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The present paper focuses on studying the anti-buckling behavior of prismatic martensitic shape memory alloy
(SMA) beam-columns. It combines analytical and semi-analytical approaches to investigate the process of column
straightening for anti-buckling. We try to comprehensively describe this phenomenon and develop a mathe-
matical model to formulate each step of the anti-buckling problem. Due to the complex stress—strain behavior of

SMA material, nine different stages of stress-height diagrams may potentially occur during this effect; thus, for
facilitating the design process of SMA structures, corresponding forces and moments to each stage, are analyt-
ically derived. Our demonstration establishes that the primary cause of beam-column straightening is not the
uniformity of stress, but rather the achievement of uniform strain across all fibers of the cross-section. This
uniform strain distribution implies that the curvature of the beam-column diminishes to zero.

1. Introduction

Displacement (angle or stroke), load (or force) as well as bandwidth
(frequency or speed) are three main technical objectives needing to be
addressed in designing SMA actuators for any industrial application.
There always exists a challenge between the constraints of a specific
application or design and potentially satisfying its conflicting objectives
based on their requirements. As an example, thicker actuators generate
higher force but actuate more slowly than thinner ones, shorter length of
actuators may require less triggering in energy, however, it provides less
stroke or displacement. Moreover, environmental conditions, permis-
sible weight and size, positional control and stability, cost, durability,
and maintenance can be added to the available constraints (Billah et al.,
2022; Fang, 2022; Rastjoo et al., 2020; Krishnaswamy et al., 2019; Choi
et al., 2022).

In terms of motion, generally, SMA actuators might be classified into
two types: translational (linear) motion as well as rotational (rotary)
motion. In the first category, three designs may be introduced: one-
directional (1D), antagonist, and bias-force actuators. Free recovery
and constraint recovery which are mostly suitable for low-cycle and one-
time applications can be considered for 1D actuators (Khalid et al., 2019;
Arivanandhan et al., 2023; Lagoudas, 2008; Liu et al., 2023; Zhang et al.,
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2010). In biasing force actuators, mostly a preloaded spring can operate
cyclically to quickly and frequently leave and return an SMA element to
its permanent position. However, in an antagonistic approach, two SMA
elements might be alternately actuated as activated (heated) and deac-
tivated (cooled) devices (Kazemi and Jankowski, 2023; Richter et al.,
2010; Kohl, 2004; Choi et al., 2021; Hartl et al., 2010; Shaw and Kyr-
iakides, 1998).

According to extensive applications of SMA actuators, they may
mechanically undergo various loading conditions and be manufactured
in various configurations and shapes. However, compared with other
loading types, axial and bending loadings may provide the most efficient
energy density for SMA devices (Mohammad Hashemi et al., 2023; Li
et al., 2023; Fahimi et al., 2019; Qian et al., 2022; Vahidi et al., 2021).
Due to the promising performance of axial and bending loadings,
various forms such as rods, beams, wires, tubes, helical springs, and
ribbons are employed in most SMA applications (Mandal and Calladine,
2002; Do et al., 2023; Choi et al., 2022). Under such loading conditions,
SMA actuators are potentially vulnerable to lose their stability and start
buckling. However, these buckled SMA elements such as beams, or
columns can be used in artificial muscles, energy harvesting, and bio-
inspired robot applications when snapping from one state to another
state by exciting with adequate input trigger (Kawate et al., 2018; Kohl
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Fig. 1. The stress-strain characteristics and the material parameters associated
with the Souza model (Ostadrahimi et al., 2015).

Table 1
Stress—strain relationship for different regions (Ostadrahimi et al., 2015).
Region Elastic =~ Detwinning Twined Negative
Parameters martensitic martensitic
twin twin
Transformation 0 (6— (R™ +14P))/H'® &P —glP
strain (e)
Constitutive o= 6 =E(e+ g) o= 6 =E(e +
relation Ee E(e—¢lP) £lD)

et al., 2004; Choi et al., 2022; Tan et al., 2019). Thermal (or electrical)
triggers are almost always a major activation method to induce phase
transformation or detwinning process, whether an SMA element is
embedded in a matrix or purely employed as a device or actuator for
functional purposes (Choi et al., 2022; Tan et al., 2019; Das et al., 2021;
Bovesecchi et al., 2019).

However, in this study, we have not used thermal or electrical
stimuli; thus, athermally triggered SMA prismatic device to recover its
original shape. In these forms of applications, a bent (or buckled) shape
of an SMA element through twinning deformation effect (TD-Effect)
which roots in an inhomogeneous stress state and then twined-
detwinned variant orientation can be mechanically induced to recover
inelastic strains (Richter et al., 2010; Urushiyama et al., 2003; Osta-
drahimi et al., 2015; Zamani Alavije and Botshekanan Dehkordi, 2019;
Thier et al., 1991; Watkins and Shaw, 2018). The TD-Effect was origi-
nally discovered and introduced by Urushiyama et al. (Urushiyama
et al., 2003), who experimentally and numerically investigated the
stress distribution and deformation of curved SMA columns under
compression. Since in the curved shape of SMA elements, bending is the
major mode of deformation; thus, via beam theory, several types of
studies have been conducted to theoretically and experimentally obtain
moment—curvature relationships for shape memory effect (SME) and
superelastic (SE) beams and columns (Watkins and Shaw, 2018; Cheng
et al., 2023; Xiao and Jiang, 2022; Jaber et al., 2008; Mirzaeifar et al.,
2013; Rejzner et al., 2002; Ostadrahimi and Taheri-behrooz, 2019;
Auricchio et al., 2011; Viet et al., 2019; Jiang et al., 2017; Viet et al.,
2019; Karakalas and Lagoudas, 2020; Radi, 2021). Moreover, several
buckling, unbuckling, and post-buckling analyses have been conducted
to investigate the stability of columns with SME and SE before and after
buckling or to postpone the instability of composites while SMA ele-
ments are embedded in them (Radi, 2021; Saeed Kamarian et al., 2020;
Asadi et al., 2013; Pattar and Patil, 2019; Tung, 2017). By imposing
initial pre-compression and using finite element analysis, Richter et al.
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(Richter et al., 2010) simulated anti-buckling analysis for SMA columns.
Ostadrahimi et al. (Ostadrahimi and Taheri-behrooz, 2019) analytically
solved the bending problem of pre-strained beams, however, their the-
ory did not cover the TD-Effect and they roughly obtained the required
force for strain recovery. Watkins et al. (Watkins and Shaw, 2018) using
experimental and theoretical methods proved that unbuckling behavior
for columns with SE may happen but only restricted to specific geome-
tries and nonlinear material stress—strain curves.

The present paper is an analytical study on the anti-buckling of
prismatic martensitic SMA beam-columns. The process of column
straightening during anti-buckling is comprehensively described and
based on that concept we mathematically modeled this physical phe-
nomenon. In our analytical modeling, nine stages of loading and
unloading stages during anti-buckling are step by step formulated, and
the corresponding force and moment to each stage are derived and
represented for designing purposes. To verify our modeling, we compare
our results with existing numerical results. The structure of this paper is
as follows. Section 2 is dedicated to the constitutive equation of SMA
material. In section 3, which is the main section of this paper, the anti-
buckling concepts are initially described and the moment-curvature
relationship as well as stress analysis during the 9 stages are modeled.
After deriving the deflection of the curved beam through semi-analytical
methods, the results of this work have been presented in section 4
involving several numerical and experimental studies to address the
anti-buckling phenomenon.

2. Reduced 1D Souza constitutive equations

The Souza model (Souza et al., 1998), developed in 1998, is a three-
dimensional framework that effectively describes the unique effects of
both pseudoelasticities (PE) and shape memory effect (SME) within the
realm of small deformations. This model, rooted in the theory of irre-
versible thermodynamics, provides a general reduced one-dimensional
representation when considering a uniaxial test. Inspired by the Souza
Model (Souza et al., 1998) and then considering the reduced constitutive
equations into one-dimensional form (Ostadrahimi et al., 2015), we
have employed this model at low temperature or martensite phase, in
line with the operating temperature of the TD-effect. Let o,¢,E and e be,
respectively, the normal stress, strain, Elasticity modulus, and trans-
formation strain, then

c=E(e—¢€") (€})

The stress—strain behavior of SMAs is indicated in Fig. 1 and their re-
lationships for each region are proposed in Table 1.

Material parameters in the 1D Souza model (Fig. 1 and Table 1) can
be described below:

R®+7lP ,  EH™ »
o= Eegnp o = (V23)a @

H'® = (3/2)H, R = ( 3/2)R, 7D = ( 3/2)1M

where R,H and ¢, are, respectively, elastic domain radius, variant
orientation hardening, and transformation strain at its maximum value
during a uni-axial loading condition in a 3D model. Furthermore,
considering Ty and j reference temperature and a material parameter,
respectively, )y may be defined as:

w:{mr—n>vr>n @

0 otherwise

3. Anti-buckling problem

In this section, we provide a concise description of the material
behavior of SMA beam-column and its loading steps to display anti-
buckling behavior. This problem consists of two stages: in the first



A. Ostadrahimi et al.

(a) Straight beam under bending stress

(b) pre-bent beam
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Fig. 2. The process of loading stages to display the anti-bending problem.

Table 2
Maximum curvature and height of each one (Ostadrahimi et al., 2015).

Maximum elastic Maximum Height of Height of

curvature detwinning curvature  elastic zone detwinning zone
2 2 /0, o, 1D 41D

max — 205 Kgmzf(,ffgo) he == hae = BEL

e Eh le h \E Ex; e Elq

stage, the pre-strained SMA beam undergoes bending stresses caused by
transverse loading or bending moment (Fig. 2a). After removing the
transverse load a residual deflection may remain in the beam. In the
second stage, an axially compressive load exerts on this pre-bent beam;
thus, in contrast to ordinary materials, beam deflection does not increase
and/or buckle (Fig. 2b), rather the deflection starts decreasing and
eventually it becomes straight (Fig. 2c).

Worth to note that when a martensite SMA beam is under bending
stress, some fibers on both sides of the beam experience a detwinning
process from twinned martensitic variants to positive or negative det-
winned variants in tensile or compressive sides, respectively. By
removing the transverse loads, a substantial deflection may remain in
the beam-column and subsequently, bending stress distributes inho-
mogeneously across the cross-section. In the second stage as the axial
load applies on the beam column, the fibers in the tensile side reorient
into negative detwinned martensitic variants; thus, gradually a uniform
stress distribution occurs in the beam meaning that residual curvature
and deflection reach zero.

Since in the buckling and anti-buckling problem, geometry and
length of columns play a crucial role, it is not expected for too long and
aggressively bent SMA beam-columns to exhibit this TD-effect phe-
nomenon. Thus, finding the exact range of length and degree of lateral
deflection to exhibit anti-buckling behavior is important. For short
columns, we may expect a higher possibility of having this effect due to
the shear deformation effect; however, figuring out this exact range is
under further investigation.

In the following discussion, we try to deeply describe the exact
process of straightening in the beam and then analytically drive its
governing equations to estimate the generated bending moment and
required axial load as beam deflection reverts back to its initial shape.
The pre-bent beam with length L and initial residual deflection will be
exposed to a compressive load F as shown in Fig. 2c.

3.1. Stage I: Moment-curvature relationship for SMA beam-column under
bending

In this section, to generate bending stress in the pseudo-plastic beam
at the first stage, the bending moment-curvature relationship obtained
by Ostadrahimi et al. (Ostadrahimi et al., 2015) is employed. In the most
general stage, we can divide the cross-section into three zones, 1: elastic
core when stress in these fibers is lower than detwinning start stress (o;),

2: detwinning zone when the fibers in this region have the stress in
between o5 and oy (detwinning finish stress), 3: saturation zone in which
fibers are fully transformed to detwinned martensite. In order to obtain
the total moment, bending moments in each region must be calculated
and summed across the whole cross-section. The kinematics of a section
may be described using two variables of normal strain (¢) and its cor-
responding curvature (x). However, TD-effect may appear for short
columns dominated by shear deformation, but due to the nonlinear
behavior of SMA as well as intricated response of material during anti-
buckling, for simplicity we have ignored the shear deformation term
in this study, so normal strain varies linearly with the beam height (2).

£(z) = —kz )]

where let z be thickness of the beam-column as well. According to
Table 1, the maximum elastic curvature (x]'*) and maximum detwin-
ning curvature (x7™) are obtained and presented in Table 2. For the
curvature lower than «J'®, all fibers are located in the elastic zone, and
for higher curvature, if some fibers exceed the detwinned zone, then the
detwinning process should occur in the middle part (Fig. 3). To describe
a complete bending moment-curvature relationship, it is necessary to
obtain the boundaries of each zone (h, and hg,, Fig. 3). Considering the
normal strain at points a (¢, = o5/E) and b (&, = o,/E +H'Pe]P /E) as
well as Equation (4), the height of the elastic and detwinning zones are
derived and presented in Table 2.

Let M, A and t(z) be the bending moment, beam cross section area
and thickness, respectively, the relationship between bending moment
and curvature for this pseudo-plastic beam-column with prismatic cross-
section may be given by M = [, 6z t(2)dz; thus, regarding Fig. 3 the most
general stage of applied moment yields:

—he —(hethyr) —h/2
Mioading =2 (/ Eezt(z)dz + / E(e+&)zt(z)dz + / E(e
0 —

he —(he+her)
- €}‘D)Zt(1)d1)
(5)

Furthermore, the curvature can be calculated using x = d?w/dx? for the
small lateral deflection (w). By integrating and then imposing suitable
boundary conditions to find integration constants (C; and Cj), beam
lateral deflection may be represented as

2
w(x) :%+clx+c2 6)

Upon unloading, some parts of martensite variants remain oriented
while satisfying the equilibrium state and some parts may suffer from re-
orientation (Fig. 3b). However, reverse detwinning strain and stress may
vary regarding the fibers’ position (Ostadrahimi et al., 2015).

Based on the amount of applied bending load in this stage and then
unloading, two possible diagrams of residual stress across the beam
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Fig. 3. Stress—strain diagram shows loading and unloading variations across regions (Ostadrahimi et al., 2015).
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(b) five-neutral stress fiber

Fig. 4. Residual stress diagram upon unloading of bending load (Ostadrahimi et al., 2015).

cross-section can be formed (Fig. 4). Providing that during loading, the
maximum induced stress in the outmost fiber of the beam does not
exceed the detwinning finish stress (or), the schematic of residual stress
may follow Fig. 4a with three zero-stress fibers, otherwise the locked-in
stress could develop in accordance with Fig. 4b exhibiting five neutral
fibers.

3.2. Stage II: Stress analysis of pre-bent column under axially compressive
load

In this section, an analytical solution is proposed to study governing
equations of the anti-buckling effect, and then the relationships between
force and moment with curvature and centroid residual strain are
derived during each increment of loading. Furthermore, the process of
beam straightening is investigated step by step, starting from an inho-
mogeneous stress diagram in Fig. 4 to reach uniform stress distribution
while the curvature continuously reduces in 9 stages of stress profiles
depicted in Fig. 5a and b. For more clarification, the circle symbol (o) is
used in Fig. 5 to indicate the critical points of each stage during the
loading procedure. As the fibers in the bending step experience det-
winning and/or saturation regions, upon unloading, they may respec-
tively reach the stress-height diagrams in Fig. 4a and b. For both residual
stress diagrams in Fig. 4, the process of the anti-buckling effect would be
the same. For simplicity, the deformed beam-column under the residual
stress in Fig. 4a is considered. Stage 0 in Fig. 5a (©®), exactly shows again
the stress-height diagram of Fig. 4a, and the corresponding stress—strain

curve to this stage, is shown in Fig. 6a by @ again. Similarly, as another
example, for stage 5 (V) in the stress-height diagram of Fig. 5b, the
stress-strain distribution corresponding to this specific stage is illus-
trated by V in Fig. 6b. To clarify as to why both graphs in Fig. 4, may
have similar process of TD-effect, we need to consider Figs. 4, 5, and 6
simultaneously. Overall, after unloading in bending step (shown by —
for some points) and depending on fibers’ location, fibers may stay in
saturation region (bold line P1 to P2) and in stage 0 (P2 to P3 and P3 to
P4) in Fig. 5a. Considering half of the beam, although the fibers at the
end of unloading the second step are at different locations and regions
(P1 to P4), upon exerting a compressive load at final step, all fibers based
on their locations, initially experience a change of stress with the slop of
E (same slop as unloading of bending step), and then reach their
threshold of reverse detwinning (e.g. shown by = for three pints), thus,
the stress may vary by E in the reverse detwinning region.

Therefore, regardless of the location of fibers either in the saturation
region or in the detwinning region at the end of removing the bending
step (Fig. 4a and b, respectively), the process of loading in final step may
be similar in a way that it firstly goes toward the reverse detwinning
region by slop of E, then upon reaching the reverse detwinning start
stress (thresholds), their stress change may follow with the stiffness of E.
This fact will be demonstrated in section 4.2 and Fig. 14, where, in spite
of some fibers undergoing saturation region, the trends of stress-height
diagram follow the procedure of stage I to VIII.

Upon exerting an axial load, the centroid strain (gg) starts emerging
in the cross-section so that neutral fiber does not pass through the
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Fig. 5. History of stress-height diagram upon each stage of anti-buckling.

centerline; thus, equation (4) is no longer valid and the deformation
profile should be modified as

e(z) = —Kkz+eg @

where ¢ is a function of the applied load. To specify the normal stress
changes for each fiber in the beam cross-section during each increment
of loading, we first need to express the strain variation of a fiber (Ag;) in
terms of decreased curvature (Ax) and increased centroid strain (Agg) for
point i as

Ag; = — Ak + Ag, ()

Regarding Fig. 5a and b (stages 0 to IX) and employing Equations (8), we
will try to derive the unknown parameters of heights and normal stresses
of each stage in terms of reduced curvature and increased centroid
strain. To discuss the anti-buckling procedure as clearly and concisely as
possible, nine stages of Fig. 5a and b, are divided into sections Stage 0 to
II, Stage III to 1V, and Stage V to IX.

3.2.1. Stage O to II
After removing the applied bending loads at step 1, the internal

bending moment becomes zero, and force equilibrium is satisfied by
exerting no axial force. The residual stress profile (stage 0 in Fig. 5) can
be described as

Oi1s) = —E(kzi — €0) — EzA¢  (a)

oits) = —Ezl + A%) (b) ©

7;;7) E (K[Zi + 80) — EZ,'(AUK) (C)

where alf(ef&

and 3. Similarly, we can define the residual stresses of 0i(35)

represents the remained stress in the fibers between points 1
and o7 57)

for the fibers between points 3 to 5 and 5 to 7, respectively. A”K denotes
the unloading reduced curvature and has been determined along with
the height of points 3 and 5 (23,25) through the unloading step.

Upon exerting axially compressive load during stage I, all fibers
initially undergo elastic stress variations (Ac = EA¢) which may have an

increasing or decreasing trend based on their fiber’s location. In this
stage, the curvature reduces until the stress of the outmost fibers at
points 1 (or 7) reaches the bound of the reverse detwinning region. To
start the reverse detwinning process for points 1 to 3 (or 5 to 7), the total
strain variation during unloading and stage I is —2R/E (AVe 4 Ale =
—2R/E); using Equations 8 and 9a; the increased centroid strain for the
stage I (Aleg) can be written as

(g (A% + A,K))

Ae, = —
Kl E 2

(10$)
The initial centroid strain is zero (¢J = 0,A'e, = e} —e9); thus, Ale, could
be equal to .

With the growth of the applied axial load, the beam curvature drops
continuously, and as expected reverse detwinning process begins in

some fibers from points 1 to 8 and 7 to 9 (Fig. 5a, stage II).
The internal force and bending moment for stage II may be written as

78 73 75 29
F —( / I/zﬂ,’(l_xﬂ(Z)der / Olfs 3 1(2) dz+ / 0lfy 5 1(2)dz+ / Olls0)1(2)dz
—h, 28 23 s

s
h/2

+ ‘711'(19.7) ’(Z)dz) (a)

29

(1)

M= 6’ (1.8)2(2 )dz+/ZJ g 321(2 )dz+/ sz )dz+/Zg 05 )2(2)dz

—h/2

h/2
+/ 01(97 zt(z)dz (D)

where and zg, 29 are unknown stress and height parameters, however, z3
and zs are determined from the unloading stage. To derive ”ffl,s) and
019> we know that the fibers located between points 1 to 8 (7 to 9) are
expected to experience both elastic and reverse detwinning stress
reduction; thus, employing Equation (8), the strain variation in this re-
gion decomposes into elastic (A”¢°) and detwinning (A%e?) terms as
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Fig. 6. Residual stress—strain curves for each stage of anti-buckling.

Ale = ATe + A"e! 12)
To derive the stress parameters of these regions for stage II, we can write
OJ-, — D_.re.\ ;
D p(Ale 4 Aet) + EAVe! (13)
011'(9.7) = 0j57)
Regarding Fig. 6b, the elastic stress variation for the fibers between
points 1 to 8 cannot exceed —2R (+2R for points 9 to 7); thus, Ae® may

be calculated as

2R
—(E—&-AUE—FAIE) 1<z<8
Allgt = a4
2R v .
- (a e+Ae) 9<z<7

Substituting Equations (8), 12, and 14 into Equations (13), and after
some mathematical manipulation off; g and oy, can be derived in

terms of ¢ and Ak as

11 /
/s _ U I
ol = —Ezi(i + AVk + E,-:, Nk) +E () + &) — 2R(1 - E)
' (15)

/

11
=—Ez(q+ A+ Ne) + E (el — &) +2R (1 - E)

1
i(9,7)
J=1

For the fibers between points 8 to 3 and 3 to 5, the trend of stress var-
iations is still purely elastic; ol = o7 +EZJI-I:,Aj5; considering that

ZJ": Aeg = eg , the locked-in stress for each zone yields
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Table 3
Updated stress and height parameters for Stages III and IV.
p ght p 8
o guy = —Ezi(xi+ AVk+ YT Ak) + E (el — £9) 2R (7 - 1) (@0t 5 = —Ezi(ki+ AV + S AK) + E (el — g9) + 2R (7 - 1) (b)
ol 5 = —E(xizi — e0) —Ez(AVk + S Ax) + Bl (c)
ol sqy = —Ezil+ AVk+ S k) + Eel (d)
; ar
oxtep.om = —E (xizi + £0) — Ezi(AVk + Alk — ZHAK) +EQ2e - &) (e)
(22)
] yiig 3
(7,%1"_9) = —E (ki + &) — Ezi(AVx + ZjilA]K) + Eei,” f)

eé" = (kg + AV + Z}"I,AJK 23 77(23)

Eeg' +2R
Zgm = m ((l)(24)
Ee" — 2R
B palc+ S 8lK)
1
Olsa) = —E (kjz; — €0) — Ezi(AVk + Z Nk)+Eel ()

=

(16)
11 )
s = —Ez( + AUk + > Nx) + E¢!l (b)

=

According to Equation (8), the fiber with zero strain variation is deter-
mined by zon = Aleg/Alk. This fiber successively relocates with each
loading increment. Upon exerting axial load, it immediately departs
from the centerline to the region between points 5 to 9. The fibers be-
tween points 5 to O and 0¥ to 9, subsequently suffer from negative and

positive stress variations o]S , + E(A'e £ A'e), respectively, therefore,

the unknown parameter of a” ) consists of two terms as

Oils.on = —E (k2 + &) — Ezj(AYk + Ak — A"k) + EQ2e, —¢))  (a)
17
d{o/',g) = _E’(Klzi + &) — Ez(A% + Z Nx) + Efg ()

J=1

17)

As mentioned earlier, to start the reverse detwinning process at point 8
(or 9), the totally reduced or increased stress is about 2R; (the stress at
points 8 and 9 reach 6joqging T 2R); therefore, using Equations 16a and
17b, respectively, the height of zg and z9 can be written as

Eel +2R
N ey I = BV (18)
E(A Kk + 5, AK)
I'— 2R
9 = 19)

E(AYk+ YL, Nk)

This form of stress distribution in stage II is valid until the stress at point
5 touches the detwinning start stress (6; = —R); so, employing Equation
16b, the critical condition at this state may be formulated as

R o
o 1%
el = —E+25(K+A K+ E Nk) (20)

g
=1

Up to now, using Equations (10) and (18)-20, the internal force and
moment for stages I and II may just be expressed in terms of unknown
parameters of Alx and Afx. For the abbreviation, we will derive the
internal force and bending moment of the next stage (II) which could
also cover stage I.

3.2.2. Stage Il and IV
Due to the changes in the stress profile and trends of loading stress at
stage I1I, the bending moment and internal force can be updated as

2 23 25
F= (/h/z ol gmt(z )dz+/ g 5 1(2) dz + i Ol 50 1(2) dz

'5b
III
/ i(5a.5b)
<5a
11/2
/ 9'V 2 Hz)dz (a)M

IV

= <a
= —/ ; ol g7tz )dz+/ Ol 57t(2) dz+/ 0 5 7t(2) dz
—h/2 3

Zsh SV
o
+ / Oi(5a.5b) 2t(z) dz
250

<9
+ / Oispom)2(2) dz

5b

IV
“9

dz  + / a%w,\,) t(z) dz
5b

02
+/N ol 2t(z)dz (D) @n

“9

The unknown stress and height parameters of
01{?1‘3"/)’51{?9"&7) ol (6w 3> 0’”3 Sa) a’”sb o) ,280 and 2z should be updated and

unknown parameters of a{fSu 55),25a and 28 must be derived in terms of

reduced curvature.

In contrast to stage II, in the present stage stress distributions across
points 1 to 8 (7 to 9), does not include elastic term and it is purely
affected by detwinning process (E A™¢). However, for the fibers between
points 8 to 8™ (9 to 9™, both elastic and detwinning terms (EAM¢d +
EA"¢) become apparent; considering A™e¢ + AVs + S"FAe = —2R/E,
for points 1 to 8™, (=2R/Efor points 7 to 9™ we write the updated stress
parameters of these zones in Table 3. Similarly, the stress distributions
along with the height of points 8 to 5a and 5b to 9’ may be obtained in
which zou can be determined by zouw = A™e,/A™k. Furthermore,
considering the stresses at points 8 and 9 (6joading F 2R) the parameters of
zgu and zgm are updated in Table 3.

To derive 25, m and z5,m, the normal stresses at points 5a and 5b may
read, respectively, -R and E (¢ — &) (the loading stresses at the first step);
thus, using Equations 22d and 22e they can be expressed as

Eei,v +R @
sglt = ————————77——— (a
E(k+ Ak + Z;Z,A’K) 25
(28 ]") (b)
Z =
M ATk + Alk — YA

Finally, in order to derive o 5a sp)> We know that when the stress at point
5 exceeds -R, the stress profile at this fiber does not vary elastically and
variant orientation starts proceeding (5a to 5b at stage III); thus, the
strain variations for these fibers consists of two terms including elastic
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(A™¢®) and reverse detwinning process (ATed). Due to the different
loading stress of the fibers (points 5a to 5 and 5 to 5b), the stress profile
in this region is diverse, so regarding Fig. 6b it yields

N &)

11
Olftes) = E(e+ AV — Z Ne —EA"¢! (a) (26)
1

olls 5y = E (e — €9 — A"e!) + E(A"e — Z Ne— A"e) (b)

The fibers located between points 5a to 5b elastically revert to their
initial loading position at the first stage; so the elastic strain reduction
upon unloading (AU¢) is equal to the increased elastic strain of all
= AVe— fl Ne; inserting this expression and Equation (8)
into 26, the stress parameters may be derived in terms of &)’ and A"k as

stages: A e

)i
Ollses) = Ex(D>_ Nk — AV) — Exiz— E€l (a) 27)

=1

11
—Ez(i+ AV =Y Nk~ E(ef +¢0) (b)

J=1

i _
Oi(5,50) =

where ngH

can be determined once the last fiber of the elastic region
(point 3) meets the reverse detwinning process. This leads to the coin-
cidence of points 8, and 5a with point 3 at the end of stage IIl while
ol 15.50) becomes equal to —R; then substituting it into Equation 22d, (:‘HI is
updated in Table 3 Note that, the growing trend of normal stress at point
9 for stages II to IV, shows that despite exerting axially compressive load,
a significant number of fibers may be exposed to positive stress variation
and subsequently suffer from the reverse detwinning process on the
tensile side. However, this trend only last until the fiber with zero strain
variation reaches point 9V (zow = zgw). Updating Equation 24b for stage
1V and assuming zov = AVe,/AVk the centroid strain at the end of this
stage may be stated as

eV = (28)
(AUK + Z_;Z,A%)

Eventually, we could just express all unknown parameters in terms of
Alk to Ak. Note that, by achieving stage VI, the stress variations may
differ significantly so the corresponding equations must be derived and
modified upon proceeding with axial load.

3.2.3. Stage V to VII

According to Fig. 5b, exerting more axial load causes the point with
zero strain variation (OV) gradually starts moving from point 9" toward
9", However, this fiber ends up reaching point 7 (z = h/2) in stage VI, and
afterward, the whole fibers undergo negative stress variation (Ac < 0).
The more increase in the applied axial load (P), the more the stress
reduction occurs in the fibers, eventually in stage VII, the beam has fully
gone through the compressive region. To derive governing equations of
this section, the general condition represented in stage V is considered;
the corresponding internal force and bending moment may be stated as

Vi "V VI

b 9 %9
F= - (/ O'X11'5bv1)t(z) dz + / O-XISbW_QW) t(Z) dz+ / G;?{Jv'qu t(Z) dz
) i v

b )

/2
Jr/ UXQVIJ) I(Z) dZ) ([l)
v

9

(29
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2

v
3/2 "9
M= / 1 S5pV1) Z[( )dZ + / ,(5bw 0) Zl( )dZ + / XIQV_QW) Z[(Z) dz

“sb <9

h/2
+ /w 0(9w7 Z[( )dZ (b)
9

The unknown parameters of ”X1,5bV)"’X9V,7) and zs,v should be updated
and others stress parameters including O-XSbVB'V) and ai‘nggv) must be
derived following their new trends of loading.

The stress variation for the fibers between points 1 to 5b¥, and 9" to 7
is only caused by variant re-orientation in compressive and tensile sides,
respectively. Hence, regarding the different loading histories arisen from
previous stages (Equations 22d, 27a,b), and considering that for fibers
between points 1 to 3 stress variation is +EA"e and for 3 to 5b seems

-E Ave;thus,al‘flesbv) can be obtained as

/

v
, . ; E
O'Xl,z) =—Ez(i;+ A%+ E Ak) +E(€;,/ +&p) +2R<E_ 1> (a)

J=

\4
oly5=Ezu(>_ Nk—A"k)—Exz—Ee] (b)
j=1

4 .
Oi(156V)

v
‘7;?5.517") = _E/Zi(Kl +AY— Z ANk)

J=t

—E(e) +2) (c)
(30)

When studying the stress of the fibers between points 5b" to 9", both
elastic and reverse detwinning processes may occur in this region, using
Equation 22f and AV¢? = AVe —2R/E, oi‘(/SbV.QV) can be derived as

Olispw vy = —E(kizi + €0+ &) — ) — Eg;(AVk

.
+ZA! +E£’V+EAKz+2R<—71> (31)

Jj=I

Stress variation induced in the fibers between points 9" to 9" is purely
elastic (—EA¢), however, for points 9" to 7 it is purely affected by det-
winning process ( + EA¢). Employing Equation 22b, olffg,vsv) and o;fgvj)
can be expressed as

v
, . E E
Olowory = — Ezi(i + AVk + § Nk — EAVK) +E(e] —€f)—2R (E
J=1

— 1) +E(e — &)

v .
; ; : E
Olovyy = —Eziki+ AUk + Z Nk)+E(g] — &) —2R (E - 1) (32)

J=1

Finally, zspv can be determined by updating Equation 25b for stage V.
Note that, at the end of this stage (Fig. 5b) the fiber with zero strain
variation (O") reaches z = h/2, thus eé‘{ can be obtained as

VoV _,,_EAV (33)
€ =€ +50'K

Furthermore, stage VI ends when point 5b"! height becomes coincident
with point 9Y; hence updating Equation (31) for stage VI and then
employing Equations (33) and zov = Agg/A"k, &y maybe determined
as

h Vi
8;,” :28;—5 (AUK—&-AIK—ZNK) (34

=l

After that, the stress variation trend follows stage VII and it lasts until
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Fig. 7. A curved SMA beam under compressive force.

Table 4

Geometric and material parameters (Richter et al., 2010).
Geometric parameters Value Unit
t 4.38 mm
l 50 mm
h 4.38 mm
Material parameters
Ms 44.6 °C
Ap 64.9 °C
&P 44% -
E 30.9 GPa
E 0 GPa
R 290 MPa

-

Ap -

] z
Fig. 8. A cantilever SMA beam subjected to a load perpendicular to its length.

vir
eventually &,

sequently, stress distribution across the cross section turns out to be
uniform and the column becomes straightened.

reaches a specific value in the compressive region. Sub-

3.3. Deflection due to the anti-buckling properties

Due to the strong coupling of the TD-effect with the kinematics of
short SMA beam-columns, the fully detwinned material response,
notably stiffer than its twinned counterpart, facilitates late stiffening,
enabling the beam-columns to self-straighten, a phenomenon unlike
conventional plasticity relying on plastic lattice destruction (Richter
et al., 2010). In the previous section, all unknown parameters related to
each stage presented in Equations (11), 21, and 29 have been initially
expressed in terms of reduced curvature (Ax) and centroid strain (eg).
Then employing the critical condition of each stage (Equations (10), 20,
23, 28, 33, and 34), we also derive ¢, in terms of reduced curvature,
which contributes to expressing the internal forces and bending moment
purely in terms of Ax.

At any time during analysis, the internal force ( [,0dA) and externally
applied load (F) must be equal and then by satisfying the equation of
bending moment at the mid-span section we have:

dA+F =0
/Aa + (a) (35)

M—F(w+wy) =0 (b)
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where M and w represent the internal bending moment ( f [,02dA) and
transverse displacement, respectively. Moreover, wy in Fig. 7. denotes
initial transverse displacement or residual deflection after the complete
unloading of the bending moment in the first stage. Similar to column
buckling and post-buckling problems, different theoretical approaches
could be employed to provide an approximate solution for this problem.
Pereira (Pereira, 2016) by considering the bending deflection profile,
proposed an approximate but convenient solution to analyze the plastic
buckling of columns. Motivated by this work, we employ the deflection-
length relationship from the bending stage to investigate transverse
displacement during the anti-buckling problem. For buckling and post-
buckling analyses, the centroid strain cannot be determined so they
used the Newton-Raphson method for re-establishing the equilibrium
equations (Havran and Psotny, 2016; Carrera et al., 2021; Zhou et al.,
2015). However, in this work, because we trace the changes of ¢, and
obtain it in terms of Ax, it is possible to explicitly obtain the relationship
between force, moment, and residual deflection during each increment
of loading. Although for better accuracy, upon applying compressive
load the effect of beam shortening will be imposed by updating the beam
length using L, = &, L, ;(forn=1,...m).

Considering total reduced curvature (Axr = Y Akp) just before
reaching each stage and also simply supported boundary conditions in
Equation (6), the deflection during each increment of loading at the
middle of the beam can be stated as

*2

- Ln
wa(l/2) = <K + AV + 2}: Axn> & (36)

Substituting the internal force and bending moment of each stage
(Equations (11), 21, and 29) as well as Equation (36) into Equation 35b,
we can determine the maximum reduced curvature related to stages I to
VII(A'kmax, i =1 — VII). Regarding the derived equations of each stage (f,
M, and &) in section 5, Ak is increased from zero, and then upon
reaching Alknq of each stage, the corresponding equations to the next
stage will be employed during curvature reduction; thus, this process
continues until Axr meets k —AUx meaning that the pre-bent beam is
straightened when the axially compressive load is applied during anti-
bending analysis.

4. Results

In this section, several anti-buckling stage studies under different
loading and geometric conditions are presented and then compared with
existing numerical models. Initially, the relationship between load and
deflection during loading and unloading in the bending section is
studied, then for the anti-buckling problem the relationship between
column length and transverse displacement upon strain recovery is
extracted. Moreover, in this section, for deeper physical understanding
the stress and strain distributions during anti-buckling of the SMA beam-
columns are depicted.

4.1. Example 1

In this example, the anti-buckling problem reported by Richter et al.
(Richter et al., 2010) under trigonometric loading is analytically solved
and then compared with the numerical results. A cantilever SMA column
with material parameters presented in Table 4 and geometric parame-
ters of height h; length [, and width t under an applied load P (Fig. 8) at
the free end are considered. Comparing the material behavior and pa-
rameters of SMA in reference (Richter et al., 2010) with the material
parameters of Eq. (2) in the present work, it can be figured out that the
hardening parameter in (Richter et al., 2010), equivalent to H'P in this
work, has not been considered. Thus, according to Eq.2, E’ may obtain
zero. Moreover, in the present study, R'? introduces the radius of elastic
domain, this parameter in the reference (Richter et al., 2010) is defined
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Table 5
Corresponding internal force and bending moment of each anti-buckling stage.
Stage Internal Force and Bending Moment
F
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Fig. 9. Comparing variations in transverse deflection along the column length.
Results of this work vs. existing numerical data (Richter et al., 2010).

as “the positive transformation stress plateau” with a value of 290 MPa.
Respectively, eiD and E in this study, are equivalent to e7 and Ep; which
are “Transformation strain of martensite” and “Youngs modulus of
martensite” in (Richter et al., 2010). According to sections 3.2.1 to 3.2.3
the internal forces and bending moments for Stage I to Stage VIII are
obtained and summarized in Table 5.

Employing the bending equations, the relationship between the
length and deflection of the SMA beam-column during loading and
unloading are compared in Fig. 9. It is important to highlight that, in
order to report the beam deflection referenced in (Richter et al., 2010),
we have digitized the deflections of the SMA beam along its length at the
corresponding times of 25 s and 30 s in (Richter et al., 2010) for the
loading and unloading processes, respectively.

In terms of strain and stress distribution in fibers, Fig. 10 shows the
strain-stress distribution of all fibers for the cross section at the middle
length of the beam. The numbers in the figure sequentially show the
state of stress and strain variations for all three stages of loadings. At the
end of each step, we put a mark to distinguish the steps. Due to the
uniform stress distribution of the first step, all fibers have the same
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Fig. 11. Analytical solution and numerical results for deflection due to anti-
buckling as a function of column length.
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Fig. 12. Analytical solution and numerical results for the relationship between
axially compressive load and deflection due to anti-buckling.

Table 6
Material parameters in 1D form for SMA beam-column (Auricchio and Petrini,
2004; Auricchio et al., 2009; Scalet and Peigney, 2017).

amount of stress, thus, in the figure all fibers are coincident on only one Material parameters Value Unit
solid path (1 to 3: loading, and 3 to 4: unloading to end up at zero stress). E 53 GPa
However, due to non-uniform bending stress distribution, we may have E 1.46 GPa
1D
divergence of fibers upon unloading, the solid path 5 forks off right, e.g. Rl i ;?)/25 MPa
path 6 which finally stops on black square [ll. Eventually, all diverged i N .
) . . . ; M; —34 c
fibers (e.g. path 7) will be converged again following 8, and by removing A _13 ‘e
400 T
------- Numerical Results [12] 3 >
300} Analytical Solution |
200
100
0 Al fibers at the Start Point
= end of Stage Il
£ -100 /
@ 200 4,9 |
e : End of the Stage II b1
@ 300 Straightened i
Column 9
-400 8
-500
-600 - f
-700 | | | |
-0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0
Strain [-]

Fig. 10. Stress—strain curves for three different stages at various stages.
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Fig. 13. Variations in stress and strain of some fibers during anti-buckling.
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Fig. 14. The trend of changes in the stress distribution across beam cross-
section during anti-buckling.
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Fig. 15. The trend of changes in the strain distribution across beam cross-
section during anti-buckling.

the load they may again reach zero stress.

In the first step, all fibers straightforwardly experience the detwin-
ning process and then stop at zero stress (white bullet o) upon load relief,
arrows 1 to 4 depict this process. In the second step, tensile stress
induced by the bending moment causes variant re-orientation (4 to 5),
however, an intense compression may be imposed on the fibers on the
opposite side (4 to 3). Relieving the moment, stress, and strain for each
fiber in tension (5 to 6) seem uniquely demarcated with black squares
(M. At the anti-buckling step (7 to 8), as the load is applied, the
convergence of strain and stress of column fibers may occur (black
bullet) and finally unloading let the axial stress throughout the column
reaches zero again (white bullet).

Based on the proposed model, the history of force and deflection
variations during anti-buckling are studied incrementally and compared
with the results in (Richter et al., 2010). Fig. 11 illustrates the change of
transverse displacement along the column length at some specific
compressive load; gradually the deflection reduces and finally at about 8

13
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Fig. 16. The trend of changes in deflection along the beam length at different
axial loads during anti-buckling.

KN, it is expected to have a straightened column. To figure out the rate of
increased compressive load versus reduced transverse displacement, in
Fig. 12 we have derived and compared the relationship between axial
load versus deflection along the column length. As it is shown, at the
initial load increments, the column deflection may not significantly
vary, however, when the applied load exceeds 4 KN there is also a
corresponding rise in the transverse loading, consequently, at the higher
applied loads, a small change in this parameter may lead to a noticeable
recovery in the deflection and anti-buckling phenomenon can be seen at
a faster speed.

4.2. Example 2

In this example, to proceed more deeply in the anti-buckling
behavior and extract all stages of stress distributions in Fig. 5 (a, b), a
square beam with a dimension of 1 x 1 mm, length of 10 mm, and
material parameters shown in Table 6 are considered. This material
behavior was originally experimented by (Sittner et al., 1995) and then
adopted and employed in (Auricchio and Petrini, 2004; Auricchio et al.,
2009; Scalet and Peigney, 2017). Although it should be noticed that they
are in three-dimensional form, thus using Eq. (2), the 1D form has been
obtained and represented in Table 6.

For the occurrence of all stages, it is required to induce saturation
region in both compression and tension sides of the column. Due to the
initial compression of about 210 kN, all fibers will be in the negative
saturation region and then the pre-strain reaches —0.058. Subsequently,
the length of the beam reduces about 0.5 mm from its initial value, and
then upon unloading the stress uniformly comes back to zero (Fig. 13a).
By imposing a bending moment of about 90 Nmm, the beam fibers at
different positions may follow different paths due to the different
amounts of generated strain in each fiber. As shown in Fig. 13 b, the
outmost fibers at both sides (—0.5 and 0.5), respectively, might be
endured being in negative and positive saturation regions. Moreover,
due to the variant re-orientation in tensile sides, some fibers seem to
have been loaded in this region (—0.125, 0.125, 0.25). Regarding
different moduli of elasticity in saturation and variant orientation re-
gions, there must be a relocation for beam-neutral fiber to satisfy force
equilibrium. Thus, the beam is under applied load whereas some fiber
similar to —0.3125 strain has an initial loading and then unloading path
attributing to the movement neutral fiber. Regarding Fig. 13c, upon
unloading the stress could be reduced elastically and/or through variant
re-orientation. Once the axial load is applied it is expected to have a
stress reduction throughout the beam, however, the compressive side
may release its stress and some portions go to the tensile side as illus-
trated for the fiber at —0.5 mm in Fig. 13d. Given further axial load
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gradually causes all fibers to experience negative variant re-orientation
(Fig. 13e, f) and eventually in this example both stress and strain of the
fibers converge into a specific amount (Fig. 13g), consequently the
curvature and deflection return to zero.

The stress distribution diagram in the beam cross-section for all
possible stages that can occur during the anti-buckling behavior has
been shown in Fig. 14. Stage O indicates the residual stress after
unloading the bending loads or moment at the second step. After
imposing the axially compressive force of about 35 N, the reduced stress
from the tensile side is significant and gradually some fibers will be
exposed to variant re-orientation. However, on the compression side as
we mentioned previously there is a reduction in compressive stress so
that some fibers can even experience tensile stress. To discuss in detail,
let’s consider stage III in which almost all fibers that were on the tensile
side are now on the compressive side, and in the variant re-orientation
region, also some fibers (height of —0.5 to —0.4 mm) that were in the
compressive side now have positive stress. From stage V onwards more
applied compression will cause more fibers come back to the compres-
sive region while the rate of stress changes may not be the same for all
fibers. A further continuation in the axial loading leads to a more ho-
mogeneous stress distribution across the cross section (stages VI and
VID). Presence of all fibers in a specific point can be seen throughout the
beam, so eventually uniform distribution is achieved.

Fig. 15 illustrates the strain variation of all stages corresponding to
the stress diagram in Fig. 14. As it is clear strain is changing linearly and
eventually in all points of the beam its value is converged into about
—0.05. Finally, the beam deflection distribution along the length has
been incrementally depicted in Fig. 16 for stages O to VIII. In each
loading increment the amount of transverse deformation is decreased
and at the same time, the length shortening of the SMA beam seems to be
inevitable.

5. Conclusions

The present paper aims to provide an analytical and experimental
investigation into the anti-buckling behavior of prismatic shape memory
alloy (SMA) beam-columns. The paper begins by thoroughly describing
the process of column straightening during anti-buckling and develops a
mathematical model based on this concept. The analytical modeling
approach considers nine distinct stages of loading and unloading stages
that occur during anti-buckling. Each stage is step by step formulated,
and the corresponding force and moment values are derived and pre-
sented, primarily for the purpose of designing SMA beam-columns. This
step-by-step formulation allows for a detailed representation of the
behavior of the beam-columns during anti-buckling. The results show
that at different heights along the beam-column, the curvature can be
determined based on the inhomogeneous strain distribution. As the axial
load increases, the strain distribution across the cross-section of the
beam-column becomes more uniform, leading to a reduction in curva-
ture. Eventually, when the strains in all fibers are equalized, the cur-
vature of the beam-column reaches zero, indicating that the structure
has been fully straightened under the applied axial load. Therefore, we
establish that the primary factor causing the straightening of beam-
columns is not the evenness of stress, but rather the achievement of
uniformity in strain across all fibers. In Summary:

e This analytical work empowers designers to obtain the required
forces and moment in each step based on material parameters and
geometry.

e Reverse designing is possible by considering the needed deflection
and then calculating the required forces and moments for each step
in the present work.

e Material hardening, which is an important parameter in the det-
winning process, has been considered in the present work to study
anti-buckling behavior.
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e Recognition of nine distinct phases depicted on stress-height dia-
grams, stemming from the intricate stress-strain characteristics
exhibited by SMA materials.

e Moreover, when the SMA fibers undergo the saturation region in the
second step (bending), we can also discuss the anti-buckling
behavior, which makes the model more accurate and comprehensive.
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