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Artificial Intelligence Assisted Structural Optimization explores the use of 
machine learning and correlation analysis within the forward design and inverse 
design frameworks to design and optimize lightweight load-bearing structures as 
well as mechanical metamaterials.

Discussing both machine learning and design analysis in detail, this book enables 
readers to optimize their designs using a data-driven approach. This book discuss-
es the basics of the materials utilized, for example, shape memory polymers, and 
the manufacturing approach employed, such as 3D or 4D printing. Additionally, 
the book discusses the use of forward design and inverse design frameworks to 
discover novel lattice unit cells and thin-walled cellular unit cells with enhanced 
mechanical and functional properties such as increased mechanical strength, 
heightened natural frequency, strengthened impact tolerance, and improved re-
covery stress. Inverse design methodologies using generative adversarial networks 
are proposed to further investigate and improve these structures. Detailed discus-
sions on fingerprinting approaches, machine learning models, structure screening 
techniques, and typical Python codes are provided in the book.

The book provides detailed guidance for both students and industry engineers to 
optimize their structural designs using machine learning.
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Preface
In the dynamic field of structural engineering, the quest for materials that offer 
superior strength-to-weight ratios is relentless. The advent of machine learning 
has revolutionized this pursuit, enabling us to explore and optimize lightweight 
structures with unprecedented precision and creativity.

This textbook, Artificial Intelligence Assisted Structural Optimization, is 
designed to bridge the gap between traditional structural engineering principles 
and the cutting-edge techniques of artificial intelligence. It is crafted for students, 
researchers, and professionals who are eager to harness the power of machine 
learning to innovate in the design and analysis of lightweight structures.

Within these pages, you will find a comprehensive exploration of the funda-
mentals of machine learning, as well as its application to the design of lightweight 
structures. From the basics of data analysis to the complexities of neural networks 
and deep learning, this book provides a step-by-step guide to the tools and tech-
niques that are transforming the field.

Through a blend of theoretical knowledge and practical case studies, readers 
will gain the skills necessary to develop their own machine-learning models for 
structural optimization. The book also discusses the ethical considerations and 
future implications of using machine learning in structural engineering, ensuring 
that readers are fully prepared for the challenges and opportunities that lie ahead.
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Introduction to 
Structures with 
Complex Geometrical 
Configurations

1.1  INTRODUCTION

The word “structure” in this book refers to rod, beam, plate, and shell and a 
combination of them by arranging them together according to a certain order. 
“Structural optimization” suggests a process to design structures with the maxi-
mum load-carrying capacity and the least weight penalty. The focus of this book 
will be on design and optimization from a structural point of view without much 
emphasis on the base materials. However, when needed, we will also introduce 
some fundamentals on materials used to construct the structures, particularly for 
new materials such as smart materials. This chapter provides background on sev-
eral lightweight structures, their applications, existing optimization techniques, 
and the importance and advantages of implementing data-driven optimization 
techniques for these structures.

There are several lightweight structures such as open- and closed-cell foams, 
lattice structures, thin-walled cellular structures, auxetic structures, hybrid plate-
lattice structures, etc. Extensive research has been focused on these structures 
due to their multiple advantages in structural, acoustic, optimal, electromagnetic, 
and thermal properties. Numerous theoretical models to predict and analyze the 
structural behavior of the structures have been developed. With the advancement 
in manufacturing techniques such as additive manufacturing or 3D/4D printing 
and complex design and simulation tools, the process of design and optimization 
for these structures has become simpler.

The realization of lightweight structures requires advanced manufacturing 
techniques that can accurately translate complex digital designs into physical 
structures. Several manufacturing methods have emerged as key enablers in bring-
ing irregular lattice structures from the digital realm to the tangible world. Digital 
fabrication techniques, including computer numerical control (CNC) machining 
and laser cutting, are commonly employed to manufacture irregular lattice struc-
tures. These techniques allow for precision and repeatability in creating intricate 
lattice patterns from a variety of materials, including metals, polymers, and com-
posites. The rise of additive manufacturing, or 3D printing, has revolutionized the 
production of lightweight structures or mechanical metamaterials. This technique 

1
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2 Artificial Intelligence Assisted Structural Optimization

builds structures layer by layer directly from digital models, offering unparalleled 
design freedom. 3D printing enables the creation of overly complex and custom-
ized lightweight structures that would be challenging or impossible to produce 
using traditional methods.

In terms of designing lightweight structures with superior structural capacities 
but without much weight penalty, computer-added design has played an important 
role. Recently, generative design software has played a pivotal role in shaping 
irregular-shaped structures. By leveraging algorithms and artificial intelligence, 
generative design tools explore numerous design possibilities based on specified 
parameters such as material properties, load conditions, and manufacturing con-
straints. This iterative process results in optimized lightweight structures that 
meet or exceed performance requirements. The versatility of lightweight struc-
tures finds expression across a spectrum of industries, each benefiting from the 
unique advantages offered by these innovative designs.

In many engineering applications, lightweight is highly desired, for example, 
aerospace structures, offshore oil platforms, wind turbine blades, autos, and 
ships, where weight reduction is paramount and lightweight structures offer a 
compelling solution. The ability to optimize structural performance and distrib-
ute loads efficiently aligns with the demands of these engineering applications. 
Components such as lightweight panels, brackets, body of cars, and even entire 
airframe structures can benefit from the weight-saving potential of irregular-
shaped structural designs.

The field of biomedical engineering embraces lightweight porous structures for 
applications ranging from orthopedic implants to tissue scaffolds. Implants with 
porous structures can mimic the mechanical properties of bone while promoting 
osseointegration. In tissue engineering, porous structures serve as frameworks 
for the growth of new tissues, providing support and guidance for regenerative 
processes.

Architects and structural engineers incorporate porous structures such as 
lattice structures into building designs to achieve both aesthetic and functional 
objectives. From facades and partitions to entire structural elements, porous pat-
terns redefine the possibilities of architectural expression. The adaptability of 
these structures to different load conditions makes them valuable in creating 
resilient and visually captivating buildings.

In the automotive industry, the pursuit of lightweight yet robust components 
is a driving force behind the adoption of porous structures. Engine components, 
chassis elements, and even interior components benefit from the weight reduction 
achieved through optimized pattern designs. This not only enhances fuel effi-
ciency but also contributes to overall vehicle performance and safety.

While lightweight porous structures offer a plethora of advantages, they are 
not without challenges, and ongoing research aims to address these complexities.

Computational Complexity: The design and analysis of porous structures 
can be computationally demanding, especially when utilizing generative design 
and simulation tools. Handling large datasets and optimizing complex structures 
require advanced computational resources. Researchers are actively exploring 
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ways to enhance the efficiency of these processes to make porous structures more 
accessible.

Material Considerations: The choice of materials for porous structures is criti-
cal to their performance. Different applications demand materials with specific 
mechanical properties, thermal conductivity, or biocompatibility. Advancements 
in material science, including the development of new alloys, new polymers, new 
ceramics, and their composite materials, contribute to expanding the potential 
applications of porous structures.

Integration of Multiple Materials: Incorporating multiple materials within 
a porous structure introduces additional challenges but also opens new possi-
bilities. The ability to integrate materials with distinct properties enables the 
creation of multifunctional structures. Researchers are exploring techniques 
such as multi-material 3D printing to achieve seamless integration and optimize 
performance.

Standardization and Certification: As porous structures become more prevalent 
in critical applications such as aerospace and healthcare, the need for standardiza-
tion and certification processes becomes paramount. Establishing guidelines and 
standards for the design, manufacturing, and testing of irregular-shaped porous 
structures ensures their safety, reliability, and adherence to industry regulations.

Porous structures represent a change in thinking in structural design, challeng-
ing traditional notions of symmetry and uniformity. From optimized load distri-
bution to aesthetic innovation, these structures highlight the power of embracing 
complexity in engineering and architecture.

As technology continues to advance, and researchers delve deeper into the 
intricacies of porous structures, the possibilities are boundless. The marriage of 
computational design, advanced manufacturing techniques, and material science 
heralds a new era where structures are not just functional but are also expressions 
of creativity and efficiency.

The journey of porous structures is a testament to human ingenuity, push-
ing the boundaries of what is possible in the quest for structures that are not 
only strong and efficient but also visually captivating. As industries across the 
spectrum adopt and adapt these designs, we find ourselves at the cusp of a trans-
formative era where irregularity becomes the norm, and complexity becomes the 
cornerstone of innovation.

In the following sections, we will introduce the background of several light-
weight porous structures.

1.1.1  Foams

A typical porous structure is foam. It is formed by incorporating distributed pores 
within a matrix. Depending on whether the pores are interconnected or discrete, 
foams can be widely divided into open- and closed-cell foam. Open-cell foams 
with irregular cellular structures are formed by packing a complex network of 
interconnected ligaments. Closed-cell irregular foams are formed by closing the 
pores with thin walls (Figure 1.1). Due to the excellent stiffness-to-weight ratios 
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of these structures, they have several applications as a lightweight sandwich core, 
energy absorber, sound barrier, vibration damping, and tunable thermal conduc-
tivity [1].

Several approaches have been used to introduce air bubbles to a matrix, such 
as polymer matrix [2–6]. These methods include gas foaming, particulate leach-
ing, electrospinning, phase separation, emulsion templating, and solid-state 
foaming. Recently, 3D/4D printing has also been used for fabricating open-cell 
foams [7]. While all of these methods are useful for particular applications, gas 
foaming using a blowing agent such as CO2 [8] or supercritical CO2 [9] and 
particulate leaching using solvable particles such as table salt [10, 11] are con-
sidered more common. In both approaches, porosity can be easily controlled 
by the ratio of the porogen to the polymer. These methods can be considered as 
physical methods. One more common physical method is to incorporate a hollow 
microsphere into a matrix. The hollow microspheres include glass microspheres, 
metal microspheres, carbon microspheres, and polymeric microspheres. The 
foam produced in this way is closed-cell foam, usually called syntactic foam. 
In addition to the physical methods, chemical method is also widely used in 
producing foams. In chemical methods, a foaming agent is involved in a matrix. 
Upon heating, the foaming agent decomposes and produces a large amount of 
gas, leading to the foaming of the matrix. Some foaming agents may experience 
a phase change, from solid to gas, without chemical decomposition. In addition 
to including a foaming agent in the matrix, another way is to encapsulate the 
foaming agent first by a soft polymer shell, and upon heating, the foaming agent 
expands, leading to closed-cell foam.

FIGURE 1.1  (a) Open-cell foam prepared by salt leaching method [44] (copyright 2022, 
ACS, with permission) (b) closed-cell foam [28] (Copyright, 2022, Elsevier, with permis-
sion). The image shows a porous structure with irregular string-like connections joining 
to form cavities depicting an open-cell foam. It also shows a structure with irregular thin 
walls with closed-cells in the interior depicting a closed-cell foam.
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Many studies have reported substantial theoretical, numerical, and experimen-
tal results to understand and predict the mechanical behavior of these porous 
structures [12]. Clearly, the mechanical properties of foams highly depend on the 
porosity. It has been widely accepted that the relative strength and stiffness are 
coupled with relative density for foams with scholastic pores [13–15]:

	 ρ ρ σ ρ ρ σ σ ρ ρ∝ ∝ ∝E E Es s
n

e s s
n

p y s
n/ ( / ) ; / ( / ) ; / ( / ) ;	 (1.1)

where E is Young’s modulus of the foam, Es is Young’s modulus of the cell wall 
material (solid), ρ is the density of the foam, ρs is the density of the cell wall 
material (solid), σe is the elastic collapse stress of the foam (cell wall buckles), 
σp is the plastic collapse stress of the foam (cell wall yields), and n is the scaling 
factor. Based on the literature, n = 2 ∼ 3, depending on if the cell is closed or 
open [13–15]. It is clear from Equation (1.1) that, for ultralow density foam, the 
mechanical properties of the foam degrade significantly. For example, if the rela-
tive density is 10% and n = 3, Young’s modulus and collapse stress become 0.1% 
of their original values. Therefore, the grand challenge in foam is how to achieve 
high strength and stiffness with minimal weight penalty.

Compared to conventional open- and closed-cell foams, which are formed 
by directly including air bubbles or pores in the matrix, syntactic foams, which 
include hollow particles in the matrix, usually have higher mechanical properties 
than directly incorporating air bubbles in the matrix. Many theoretical, numeri-
cal, and experimental studies have been conducted on polymeric syntactic foams, 
including shape-memory polymer-based syntactic foams. Readers can find more 
details in the representative publications [16–33].

Several studies suggest that the strength and stiffness of the open-cell and 
closed-cell foams depend on the ligament or thin wall bending. While the irregu-
lar open-cell foams primarily fail due to bending or buckling of the walls, the 
irregular closed-cell foams fail due to cell wall buckling or rapture at extremely 
low loads [34–37]. Open-cell foams, which are less dense compared to closed-cell 
foams, are flexible and soft with several industrial applications such as medi-
cal packaging, sponges, furniture, seat cushioning, electronic and power equip-
ment, sound insulation, shock absorption, scaffold, etc. Closed-cell foams trap 
air within the cell walls as they have solid walls blocking the pores and are more 
rigid compared to open-cell foams. As discussed earlier, one type of closed-cell 
foam is syntactic foam, which is formed by dispersing hollow spheres into a poly-
mer matrix. They provide better insulation compared to open-cell foams due to 
the trapped air in their closed cells and also absorb less moisture. Due to their 
higher strength, closed-cell foams have applications in protective gear such as 
knee and arm sleeves, electronic device cases, shoe and footwear, heating, ven-
tilation, air conditioning (HVAC) systems, aircraft, and automobile parts. While 
the open-cell foams have lower strengths, closed-cell foams have lower shock 
absorption and less breathability due to their closed-cells.

A recent development is to use smart polymers such as polymers with shape 
memory, self-healing, and self-sensing capabilities as the matrix and hybrid 
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hollow particles as the inclusions. For example, Li and John prepared a smart syn-
tactic foam by dispersing hollow glass microspheres into a shape memory polymer 
(SMP) matrix, which showed that the impact-induced cracks could be closed due 
to the shape memory effect, leading to tolerance to multiple impact events [38]. 
By further incorporating thermal plastic particles as a healing agent, 3D woven-
fabric-reinforced SMP-based syntactic foam composites [39] and grid-stiffened 
SMP-based syntactic foam composites [40] exhibited self-healing capabilities per 
the biomimetic close-then-heal (CTH) strategy for damage self-healing [41, 42]. 
In recent years, two-way shape memory polymers (2W-SMPs) [43, 44] have also 
been used to prepare syntactic foams, which demonstrated reversible actuation, 
i.e., expansion upon cooling and contraction upon heating. Most recently, shape 
memory vitrimers (SMVs) have been used to prepare multifunctional syntactic 
foams by incorporating silver- and nickel-plated hollow glass microspheres [45, 
46], which exhibited electrical conductivity and Jouel heating, electromagnetic 
interference shielding, damage self-healing, and end-of-life recycling capabilities, 
in addition to lightweight and good mechanical properties.

In summary, foams as porous structures have many potential applications in 
various sectors. In addition to the classical applications, foams can also be used 
to seal cracks and joints in structures such as joints and cracks in pavement and 
bridge decks [47–49]. In this book, however, we will focus on other mechanical 
metamaterials such as lattice structures, thin-walled structures, and plate-lattice 
structures.

1.1.2  Lattice Structures

Regular porous structures such as periodic lattice structures are formed by con-
necting several thin rods in different orientations; see Figure 1.2 for examples. 
Depending on the number of rods and their connectivity, they exhibit either a 
stretching-dominated or a bending dominated behavior. Unlike the irregular 
open-cell foams that predominantly fail due to bending, the lattice structures fail 
due to stretching or bending of the rods. It is shown that the stretching-dominated 
lattice structures provide about ten times stiffer and three times stronger mechanical 
properties under the same relative densities than the bending-dominated structures. 
Extensive research has been conducted into design, fabrication, and evaluation 
of these lattice structures. Several lattice unit cells were proposed with superior 
performance and various advantages in structural, thermal, impact, vibrational, 
and acoustic domains [50]. The octet lattice structure is one of the best stretching-
dominated structures with orthotropic structural behavior [51]. Gyroid and double 
gyroid structures were proposed with excellent impact absorption capabilities [52]. 
Hollow rods were also used to design lattice structures to enhance their energy 
absorption capabilities [53]. Pyramid lattice structures were used to manufacture 
hybrid sandwich panels to have higher damping performance [54]. The effective 
properties of lattice structure were initially studied by Deshpande and Fleck, pro-
posing and using an octet unit cell as a base model [52]. Continuum mechanics 
models were proposed to study the linear and nonlinear effective properties of 
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lattice structure [55–61]. Also, several fabrication techniques and structural per-
formance of these lattice structures were explored by different groups. Advanced 
additive manufacturing techniques made the manufacturing of these complex lat-
tice structures rapid and in different scales from micro to macro. Due to their 
lightweight and effective stiffness properties, the lattice structures were exten-
sively designed by topology optimization to reduce the mass and material con-
sumption. They have been used to design lightweight biomedical implants, wind 
turbine blades, UAV wings, automobile and bike chassis, helmets, etc.

1.1.3 T hin-Walled Cellular Structures

Thin-walled structures were initially formed through mimicking honeycombs, 
bamboo stems, bone cross sections, muscles, beetle wings, etc. [62–65]. Figure 1.3 
shows several examples. As the name suggests, these structures were formed 
by connecting several thin walls in different orientations. While the dominat-
ing mode of failure for these structures is the thin wall bending or buckling, 
they have excellent applications in lightweight packaging, energy absorption, 

FIGURE 1.2  Several lattice structures formed by combining various cylindrical rods in 
different orientations. The image shows several unit cells formed by connecting slender 
rods in different orientations. They can be imagined as structures formed by leaning sev-
eral pillars together with common joints.
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heat dissipation, and impact tolerance. Especially, the honeycomb-inspired thin-
walled cellular structures formed by connecting several hexagonal unit cells have 
been widely studied and used in both academic research and industrial applica-
tions [63]. The hierarchical inner structures of tabular bones and muscles were 
mimicked to design energy-absorbing and impact-resistant cellular structures 
with a 176% increase in energy absorption [64]. Trabecular honeycomb struc-
tures with high energy absorption properties inspired by beetle Electra are five 
times better than conventional quadrilateral tubes used in the crash box beams 
of modern devices and vehicles [65]. Frequency optimization of the thin-walled 
structures was shown to be an important criterion to avoid destructive response 
[66]. The thin-walled structures have several industrial applications due to their 
energy absorption properties. Honeycomb sandwich panels are being extensively 
used for lightweight and energy-absorbent packaging, spoilers, vehicle bumpers, 
tubeless tires, floors, kitchen cabinets, etc.

1.1.4 A uxetic Structures

Auxetic structures which can be lattice structures, thin-walled structures, or a 
combination of both have negative Poisson’s ratio, i.e., under compression, con-
trary to structures that thicken, the auxetic structures get thinner. Figure 1.4 shows 
several examples. Poisson’s ratio is the ratio of lateral strain over longitudinal 
strain, which is positive for conventional structures. In other words, it tells how 
much a structure gets thicker in the lateral direction while under compression 
in the longitudinal direction or thinner in the transverse direction while under 
tension in the axial direction. However, with auxetic structures, the opposite hap-
pens. Under axial compression, the auxetic structures get thinner in the transverse 

FIGURE 1.3  Several thin-walled cellular unit cells. The thin-walled structures can be 
imagined as unit cells formed by connecting several walls in different orientations, but 
only in two dimensions.
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direction, and under longitudinal tension they get thicker in the lateral direction, 
resulting in a negative Poisson’s ratio. The structural orientation of the inner pores 
can be accredited for this behavior in auxetic structures. This unique behavior 
which is a result of their structural orientation has several applications in medical, 
sport, and automobile devices [67]. Several two- and three-dimensional auxetic 
structures have been proposed so far with abundant numerical and experimental 
comparisons [68, 69]. Auxetic structures have been used to design shape adapt-
able seats, bandages, sensors, deployable tops, and sleeves in the fashion industry, 
etc.

1.1.5 H ybrid-Plate Lattice Structures

Plate lattice structures (PLS) or shell-lattice structures are formed by stanch-
ing thin walls in three dimensions. While these structures look like a combi-
nation of 3D lattice structures and 2D thin wall structures they were proposed 

FIGURE 1.4  (a) Deformation of conventional and auxetic structures and (b) auxetic lat-
tice structures. The images in section (a) shows the deformation contour of a conventional 
thin cylinder compressed. After compression, the cylinder becomes shorter and wider. It 
also shows an auxetic structure. Under compression it becomes shorter and thinner. In sec-
tion (b), three different examples of auxetic structures are shown. One has peanut-shaped 
holes oriented in two directions to form an auxetic behavior, others have circular and star-
shaped holes connected to show auxetic behavior.
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to provide near-optimal mass-specific stiffness that exhibits a nearly isotropic 
plastic response. These materials are composed of plates that utilize material 
constraints in two directions [70]. At low relative densities, the stiffness of these 
plate-lattice structures is about 200% higher than that of lattice structures formed 
by thin rods [71].

During investigations into pure stiffness optimization, Sigmund et al. [72] 
made a noteworthy observation that optimal structures such as truss-like struc-
tures tend to be close-walled rather than open-walled. In his study, Sigmund 
found that a closed box with a microstructure consisting of thin walls displayed 
a significantly higher stiffness, around 2-3 times greater, compared to an open-
cell structure featuring 12 trusses positioned along the edges of a cube with a 
low volume fraction. Furthermore, Liu et al. [73] used an analytical method to 
show that the stiffness of a cubic plate is two times higher than the stiffness of a 
cubic truss of the same mass. In any given loading direction, plate-lattices exhibit 
superior structural efficiency, meaning they distribute strain energy more evenly 
among their components and have a greater proportion of members aligned favor-
ably with the loading direction, in contrast to a corresponding beam-lattice [71]. 
Therefore, the findings suggest that further investigation is warranted for the 
PLS. Nevertheless, these benefits are offset by a substantial rise in fabrication 
complexity. The closed-cell structures of three-dimensional plate lattices render 
traditional fabrication methods, such as assembly techniques unfeasible, leav-
ing additive manufacturing as the sole viable approach. However, extracting raw 
materials contained within the closed-cells remains a difficult task. Figure 1.5 
shows several examples.

1.1.6 B iomimetic and Hierarchical Lightweight Structures

The structures that are inspired or mimicked from nature are called biomimetic 
structures. These structures carry forward the inherent structural advantages 
present in the natural structures from which they are inspired. Several lightweight 
structures such as irregular open-cell foams, honeycombs structures, and aux-
etic structures were initially inspired through biomimicry. Trabecular bone is the 

FIGURE 1.5  Plate-lattice unit cells. These cells can be imagined as several thin walls 
connecting to each other in different orientations in three dimensions.
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inspiration to design several open-cell irregular foams and thin-walled cellular 
structures. The widely studied hexagonal honeycomb cellular structures were 
inspired from honeycomb. Several plant stems were mimicked to design light-
weight rods with better buckling resistance.

From 2D and 3D lightweight structures, the authors have proposed several 
higher order lightweight structures by replacing the rods in 3D lattice unit cells 
with an array of similar or other mini-unit cells; see Figure 1.6. It is studied that 
these higher order structures (Second) have a factor of 1.5 improvement in the 
scaling relationship for strength and a factor of 1.6 improvement for modulus 
over first-order structures. From the point of view of fractals, these structures 
show geometrical similarities, and the dimension is a fraction, instead of a whole 
number. Similarly, studies have been focused on optimizing several other light-
weight structures by replacing the local rods or thin walls to design higher order 
lightweight structures which shall be presented in detail in the coming chapters 
[74–80].

FIGURE 1.6  (a) Second-order octet lattice structures and (b) higher order plate lattice 
unit cell with auxetic walls. Second-order octet unit cell can be imagined as filling a lattice 
truss unit cell by replacing the slender rods with smaller unit cells of the same structure.
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1.1.7 S ummary and Future Perspective

This chapter delves into the realm of lightweight structures, covering a diverse 
array of configurations such as open- and closed-cell foams, lattice structures, 
thin-walled cellular structures, auxetic structures, and hybrid plate-lattice cells. 
These structures offer multifunctional advantages in structural, acoustic, and ther-
mal properties, making them increasingly prominent in both academic research 
and industrial applications.

The chapter discusses mechanical behaviors, fabrication techniques, and 
applications of various lightweight structures. For instance, irregular foams, 
with their intricate cellular architectures, offer exceptional stiffness-to-weight 
ratios and find applications in lightweight sandwich cores and energy absorption 
systems. Lattice structures, formed by interconnecting thin rods, exhibit supe-
rior stiffness and strength properties, revolutionizing lightweight design across 
industries. Thin-walled cellular structures, inspired by natural phenomena like 
honeycombs and trabecular bones, excel in energy absorption and impact resis-
tance applications. Auxetic structures, characterized by a negative Poisson’s ratio, 
exhibit unique mechanical behavior with applications in medical devices, sports 
equipment, and automotive components. The chapter also introduces hybrid 
plate-lattice structures, which combine the advantages of lattice and thin-walled 
structures, offering near-optimal mass-specific stiffness and isotropic plastic 
responses. Advanced manufacturing techniques, including additive manufactur-
ing, have played a pivotal role in realizing these complex structures, enabling 
rapid prototyping and customization.

To summarize, there are several lightweight structures, and each of them has 
its own advantages and disadvantages and fields of applications [70, 80–96]. 
Based on the mode of deformations, the lightweight structures have applications 
in different fields. The open-cell and closed-cell foams are being extensively used 
for a variety of industrial insulation applications. The lattice structures are advan-
tageous for high strength and stiffness applications, while thin-walled structures 
are good for energy absorption or damping applications. Figure 1.7 shows the 
comparisons of several lightweight structures [97].

While several studies have been focused on the design, analysis, and manufac-
turing techniques for these lightweight structures, it is believed that there exists a 
wide range of unexplored design space. The continuous demand for lightweight, 
strong, multi-functional, and cost-effective structures calls for novel structure 
design and optimization techniques. With the advancement in computational sci-
ence and data-driven techniques, structural design using artificial intelligence has 
become a current area of research. Methods such as machine learning, statistical 
analysis tools, data mining, etc., help in reaching closer to the global optimal 
solutions and much easier surpassing complex numerical analysis. Hierarchical 
structures and combinations of different lightweight structures and multifunc-
tional materials are a potential area of interest and are yet to be explored. Because 
in the biological realm, most structures are made of porous lightweight structures, 
they provide bioinspiration for humans to mimic these biological structures or 
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help create a database for training machine learning models. More discussions on 
several lightweight structures, design, and optimization techniques using data-
driven techniques will be presented in the coming chapters.
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