged testing
RMSE versus the prediction horizon T}, of the AMOC finger-
print and MOVE dataset, respectively. For these two datasets,
the recursive method outperforms the direct method. The cor-
responding results for the simulated AMOC fingerprint and
RAPID datasets are shown in Figs. 21(c) and 21(d), respec-
tively. For these two datasets, the direct method outperforms
the recursive method.

Appendix D: Effects of low-pass filtering

An issue with the datasets is noise, which can be removed
to certain extent by low-pass filtering. Will partial noise re-
moval affect the machine-learning performance of short-term
prediction of the AMOC? To address this question, we em-
ploy a moving average method by using a rolling window of
size Ly to smooth the training data segment. The validation
and testing data remain in their raw, unfiltered state. Repre-
sentative results are shown in Fig. 22. It can be seen that, for
the four datasets, low-pass filtering does not lead to any ap-
parent performance improvement. In fact, the RMSEs tend
to increase with the window width L. A plausible explana-
tion is that the noise-filtering procedure distorted the similar-
ity between the training data and the real noisy data, leading
to information loss and making it harder for the machine to
learn the trend of the AMOC.
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FIG. 16: Examples of nowcasting of simulated AMOC
fingerprint with different prediction horizons. (a, c, )
Reservoir-computing predicted fingerprint together with the
ground truth, for prediction horizons T, = 20, T, = 40,
T, = 100, respectively. (b, d, f) The corresponding
prediction errors. (g) Ensemble-averaged testing RMSE
versus the prediction horizon T, with the standard deviation
calculated from 50 independent simulations.
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FIG. 17: Nowcasting with RAPID dataset. (a, c, e, g) The
ground truth (blue), trained (orange) and predicted (green)

MOC, Upper Mid-Ocean, Gulf Stream, and Ekman,

respectively, with the prediction horizon T, = 40 (i.e., 20
days). (b, d, f, h) The corresponding trained (orange) and

predicted (green) errors.
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FIG. 21: Errors with recursive prediction and direct
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the prediction horizon T, for AMOC fingerprint, MOVE,
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respectively. The error bars are obtained from 50
independent realizations.
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fingerprint, MOVE, simulated AMOC fingerprint, and
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filtering does not lead to any apparent performance
improvement.
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