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A B S T R A C T   

The present paper focuses on studying the anti-buckling behavior of prismatic martensitic shape memory alloy 
(SMA) beam-columns. It combines analytical and semi-analytical approaches to investigate the process of column 
straightening for anti-buckling. We try to comprehensively describe this phenomenon and develop a mathe
matical model to formulate each step of the anti-buckling problem. Due to the complex stress–strain behavior of 
SMA material, nine different stages of stress-height diagrams may potentially occur during this effect; thus, for 
facilitating the design process of SMA structures, corresponding forces and moments to each stage, are analyt
ically derived. Our demonstration establishes that the primary cause of beam-column straightening is not the 
uniformity of stress, but rather the achievement of uniform strain across all fibers of the cross-section. This 
uniform strain distribution implies that the curvature of the beam-column diminishes to zero.   

1. Introduction 

Displacement (angle or stroke), load (or force) as well as bandwidth 
(frequency or speed) are three main technical objectives needing to be 
addressed in designing SMA actuators for any industrial application. 
There always exists a challenge between the constraints of a specific 
application or design and potentially satisfying its conflicting objectives 
based on their requirements. As an example, thicker actuators generate 
higher force but actuate more slowly than thinner ones, shorter length of 
actuators may require less triggering in energy, however, it provides less 
stroke or displacement. Moreover, environmental conditions, permis
sible weight and size, positional control and stability, cost, durability, 
and maintenance can be added to the available constraints (Billah et al., 
2022; Fang, 2022; Rastjoo et al., 2020; Krishnaswamy et al., 2019; Choi 
et al., 2022). 

In terms of motion, generally, SMA actuators might be classified into 
two types: translational (linear) motion as well as rotational (rotary) 
motion. In the first category, three designs may be introduced: one- 
directional (1D), antagonist, and bias-force actuators. Free recovery 
and constraint recovery which are mostly suitable for low-cycle and one- 
time applications can be considered for 1D actuators (Khalid et al., 2019; 
Arivanandhan et al., 2023; Lagoudas, 2008; Liu et al., 2023; Zhang et al., 

2010). In biasing force actuators, mostly a preloaded spring can operate 
cyclically to quickly and frequently leave and return an SMA element to 
its permanent position. However, in an antagonistic approach, two SMA 
elements might be alternately actuated as activated (heated) and deac
tivated (cooled) devices (Kazemi and Jankowski, 2023; Richter et al., 
2010; Kohl, 2004; Choi et al., 2021; Hartl et al., 2010; Shaw and Kyr
iakides, 1998). 

According to extensive applications of SMA actuators, they may 
mechanically undergo various loading conditions and be manufactured 
in various configurations and shapes. However, compared with other 
loading types, axial and bending loadings may provide the most efficient 
energy density for SMA devices (Mohammad Hashemi et al., 2023; Li 
et al., 2023; Fahimi et al., 2019; Qian et al., 2022; Vahidi et al., 2021). 
Due to the promising performance of axial and bending loadings, 
various forms such as rods, beams, wires, tubes, helical springs, and 
ribbons are employed in most SMA applications (Mandal and Calladine, 
2002; Do et al., 2023; Choi et al., 2022). Under such loading conditions, 
SMA actuators are potentially vulnerable to lose their stability and start 
buckling. However, these buckled SMA elements such as beams, or 
columns can be used in artificial muscles, energy harvesting, and bio
inspired robot applications when snapping from one state to another 
state by exciting with adequate input trigger (Kawate et al., 2018; Kohl 
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et al., 2004; Choi et al., 2022; Tan et al., 2019). Thermal (or electrical) 
triggers are almost always a major activation method to induce phase 
transformation or detwinning process, whether an SMA element is 
embedded in a matrix or purely employed as a device or actuator for 
functional purposes (Choi et al., 2022; Tan et al., 2019; Das et al., 2021; 
Bovesecchi et al., 2019). 

However, in this study, we have not used thermal or electrical 
stimuli; thus, athermally triggered SMA prismatic device to recover its 
original shape. In these forms of applications, a bent (or buckled) shape 
of an SMA element through twinning deformation effect (TD-Effect) 
which roots in an inhomogeneous stress state and then twined- 
detwinned variant orientation can be mechanically induced to recover 
inelastic strains (Richter et al., 2010; Urushiyama et al., 2003; Osta
drahimi et al., 2015; Zamani Alavije and Botshekanan Dehkordi, 2019; 
Thier et al., 1991; Watkins and Shaw, 2018). The TD-Effect was origi
nally discovered and introduced by Urushiyama et al. (Urushiyama 
et al., 2003), who experimentally and numerically investigated the 
stress distribution and deformation of curved SMA columns under 
compression. Since in the curved shape of SMA elements, bending is the 
major mode of deformation; thus, via beam theory, several types of 
studies have been conducted to theoretically and experimentally obtain 
moment–curvature relationships for shape memory effect (SME) and 
superelastic (SE) beams and columns (Watkins and Shaw, 2018; Cheng 
et al., 2023; Xiao and Jiang, 2022; Jaber et al., 2008; Mirzaeifar et al., 
2013; Rejzner et al., 2002; Ostadrahimi and Taheri-behrooz, 2019; 
Auricchio et al., 2011; Viet et al., 2019; Jiang et al., 2017; Viet et al., 
2019; Karakalas and Lagoudas, 2020; Radi, 2021). Moreover, several 
buckling, unbuckling, and post-buckling analyses have been conducted 
to investigate the stability of columns with SME and SE before and after 
buckling or to postpone the instability of composites while SMA ele
ments are embedded in them (Radi, 2021; Saeed Kamarian et al., 2020; 
Asadi et al., 2013; Pattar and Patil, 2019; Tung, 2017). By imposing 
initial pre-compression and using finite element analysis, Richter et al. 

(Richter et al., 2010) simulated anti-buckling analysis for SMA columns. 
Ostadrahimi et al. (Ostadrahimi and Taheri-behrooz, 2019) analytically 
solved the bending problem of pre-strained beams, however, their the
ory did not cover the TD-Effect and they roughly obtained the required 
force for strain recovery. Watkins et al. (Watkins and Shaw, 2018) using 
experimental and theoretical methods proved that unbuckling behavior 
for columns with SE may happen but only restricted to specific geome
tries and nonlinear material stress–strain curves. 

The present paper is an analytical study on the anti-buckling of 
prismatic martensitic SMA beam-columns. The process of column 
straightening during anti-buckling is comprehensively described and 
based on that concept we mathematically modeled this physical phe
nomenon. In our analytical modeling, nine stages of loading and 
unloading stages during anti-buckling are step by step formulated, and 
the corresponding force and moment to each stage are derived and 
represented for designing purposes. To verify our modeling, we compare 
our results with existing numerical results. The structure of this paper is 
as follows. Section 2 is dedicated to the constitutive equation of SMA 
material. In section 3, which is the main section of this paper, the anti- 
buckling concepts are initially described and the moment–curvature 
relationship as well as stress analysis during the 9 stages are modeled. 
After deriving the deflection of the curved beam through semi-analytical 
methods, the results of this work have been presented in section 4 
involving several numerical and experimental studies to address the 
anti-buckling phenomenon. 

2. Reduced 1D Souza constitutive equations 

The Souza model (Souza et al., 1998), developed in 1998, is a three- 
dimensional framework that effectively describes the unique effects of 
both pseudoelasticities (PE) and shape memory effect (SME) within the 
realm of small deformations. This model, rooted in the theory of irre
versible thermodynamics, provides a general reduced one-dimensional 
representation when considering a uniaxial test. Inspired by the Souza 
Model (Souza et al., 1998) and then considering the reduced constitutive 
equations into one-dimensional form (Ostadrahimi et al., 2015), we 
have employed this model at low temperature or martensite phase, in 
line with the operating temperature of the TD-effect. Let σ,ε,E and etr be, 
respectively, the normal stress, strain, Elasticity modulus, and trans
formation strain, then 

σ = E(ε − etr) (1)  

The stress–strain behavior of SMAs is indicated in Fig. 1 and their re
lationships for each region are proposed in Table 1. 

Material parameters in the 1D Souza model (Fig. 1 and Table 1) can 
be described below: 

ε0 =
R1D + τ1D

M

H1D , E′ =
EH1D

H1D + E
, ε1D

L =
( ̅̅̅̅̅̅̅̅

2/3
√ )

εL

H1D = (3/2)H, R1D =
( ̅̅̅̅̅̅̅̅

3/2
√ )

R, τ1D
M =

( ̅̅̅̅̅̅̅̅
3/2

√ )
τM

(2)  

where R,H and εL are, respectively, elastic domain radius, variant 
orientation hardening, and transformation strain at its maximum value 
during a uni-axial loading condition in a 3D model. Furthermore, 
considering T0 and β reference temperature and a material parameter, 
respectively, τM may be defined as: 

τM =

{
β(T − T0) if T > T0
0 otherwise (3)  

3. Anti-buckling problem 

In this section, we provide a concise description of the material 
behavior of SMA beam-column and its loading steps to display anti- 
buckling behavior. This problem consists of two stages: in the first 

Fig. 1. The stress–strain characteristics and the material parameters associated 
with the Souza model (Ostadrahimi et al., 2015). 

Table 1 
Stress–strain relationship for different regions (Ostadrahimi et al., 2015).  

Region 
Parameters 

Elastic Detwinning Twined 
martensitic 
twin 

Negative 
martensitic 
twin 

Transformation 
strain (etr) 

0 
(
σ − (R1D + τ1D

M )
)
/H1D ε1D

L −ε1D
L 

Constitutive 
relation 

σ =

Eε 
σ = E′(ε + ε0) σ =

E(ε −ε1D
L )

σ = E(ε +

ε1D
L )
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stage, the pre-strained SMA beam undergoes bending stresses caused by 
transverse loading or bending moment (Fig. 2a). After removing the 
transverse load a residual deflection may remain in the beam. In the 
second stage, an axially compressive load exerts on this pre-bent beam; 
thus, in contrast to ordinary materials, beam deflection does not increase 
and/or buckle (Fig. 2b), rather the deflection starts decreasing and 
eventually it becomes straight (Fig. 2c). 

Worth to note that when a martensite SMA beam is under bending 
stress, some fibers on both sides of the beam experience a detwinning 
process from twinned martensitic variants to positive or negative det
winned variants in tensile or compressive sides, respectively. By 
removing the transverse loads, a substantial deflection may remain in 
the beam-column and subsequently, bending stress distributes inho
mogeneously across the cross-section. In the second stage as the axial 
load applies on the beam column, the fibers in the tensile side reorient 
into negative detwinned martensitic variants; thus, gradually a uniform 
stress distribution occurs in the beam meaning that residual curvature 
and deflection reach zero. 

Since in the buckling and anti-buckling problem, geometry and 
length of columns play a crucial role, it is not expected for too long and 
aggressively bent SMA beam-columns to exhibit this TD-effect phe
nomenon. Thus, finding the exact range of length and degree of lateral 
deflection to exhibit anti-buckling behavior is important. For short 
columns, we may expect a higher possibility of having this effect due to 
the shear deformation effect; however, figuring out this exact range is 
under further investigation. 

In the following discussion, we try to deeply describe the exact 
process of straightening in the beam and then analytically drive its 
governing equations to estimate the generated bending moment and 
required axial load as beam deflection reverts back to its initial shape. 
The pre-bent beam with length L and initial residual deflection will be 
exposed to a compressive load F as shown in Fig. 2c. 

3.1. Stage I: Moment-curvature relationship for SMA beam-column under 
bending 

In this section, to generate bending stress in the pseudo-plastic beam 
at the first stage, the bending moment–curvature relationship obtained 
by Ostadrahimi et al. (Ostadrahimi et al., 2015) is employed. In the most 
general stage, we can divide the cross-section into three zones, 1: elastic 
core when stress in these fibers is lower than detwinning start stress (σs), 

2: detwinning zone when the fibers in this region have the stress in 
between σs and σf (detwinning finish stress), 3: saturation zone in which 
fibers are fully transformed to detwinned martensite. In order to obtain 
the total moment, bending moments in each region must be calculated 
and summed across the whole cross-section. The kinematics of a section 
may be described using two variables of normal strain (ε) and its cor
responding curvature (κ). However, TD-effect may appear for short 
columns dominated by shear deformation, but due to the nonlinear 
behavior of SMA as well as intricated response of material during anti- 
buckling, for simplicity we have ignored the shear deformation term 
in this study, so normal strain varies linearly with the beam height (z). 

ε(z) = − κz (4)  

where let z be thickness of the beam-column as well. According to 
Table 1, the maximum elastic curvature (κmax

e ) and maximum detwin
ning curvature (κmax

de ) are obtained and presented in Table 2. For the 
curvature lower than κmax

e , all fibers are located in the elastic zone, and 
for higher curvature, if some fibers exceed the detwinned zone, then the 
detwinning process should occur in the middle part (Fig. 3). To describe 
a complete bending moment–curvature relationship, it is necessary to 
obtain the boundaries of each zone (he and hde, Fig. 3). Considering the 
normal strain at points a (εa = σs/E) and b ( εb = σs/E +H1Dε1D

L /E′) as 
well as Equation (4), the height of the elastic and detwinning zones are 
derived and presented in Table 2. 

Let M, A and t(z) be the bending moment, beam cross section area 
and thickness, respectively, the relationship between bending moment 
and curvature for this pseudo-plastic beam-column with prismatic cross- 
section may be given by M =

∫

Aσz t(z)dz; thus, regarding Fig. 3 the most 
general stage of applied moment yields: 

Mloading = 2
( ∫ −he

0
Eεz t(z)dz +

∫ −(he+htr )

−he

E′(ε + ε0)z t(z)dz +

∫ −h/2

−(he+htr )

E(ε

− ε1D
L )z t(z)dz

)

(5)  

Furthermore, the curvature can be calculated using κ = d2w/dx2 for the 
small lateral deflection (w). By integrating and then imposing suitable 
boundary conditions to find integration constants (C1 and C2), beam 
lateral deflection may be represented as 

w(x) =
κx2

2
+ C1x + C2 (6)  

Upon unloading, some parts of martensite variants remain oriented 
while satisfying the equilibrium state and some parts may suffer from re- 
orientation (Fig. 3b). However, reverse detwinning strain and stress may 
vary regarding the fibers’ position (Ostadrahimi et al., 2015). 

Based on the amount of applied bending load in this stage and then 
unloading, two possible diagrams of residual stress across the beam 

(a) Straight beam under bending stress            (b) pre-bent beam          (c) axial compression (anti-buckling effect)

w0

F

MM

Fig. 2. The process of loading stages to display the anti-bending problem.  

Table 2 
Maximum curvature and height of each one (Ostadrahimi et al., 2015).  

Maximum elastic 
curvature 

Maximum 
detwinning curvature 

Height of 
elastic zone 

Height of 
detwinning zone 

κmax
e =

2σs

Eh  
κmax

de =
2
h

(σf

E′ − ε0

)
he =

σs

Eκl  
hde =

H1Dε1D
L

E′κl   
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cross-section can be formed (Fig. 4). Providing that during loading, the 
maximum induced stress in the outmost fiber of the beam does not 
exceed the detwinning finish stress (σF), the schematic of residual stress 
may follow Fig. 4a with three zero-stress fibers, otherwise the locked-in 
stress could develop in accordance with Fig. 4b exhibiting five neutral 
fibers. 

3.2. Stage II: Stress analysis of pre-bent column under axially compressive 
load 

In this section, an analytical solution is proposed to study governing 
equations of the anti-buckling effect, and then the relationships between 
force and moment with curvature and centroid residual strain are 
derived during each increment of loading. Furthermore, the process of 
beam straightening is investigated step by step, starting from an inho
mogeneous stress diagram in Fig. 4 to reach uniform stress distribution 
while the curvature continuously reduces in 9 stages of stress profiles 
depicted in Fig. 5a and b. For more clarification, the circle symbol (○) is 
used in Fig. 5 to indicate the critical points of each stage during the 
loading procedure. As the fibers in the bending step experience det
winning and/or saturation regions, upon unloading, they may respec
tively reach the stress-height diagrams in Fig. 4a and b. For both residual 
stress diagrams in Fig. 4, the process of the anti-buckling effect would be 
the same. For simplicity, the deformed beam-column under the residual 
stress in Fig. 4a is considered. Stage 0 in Fig. 5a (⓪), exactly shows again 
the stress-height diagram of Fig. 4a, and the corresponding stress–strain 

curve to this stage, is shown in Fig. 6a by ⓪ again. Similarly, as another 
example, for stage 5 (V) in the stress-height diagram of Fig. 5b, the 
stress–strain distribution corresponding to this specific stage is illus
trated by V in Fig. 6b. To clarify as to why both graphs in Fig. 4, may 
have similar process of TD-effect, we need to consider Figs. 4, 5, and 6 
simultaneously. Overall, after unloading in bending step (shown by → 
for some points) and depending on fibers’ location, fibers may stay in 
saturation region (bold line P1 to P2) and in stage 0 (P2 to P3 and P3 to 
P4) in Fig. 5a. Considering half of the beam, although the fibers at the 
end of unloading the second step are at different locations and regions 
(P1 to P4), upon exerting a compressive load at final step, all fibers based 
on their locations, initially experience a change of stress with the slop of 
E (same slop as unloading of bending step), and then reach their 
threshold of reverse detwinning (e.g. shown by ∗ for three pints), thus, 
the stress may vary by E′ in the reverse detwinning region. 

Therefore, regardless of the location of fibers either in the saturation 
region or in the detwinning region at the end of removing the bending 
step (Fig. 4a and b, respectively), the process of loading in final step may 
be similar in a way that it firstly goes toward the reverse detwinning 
region by slop of E, then upon reaching the reverse detwinning start 
stress (thresholds), their stress change may follow with the stiffness of E′. 
This fact will be demonstrated in section 4.2 and Fig. 14, where, in spite 
of some fibers undergoing saturation region, the trends of stress-height 
diagram follow the procedure of stage I to VIII. 

Upon exerting an axial load, the centroid strain (εg) starts emerging 
in the cross-section so that neutral fiber does not pass through the 

(a) : General loading

Elastic
region 

Variant
orientation
region 

Saturated region

Elastic
unloading 

Elastic and 
Variant re-
orientation
unloading 

Elastic unloading

(b) : General unloading 

Fig. 3. Stress–strain diagram shows loading and unloading variations across regions (Ostadrahimi et al., 2015).  

         (a)  three-neutral stress fiber                                         (b) five-neutral stress fiber 

Stress

H
ei

gh
t

Stress

H
ei

gh
t

Fig. 4. Residual stress diagram upon unloading of bending load (Ostadrahimi et al., 2015).  
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centerline; thus, equation (4) is no longer valid and the deformation 
profile should be modified as 

ε(z) = − κlz + εg (7)  

where εg is a function of the applied load. To specify the normal stress 
changes for each fiber in the beam cross-section during each increment 
of loading, we first need to express the strain variation of a fiber (Δεi) in 
terms of decreased curvature (Δκ) and increased centroid strain (Δεg) for 
point i as 

Δεi = − ziΔκ + Δεg (8)  

Regarding Fig. 5a and b (stages 0 to IX) and employing Equations (8), we 
will try to derive the unknown parameters of heights and normal stresses 
of each stage in terms of reduced curvature and increased centroid 
strain. To discuss the anti-buckling procedure as clearly and concisely as 
possible, nine stages of Fig. 5a and b, are divided into sections Stage 0 to 
II, Stage III to IV, and Stage V to IX. 

3.2.1. Stage 0 to II 
After removing the applied bending loads at step 1, the internal 

bending moment becomes zero, and force equilibrium is satisfied by 
exerting no axial force. The residual stress profile (stage 0 in Fig. 5) can 
be described as 

σres
i(1,3) = −E′(κlzi − ε0) − EziΔUκ (a)

σres
i(3,5) = −Ezi(κl + ΔUκ) (b)

σres
i(5,7) = −E′(κlzi + ε0) − Ezi(ΔUκ) (c)

(9)  

where σres
i(1,3)

represents the remained stress in the fibers between points 1 
and 3. Similarly, we can define the residual stresses of σres

i(3,5)
and σres

i(5,7)

for the fibers between points 3 to 5 and 5 to 7, respectively. ΔUκ denotes 
the unloading reduced curvature and has been determined along with 
the height of points 3 and 5 (z3,z5) through the unloading step. 

Upon exerting axially compressive load during stage I, all fibers 
initially undergo elastic stress variations (Δσ = EΔε) which may have an 

increasing or decreasing trend based on their fiber’s location. In this 
stage, the curvature reduces until the stress of the outmost fibers at 
points 1 (or 7) reaches the bound of the reverse detwinning region. To 
start the reverse detwinning process for points 1 to 3 (or 5 to 7), the total 
strain variation during unloading and stage I is −2R/E (ΔUε + ΔIε =

−2R/E); using Equations 8 and 9a; the increased centroid strain for the 
stage I (ΔIεg) can be written as 

ΔIεg = −

(
2R
E

−
h(ΔUκ + ΔIκ)

2

)

(10)  

The initial centroid strain is zero (ε0
g = 0,ΔIεg = εI

g −ε0
g ); thus, ΔIεg could 

be equal to εI
g. 

With the growth of the applied axial load, the beam curvature drops 
continuously, and as expected reverse detwinning process begins in 
some fibers from points 1 to 8 and 7 to 9 (Fig. 5a, stage II). 

The internal force and bending moment for stage II may be written as 

F =−

(∫ z8

−h/2
σII

i(1,8)t(z)dz+

∫ z3

z8

σII
i(8,3)t(z)dz+

∫ z5

z3

σII
i(3,5) t(z)dz+

∫ z9

z5

σII
i(5,9) t(z)dz

+

∫ h/2

z9

σII
i(9,7) t(z)dz

)

(a)

(11)  

M =

∫ z8

−h/2
σII

i(1,8)zt(z)dz+

∫ z3

z8

σII
i(8,3)zt(z)dz+

∫ z5

z3

σII
i(3,5)zt(z)dz+

∫ z9

z5

σII
i(5,9)zt(z)dz

+

∫ h/2

z9

σII
i(9,7)zt(z)dz (b)

where and z8, z9 are unknown stress and height parameters, however, z3 

and z5 are determined from the unloading stage. To derive σII
i(1,8)

and 
σII

i(9,7)
, we know that the fibers located between points 1 to 8 (7 to 9) are 

expected to experience both elastic and reverse detwinning stress 
reduction; thus, employing Equation (8), the strain variation in this re
gion decomposes into elastic (ΔIIεe) and detwinning (ΔIIεd) terms as 

(a) Stages 0 to 4                                                                (b) Stages 4 to 8 

0
ⅠⅡ

1

3

5

7

2

4

6

8Ⅲ.

9Ⅱ.

5a
a

5b
.

8 .

9IV

9V.
9Ⅲ ,

5bIV.

5 b V

5bVII 
9 .

IⅤ

Ⅴ

Ⅵ

IⅤ

Ⅶ
Ⅷ

Ⅲ

9Ⅳ,.

Stress

H
ei

gh
t

Stress
H

ei
gh

t

Fig. 5. History of stress-height diagram upon each stage of anti-buckling.  
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ΔIIε = ΔII εe + ΔIIεd (12)  

To derive the stress parameters of these regions for stage II, we can write 
(

σII
i(1,8) = σres

i(1,3)

σII
i(9,7) = σres

i(5,7)

+ E(ΔIε + ΔIIεe) + E′ΔIIεd (13)  

Regarding Fig. 6b, the elastic stress variation for the fibers between 
points 1 to 8 cannot exceed −2R (+2R for points 9 to 7); thus, ΔIIεe may 
be calculated as 

ΔIIεe
i =

⎛

⎜
⎜
⎜
⎝

−

(
2R
E

+ ΔUε + ΔIε
)

1 ≤ z ≤ 8

2R
E

−
(
ΔUε + ΔIε

)
9 ≤ z ≤ 7

(14)  

Substituting Equations (8), 12, and 14 into Equations (13), and after 
some mathematical manipulation σII

i(1,8)
and σII

i(9,7)
can be derived in 

terms of εII
g and ΔIIκ as 

σII
i(1,8) = −E′zi(κl + ΔUκ +

∑II

j=I
Δjκ) + E′(εII

g + ε0) − 2R
(

1 −
E′

E

)

σII
i(9,7) = −E′zi(κl + ΔUκ +

∑II

j=I
Δjκ) + E′(εII

g − ε0) + 2R
(

1 −
E′

E

)
(15)  

For the fibers between points 8 to 3 and 3 to 5, the trend of stress var
iations is still purely elastic; σII

i = σres
i +E

∑II
j=IΔ

jε; considering that 
∑II

j=IΔ
jεg = εII

g , the locked-in stress for each zone yields 

(a) Stages 0 to 3                                                                

(b) Stages 4 to 7

Ⅲ

0Ⅰ

Ⅱ

0

P1

P2

P3

P4

***

E
St

re
ss

Strain

I V

Ⅴ
Ⅶ

Ⅵ

Strain

St
re

ss

This dot line shows the typical
stress-strain curve of SMAs.

Fig. 6. Residual stress–strain curves for each stage of anti-buckling.  
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σII
i(8,3) = −E′(κlzi − ε0) − Ezi(ΔUκ +

∑II

j=I
Δjκ) + EεII

g (a)

σII
i(3,5) = −Ezi(κl + ΔUκ +

∑II

j=I
Δjκ) + EεII

g (b)

(16)  

According to Equation (8), the fiber with zero strain variation is deter
mined by zOII = ΔIIεg/ΔIIκ. This fiber successively relocates with each 
loading increment. Upon exerting axial load, it immediately departs 
from the centerline to the region between points 5 to 9. The fibers be
tween points 5 to OII and OII to 9, subsequently suffer from negative and 
positive stress variations σres

i(5,7)
+ E(ΔIε ± ΔIIε), respectively, therefore, 

the unknown parameter of σII
i(5,9)

consists of two terms as 

σII
i(5,OII ) = −E′(κlzi + ε0) − Ezi(ΔUκ + ΔIκ − ΔII κ) + E(2εI

g − εII
g ) (a)

σII
i(OII ,9) = −E′(κlzi + ε0) − Ezi(ΔUκ +

∑II

j=I
Δjκ) + EεII

g (b)

(17)  

As mentioned earlier, to start the reverse detwinning process at point 8 
(or 9), the totally reduced or increased stress is about 2R; (the stress at 
points 8 and 9 reach σloading ∓ 2R); therefore, using Equations 16a and 
17b, respectively, the height of z8 and z9 can be written as 

z8 =
EεII

g + 2R
E(ΔUκ +

∑II
j=IΔ

jκ)
(18)  

z9 =
EεII

g − 2R
E(ΔUκ +

∑II
j=IΔ

jκ)
(19)  

This form of stress distribution in stage II is valid until the stress at point 
5 touches the detwinning start stress (σs = −R); so, employing Equation 
16b, the critical condition at this state may be formulated as 

εII
g = −

R
E

+ z5(κ + ΔUκ +
∑II

j=I
Δjκ) (20)  

Up to now, using Equations (10) and (18)-20, the internal force and 
moment for stages I and II may just be expressed in terms of unknown 
parameters of ΔIκ and ΔIIκ. For the abbreviation, we will derive the 
internal force and bending moment of the next stage (II) which could 
also cover stage I. 

3.2.2. Stage III and IV 
Due to the changes in the stress profile and trends of loading stress at 

stage III, the bending moment and internal force can be updated as 

F = −

( ∫ zIV
8

−h/2
σIII

i(1,8IV )t(z) dz +

∫ z3

zIV
8

σIII
i(8IV ,3) t(z) dz +

∫ z5a

z3

σIII
i(3,5a) t(z) dz

+

∫ z5b

z5a

σIII
i(5a,5b) t(z) dz +

∫ zIV
9

z5b

σIII
i(5b,9IV ) t(z) dz

+

∫ h/2

zIV
9

σIII
i(9IV ,7) t(z) dz

)

(a)M

= −

∫ zIV
8

−h/2
σIII

i(1,8IV )zt(z) dz +

∫ z3

zIV
8

σIII
i(8IV ,3)zt(z) dz +

∫ z5a

z3

σIII
i(3,5a)zt(z) dz

+

∫ z5b

z5a

σIII
i(5a,5b)zt(z) dz +

∫ zIV
9

z5b

σIII
i(5b,9IV )zt(z) dz

+

∫ h/2

zIV
9

σIII
i(9IV ,7)zt(z) dz (b) (21)  

The unknown stress and height parameters of 
σIII

i(1,8IV )
,σIII

i(9IV ,7)
,σIII

i(8IV ,3)
,σIII

i(3,5a)
,σIII

i(5b,9IV)
,zIII

8 and zIII
9 should be updated and 

unknown parameters of σIII
i(5a,5b)

,z5a and zIII
5b must be derived in terms of 

reduced curvature. 
In contrast to stage II, in the present stage stress distributions across 

points 1 to 8 (7 to 9), does not include elastic term and it is purely 
affected by detwinning process (E′ΔIIIε). However, for the fibers between 
points 8 to 8III (9 to 9III), both elastic and detwinning terms (E′ΔIIIεd +

EΔIIIεe) become apparent; considering ΔIIIεe + ΔUε +
∑II

I Δε = −2R/E, 
for points 1 to 8III, (=2R/Efor points 7 to 9III) we write the updated stress 
parameters of these zones in Table 3. Similarly, the stress distributions 
along with the height of points 8′ to 5a and 5b to 9′ may be obtained in 
which zOIII can be determined by zOIII = ΔIIIεg/ΔIIIκ. Furthermore, 
considering the stresses at points 8 and 9 (σloading ∓ 2R) the parameters of 
z8III and z9III are updated in Table 3. 

To derive z5a III and z5bIII , the normal stresses at points 5a and 5b may 
read, respectively, -R and E′(ε − ε0) (the loading stresses at the first step); 
thus, using Equations 22d and 22e they can be expressed as 

z5aIII =
EεIV

g + R
E(κ + ΔUκ +

∑III
j=IΔ

jκ)
(a)

z5bIII =
(2εI

g − εIII
g )

(ΔUκ + ΔIκ −
∑III

II ΔIIκ)
(b)

(25)  

Finally, in order to derive σIII
i(5a,5b)

, we know that when the stress at point 
5 exceeds -R, the stress profile at this fiber does not vary elastically and 
variant orientation starts proceeding (5a to 5b at stage III); thus, the 
strain variations for these fibers consists of two terms including elastic 

Table 3 
Updated stress and height parameters for Stages III and IV.  

σIII
i(1,8III) = −E′zi(κl + ΔUκ +

∑III
j=IΔ

jκ) + E′(εIII
g − ε0) −2R

(
E′

E
− 1

)

(a)σIII
i(9III ,7)

= −E′zi(κl + ΔUκ +
∑III

j=IΔ
jκ) + E′(εIII

g − ε0) + 2R
(

E′

E
− 1

)

(b)

σIII
i(8III ,3)

= −E′(κlzi − ε0) −Ezi(ΔUκ +
∑III

j=IΔ
jκ) + EεIII

g (c)

σIII
i(3,5a)

= −Ezi(κl + ΔUκ +
∑III

j=IΔ
jκ) + EεIII

g (d)

σIII
i(5b,OIII ) = −E′(κlzi + ε0) − Ezi(ΔUκ + ΔIκ −

∑III
j=II

Δκ) + E(2εI
g − εIII

g ) (e)

σIII
i(OIII ,9) = −E′(κlzi + ε0) − Ezi(ΔUκ +

∑III
j=I

Δjκ) + EεIII
g (f)

(22) 

εIII
g = (κl + ΔUκ +

∑III
j=IΔ

jκ) z3 −
R
E

(23)  

z8III =
EεIII

g + 2R
E(ΔUκ +

∑III
j=IΔ

jκ)
(a)(24) 

z9III =
EεIII

g − 2R
E(ΔUκ +

∑III
j=IΔ

jκ)
(b)
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(ΔIIIεe) and reverse detwinning process (ΔIIIεd). Due to the different 
loading stress of the fibers (points 5a to 5 and 5 to 5b), the stress profile 
in this region is diverse, so regarding Fig. 6b it yields 

σIII
i(5a,5) = E(ε + ΔUε −

∑II

I
Δjε − ΔIIIεe) − E′ΔIIIεd (a) (26)  

σIII
i(5,5b) = E′(ε − ε0 − ΔIIIεd) + E(ΔUε −

∑II

j
Δjε − ΔIIIεe) (b)

The fibers located between points 5a to 5b elastically revert to their 
initial loading position at the first stage; so the elastic strain reduction 
upon unloading (ΔUε) is equal to the increased elastic strain of all 
stages:ΔIIIεe = ΔUε −

∑II
I Δjε; inserting this expression and Equation (8) 

into 26, the stress parameters may be derived in terms of εIII
g and ΔIIIκ as 

σIII
i(5a,5) = E′zi(

∑III

j=I
Δjκ − ΔUκ) − Eκlz − E′εIII

g (a) (27)  

σIII
i(5,5b) = − E′zi(κl + ΔUκ −

∑III

j=I
Δjκ) − E′(εIII

g + ε0) (b)

where εIII
g can be determined once the last fiber of the elastic region 

(point 3) meets the reverse detwinning process. This leads to the coin
cidence of points 8III, and 5a with point 3 at the end of stage III while 
σIII

i(3,5a)
becomes equal to −R; then substituting it into Equation 22d, εIII

g is 
updated in Table 3 Note that, the growing trend of normal stress at point 
9 for stages II to IV, shows that despite exerting axially compressive load, 
a significant number of fibers may be exposed to positive stress variation 
and subsequently suffer from the reverse detwinning process on the 
tensile side. However, this trend only last until the fiber with zero strain 
variation reaches point 9VI (zOIV = z9VI ). Updating Equation 24b for stage 
IV and assuming zOIV = ΔIVεg/ΔIVκ the centroid strain at the end of this 
stage may be stated as 

εIV
g =

(

εIII
g (ΔUκ +

∑IV
j=IΔ

jκ) − 2R
E ΔIV κ

)

(
ΔUκ +

∑III
j=IΔ

jκ
) (28)  

Eventually, we could just express all unknown parameters in terms of 
ΔIκ to ΔIVκ. Note that, by achieving stage VI, the stress variations may 
differ significantly so the corresponding equations must be derived and 
modified upon proceeding with axial load. 

3.2.3. Stage V to VII 
According to Fig. 5b, exerting more axial load causes the point with 

zero strain variation (OV) gradually starts moving from point 9IV toward 
9V. However, this fiber ends up reaching point 7 (z = h/2) in stage VI, and 
afterward, the whole fibers undergo negative stress variation (Δσ < 0). 
The more increase in the applied axial load (P), the more the stress 
reduction occurs in the fibers, eventually in stage VII, the beam has fully 
gone through the compressive region. To derive governing equations of 
this section, the general condition represented in stage V is considered; 
the corresponding internal force and bending moment may be stated as 

F = −

( ∫ zVI
5b

−h/2
σVI

i(1,5bVI )t(z) dz +

∫ zV
9

zVI
5b

σVI
i(5bVI ,9VI ) t(z) dz +

∫ zVI
9

zV
9

σVI
i(9V ,9VI ) t(z) dz

+

∫ h/2

zVI
9

σVI
i(9VI ,7) t(z) dz

)

(a)

(29)  

M =

∫ zVI
5b

−h/2
σVI

i(1,5bVI ) zt(z) dz +

∫ zV
9

zVI
5b

σVI
i(5bVI ,9VI ) zt(z) dz +

∫ zVI
9

zV
9

σVI
i(9V ,9VI ) zt(z) dz

+

∫ h/2

zVI
9

σVI
i(9VI ,7) zt(z) dz (b)

The unknown parameters of σV
i(1,5bV)

,σV
i(9V ,7)

and z5bV should be updated 
and others stress parameters including σV

i(5bV ,9IV )
and σV

i(9IV ,9V)
must be 

derived following their new trends of loading. 
The stress variation for the fibers between points 1 to 5bV, and 9V to 7 

is only caused by variant re-orientation in compressive and tensile sides, 
respectively. Hence, regarding the different loading histories arisen from 
previous stages (Equations 22d, 27a,b), and considering that for fibers 
between points 1 to 3 stress variation is +E′ΔVε and for 3 to 5b seems 
−E′ΔVε;thus,σV

i(1,5bV)
can be obtained as 

σV
i(1,5bV ) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σV
i(1,3) = −E′zi(κl + ΔUκ +

∑V

j=I
Δjκ) + E′(εV

g + ε0) + 2R
(

E′

E
− 1

)

(a)

σV
i(3,5) = E′zi(

∑V

j=I
Δjκ − ΔUκ) − Eκlz − E′εV

g (b)

σV
i(5,5bV ) = −E′zi(κl + ΔUκ −

∑V

j=I
Δjκ) − E′(εV

g + ε0) (c)

(30)  

When studying the stress of the fibers between points 5bV to 9IV, both 
elastic and reverse detwinning processes may occur in this region, using 
Equation 22f and ΔVεd = ΔVε −2R/E, σV

i(5bV ,9V )
can be derived as 

σV
i(5bV ,9IV ) = − E′(κlzi + ε0 + εV

g − εIV
g ) − Ezi(ΔUκ

+
∑IV

j=I
Δjκ) + EεIV

g + E′Δκz + 2R
(

E′

E
− 1

)

(31)  

Stress variation induced in the fibers between points 9IV to 9V is purely 
elastic ( −EΔε), however, for points 9V to 7 it is purely affected by det
winning process ( + E′Δε). Employing Equation 22b, σV

i(9IV ,9V)
and σV

i(9V ,7)

can be expressed as 

σV
i(9IV ,9V ) = − E′zi(κl + ΔUκ +

∑IV

j=I
Δjκ −

E
E′Δ

V κ) + E(εV
g − εIV

g ) − 2R
(

E′

E

− 1
)

+ E′(εIV
g − ε0)

σV
i(9V ,7) = − E′zi(κl + ΔUκ +

∑V

j=I
Δjκ) + E′(εV

g − ε0) − 2R
(

E′

E
− 1

)

(32)  

Finally, z5bV can be determined by updating Equation 25b for stage V. 
Note that, at the end of this stage (Fig. 5b) the fiber with zero strain 
variation (OV) reaches z = h/2, thus εV

g can be obtained as 

εV
g = εIV

g +
h
2

ΔV κ (33)  

Furthermore, stage VI ends when point 5bVI height becomes coincident 
with point 9V; hence updating Equation (31) for stage VI and then 
employing Equations (33) and z9V = ΔVεg/ΔVκ, εVI

g maybe determined 
as 

εVI
g = 2εI

g −
h
2

(

ΔUκ + ΔIκ −
∑VI

j=II
Δjκ

)

(34)  

After that, the stress variation trend follows stage VII and it lasts until 
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eventually εVII
g reaches a specific value in the compressive region. Sub

sequently, stress distribution across the cross section turns out to be 
uniform and the column becomes straightened. 

3.3. Deflection due to the anti-buckling properties 

Due to the strong coupling of the TD-effect with the kinematics of 
short SMA beam-columns, the fully detwinned material response, 
notably stiffer than its twinned counterpart, facilitates late stiffening, 
enabling the beam-columns to self-straighten, a phenomenon unlike 
conventional plasticity relying on plastic lattice destruction (Richter 
et al., 2010). In the previous section, all unknown parameters related to 
each stage presented in Equations (11), 21, and 29 have been initially 
expressed in terms of reduced curvature (Δκ) and centroid strain (εg). 
Then employing the critical condition of each stage (Equations (10), 20, 
23, 28, 33, and 34), we also derive εg in terms of reduced curvature, 
which contributes to expressing the internal forces and bending moment 
purely in terms of Δκ. 

At any time during analysis, the internal force (
∫

AσdA) and externally 
applied load (F) must be equal and then by satisfying the equation of 
bending moment at the mid-span section we have: 
∫

A
σdA + F = 0 (a)

M − F(w + w0) = 0 (b)

(35)  

where M and w represent the internal bending moment (
∫

AσzdA) and 
transverse displacement, respectively. Moreover, w0 in Fig. 7. denotes 
initial transverse displacement or residual deflection after the complete 
unloading of the bending moment in the first stage. Similar to column 
buckling and post-buckling problems, different theoretical approaches 
could be employed to provide an approximate solution for this problem. 
Pereira (Pereira, 2016) by considering the bending deflection profile, 
proposed an approximate but convenient solution to analyze the plastic 
buckling of columns. Motivated by this work, we employ the deflection- 
length relationship from the bending stage to investigate transverse 
displacement during the anti-buckling problem. For buckling and post- 
buckling analyses, the centroid strain cannot be determined so they 
used the Newton-Raphson method for re-establishing the equilibrium 
equations (Havran and Psotný, 2016; Carrera et al., 2021; Zhou et al., 
2015). However, in this work, because we trace the changes of εg and 
obtain it in terms of Δκ, it is possible to explicitly obtain the relationship 
between force, moment, and residual deflection during each increment 
of loading. Although for better accuracy, upon applying compressive 
load the effect of beam shortening will be imposed by updating the beam 
length using L*

n = εgn L*
n−1(for n = 1,…m). 

Considering total reduced curvature (ΔκT =
∑

Δκn) just before 
reaching each stage and also simply supported boundary conditions in 
Equation (6), the deflection during each increment of loading at the 
middle of the beam can be stated as 

wn(l/2) =

(

κ + ΔUκ +
∑m

1
Δκn

)
L*2

n

8
(36)  

Substituting the internal force and bending moment of each stage 
(Equations (11), 21, and 29) as well as Equation (36) into Equation 35b, 
we can determine the maximum reduced curvature related to stages I to 
VII(Δiκmax, i = I − VII). Regarding the derived equations of each stage (f, 
M, and εg) in section 5, Δκ is increased from zero, and then upon 
reaching Δiκmax of each stage, the corresponding equations to the next 
stage will be employed during curvature reduction; thus, this process 
continues until ΔκT meets κ −ΔUκ meaning that the pre-bent beam is 
straightened when the axially compressive load is applied during anti- 
bending analysis. 

4. Results 

In this section, several anti-buckling stage studies under different 
loading and geometric conditions are presented and then compared with 
existing numerical models. Initially, the relationship between load and 
deflection during loading and unloading in the bending section is 
studied, then for the anti-buckling problem the relationship between 
column length and transverse displacement upon strain recovery is 
extracted. Moreover, in this section, for deeper physical understanding 
the stress and strain distributions during anti-buckling of the SMA beam- 
columns are depicted. 

4.1. Example 1 

In this example, the anti-buckling problem reported by Richter et al. 
(Richter et al., 2010) under trigonometric loading is analytically solved 
and then compared with the numerical results. A cantilever SMA column 
with material parameters presented in Table 4 and geometric parame
ters of height h; length l, and width t under an applied load P (Fig. 8) at 
the free end are considered. Comparing the material behavior and pa
rameters of SMA in reference (Richter et al., 2010) with the material 
parameters of Eq. (2) in the present work, it can be figured out that the 
hardening parameter in (Richter et al., 2010), equivalent to H1D in this 
work, has not been considered. Thus, according to Eq.2, E’ may obtain 
zero. Moreover, in the present study, R1D introduces the radius of elastic 
domain, this parameter in the reference (Richter et al., 2010) is defined 

w0

F

L

Fig. 7. A curved SMA beam under compressive force.  

Table 4 
Geometric and material parameters (Richter et al., 2010).  

Geometric parameters Value Unit 

t 4.38 mm 
l 50 mm 
h 4.38 mm 
Material parameters   
MS 44.6 ◦C 
AF 64.9 ◦C 
ε1D

L 4.4 % – 
E 30.9 GPa 
E′ 0 GPa 
R1D 290 MPa  

Fig. 8. A cantilever SMA beam subjected to a load perpendicular to its length.  
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Table 5 
Corresponding internal force and bending moment of each anti-buckling stage.  

Stage Internal Force and Bending Moment    

I 

F 1
2

[

σ1

(
h
2

+ z2

)

+ σ3(z4 − z2) + σ5(z6 − z4) + σ7

(
h
2

− z6

) ]

M 

σP

2
z2

5 +
(σ5 − σP)

3
z2

5
3

+
σ5

2
(z6 − z5)

(
2
3
z5 +

z6

3

)

+
σ7

6

(
h
2

− z6

)

(h + z6)−

(
σ1

6

(
h
2

− z2

)

(h + z2) +
σ3

2
(z3 − z2)

(

−
2
3
z3 −

z2

3

)

+
σ3

2
(z4 − z3)

(

−
2
3
z3 −

z4

3

)

+ −
σP

6
z2

4

)

II   

F 

1
2

[

(σ1 + σ8)

(
h
2

+ z8

)

+ σ3(z4 − z2) + σ5(z6 − z4) + (σ7 + σ9)

(
h
2

− z9

)

σ8(z8 − z2) + σ9(z9 − z6)
]

M 

σP

2
z2

5 +
(σ5 − σP)

3
z2

5
3

+
σ5

2
(z6 − z5)

(
2
3
z5 +

z6

3

)

+
σ9

2
(z9 − z6)

(
2
3
z9 +

z6

3

)

+

σ7

2

(
h2

4
− z2

9

)

+
(σ9 − σ7)

6

(
h
2

− z9

)(
h
2

+ 2z9

)

−

(
σ1

2

(
h2

4
− z2

8

)

+
(σ8 − σ1)

6

(
h
2

+ z8

)(
h
2

− 2z8

)

−
σ8

2
(z2 − z8)

(

−
2
3
z8 −

z2

3

)

+

σ3

2
(z3 − z2)

(

−
2
3
z3 −

z2

3

)

+
σ3

2
(z4 − z3)

(

−
2
3
z3 −

z4

3

)

+ −
σP

6
z2

4

)

III   

F 

1
2

[

(σ1 + σ8)

(
h
2

+ z8

)

+ σ3(z4 − z2) + σ5a(z5a − z4) + (σ5a + σ5b)(z5b − z5a) +

σ5b(z6 − z5b) + (σ7 + σ9)

(
h
2

− z9

)

+ σ8(z2 − z8) + σ9(z9 − z6)

]

M 

σP

2
z2

5a + (σ5a − σP)
z2

5a
3

+
σ5a

2
(z5b − z5a)

(
z5b −

z5a

2

)
+

(σ5b − σ5a)

2
(z5b − z5a)

(
2
3
z5b +

z5a

3

)

+

σ5b

2
(z6 − z5b)

(
2
3
z5b +

z6

3

)

+
σ9

2
(z9 − z6)

(
2
3
z9 +

z6

3

)

+
σ7

2

(
h2

4
− z2

9

)

−

(
(σ8 − σ1)

6

(
h
2

+ z8

)(
h
2

− 2z8

)

−
(σ9 − σ7)

6

(
h
2

− z9

)(
h
2

+ 2z9

)

+
σ8

2
(z2 − z8)

(

−
2
3
z8 −

z2

3

)

+

σ1

2

(
h2

4
− z2

8

)

+
σ3

2
(z3 − z2)
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as “the positive transformation stress plateau” with a value of 290 MPa. 
Respectively, ε1D

L and E in this study, are equivalent to εT and EM which 
are “Transformation strain of martensite” and “Youngs modulus of 
martensite” in (Richter et al., 2010). According to sections 3.2.1 to 3.2.3 
the internal forces and bending moments for Stage I to Stage VIII are 
obtained and summarized in Table 5. 

Employing the bending equations, the relationship between the 
length and deflection of the SMA beam-column during loading and 
unloading are compared in Fig. 9. It is important to highlight that, in 
order to report the beam deflection referenced in (Richter et al., 2010), 
we have digitized the deflections of the SMA beam along its length at the 
corresponding times of 25 s and 30 s in (Richter et al., 2010) for the 
loading and unloading processes, respectively. 

In terms of strain and stress distribution in fibers, Fig. 10 shows the 
strain–stress distribution of all fibers for the cross section at the middle 
length of the beam. The numbers in the figure sequentially show the 
state of stress and strain variations for all three stages of loadings. At the 
end of each step, we put a mark to distinguish the steps. Due to the 
uniform stress distribution of the first step, all fibers have the same 
amount of stress, thus, in the figure all fibers are coincident on only one 
solid path (1 to 3: loading, and 3 to 4: unloading to end up at zero stress). 
However, due to non-uniform bending stress distribution, we may have 
divergence of fibers upon unloading, the solid path 5 forks off right, e.g. 
path 6 which finally stops on black square ■. Eventually, all diverged 
fibers (e.g. path 7) will be converged again following 8, and by removing 
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Fig. 9. Comparing variations in transverse deflection along the column length. 
Results of this work vs. existing numerical data (Richter et al., 2010). 

Fig. 10. Stress–strain curves for three different stages at various stages.  
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Fig. 11. Analytical solution and numerical results for deflection due to anti- 
buckling as a function of column length. 
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Fig. 12. Analytical solution and numerical results for the relationship between 
axially compressive load and deflection due to anti-buckling. 

Table 6 
Material parameters in 1D form for SMA beam-column (Auricchio and Petrini, 
2004; Auricchio et al., 2009; Scalet and Peigney, 2017).  

Material parameters Value Unit 

E 53 GPa 
E′ 1.46 GPa 
R1D 122.5 MPa 
ε1D

L 5 % −

Ms −34 ◦ C 
Af −13 ◦ C  
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Fig. 13. Variations in stress and strain of some fibers during anti-buckling.  
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the load they may again reach zero stress. 
In the first step, all fibers straightforwardly experience the detwin

ning process and then stop at zero stress (white bullet ○) upon load relief, 
arrows 1 to 4 depict this process. In the second step, tensile stress 
induced by the bending moment causes variant re-orientation (4 to 5), 
however, an intense compression may be imposed on the fibers on the 
opposite side (4 to 3). Relieving the moment, stress, and strain for each 
fiber in tension (5 to 6) seem uniquely demarcated with black squares 
(■). At the anti-buckling step (7 to 8), as the load is applied, the 
convergence of strain and stress of column fibers may occur (black 
bullet) and finally unloading let the axial stress throughout the column 
reaches zero again (white bullet). 

Based on the proposed model, the history of force and deflection 
variations during anti-buckling are studied incrementally and compared 
with the results in (Richter et al., 2010). Fig. 11 illustrates the change of 
transverse displacement along the column length at some specific 
compressive load; gradually the deflection reduces and finally at about 8 

KN, it is expected to have a straightened column. To figure out the rate of 
increased compressive load versus reduced transverse displacement, in 
Fig. 12 we have derived and compared the relationship between axial 
load versus deflection along the column length. As it is shown, at the 
initial load increments, the column deflection may not significantly 
vary, however, when the applied load exceeds 4 KN there is also a 
corresponding rise in the transverse loading, consequently, at the higher 
applied loads, a small change in this parameter may lead to a noticeable 
recovery in the deflection and anti-buckling phenomenon can be seen at 
a faster speed. 

4.2. Example 2 

In this example, to proceed more deeply in the anti-buckling 
behavior and extract all stages of stress distributions in Fig. 5 (a, b), a 
square beam with a dimension of 1 × 1 mm, length of 10 mm, and 
material parameters shown in Table 6 are considered. This material 
behavior was originally experimented by (Sittner et al., 1995) and then 
adopted and employed in (Auricchio and Petrini, 2004; Auricchio et al., 
2009; Scalet and Peigney, 2017). Although it should be noticed that they 
are in three-dimensional form, thus using Eq. (2), the 1D form has been 
obtained and represented in Table 6. 

For the occurrence of all stages, it is required to induce saturation 
region in both compression and tension sides of the column. Due to the 
initial compression of about 210 kN, all fibers will be in the negative 
saturation region and then the pre-strain reaches −0.058. Subsequently, 
the length of the beam reduces about 0.5 mm from its initial value, and 
then upon unloading the stress uniformly comes back to zero (Fig. 13a). 
By imposing a bending moment of about 90 Nmm, the beam fibers at 
different positions may follow different paths due to the different 
amounts of generated strain in each fiber. As shown in Fig. 13 b, the 
outmost fibers at both sides (−0.5 and 0.5), respectively, might be 
endured being in negative and positive saturation regions. Moreover, 
due to the variant re-orientation in tensile sides, some fibers seem to 
have been loaded in this region (−0.125, 0.125, 0.25). Regarding 
different moduli of elasticity in saturation and variant orientation re
gions, there must be a relocation for beam-neutral fiber to satisfy force 
equilibrium. Thus, the beam is under applied load whereas some fiber 
similar to −0.3125 strain has an initial loading and then unloading path 
attributing to the movement neutral fiber. Regarding Fig. 13c, upon 
unloading the stress could be reduced elastically and/or through variant 
re-orientation. Once the axial load is applied it is expected to have a 
stress reduction throughout the beam, however, the compressive side 
may release its stress and some portions go to the tensile side as illus
trated for the fiber at −0.5 mm in Fig. 13d. Given further axial load 

Fig. 14. The trend of changes in the stress distribution across beam cross- 
section during anti-buckling. 

Fig. 15. The trend of changes in the strain distribution across beam cross- 
section during anti-buckling. 

Fig. 16. The trend of changes in deflection along the beam length at different 
axial loads during anti-buckling. 
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gradually causes all fibers to experience negative variant re-orientation 
(Fig. 13e, f) and eventually in this example both stress and strain of the 
fibers converge into a specific amount (Fig. 13g), consequently the 
curvature and deflection return to zero. 

The stress distribution diagram in the beam cross-section for all 
possible stages that can occur during the anti-buckling behavior has 
been shown in Fig. 14. Stage 0 indicates the residual stress after 
unloading the bending loads or moment at the second step. After 
imposing the axially compressive force of about 35 N, the reduced stress 
from the tensile side is significant and gradually some fibers will be 
exposed to variant re-orientation. However, on the compression side as 
we mentioned previously there is a reduction in compressive stress so 
that some fibers can even experience tensile stress. To discuss in detail, 
let’s consider stage III in which almost all fibers that were on the tensile 
side are now on the compressive side, and in the variant re-orientation 
region, also some fibers (height of −0.5 to −0.4 mm) that were in the 
compressive side now have positive stress. From stage V onwards more 
applied compression will cause more fibers come back to the compres
sive region while the rate of stress changes may not be the same for all 
fibers. A further continuation in the axial loading leads to a more ho
mogeneous stress distribution across the cross section (stages VI and 
VII). Presence of all fibers in a specific point can be seen throughout the 
beam, so eventually uniform distribution is achieved. 

Fig. 15 illustrates the strain variation of all stages corresponding to 
the stress diagram in Fig. 14. As it is clear strain is changing linearly and 
eventually in all points of the beam its value is converged into about 
−0.05. Finally, the beam deflection distribution along the length has 
been incrementally depicted in Fig. 16 for stages 0 to VIII. In each 
loading increment the amount of transverse deformation is decreased 
and at the same time, the length shortening of the SMA beam seems to be 
inevitable. 

5. Conclusions 

The present paper aims to provide an analytical and experimental 
investigation into the anti-buckling behavior of prismatic shape memory 
alloy (SMA) beam-columns. The paper begins by thoroughly describing 
the process of column straightening during anti-buckling and develops a 
mathematical model based on this concept. The analytical modeling 
approach considers nine distinct stages of loading and unloading stages 
that occur during anti-buckling. Each stage is step by step formulated, 
and the corresponding force and moment values are derived and pre
sented, primarily for the purpose of designing SMA beam-columns. This 
step-by-step formulation allows for a detailed representation of the 
behavior of the beam-columns during anti-buckling. The results show 
that at different heights along the beam-column, the curvature can be 
determined based on the inhomogeneous strain distribution. As the axial 
load increases, the strain distribution across the cross-section of the 
beam-column becomes more uniform, leading to a reduction in curva
ture. Eventually, when the strains in all fibers are equalized, the cur
vature of the beam-column reaches zero, indicating that the structure 
has been fully straightened under the applied axial load. Therefore, we 
establish that the primary factor causing the straightening of beam- 
columns is not the evenness of stress, but rather the achievement of 
uniformity in strain across all fibers. In Summary:  

• This analytical work empowers designers to obtain the required 
forces and moment in each step based on material parameters and 
geometry.  

• Reverse designing is possible by considering the needed deflection 
and then calculating the required forces and moments for each step 
in the present work. 

• Material hardening, which is an important parameter in the det
winning process, has been considered in the present work to study 
anti-buckling behavior. 

• Recognition of nine distinct phases depicted on stress-height dia
grams, stemming from the intricate stress–strain characteristics 
exhibited by SMA materials.  

• Moreover, when the SMA fibers undergo the saturation region in the 
second step (bending), we can also discuss the anti-buckling 
behavior, which makes the model more accurate and comprehensive. 
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