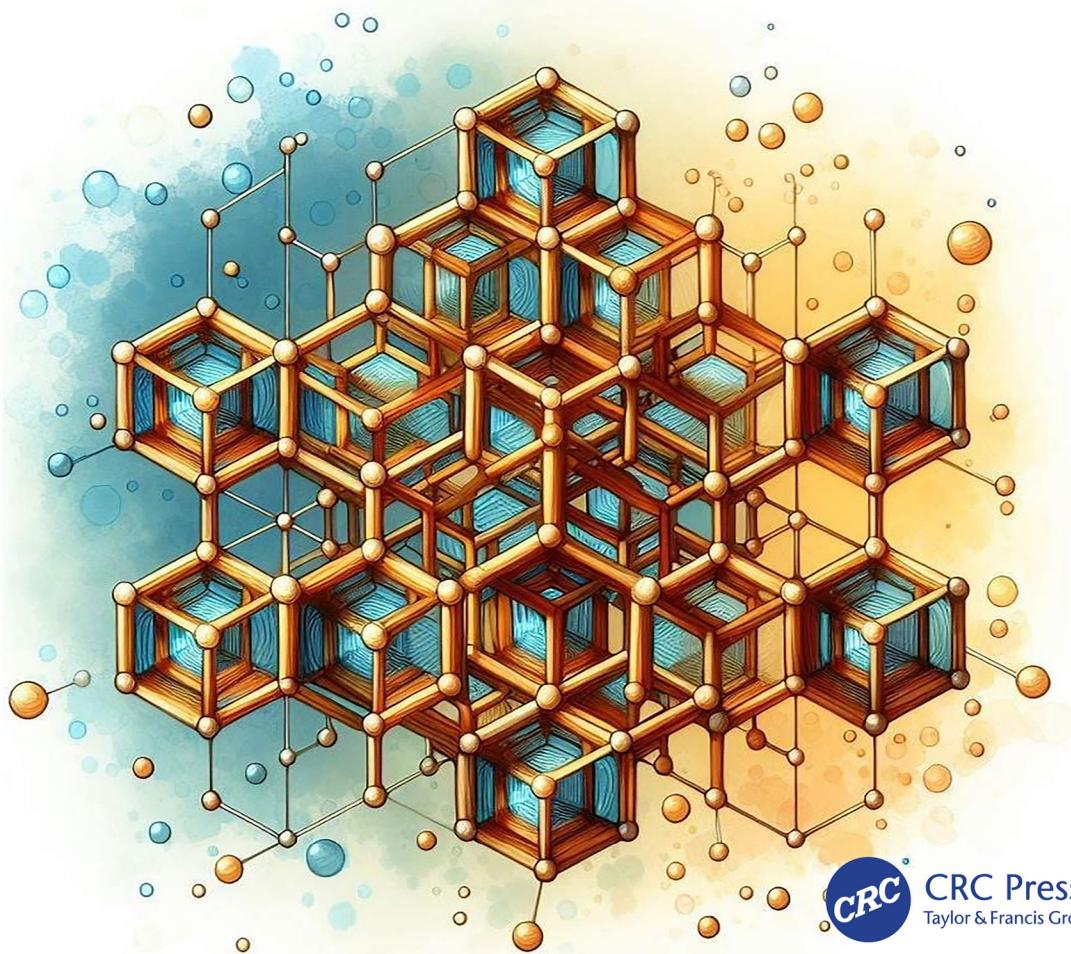


Artificial Intelligence Assisted Structural Optimization

Adithya Challapalli and Guoqiang Li



CRC Press
Taylor & Francis Group

Artificial Intelligence Assisted Structural Optimization

Artificial Intelligence Assisted Structural Optimization explores the use of machine learning and correlation analysis within the forward design and inverse design frameworks to design and optimize lightweight load-bearing structures as well as mechanical metamaterials.

Discussing both machine learning and design analysis in detail, this book enables readers to optimize their designs using a data-driven approach. This book discusses the basics of the materials utilized, for example, shape memory polymers, and the manufacturing approach employed, such as 3D or 4D printing. Additionally, the book discusses the use of forward design and inverse design frameworks to discover novel lattice unit cells and thin-walled cellular unit cells with enhanced mechanical and functional properties such as increased mechanical strength, heightened natural frequency, strengthened impact tolerance, and improved recovery stress. Inverse design methodologies using generative adversarial networks are proposed to further investigate and improve these structures. Detailed discussions on fingerprinting approaches, machine learning models, structure screening techniques, and typical Python codes are provided in the book.

The book provides detailed guidance for both students and industry engineers to optimize their structural designs using machine learning.

Taylor & Francis
Taylor & Francis Group
<http://taylorandfrancis.com>

Artificial Intelligence Assisted Structural Optimization

Adithya Challapalli and Guoqiang Li

CRC Press

Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an **informa** business

Designed cover image: Adithya Challapalli and Guoqiang Li

First edition published 2025

by CRC Press

2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press

4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2025 Adithya Challapalli and Guoqiang Li

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark Notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.

ISBN: 978-1-032-50885-6 (hbk)

ISBN: 978-1-032-50887-0 (pbk)

ISBN: 978-1-003-40016-5 (ebk)

DOI: [10.1201/9781003400165](https://doi.org/10.1201/9781003400165)

Typeset in Times

by KnowledgeWorks Global Ltd.

Contents

Preface.....	ix
Authors.....	xi
Chapter 1 Introduction to Structures with Complex Geometrical Configurations	1
1.1 Introduction	1
1.1.1 Foams	3
1.1.2 Lattice Structures	6
1.1.3 Thin-Walled Cellular Structures	7
1.1.4 Auxetic Structures.....	8
1.1.5 Hybrid-Plate Lattice Structures.....	9
1.1.6 Biomimetic and Hierarchical Lightweight Structures	10
1.1.7 Summary and Future Perspective	12
Chapter 2 Structural Optimization	19
2.1 Introduction	19
2.1.1 Existing Optimization Techniques.....	20
2.1.2 Advancement in Data-Driven Optimization Techniques.....	22
2.1.3 Summary and Future Perspectives.....	38
Chapter 3 Introduction to Machine Learning-Assisted Structural Optimization.....	41
3.1 Introduction	41
3.2 Data Generation.....	46
3.3 Feature Identification or Fingerprinting	47
3.4 Data Cleaning	50
3.5 Forward Machine Learning.....	51
3.6 Inverse Machine Learning	53
3.7 Summary	55
Chapter 4 Structural Optimization of Biomimetic Rods Using Machine Learning Regression	60
4.1 Introduction	60
4.2 Selection of Biological Counterparts and Creation of Biomimetic Rods	66

4.3	Buckling Load Analysis of the Biomimetic Rods	68
4.4	Experimental Validation.....	70
4.5	Feature Identification or Fingerprints.....	72
4.6	Forward Design and Prediction.....	73
4.7	Discovery of New Biomimetic Rods	76
4.8	Conclusions.....	80
Chapter 5	Structural Optimization of Lattice Structures	84
5.1	Lattice Structures	84
5.2	Data Generation and Fingerprinting of Lattice Unit Cells.....	87
5.3	Machine Learning	91
5.4	Discovery of New Lattice Unit Cells.....	96
5.5	Numerical and Experimental Validations for Newly Discovered Lattice Unit Cells	98
5.6	Three-Point Bending Test of Several Lattice-Cored Sandwich Structures	105
5.7	Sample Coding	107
5.8	Summary	109
Chapter 6	Inverse Machine Learning Using Generative Adversarial Networks	113
6.1	Introduction	113
6.2	GANs	114
6.3	Inverse Design Framework for Optimization of 2D and 3D Lightweight Structures.....	115
6.3.1	Inverse Design Framework for Optimizing Load-Carrying Capacity of Lattice Unit Cells.....	115
6.3.2	Inverse Design Framework for Optimizing Load-Carrying Capacity with Higher Natural Frequency of Thin-Walled Unit Cells	117
6.3.3	Sample GAN Code for Generating Novel Fingerprints Using Python Scripting	120
6.4	Data Generation, Fingerprinting, and Forward Design Model of Cellular Unit Cells	123
6.4.1	Dataset Generation and Fingerprinting.....	123
6.4.2	Regression or Forward Design Model Training for Thin-Walled Unit Cells	125
6.5	Numerical and Experimental Validation.....	126
6.5.1	Validation for Lattice Unit Cells	126
6.5.2	Validation for Thin-Walled Cellular Unit Cells Using Uniaxial Compression	129

6.6	Results and Discussions.....	131
6.6.1	Lattice Unit Cells	133
6.6.2	Thin-Walled Cellular Unit Cells	137
6.7	Theoretical Background	147
6.7.1	Natural Frequency	148
6.7.2	Generalized Hooke's Law for Effective Properties of Cellular Structures.....	149
6.8	Summary	150
Chapter 7	Design and Optimization of Mechanical Metamaterials Using Correlation Analysis	155
7.1	Introduction	155
7.2	Data Generation and Fingerprinting of Thin-Walled Cellular Unit Cells.....	159
7.3	Forward Machine Learning Regression Model for Thin-Walled Cellular Unit Cells	162
7.4	Selection Criterion for Optimal Structures	164
7.5	Correlation Analysis.....	169
7.6	Inverse Design Framework Using Correlation Analysis	172
7.7	Validation of Cellular Unit Cells and Lattice Unit Cells.....	177
7.8	Stress Recovery Analysis for Discovered Mechanical Metamaterials	181
7.9	Summary and Conclusion	185
Chapter 8	Summary and Future Perspectives.....	195
8.1	Summary of Machine Learning–Assisted Discovery of Mechanical Metamaterials	195
8.2	Machine Learning Applications in Other Areas of Studies	198
8.2.1	Healthcare Applications	198
8.2.2	Finance and Business Applications.....	198
8.2.3	Agricultural and Environmental Applications.....	199
8.2.4	Transportation and Urban Planning	200
8.2.5	Social Sciences and Humanities Applications.....	201
8.3	Challenges, Opportunities, and Perspectives	202
Index.....	207	

Taylor & Francis
Taylor & Francis Group
<http://taylorandfrancis.com>

Preface

In the dynamic field of structural engineering, the quest for materials that offer superior strength-to-weight ratios is relentless. The advent of machine learning has revolutionized this pursuit, enabling us to explore and optimize lightweight structures with unprecedented precision and creativity.

This textbook, *Artificial Intelligence Assisted Structural Optimization*, is designed to bridge the gap between traditional structural engineering principles and the cutting-edge techniques of artificial intelligence. It is crafted for students, researchers, and professionals who are eager to harness the power of machine learning to innovate in the design and analysis of lightweight structures.

Within these pages, you will find a comprehensive exploration of the fundamentals of machine learning, as well as its application to the design of lightweight structures. From the basics of data analysis to the complexities of neural networks and deep learning, this book provides a step-by-step guide to the tools and techniques that are transforming the field.

Through a blend of theoretical knowledge and practical case studies, readers will gain the skills necessary to develop their own machine-learning models for structural optimization. The book also discusses the ethical considerations and future implications of using machine learning in structural engineering, ensuring that readers are fully prepared for the challenges and opportunities that lie ahead.

Taylor & Francis
Taylor & Francis Group
<http://taylorandfrancis.com>

Authors

Adithya Challapalli earned an MS at the University of North Texas (UNT) in mechanical and energy engineering and a PhD at Louisiana State University (LSU) in materials engineering, engineering science. Concurrently, he is a project engineer at Graphic Packaging International focusing on optimizing sustainable and renewable products.

Guoqiang Li earned a BS, an MS, and a PhD at Hebei University of Technology, Beijing University of Technology, and Southeast University, respectively, all in civil engineering. He received his postdoc training in mechanical engineering at Louisiana State University (LSU). He is the Major Morris S. and DeEtte A. Anderson Memorial alumni professor and holder of the John W. Rhea Jr. Professorship in Engineering in the Department of Mechanical and Industrial Engineering at LSU. He is also the associate vice provost of the Graduate School at LSU. Concurrently, he is a distinguished research professor in the Department of Mechanical Engineering at Southern University, Baton Rouge, Louisiana. His research interests include engineering materials, engineering structures, manufacturing, and engineering mechanics. He currently serves as an associate editor for the ASCE *Journal of Materials in Civil Engineering*, an editorial board member for the journal *Scientific Reports*, an Associate Editor for the journal *Cleaner Materials*, and the specialty editor of *Frontiers in Mechanical Engineering: Solid and Structural Mechanics*. He has received over 40 awards and recognitions for his research, mentoring, and services.

Taylor & Francis
Taylor & Francis Group
<http://taylorandfrancis.com>

1 Introduction to Structures with Complex Geometrical Configurations

1.1 INTRODUCTION

The word “structure” in this book refers to rod, beam, plate, and shell and a combination of them by arranging them together according to a certain order. “Structural optimization” suggests a process to design structures with the maximum load-carrying capacity and the least weight penalty. The focus of this book will be on design and optimization from a structural point of view without much emphasis on the base materials. However, when needed, we will also introduce some fundamentals on materials used to construct the structures, particularly for new materials such as smart materials. This chapter provides background on several lightweight structures, their applications, existing optimization techniques, and the importance and advantages of implementing data-driven optimization techniques for these structures.

There are several lightweight structures such as open- and closed-cell foams, lattice structures, thin-walled cellular structures, auxetic structures, hybrid plate-lattice structures, etc. Extensive research has been focused on these structures due to their multiple advantages in structural, acoustic, optimal, electromagnetic, and thermal properties. Numerous theoretical models to predict and analyze the structural behavior of the structures have been developed. With the advancement in manufacturing techniques such as additive manufacturing or 3D/4D printing and complex design and simulation tools, the process of design and optimization for these structures has become simpler.

The realization of lightweight structures requires advanced manufacturing techniques that can accurately translate complex digital designs into physical structures. Several manufacturing methods have emerged as key enablers in bringing irregular lattice structures from the digital realm to the tangible world. Digital fabrication techniques, including computer numerical control (CNC) machining and laser cutting, are commonly employed to manufacture irregular lattice structures. These techniques allow for precision and repeatability in creating intricate lattice patterns from a variety of materials, including metals, polymers, and composites. The rise of additive manufacturing, or 3D printing, has revolutionized the production of lightweight structures or mechanical metamaterials. This technique

builds structures layer by layer directly from digital models, offering unparalleled design freedom. 3D printing enables the creation of overly complex and customized lightweight structures that would be challenging or impossible to produce using traditional methods.

In terms of designing lightweight structures with superior structural capacities but without much weight penalty, computer-aided design has played an important role. Recently, generative design software has played a pivotal role in shaping irregular-shaped structures. By leveraging algorithms and artificial intelligence, generative design tools explore numerous design possibilities based on specified parameters such as material properties, load conditions, and manufacturing constraints. This iterative process results in optimized lightweight structures that meet or exceed performance requirements. The versatility of lightweight structures finds expression across a spectrum of industries, each benefiting from the unique advantages offered by these innovative designs.

In many engineering applications, lightweight is highly desired, for example, aerospace structures, offshore oil platforms, wind turbine blades, autos, and ships, where weight reduction is paramount and lightweight structures offer a compelling solution. The ability to optimize structural performance and distribute loads efficiently aligns with the demands of these engineering applications. Components such as lightweight panels, brackets, body of cars, and even entire airframe structures can benefit from the weight-saving potential of irregular-shaped structural designs.

The field of biomedical engineering embraces lightweight porous structures for applications ranging from orthopedic implants to tissue scaffolds. Implants with porous structures can mimic the mechanical properties of bone while promoting osseointegration. In tissue engineering, porous structures serve as frameworks for the growth of new tissues, providing support and guidance for regenerative processes.

Architects and structural engineers incorporate porous structures such as lattice structures into building designs to achieve both aesthetic and functional objectives. From facades and partitions to entire structural elements, porous patterns redefine the possibilities of architectural expression. The adaptability of these structures to different load conditions makes them valuable in creating resilient and visually captivating buildings.

In the automotive industry, the pursuit of lightweight yet robust components is a driving force behind the adoption of porous structures. Engine components, chassis elements, and even interior components benefit from the weight reduction achieved through optimized pattern designs. This not only enhances fuel efficiency but also contributes to overall vehicle performance and safety.

While lightweight porous structures offer a plethora of advantages, they are not without challenges, and ongoing research aims to address these complexities.

Computational Complexity: The design and analysis of porous structures can be computationally demanding, especially when utilizing generative design and simulation tools. Handling large datasets and optimizing complex structures require advanced computational resources. Researchers are actively exploring

ways to enhance the efficiency of these processes to make porous structures more accessible.

Material Considerations: The choice of materials for porous structures is critical to their performance. Different applications demand materials with specific mechanical properties, thermal conductivity, or biocompatibility. Advancements in material science, including the development of new alloys, new polymers, new ceramics, and their composite materials, contribute to expanding the potential applications of porous structures.

Integration of Multiple Materials: Incorporating multiple materials within a porous structure introduces additional challenges but also opens new possibilities. The ability to integrate materials with distinct properties enables the creation of multifunctional structures. Researchers are exploring techniques such as multi-material 3D printing to achieve seamless integration and optimize performance.

Standardization and Certification: As porous structures become more prevalent in critical applications such as aerospace and healthcare, the need for standardization and certification processes becomes paramount. Establishing guidelines and standards for the design, manufacturing, and testing of irregular-shaped porous structures ensures their safety, reliability, and adherence to industry regulations.

Porous structures represent a change in thinking in structural design, challenging traditional notions of symmetry and uniformity. From optimized load distribution to aesthetic innovation, these structures highlight the power of embracing complexity in engineering and architecture.

As technology continues to advance, and researchers delve deeper into the intricacies of porous structures, the possibilities are boundless. The marriage of computational design, advanced manufacturing techniques, and material science heralds a new era where structures are not just functional but are also expressions of creativity and efficiency.

The journey of porous structures is a testament to human ingenuity, pushing the boundaries of what is possible in the quest for structures that are not only strong and efficient but also visually captivating. As industries across the spectrum adopt and adapt these designs, we find ourselves at the cusp of a transformative era where irregularity becomes the norm, and complexity becomes the cornerstone of innovation.

In the following sections, we will introduce the background of several light-weight porous structures.

1.1.1 FOAMS

A typical porous structure is foam. It is formed by incorporating distributed pores within a matrix. Depending on whether the pores are interconnected or discrete, foams can be widely divided into open- and closed-cell foam. Open-cell foams with irregular cellular structures are formed by packing a complex network of interconnected ligaments. Closed-cell irregular foams are formed by closing the pores with thin walls ([Figure 1.1](#)). Due to the excellent stiffness-to-weight ratios

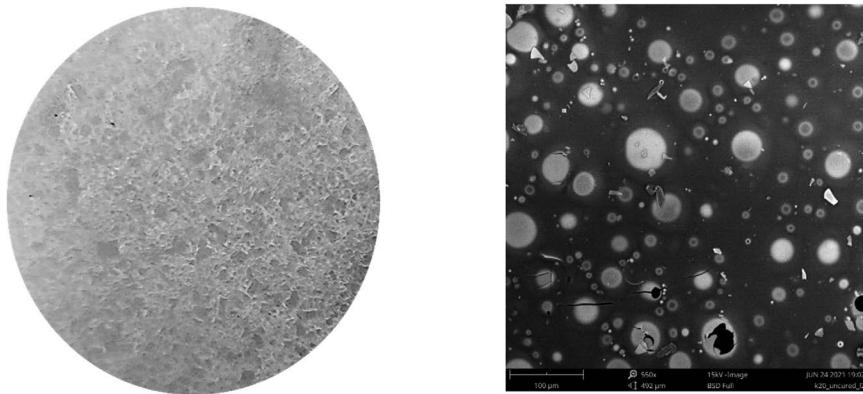


FIGURE 1.1 (a) Open-cell foam prepared by salt leaching method [44] (copyright 2022, ACS, with permission) (b) closed-cell foam [28] (Copyright, 2022, Elsevier, with permission). The image shows a porous structure with irregular string-like connections joining to form cavities depicting an open-cell foam. It also shows a structure with irregular thin walls with closed-cells in the interior depicting a closed-cell foam.

of these structures, they have several applications as a lightweight sandwich core, energy absorber, sound barrier, vibration damping, and tunable thermal conductivity [1].

Several approaches have been used to introduce air bubbles to a matrix, such as polymer matrix [2–6]. These methods include gas foaming, particulate leaching, electrospinning, phase separation, emulsion templating, and solid-state foaming. Recently, 3D/4D printing has also been used for fabricating open-cell foams [7]. While all of these methods are useful for particular applications, gas foaming using a blowing agent such as CO₂ [8] or supercritical CO₂ [9] and particulate leaching using solvable particles such as table salt [10, 11] are considered more common. In both approaches, porosity can be easily controlled by the ratio of the porogen to the polymer. These methods can be considered as physical methods. One more common physical method is to incorporate a hollow microsphere into a matrix. The hollow microspheres include glass microspheres, metal microspheres, carbon microspheres, and polymeric microspheres. The foam produced in this way is closed-cell foam, usually called syntactic foam. In addition to the physical methods, chemical method is also widely used in producing foams. In chemical methods, a foaming agent is involved in a matrix. Upon heating, the foaming agent decomposes and produces a large amount of gas, leading to the foaming of the matrix. Some foaming agents may experience a phase change, from solid to gas, without chemical decomposition. In addition to including a foaming agent in the matrix, another way is to encapsulate the foaming agent first by a soft polymer shell, and upon heating, the foaming agent expands, leading to closed-cell foam.

Many studies have reported substantial theoretical, numerical, and experimental results to understand and predict the mechanical behavior of these porous structures [12]. Clearly, the mechanical properties of foams highly depend on the porosity. It has been widely accepted that the relative strength and stiffness are coupled with relative density for foams with scholastic pores [13–15]:

$$E/E_s \propto (\rho/\rho_s)^n; \quad \sigma_e/E_s \propto (\rho/\rho_s)^n; \quad \sigma_p/\sigma_y \propto (\rho/\rho_s)^n; \quad (1.1)$$

where E is Young's modulus of the foam, E_s is Young's modulus of the cell wall material (solid), ρ is the density of the foam, ρ_s is the density of the cell wall material (solid), σ_e is the elastic collapse stress of the foam (cell wall buckles), σ_p is the plastic collapse stress of the foam (cell wall yields), and n is the scaling factor. Based on the literature, $n = 2 \sim 3$, depending on if the cell is closed or open [13–15]. It is clear from Equation (1.1) that, for ultralow density foam, the mechanical properties of the foam degrade significantly. For example, if the relative density is 10% and $n = 3$, Young's modulus and collapse stress become 0.1% of their original values. Therefore, the grand challenge in foam is how to achieve high strength and stiffness with minimal weight penalty.

Compared to conventional open- and closed-cell foams, which are formed by directly including air bubbles or pores in the matrix, syntactic foams, which include hollow particles in the matrix, usually have higher mechanical properties than directly incorporating air bubbles in the matrix. Many theoretical, numerical, and experimental studies have been conducted on polymeric syntactic foams, including shape-memory polymer-based syntactic foams. Readers can find more details in the representative publications [16–33].

Several studies suggest that the strength and stiffness of the open-cell and closed-cell foams depend on the ligament or thin wall bending. While the irregular open-cell foams primarily fail due to bending or buckling of the walls, the irregular closed-cell foams fail due to cell wall buckling or rapture at extremely low loads [34–37]. Open-cell foams, which are less dense compared to closed-cell foams, are flexible and soft with several industrial applications such as medical packaging, sponges, furniture, seat cushioning, electronic and power equipment, sound insulation, shock absorption, scaffold, etc. Closed-cell foams trap air within the cell walls as they have solid walls blocking the pores and are more rigid compared to open-cell foams. As discussed earlier, one type of closed-cell foam is syntactic foam, which is formed by dispersing hollow spheres into a polymer matrix. They provide better insulation compared to open-cell foams due to the trapped air in their closed cells and also absorb less moisture. Due to their higher strength, closed-cell foams have applications in protective gear such as knee and arm sleeves, electronic device cases, shoe and footwear, heating, ventilation, air conditioning (HVAC) systems, aircraft, and automobile parts. While the open-cell foams have lower strengths, closed-cell foams have lower shock absorption and less breathability due to their closed-cells.

A recent development is to use smart polymers such as polymers with shape memory, self-healing, and self-sensing capabilities as the matrix and hybrid

hollow particles as the inclusions. For example, Li and John prepared a smart syntactic foam by dispersing hollow glass microspheres into a shape memory polymer (SMP) matrix, which showed that the impact-induced cracks could be closed due to the shape memory effect, leading to tolerance to multiple impact events [38]. By further incorporating thermal plastic particles as a healing agent, 3D woven-fabric-reinforced SMP-based syntactic foam composites [39] and grid-stiffened SMP-based syntactic foam composites [40] exhibited self-healing capabilities per the biomimetic close-then-heal (CTH) strategy for damage self-healing [41, 42]. In recent years, two-way shape memory polymers (2W-SMPs) [43, 44] have also been used to prepare syntactic foams, which demonstrated reversible actuation, i.e., expansion upon cooling and contraction upon heating. Most recently, shape memory vitrimers (SMVs) have been used to prepare multifunctional syntactic foams by incorporating silver- and nickel-plated hollow glass microspheres [45, 46], which exhibited electrical conductivity and Joule heating, electromagnetic interference shielding, damage self-healing, and end-of-life recycling capabilities, in addition to lightweight and good mechanical properties.

In summary, foams as porous structures have many potential applications in various sectors. In addition to the classical applications, foams can also be used to seal cracks and joints in structures such as joints and cracks in pavement and bridge decks [47–49]. In this book, however, we will focus on other mechanical metamaterials such as lattice structures, thin-walled structures, and plate-lattice structures.

1.1.2 LATTICE STRUCTURES

Regular porous structures such as periodic lattice structures are formed by connecting several thin rods in different orientations; see [Figure 1.2](#) for examples. Depending on the number of rods and their connectivity, they exhibit either a stretching-dominated or a bending dominated behavior. Unlike the irregular open-cell foams that predominantly fail due to bending, the lattice structures fail due to stretching or bending of the rods. It is shown that the stretching-dominated lattice structures provide about ten times stiffer and three times stronger mechanical properties under the same relative densities than the bending-dominated structures. Extensive research has been conducted into design, fabrication, and evaluation of these lattice structures. Several lattice unit cells were proposed with superior performance and various advantages in structural, thermal, impact, vibrational, and acoustic domains [50]. The octet lattice structure is one of the best stretching-dominated structures with orthotropic structural behavior [51]. Gyroid and double gyroid structures were proposed with excellent impact absorption capabilities [52]. Hollow rods were also used to design lattice structures to enhance their energy absorption capabilities [53]. Pyramid lattice structures were used to manufacture hybrid sandwich panels to have higher damping performance [54]. The effective properties of lattice structure were initially studied by Deshpande and Fleck, proposing and using an octet unit cell as a base model [52]. Continuum mechanics models were proposed to study the linear and nonlinear effective properties of

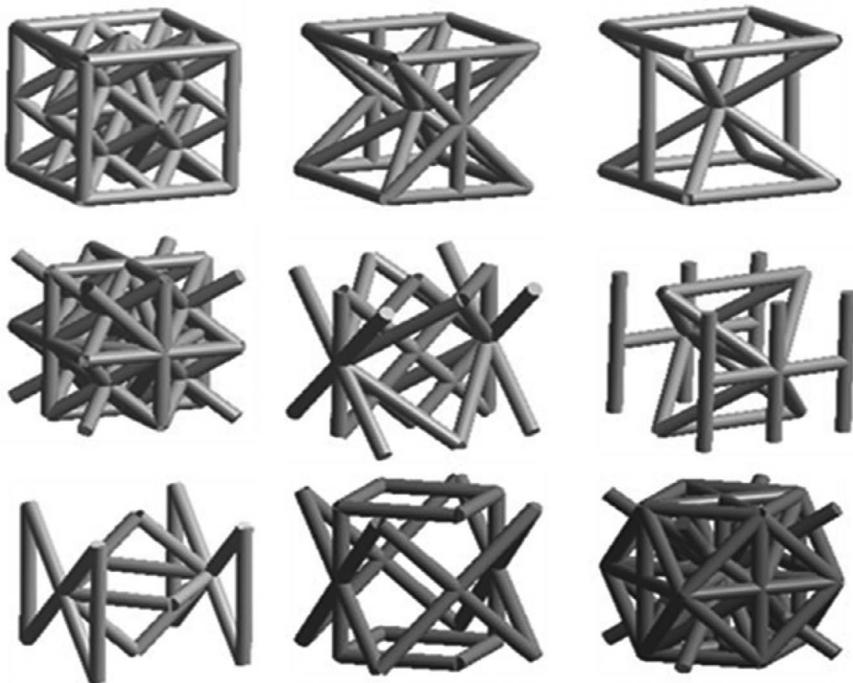


FIGURE 1.2 Several lattice structures formed by combining various cylindrical rods in different orientations. The image shows several unit cells formed by connecting slender rods in different orientations. They can be imagined as structures formed by leaning several pillars together with common joints.

lattice structure [55–61]. Also, several fabrication techniques and structural performance of these lattice structures were explored by different groups. Advanced additive manufacturing techniques made the manufacturing of these complex lattice structures rapid and in different scales from micro to macro. Due to their lightweight and effective stiffness properties, the lattice structures were extensively designed by topology optimization to reduce the mass and material consumption. They have been used to design lightweight biomedical implants, wind turbine blades, UAV wings, automobile and bike chassis, helmets, etc.

1.1.3 THIN-WALLED CELLULAR STRUCTURES

Thin-walled structures were initially formed through mimicking honeycombs, bamboo stems, bone cross sections, muscles, beetle wings, etc. [62–65]. Figure 1.3 shows several examples. As the name suggests, these structures were formed by connecting several thin walls in different orientations. While the dominating mode of failure for these structures is the thin wall bending or buckling, they have excellent applications in lightweight packaging, energy absorption,

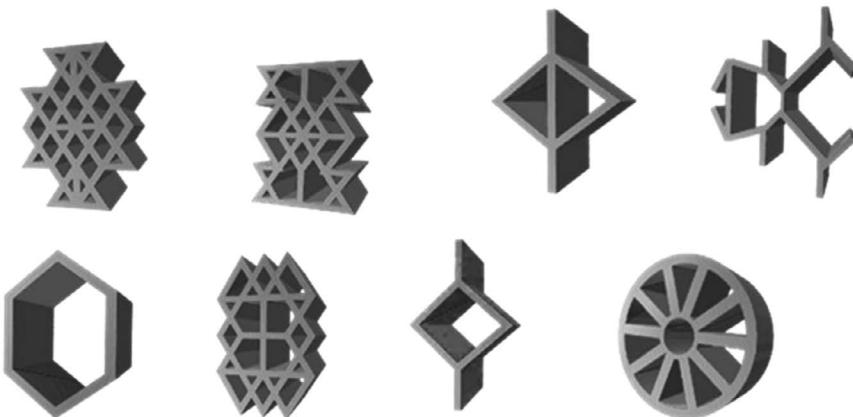


FIGURE 1.3 Several thin-walled cellular unit cells. The thin-walled structures can be imagined as unit cells formed by connecting several walls in different orientations, but only in two dimensions.

heat dissipation, and impact tolerance. Especially, the honeycomb-inspired thin-walled cellular structures formed by connecting several hexagonal unit cells have been widely studied and used in both academic research and industrial applications [63]. The hierarchical inner structures of tabular bones and muscles were mimicked to design energy-absorbing and impact-resistant cellular structures with a 176% increase in energy absorption [64]. Trabecular honeycomb structures with high energy absorption properties inspired by beetle Electra are five times better than conventional quadrilateral tubes used in the crash box beams of modern devices and vehicles [65]. Frequency optimization of the thin-walled structures was shown to be an important criterion to avoid destructive response [66]. The thin-walled structures have several industrial applications due to their energy absorption properties. Honeycomb sandwich panels are being extensively used for lightweight and energy-absorbent packaging, spoilers, vehicle bumpers, tubeless tires, floors, kitchen cabinets, etc.

1.1.4 AUXETIC STRUCTURES

Auxetic structures which can be lattice structures, thin-walled structures, or a combination of both have negative Poisson's ratio, i.e., under compression, contrary to structures that thicken, the auxetic structures get thinner. Figure 1.4 shows several examples. Poisson's ratio is the ratio of lateral strain over longitudinal strain, which is positive for conventional structures. In other words, it tells how much a structure gets thicker in the lateral direction while under compression in the longitudinal direction or thinner in the transverse direction while under tension in the axial direction. However, with auxetic structures, the opposite happens. Under axial compression, the auxetic structures get thinner in the transverse

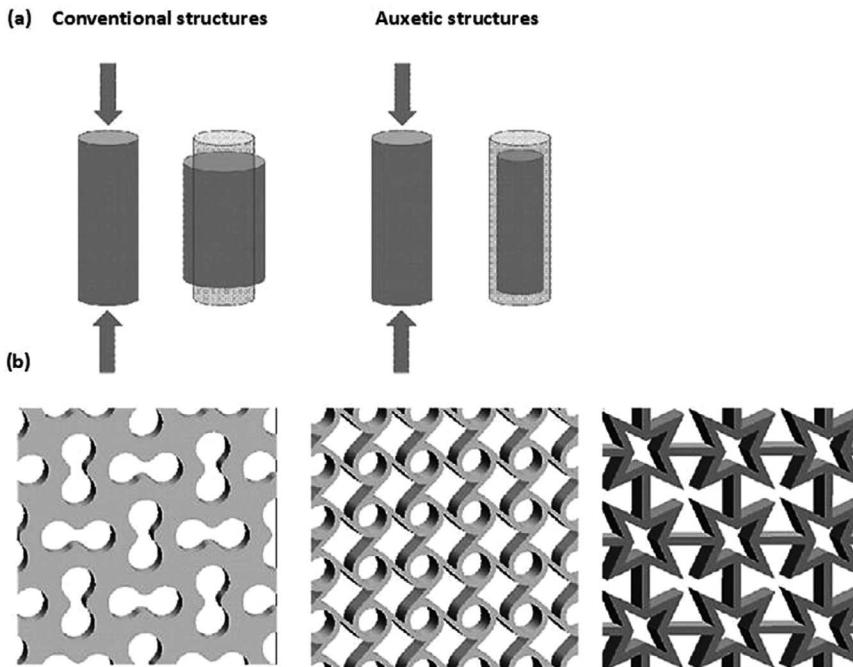


FIGURE 1.4 (a) Deformation of conventional and auxetic structures and (b) auxetic lattice structures. The images in section (a) shows the deformation contour of a conventional thin cylinder compressed. After compression, the cylinder becomes shorter and wider. It also shows an auxetic structure. Under compression it becomes shorter and thinner. In section (b), three different examples of auxetic structures are shown. One has peanut-shaped holes oriented in two directions to form an auxetic behavior, others have circular and star-shaped holes connected to show auxetic behavior.

direction, and under longitudinal tension they get thicker in the lateral direction, resulting in a negative Poisson's ratio. The structural orientation of the inner pores can be accredited for this behavior in auxetic structures. This unique behavior which is a result of their structural orientation has several applications in medical, sport, and automobile devices [67]. Several two- and three-dimensional auxetic structures have been proposed so far with abundant numerical and experimental comparisons [68, 69]. Auxetic structures have been used to design shape adaptable seats, bandages, sensors, deployable tops, and sleeves in the fashion industry, etc.

1.1.5 HYBRID-PLATE LATTICE STRUCTURES

Plate lattice structures (PLS) or shell-lattice structures are formed by stanching thin walls in three dimensions. While these structures look like a combination of 3D lattice structures and 2D thin wall structures they were proposed

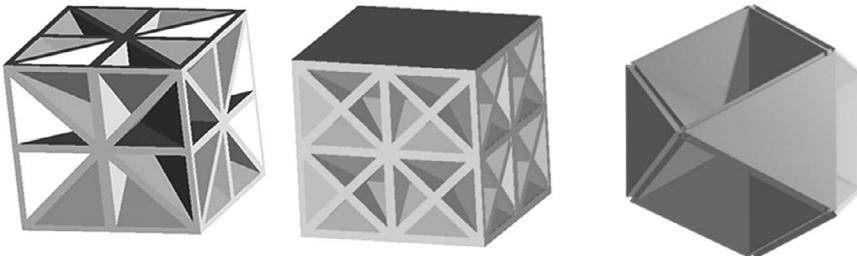


FIGURE 1.5 Plate-lattice unit cells. These cells can be imagined as several thin walls connecting to each other in different orientations in three dimensions.

to provide near-optimal mass-specific stiffness that exhibits a nearly isotropic plastic response. These materials are composed of plates that utilize material constraints in two directions [70]. At low relative densities, the stiffness of these plate-lattice structures is about 200% higher than that of lattice structures formed by thin rods [71].

During investigations into pure stiffness optimization, Sigmund et al. [72] made a noteworthy observation that optimal structures such as truss-like structures tend to be close-walled rather than open-walled. In his study, Sigmund found that a closed box with a microstructure consisting of thin walls displayed a significantly higher stiffness, around 2-3 times greater, compared to an open-cell structure featuring 12 trusses positioned along the edges of a cube with a low volume fraction. Furthermore, Liu et al. [73] used an analytical method to show that the stiffness of a cubic plate is two times higher than the stiffness of a cubic truss of the same mass. In any given loading direction, plate-lattices exhibit superior structural efficiency, meaning they distribute strain energy more evenly among their components and have a greater proportion of members aligned favorably with the loading direction, in contrast to a corresponding beam-lattice [71]. Therefore, the findings suggest that further investigation is warranted for the PLS. Nevertheless, these benefits are offset by a substantial rise in fabrication complexity. The closed-cell structures of three-dimensional plate lattices render traditional fabrication methods, such as assembly techniques unfeasible, leaving additive manufacturing as the sole viable approach. However, extracting raw materials contained within the closed-cells remains a difficult task. Figure 1.5 shows several examples.

1.1.6 BIOMIMETIC AND HIERARCHICAL LIGHTWEIGHT STRUCTURES

The structures that are inspired or mimicked from nature are called biomimetic structures. These structures carry forward the inherent structural advantages present in the natural structures from which they are inspired. Several lightweight structures such as irregular open-cell foams, honeycombs structures, and auxetic structures were initially inspired through biomimicry. Trabecular bone is the

inspiration to design several open-cell irregular foams and thin-walled cellular structures. The widely studied hexagonal honeycomb cellular structures were inspired from honeycomb. Several plant stems were mimicked to design lightweight rods with better buckling resistance.

From 2D and 3D lightweight structures, the authors have proposed several higher order lightweight structures by replacing the rods in 3D lattice unit cells with an array of similar or other mini-unit cells; see [Figure 1.6](#). It is studied that these higher order structures (Second) have a factor of 1.5 improvement in the scaling relationship for strength and a factor of 1.6 improvement for modulus over first-order structures. From the point of view of fractals, these structures show geometrical similarities, and the dimension is a fraction, instead of a whole number. Similarly, studies have been focused on optimizing several other lightweight structures by replacing the local rods or thin walls to design higher order lightweight structures which shall be presented in detail in the coming chapters [\[74–80\]](#).

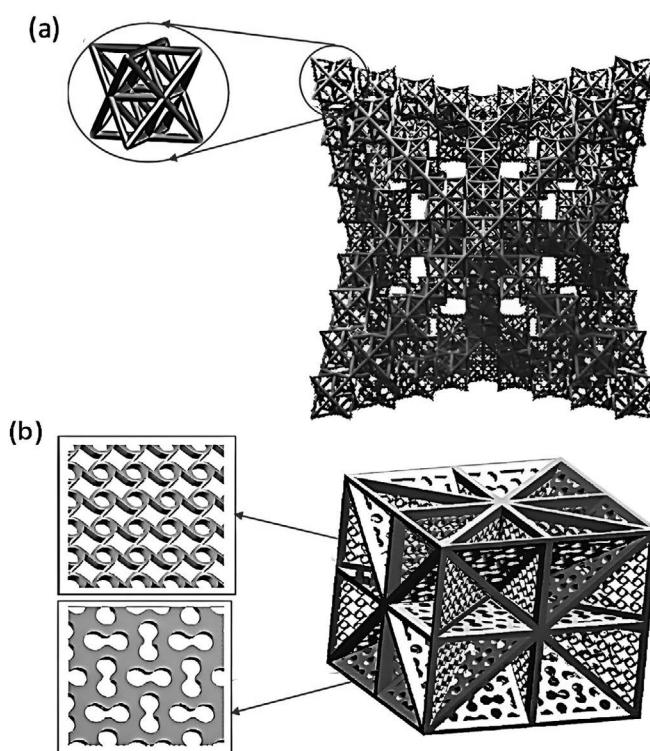


FIGURE 1.6 (a) Second-order octet lattice structures and (b) higher order plate lattice unit cell with auxetic walls. Second-order octet unit cell can be imagined as filling a lattice truss unit cell by replacing the slender rods with smaller unit cells of the same structure.

1.1.7 SUMMARY AND FUTURE PERSPECTIVE

This chapter delves into the realm of lightweight structures, covering a diverse array of configurations such as open- and closed-cell foams, lattice structures, thin-walled cellular structures, auxetic structures, and hybrid plate-lattice cells. These structures offer multifunctional advantages in structural, acoustic, and thermal properties, making them increasingly prominent in both academic research and industrial applications.

The chapter discusses mechanical behaviors, fabrication techniques, and applications of various lightweight structures. For instance, irregular foams, with their intricate cellular architectures, offer exceptional stiffness-to-weight ratios and find applications in lightweight sandwich cores and energy absorption systems. Lattice structures, formed by interconnecting thin rods, exhibit superior stiffness and strength properties, revolutionizing lightweight design across industries. Thin-walled cellular structures, inspired by natural phenomena like honeycombs and trabecular bones, excel in energy absorption and impact resistance applications. Auxetic structures, characterized by a negative Poisson's ratio, exhibit unique mechanical behavior with applications in medical devices, sports equipment, and automotive components. The chapter also introduces hybrid plate-lattice structures, which combine the advantages of lattice and thin-walled structures, offering near-optimal mass-specific stiffness and isotropic plastic responses. Advanced manufacturing techniques, including additive manufacturing, have played a pivotal role in realizing these complex structures, enabling rapid prototyping and customization.

To summarize, there are several lightweight structures, and each of them has its own advantages and disadvantages and fields of applications [70, 80–96]. Based on the mode of deformations, the lightweight structures have applications in different fields. The open-cell and closed-cell foams are being extensively used for a variety of industrial insulation applications. The lattice structures are advantageous for high strength and stiffness applications, while thin-walled structures are good for energy absorption or damping applications. [Figure 1.7](#) shows the comparisons of several lightweight structures [97].

While several studies have been focused on the design, analysis, and manufacturing techniques for these lightweight structures, it is believed that there exists a wide range of unexplored design space. The continuous demand for lightweight, strong, multi-functional, and cost-effective structures calls for novel structure design and optimization techniques. With the advancement in computational science and data-driven techniques, structural design using artificial intelligence has become a current area of research. Methods such as machine learning, statistical analysis tools, data mining, etc., help in reaching closer to the global optimal solutions and much easier surpassing complex numerical analysis. Hierarchical structures and combinations of different lightweight structures and multifunctional materials are a potential area of interest and are yet to be explored. Because in the biological realm, most structures are made of porous lightweight structures, they provide bioinspiration for humans to mimic these biological structures or

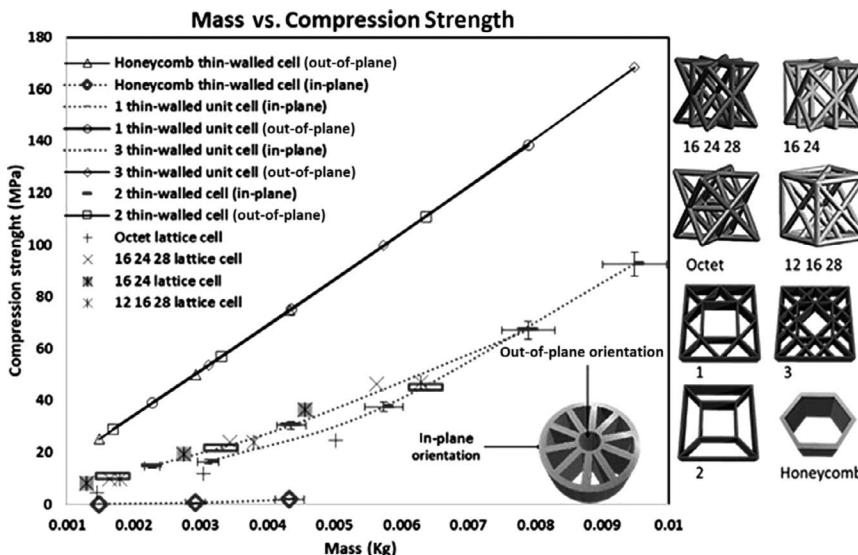


FIGURE 1.7 Mass versus strength comparisons of lattice truss unit cells, and thin-walled unit cells in the in-plane and out-of-plane orientations [97] (Copyright 2023 Elsevier, with permission). It can be seen that the thin-walled unit cells in the out-of-plane orientation have higher compression strengths, while the lattice truss unit cells and the thin-walled unit cells in the in-plane orientation have similar strength properties.

help create a database for training machine learning models. More discussions on several lightweight structures, design, and optimization techniques using data-driven techniques will be presented in the coming chapters.

REFERENCES

1. Ashby MF, et al. Metal Foams: A Design Guide. Massachusetts, Butterworth-Heinemann (2000).
2. Hearon K, Singhal P, Horn J, Small W, Olovsky C, Maitland KC, Wilson TS, Maitland DJ. Porous shape-memory polymers. *Polym. Rev.*, 53:41–75, (2013).
3. Dalai S, Vijayalakshmi S, Shrivastava P, Sivam SP, Sharma P. Preparation and characterization of hollow glass microspheres (HGMs) for hydrogen storage using urea as a blowing agent. *Microelectr. Eng.*, 126:65–70, (2014).
4. Alvarez-Lainez M, Rodriguez-Perez MA, DE Saja JA. Thermal conductivity of open-cell polyolefin foams. *J. Polym. Sci. Part B: Polym. Phys.*, 46:212–221, (2008).
5. Mi HY, Jing X, Liu Y, Li L, Li H, Peng XF, Zhou H. Highly durable superhydrophobic polymer foams fabricated by extrusion and supercritical CO_2 foaming for selective oil absorption. *ACS Appl. Mater. Interf.*, 11:7479–7487, (2019).
6. Gunashekar S, Pillai KM, Church BC, Abu-Zahra NH. Liquid flow in polyurethane foams for filtration applications: A study on their characterization and permeability estimation. *J. Porous Mater.*, 22:749–759, (2015).

7. Nofar M, Utz J, Geis N, Altstädt V, Ruckdäschel H. Foam 3D printing of thermoplastics: A symbiosis of additive manufacturing and foaming technology. *Adv. Sci.*, 9:2105701, (2022).
8. Kang S, Lee S, Kim B. Shape memory polyurethane foams. *Express Polym. Lett.*, 6:63–69, (2012).
9. Madbouly SA, Kratz K, Klein F, Lüetzow K, Lendlein A. *Thermomechanical Behaviour of Biodegradable Shape-Memory Polymer Foams*. MRS Online Proceedings Library (OPL), 1190, (2009).
10. De Nardo L, De Cicco S, Jovenitti M, Tanzi MC, Fare S. Shape memory polymer porous structures for mini-invasive surgical procedures. *Eng. Syst. Des. Anal.*, 42495, 539–544, (2006).
11. Murphy WL, Dennis RG, Kileny JL, Mooney DJ. Salt fusion: An approach to improve Pore interconnectivity within tissue engineering scaffolds. *Tissue Eng.*, 8:43–52, (2002).
12. Zimar AMZ et al. Non-linear behavior of open-cell metal foam under tensile loading. *Instit. Electr. Electron. Eng.*, 349–354, (2016).
13. Gibson JL, Ashby FM. The mechanics of three-dimensional cellular materials. *Proc. R. Soc. Lond. A* 382, 43–59, (1982).
14. Gibson JL, Ashby FM. *Cellular Solids: Structure and Properties*. Cambridge: Cambridge University Press, (2001).
15. Gibson JL. Cellular solids. *MRS Bullet.*, 28:270–274, (2003).
16. Bardella L, Genna F. On the elastic behavior of syntactic foams. *Int. J. Solids Struct.*, 38:7235–60, (2001).
17. Carolan D, Mayall A, Dear JP, Fergusson AD. Micromechanical modelling of syntactic foam. *Compos. Part B-Eng.*, 183:10, (2020).
18. De Pascalis R, David Abrahams I, Parnell WJ. Predicting the pressure–volume curve of an elastic microsphere composite. *J. Mech. Phys. Solids*, 61:1106–23, (2013).
19. Fine T, Sautereau H, Sauvant-Moynot V. Innovative processing and mechanical properties of high temperature syntactic foams based on a thermoplastic/thermoset matrix. *J. Mater. Sci.*, 38:2709–16, (2003).
20. Galvagnini F, Fredi G, Dorigato A, Fambri L, Pegoretti A. Mechanical behaviour of multifunctional Epoxy/Hollow glass Microspheres/Paraffin microcapsules syntactic foams for thermal management. *Polymers*, 13:15, (2021).
21. Gupta N, Woldesenbet E. Microballoon wall thickness effects on properties of syntactic foams. *J. Cell. Plastics*, 40:461–80, (2004).
22. Hervé E, Pellegrini O. The elastic constants of a material containing spherical coated holes. *Arch. Mech.*, 47:223–46, (1995).
23. Huang RX, Li PF. Elastic behavior and failure mechanism in epoxy syntactic foams: The effect of glass microballoon volume fractions. *Compos. Part B-Eng.*, 78:401–8, (2015).
24. Kochetkov V. Calculation of deformative and thermal properties of multiphase composite materials filled with composite or hollow spherical inclusions by the effective medium method. *Mechanics of Compos. Mater.*, 31:337–45, (1996).
25. Lee K, Westmann R. Elastic properties of hollow-sphere-reinforced composites. *J. Compos. Mater.*, 4:242–52, (1970).
26. Paget B, Zinet M, Cassagnau P. Syntactic foam under compressive stress: Comparison of modeling predictions and experimental measurements. *J. Cell. Plastics*, 57:329–46, (2021).
27. Porfiri M, Gupta N. Effect of volume fraction and wall thickness on the elastic properties of hollow particle filled composites. *Compos. Part B: Eng.*, 40:166–73, (2009).

28. Sarrafan S, Feng X, Li G. A soft syntactic foam actuator with high recovery stress, actuation strain, and energy output. *Mater. Today Commun.*, 31:103303, (2022).
29. Shrimali B, Parnell WJ, Lopez-Pamies O. A simple explicit model constructed from a homogenization solution for the large-strain mechanical response of elastomeric syntactic foams. *Int. J. Nonlinear Mech.*, 126:13, (2020).
30. Xu W, Li G. Thermoviscoelastic modeling and testing of shape memory polymer based self-healing syntactic foam programmed at glassy temperature. *ASME J. Appl. Mech.*, 78:061017, (2011).
31. Xu W, Li G. Constitutive modeling of shape memory polymer based self-healing syntactic foam. *Int. J. Solids and Struct.*, 47:1306–1316, (2010).
32. Yousaf Z, Morrison NF, Parnell WJ. Tensile properties of all-polymeric syntactic foam composites: Experimental characterization and mathematical modelling. *Compos. Pt B-Eng.*, 231:12, (2022).
33. Yuan YL, Lu ZX. Modulus prediction and discussion of reinforced syntactic foams with coated hollow spherical inclusions. *Appl. Math. Mech.*, 5:528–35, (2004).
34. Marur PR. Effective elastic moduli of syntactic foams. *Mater. Lett.*, 59:1954–7, (2005).
35. Zhu W et al. Effective elastic properties of periodic irregular open-cell foams. *Int. J. Solids Struct.*, 143:155–166, (2018).
36. Badiche SF et al. Mechanical properties and non-homogeneous deformation of open-cell nickel foams: Application of the mechanics of cellular solids and of porous materials. *Mater. Sci. Eng. A*, 289:276–288, (2000).
37. Baillis D et al. Effective conductivity of Voronoi's closed- and open-cell foams: Analytical laws and numerical results. *J. Mater. Sci.*, 52:11146–11167, (2017).
38. Li G, John M. A self-healing smart syntactic foam under multiple impacts. *Compos. Sci. Technol.*, 68:3337–3343, (2008).
39. Nji J, Li G. A self-healing 3D woven fabric reinforced shape memory polymer composite for impact mitigation. *Smart Mater. Struct.*, 19:035007, (2010).
40. John M, Li G. Self-healing of Sandwich structures with grid stiffened shape memory polymer syntactic foam core. *Smart Mater. Struct.*, 19:075013, (2010).
41. Li G, Nettles D. Thermomechanical characterization of a shape memory polymer based self-repairing syntactic foam. *Polymer*, 51:755–762, (2010).
42. Li G, Uppu N. Shape memory polymer based self-healing syntactic foam: 3-D confined thermomechanical characterization. *Compos. Sci. Technol.*, 70:1419–1427, (2010).
43. Lu L, et al. A polycaprolactone based syntactic foam with bidirectional reversible actuation. *J. Appl. Poly. Sci.*, 134:45225, (2017).
44. Sarrafan S, Li G. A hybrid syntactic foam-based open-cell foam with reversible actuation. *ACS Appl. Mater. Interfaces.*, 14:51404–51419, (2022).
45. Sarrafan S, Li G. On lightweight shape memory vitrimer composites. *ACS Appl. Polym. Mater.*, 6:154–169, (2024).
46. Sarrafan S, Li G. Conductive and ferromagnetic syntactic foam with shape memory and self-Healing/Recycling capabilities. *Adv. Funct. Mater.*, 34:2308085, (2024).
47. Li G, Xu T. Thermomechanical characterization of shape memory polymer based self-healing syntactic foam sealant for expansion joint. *ASCE J. Transp. Eng.*, 137:805–814, (2011).
48. Li G, et al. Behavior of thermoset shape memory polymer based syntactic foam sealant trained by hybrid two-stage programming. *ASCE J. Mater. Civil Eng.*, 25:393–402, (2013).
49. Li G, et al. Shape memory polymer-based sealant for compression sealed joint. *ASCE J. Mater. Civil Eng.*, 27:04014196, (2015).

50. Tobia M, et al. SLM lattice structures: Properties, performance, applications, and challenges. *Mater. Des.*, 183:108137, (2019).
51. Deshpande VS, et al. Foam topology bending vs stretching dominated architecture. *Acta Mater.*, 49:1035–1040, (2001).
52. Deshpande VS, Fleck NA, Ashby MF. Effective properties of the octet-truss lattice material. *J. Mech. Phys. Solids*, 49:1747–1769, (2001).
53. Evans AG, et al. Concepts for enhanced energy absorption using hollow micro-lattices. *Int. J. Impact Eng.*, 37:947–959, (2010).
54. Yang JS, et al. Hybrid lightweight composite pyramidal truss sandwich panels with high damping and stiffness efficiency. *Compos. Struct.*, 148:85–96, (2016).
55. Lake MS. Stiffness, and strength tailoring in uniform space-filling truss structures. NASA, TP-3210, (1992).
56. Hill R. Elastic properties of reinforced solids: Some theoretical principles. *J. Mech. Phys. Solids*, 11:357–372, (1963).
57. Fan HL, et al. Nonlinear mechanical properties of lattice truss materials. *Mater. Des.*, 30:511–517, (2009).
58. Challapalli A, Ju J. *Continuum model for effective properties of orthotropic octet-truss lattice materials*. ASME International Mechanical Engineering Congress Exposition, paper number V009T12A05 (2014).
59. Ullah I, et al. Performance of bio-inspired Kagome truss core structures under compression and shear loading. *Compos. Struct.*, 118:294–302, (2014).
60. Austermann J, et al. Fiber-reinforced composite sandwich structures by co-curing with additive manufactured epoxy lattices. *J. Compos. Sci.*, 3:53, (2019).
61. Wen C, et al. Stiff isotropic lattices beyond the Maxwell criterion. *Sci. Adv.*, 5(9), (2019).
62. Gibson LJ, Ashby MF. *Cellular Solids: Structure and Properties*. Second ed. Cambridge, MA: Cambridge University Press, (1997).
63. Xiyue A, Fan H. Hybrid design and energy absorption of Luffa sponge-like hierarchical cellular structures. *Mater. Des.*, 106:247–257, (2016).
64. Yu X, et al. Experimental and numerical study on the energy absorption abilities of trabecular honeycomb biomimetic structures inspired by beetle elytra. *J. Mater. Sci.*, 54:2193–2204, (2019).
65. Zhang Q, et al. Bioinspired engineering of honeycomb structure – Using nature to inspire human innovation. *Prog. Mater. Sci.*, 74:332–400, (2015).
66. Tsang HH, et al. Energy absorption of muscle-inspired hierarchical structure: Experimental investigation. *Compos. Struct.*, 226:111250, (2019).
67. Zhang Y, Gao L, Xiao M. Maximizing natural frequencies of inhomogeneous cellular structures by Kriging-assisted multiscale topology optimization. *Comput. Struct.*, 230:106197, (2020).
68. Saadatmand S, et al. Auxetic materials with negative Poisson's ratio. *Mater. Sci. Eng. Int. J.*, 1(2):62–64, (2017).
69. Zhang J, et al. Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review. *Compos. Part B: Eng.*, 201:108340, (2020).
70. Berger J, et al. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. *Nature*, 543, 533–537 (2017).
71. Tancogne D, et al. 3D plate-lattices: An emerging class of low-density metamaterial exhibiting optimal isotropic stiffness. *Adv. Mater.*, 30:1803334, (2018).
72. Sigmund O, et al. On the (non-) optimality of Michell structures. *Struct. Multidiscip. Optim.*, 54:361–373, (2016).

73. Liu Y, et al. Mechanical properties of a new type of plate–lattice structures. *Int. J. Mech. Sci.*, 192, 106141, (2021).
74. Li A, et al. 4D printing of recyclable lightweight architectures using high recovery stress shape memory polymer. *Sci. Rep.*, 9:7621, (2019).
75. Yan C, Li G. Design oriented constitutive modeling of amorphous shape memory polymers and its application to multiple length scale lattice structures. *Smart Mater. Struct.*, 28:095030, (2019).
76. Challapalli A, Li G. 3D printable biomimetic rod with superior buckling resistance designed by machine learning. *Sci. Rep.*, 10:20716, (2020).
77. Challapalli A, Li G. Machine learning assisted design of new lattice core for Sandwich structures with superior load carrying capacity. *Sci. Rep.*, 11:18552, (2021).
78. Challapalli A, et al. Inverse machine learning framework for optimizing lightweight metamaterials. *Mater. Des.*, 208:109937, (2021).
79. Challapalli A, et al. Discovery of cellular unit cells with high natural frequency and energy absorption capabilities by an inverse machine learning framework. *Front. Mechan. Eng.*, 7:779098, (2021).
80. Yang XY, et al. Hierarchically porous materials: Synthesis strategies and structure design. *Chem. Soc. Rev.*, 46:481–558, (2017).
81. Wieding J, Wolf A, Bader R. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone. *J. Mech. Behav. Biomed. Mater.*, 37:56–68, (2014).
82. Ohji T, Fukushima M. Macro-porous ceramics: Processing and properties. *Int. Mater. Rev.*, 57:115–131, (2012).
83. Wu XY et al. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. *Chem. Eng. J.*, 381:122622, (2020).
84. Chen QM, et al.. A durable monolithic polymer foam for efficient solar steam generation. *Chem. Sci.*, 9:623–628, (2018).
85. Zheng XY, et al. Ultralight, ultrastiff mechanical metamaterials. *Science*, 344:1373–1377, (2014).
86. Silverberg JL, et al. Using origami design principles to fold reprogrammable mechanical metamaterials. *Science*, 345:647–650, (2014).
87. Vyatskikh A, et al. Additive manufacturing of 3D nano-architected metals. *Nat. Commun.*, 9:593, (2018).
88. Jiang YQ, et al. Direct 3D printing of ultralight graphene oxide aerogel microlattices. *Adv. Funct. Mater.*, 28:1707024, (2018).
89. He L, et al. Smart lattice structures with self-sensing functionalities via hybrid additive manufacturing technology. *Micromachines*, 15:2, (2024).
90. Wang H, Lu ZX, Yang ZY, Li X. A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance. *Compos. Struct.*, 208:758–770, (2019).
91. Yuan SQ, et al. 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization. *Mater. Des.*, 120:317–327, (2017).
92. Lei M, et al. 3D printing of auxetic metamaterials with digitally reprogrammable shape. *ACS Appl. Mater. & Interf.* 11:22768–22776, (2019).
93. Dong ZC, et al. Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb. *Mater. Des.*, 182:108036, (2019).
94. Liu YB. Mechanical properties of a new type of plate-lattice structures. *Int. J. Mech. Sci.*, 192:106141, (2021).

95. Zhang B, et al. Mechanical properties of additively manufactured Al₂O₃ ceramic plate-lattice structures: Experiments & simulations. *Compos. Struct.*, 311:116792, (2023).
96. Tomita S, Shimanuki K, Umemoto K. Control of buckling behavior in origami-based auxetic structures by functionally graded thickness. *J. Appl. Phys.*, 135:105101, (2024).
97. Challapalli A, et al. Inverse machine learning discovered metamaterials with record high recovery stress. *Int. J. Mech. Sci.*, 244:108029, (2023).

Introduction to Structures with Complex Geometrical Configurations

Ashby MF , et al. Metal Foams: A Design Guide. Massachusetts, Butterworth-Heinemann (2000).

Hearon K , Singhal P , Horn J , Small W , Olsovsky C , Maitland KC , Wilson TS , Maitland DJ . Porous shape-memory polymers. *Polym. Rev.*, 53:41–75, (2013).

Dalai S , Vijayalakshmi S , Shrivastava P , Sivam SP , Sharma P. Preparation and characterization of hollow glass microspheres (HGMs) for hydrogen storage using urea as a blowing agent. *Microelectr. Eng.*, 126:65–70, (2014).

Alvarez-Lainez M , Rodriguez-Perez MA , De Saja JA. Thermal conductivity of open-cell polyolefin foams. *J. Polym. Sci. Part B: Polym. Phys.*, 46:212–221, (2008).

Mi HY , Jing X , Liu Y , Li L , Li H , Peng XF , Zhou H. Highly durable superhydrophobic polymer foams fabricated by extrusion and supercritical CO₂ foaming for selective oil absorption. *ACS Appl. Mater. Interf.*, 11:7479–7487, (2019).

Gunashekar S , Pillai KM , Church BC , Abu-Zahra NH . Liquid flow in polyurethane foams for filtration applications: A study on their characterization and permeability estimation. *J. Porous Mater.*, 22:749–759, (2015).

Nofar M , Utz J , Geis N , Altstädt V , Ruckdäschel H. Foam 3D printing of thermoplastics: A symbiosis of additive manufacturing and foaming technology. *Adv. Sci.*, 9:2105701, (2022).

Kang S , Lee S , Kim B. Shape memory polyurethane foams. *Express Polym. Lett.*, 6:63–69, (2012).

Madbouly SA , Kratz K , Klein F , Lüetzow K , Lendlein A *Thermomechanical Behaviour of Biodegradable Shape-Memory Polymer Foams*. MRS Online Proceedings Library (OPL), 1190, (2009).

De Nardo L , De Cicco S , Jovenitti M , Tanzi MC , Fare S. Shape memory polymer porous structures for mini-invasive surgical procedures. *Eng. Syst. Des. Anal.*, 42495, 539–544, (2006).

Murphy WL , Dennis RG , Kileny JL , Mooney DJ . Salt fusion: An approach to improve Pore interconnectivity within tissue engineering scaffolds. *Tissue Eng.*, 8:43–52, (2002).

Zimar AMZ et al. Non-linear behavior of open-cell metal foam under tensile loading, *Instit. Electr. Electron. Eng.*, 349–354, (2016).

Gibson JL , Ashby FM . The mechanics of three-dimensional cellular materials. *Proc. R. Soc. Lond. A* 382, 43–59, (1982).

Gibson JL , Ashby FM . Cellular Solids: Structure and Properties. Cambridge: Cambridge University Press, (2001).

Gibson JL . Cellular solids. *MRS Bullet.*, 28:270–274, (2003).

Bardella L , Genna F. On the elastic behavior of syntactic foams. *Int. J. Solids Struct.*, 38:7235–7260, (2001).

Carolan D , Mayall A , Dear JP , Fergusson AD . Micromechanical modelling of syntactic foam. *Compos. Part B-Eng.*, 183:10, (2020).

De Pascalis R , David Abrahams I , Parnell WJ . Predicting the pressure–volume curve of an elastic microsphere composite. *J. Mech. Phys. Solids*, 61:1106–1123, (2013).

Fine T , Sautereau H , Sauvant-Moynot V. Innovative processing and mechanical properties of high temperature syntactic foams based on a thermoplastic/thermoset matrix. *J. Mater. Sci.*, 38:2709–2716, (2003).

Galvagnini F , Fredi G , Dorigato A , Fambri L , Pegoretti A. Mechanical behaviour of multifunctional Epoxy/Hollow glass Microspheres/Paraffin microcapsules syntactic foams for thermal management. *Polymers*, 13:15, (2021).

Gupta N , Woldesenbet E. Microballoon wall thickness effects on properties of syntactic foams. *J. Cell. Plastics*, 40:461–480, (2004).

Hervé E , Pellegrini O. The elastic constants of a material containing spherical coated holes. *Arch. Mech.*, 47:223–246, (1995).

Huang RX , Li PF . Elastic behavior and failure mechanism in epoxy syntactic foams: The effect of glass microballoon volume fractions. *Compos. Part B-Eng.*, 78:401–408, (2015).

Kochetkov V. Calculation of deformative and thermal properties of multiphase composite materials filled with composite or hollow spherical inclusions by the effective medium method. *Mechanics of Compos. Mater.*, 31:337–345, (1996).

Lee K , Westmann R. Elastic properties of hollow-sphere-reinforced composites. *J. Compos. Mater.*, 4:242–252, (1970).

Paget B , Zinet M , Cassagnau P. Syntactic foam under compressive stress: Comparison of modeling predictions and experimental measurements. *J. Cell. Plastics*, 57:329–346, (2021).

Porfiri M , Gupta N. Effect of volume fraction and wall thickness on the elastic properties of hollow particle filled composites. *Compos. Part B: Eng.*, 40:166–173, (2009).

Sarrafan S , Feng X , Li G. A soft syntactic foam actuator with high recovery stress, actuation strain, and energy output. *Mater. Today Commun.*, 31:103303, (2022).

Shrimali B , Parnell WJ , Lopez-Pamies O. A simple explicit model constructed from a homogenization solution for the large-strain mechanical response of elastomeric syntactic foams. *Int. J. Nonlinear Mech.*, 126:13, (2020).

Xu W , Li G. Thermoviscoelastic modeling and testing of shape memory polymer based self-healing syntactic foam programmed at glassy temperature. *ASME J. Appl. Mech.*, 78:061017, (2011).

Xu W , Li G. Constitutive modeling of shape memory polymer based self-healing syntactic foam. *Int. J. Solids and Struct.*, 47:1306–1316, (2010).

Yousaf Z , Morrison NF , Parnell WJ . Tensile properties of all-polymeric syntactic foam composites: Experimental characterization and mathematical modelling. *Compos. Pt B-Eng.*, 231:12, (2022).

Yuan YL , Lu ZX . Modulus prediction and discussion of reinforced syntactic foams with coated hollow spherical inclusions. *Appl. Math. Mech.*, 5:528–535, (2004).

Marur PR . Effective elastic moduli of syntactic foams. *Mater. Lett.*, 59:1954–1957, (2005).

Zhu W et al. Effective elastic properties of periodic irregular open-cell foams. *Int. J. Solids Struct.*, 143:155–166, (2018).

Badiche SF et al. Mechanical properties and non-homogeneous deformation of open-cell nickel foams: Application of the mechanics of cellular solids and of porous materials. *Mater. Sci. Eng. A*, 289:276–288, (2000).

Baillis D et al. Effective conductivity of Voronoi's closed- and open-cell foams: Analytical laws and numerical results. *J. Mater. Sci.*, 52:11146–11167, (2017).

Li G , John M. A self-healing smart syntactic foam under multiple impacts. *Compos. Sci. Technol.*, 68:3337–3343, (2008).

Nji J , Li G. A self-healing 3D woven fabric reinforced shape memory polymer composite for impact mitigation. *Smart Mater. Struct.*, 19:035007, (2010).

John M , Li G. Self-healing of Sandwich structures with grid stiffened shape memory polymer syntactic foam core. *Smart Mater. Struct.*, 19:075013, (2010).

Li G , Nettles D. Thermomechanical characterization of a shape memory polymer based self-repairing syntactic foam. *Polymer*, 51:755–762, (2010).

Li G , Uppu N. Shape memory polymer based self-healing syntactic foam: 3-D confined thermomechanical characterization. *Compos. Sci. Technol.*, 70:1419–1427, (2010).

Lu L , et al. A polycaprolactone based syntactic foam with bidirectional reversible actuation. *J. Appl. Polym. Sci.*, 134:45225, (2017).

Sarrafan S , Li G. A hybrid syntactic foam-based open-cell foam with reversible actuation. *ACS Appl. Mater. Interfaces*, 14:51404–51419, (2022).

Sarrafan S , Li G. On lightweight shape memory vitrimer composites. *ACS Appl. Polym. Mater.*, 6:154–169, (2024).

Sarrafan S , Li G. Conductive and ferromagnetic syntactic foam with shape memory and self-Healing/Recycling capabilities. *Adv. Funct. Mater.*, 34:2308085, (2024).

Li G , Xu T. Thermomechanical characterization of shape memory polymer based self-healing syntactic foam sealant for expansion joint. *ASCE J. Transp. Eng.*, 137:805–814, (2011).

Li G , et al. Behavior of thermoset shape memory polymer based syntactic foam sealant trained by hybrid two-stage programming. *ASCE J. Mater. Civil Eng.*, 25:393–402, (2013).

Li G , et al. Shape memory polymer-based sealant for compression sealed joint. *ASCE J. Mater. Civil Eng.*, 27:04014196, (2015).

Tobia M , et al. SLM lattice structures: Properties, performance, applications, and challenges. *Mater. Des.*, 183:108137, (2019).

Deshpande VS , et al. Foam topology bending vs stretching dominated architecture. *Acta Mater.*, 49:1035–1040, (2001).

Deshpande VS , Fleck NA , Ashby MF . Effective properties of the octet-truss lattice material. *J. Mech. Phys. Solids*, 49:1747–1769, (2001).

Evans AG , et al. Concepts for enhanced energy absorption using hollow micro-lattices. *Int. J. Impact Eng.*, 37:947–959, (2010).

Yang JS , et al. Hybrid lightweight composite pyramidal truss sandwich panels with high damping and stiffness efficiency. *Compos. Struct.*, 148:85–96, (2016).

Lake MS. Stiffness, and strength tailoring in uniform space-filling truss structures. NASA, TP-3210, (1992).

Hill R. Elastic properties of reinforced solids: Some theoretical principles. *J. Mech. Phys. Solids*, 11:357–372, (1963).

Fan HL , et al. Nonlinear mechanical properties of lattice truss materials. *Mater. Des.*, 30:511–517, (2009).

Challapalli A , Ju J. *Continuum model for effective properties of orthotropic octet-truss lattice materials*. ASME International Mechanical Engineering Congress Exposition. paper number V009T12A05 (2014).

Ullah I , et al. Performance of bio-inspired Kagome truss core structures under compression and shear loading. *Compos. Struct.*, 118:294–302, (2014).

Austermann J , et al. Fiber-reinforced composite sandwich structures by co-curing with additive manufactured epoxy lattices. *J. Compos. Sci.*, 3:53, (2019).

Wen C , et al. Stiff isotropic lattices beyond the Maxwell criterion. *Sci. Adv.*, 5(9), (2019).

Gibson LJ , Ashby MF . *Cellular Solids: Structure and Properties*. Second ed. Cambridge, MA: Cambridge University Press, (1997).

Xiyue A , Fan H. Hybrid design and energy absorption of Luffa sponge-like hierarchical cellular structures. *Mater. Des.*, 106:247–257, (2016).

Yu X , et al. Experimental and numerical study on the energy absorption abilities of trabecular honeycomb biomimetic structures inspired by beetle elytra. *J. Mater. Sci.*, 54:2193–2204, (2019).

Zhang Q , et al. Bioinspired engineering of honeycomb structure – Using nature to inspire human innovation. *Prog. Mater. Sci.*, 74:332–400, (2015).

Tsang HH , et al. Energy absorption of muscle-inspired hierarchical structure: Experimental investigation. *Compos. Struct.*, 226:111250, (2019).

Zhang Y , Gao L , Xiao M. Maximizing natural frequencies of inhomogeneous cellular structures by Kriging-assisted multiscale topology optimization. *Comput. Struct.*, 230:106197, (2020).

Saadatmand S , et al. Auxetic materials with negative Poisson's ratio. *Mater. Sci. Eng. Int. J.*, 1(2):62–64, (2017).

Zhang J , et al. Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review. *Compos. Part B: Eng.*, 201:108340, (2020).

Berger J , et al. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. *Nature*, 543, 533–537 (2017).

Tancogne D , et al. 3D plate-lattices: An emerging class of low-density metamaterial exhibiting optimal isotropic stiffness. *Adv. Mater.*, 30:1803334, (2018).

Sigmund O , et al. On the (non-) optimality of Michell structures. *Struct. Multidiscip. Optim.*, 54:361–373, (2016).

Liu Y , et al. Mechanical properties of a new type of plate–lattice structures. *Int. J. Mech. Sci.*, 192, 106141, (2021).

Li A , et al. 4D printing of recyclable lightweight architectures using high recovery stress shape memory polymer. *Sci. Rep.*, 9:7621, (2019).

Yan C , Li G. Design oriented constitutive modeling of amorphous shape memory polymers and its application to multiple length scale lattice structures. *Smart Mater. Struct.*, 28:095030, (2019).

Challapalli A , Li G. 3D printable biomimetic rod with superior buckling resistance designed by machine learning. *Sci. Rep.*, 10:20716, (2020).

Challapalli A , Li G. Machine learning assisted design of new lattice core for Sandwich structures with superior load carrying capacity. *Sci. Rep.*, 11:18552, (2021).

Challapalli A , et al. Inverse machine learning framework for optimizing lightweight metamaterials. *Mater. Des.*, 208:109937, (2021).

Challapalli A , et al. Discovery of cellular unit cells with high natural frequency and energy absorption capabilities by an inverse machine learning framework. *Front. Mechan. Eng.*, 7:779098, (2021).

Yang XY , et al. Hierarchically porous materials: Synthesis strategies and structure design. *Chem. Soc. Rev.*, 46:481–558, (2017).

Wieding J , Wolf A , Bader R. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone. *J. Mech. Behav. Biomed. Mater.*, 37:56–68, (2014).

Ohji T , Fukushima M. Macro-porous ceramics: Processing and properties. *Int. Mater. Rev.*, 57:115–131, (2012).

Wu XY et al. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. *Chem. Eng. J.*, 381:122622, (2020).

Chen QM , et al. . A durable monolithic polymer foam for efficient solar steam generation. *Chem. Sci.*, 9:623–628, (2018).

Zheng XY , et al. Ultralight, ultrastiff mechanical metamaterials. *Science*, 344:1373–1377, (2014).

Silverberg JL , et al. Using origami design principles to fold reprogrammable mechanical metamaterials. *Science*, 345:647–650, (2014).

Vyatskikh A , et al. Additive manufacturing of 3D nano-architected metals. *Nat. Commun.*, 9:593, (2018).

Jiang YQ , et al. Direct 3D printing of ultralight graphene oxide aerogel microlattices. *Adv. Funct. Mater.*, 28:1707024, (2018).

He L , et al. Smart lattice structures with self-sensing functionalities via hybrid additive manufacturing technology. *Micromachines*, 15:2, (2024).

Wang H , Lu ZX , Yang ZY , Li X. A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance. *Compos. Struct.*, 208:758–770, (2019).

Yuan SQ , et al. 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization. *Mater. Des.*, 120:317–327, (2017).

Lei M , et al. 3D printing of auxetic metamaterials with digitally reprogrammable shape. *ACS Appl. Mater. & Interf.* 11:22768–22776, (2019).

Dong ZC , et al. Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb. *Mater. Des.*, 182:108036, (2019).

Liu YB . Mechanical properties of a new type of plate-lattice structures. *Int. J. Mech. Sci.*, 192:106141, (2021).

Zhang B , et al. Mechanical properties of additively manufactured Al₂O₃ ceramic plate-lattice structures: Experiments & simulations. *Compos. Struct.*, 311:116792, (2023).

Tomita S , Shimanuki K , Umemoto K. Control of buckling behavior in origami-based auxetic structures by functionally graded thickness. *J. Appl. Phys.*, 135:105101, (2024).

Challapalli A , et al. Inverse machine learning discovered metamaterials with record high recovery stress. *Int. J. Mech. Sci.*, 244:108029, (2023).

Structural Optimization

Wang L et al. Parameter optimization of auxetic metamaterials for impact mitigation. *Mech. Eng. Rev.*, 36(2):78–89, (2019).

Smith J et al. Topology optimization of 3D printed metamaterials for enhanced mechanical properties. *J. Mech. Eng.*, 25(3):102–115, (2020).

Chen X et al. Efficient parameter optimization of phononic crystals using genetic algorithms. *Mater. Sci. Eng.: A*, 704:329–336, (2017).

Li Q et al. Topology optimization of periodic structures for tailored mechanical properties. *Int. J. Mech. Sci.*, 112:1–10, (2016).

Yvonnet J , Da D. *Topology Optimization to Fracture Resistance: A Review and Recent Developments*. *Archives of Computational Methods in Engineering*, (2024).

Wu J , Sigmund O , Groen JP . Topology optimization of multi-scale structures: A review. *Struct. Multidiscip. Optim.*, 63:1455–1480, (2021).

Sigmund O , Maute K. Topology optimization approaches-a comparative review. *Struct. Multidiscip. Optim.*, 48:1031–1055, (2013).

Gupta A et al. Machine learning-based parameterization and optimization of metamaterials. *Mech. Eng. Commun.*, 42(1):15–26, (2015).

Zhang H et al. Machine learning approaches for metamaterial design optimization: A review. *Adv. Eng. Mater.*, 20(4):1800172, (2018).

Jiao P , Alaviv AH . Artificial intelligence-enabled smart mechanical metamaterials: Advent and future trends. *Int. Mater. Rev.*, 66:365–393, (2011).

Ma Y et al. Computational optimization of complex metamaterial structures using parallel computing techniques. *Mech. Eng. Dynam.*, 48(3):209–220, (2021).

Kim S et al. Benchmarking studies in metamaterial design optimization: Challenges and opportunities. *J. Struct. Eng.*, 35(2):145–156, (2019).

Liu Y et al. Efficient simulation algorithms for complex metamaterial structures. *Comput. Mech.*, 40(5):521–534, (2017).

Wang Z et al. Interdisciplinary collaborations in metamaterial design optimization: Insights from materials science and mechanical engineering. *J. Interdiscip. Res.*, 12(4):301–314, (2018).

Sun W et al. Advancements in structural optimization techniques for metamaterial design. *Int. J. Struct. Eng.*, 24(1):45–58, (2016).

Zhou H et al. Novel optimization techniques for metamaterial design: A comprehensive review. *Mater. Eng. Innov.*, 28(3):201–215, (2021).

Zhang L et al. Unlocking new possibilities in metamaterial design optimization: Future directions and research opportunities. *J. Mech. Eng. Adv.*, 45(2):123–136, (2019).

Adhikari S , Belegundu AG . Integrated structural topology and shape optimization using design sensitivity analysis. *Comput. Struct.*, 79(24):2155–2175, (2001).

Li J , et al. Optimal design of bracket structures based on natural conditions. *Eng. Optim.*, 51(4):586–597, (2019).

Jiang X , Zhang W , Liu Y. Optimization design of functionally gradient lattice structures using voronoi tessellation and level set method. *Mater. Des.*, 126:223–236, (2017).

Schaedler TA , et al. Ultralight metallic microlattices. *Science*, 334(6058):962–965, (2011).

Yang P , Ye X. Topology optimization of metamaterial structures based on triply periodic minimum surfaces. *Comput. Math. Appl.*, 75(1):176–192, (2018).

Mao J , Zhang T , Liu Y. Active learning for machine learning in material informatics: A review. *Comput. Mater. Sci.*, 158:174–187, (2019).

Yan C , et al. Machine learning assisted discovery of new thermoset shape memory polymers based on a small training dataset. *Polymer*, 214:123351, (2021).

Yan C , et al. From drug molecules to thermoset shape memory polymer: A machine learning approach. *ACS Appl. Mater. Interf.*, 13:60508–60521, (2021).

Yan C , Li G. The rise of machine learning in polymer discovery. *Adv. Intell. Syst.*, 5:2200243, (2023).

Yan C , et al. Advancing flame retardant prediction: A self-enforcing machine learning approach for small datasets. *Appl. Phys. Lett.*, 122:251902, (2023).

Yan C , et al. Overcome the barrier: Designing novel thermally robust shape memory vitrimers by establishing a new machine learning framework. *Phys. Chem. Chem. Phys.*, 25:30049–30065, (2023).

Kim J , et al. A material design protocol using kernel Ridge regression for high-throughput discovery of nonlinear optical materials. *ACS Comb. Sci.*, 21(8):594–603, (2019).

Masek A , Sekanina L , Musilek P. Prediction of molecular properties using Gaussian process regression. *Mol. Simul.*, 45(5–6):499–509, (2019).

Sahoo D , Dutta S , Deo MC . Prediction of mechanical properties of cement mortar using support vector machines. *Constr. Build. Mater.*, 197:67–76, (2019).

Koseoglu OR , Atasoy B. A comparative evaluation of regression models for predicting compressive strength of concrete. *Constr. Build. Mater.*, 295:123467, (2021).

Mukherjee A , Ray AK , Hazra A. Machine learning approaches for prediction of structural properties of material systems: A review. *Mater. Today Chem.*, 20:100475, (2021).

Wang C , et al. A neural network-based method to estimate the stress distribution in aortic wall based on finite element analysis. *Med. Biol. Eng. Comput.*, 57(11):2465–2477, (2019).

Chen J , et al. Prediction of the longitudinal and transverse elastic modulus and shear modulus of carbon fibers using finite element modeling and machine learning. *Materials*, 12(10):1708, (2019).

Asadollahi-Yazdi P , et al. Modeling of the Lateral–Torsional buckling resistance of cold-formed steel beams using support vector regression. *J. Cold Reg. Eng.*, 33(2):04019012, (2019).

Introduction to Machine Learning-Assisted Structural Optimization

Smith J , et al. Application of genetic algorithms in structural optimization: a review. *J. Struct. Eng.*, 27:201–215, (2020).

Chen X , et al. Particle swarm optimization for mechanical design: Advances and applications. *Mech. Eng. Adv.*, 35:145–156, (2018).

Wang L , et al. Recent advances in machine learning for structural optimization. *Mech. Eng. Rev.*, 42:78–89, (2019).

Zhang H , et al. Machine learning techniques for polymer property prediction: A comprehensive review. *J. Mater. Sci.*, 38:45–58, (2021).

Liu Y , et al. Advancements in regression and classification tasks using machine learning algorithms. *Int. J. Mech. Sci.*, 112:329–336, (2017).

Gupta A , et al. A comparative study of machine learning algorithms for polymer property prediction. *Mater. Sci. Eng. A*, 704:15–26, (2016).

Li Q , et al. Prediction of polymer properties using kernel Ridge regression: A case study. *Polym. Eng. Sci.*, 25:102–115, (2018).

Wang Z , et al. Utilizing genetic algorithms for material selection in machine learning models. *Mater. Des.*, 42:201–215, (2019).

Kim S , et al. Optimization of polymer properties with machine learning and genetic algorithms. *J. Polym. Sci.*, 35:145–156, (2020).

Zhou H , et al. Neural networks and random forest models for polymer property prediction: a comparative study. *Polym. Chem.*, 40:521–534, (2017).

Sun W , et al. Molecular design algorithms for polymer property optimization. *J. Chem. Eng. Res.*, 20:1800172, (2018).

Zhang L , et al. Support vector machine models for material property prediction: Case study on self-compacting concrete. *Constr. Build. Mater.*, 35:145–156, (2019).

Ma Y , et al. Machine learning applications in materials science: A review of recent advances and future prospects. *Adv. Mater.*, 28:201–215, (2020).

Yan C , Feng X , Wick C , Peters A , Li G. Machine learning assisted discovery of new thermoset shape memory polymers based on a small training dataset. *Polymer*, 214:123351, (2021).

Wick C , Peters A , Li G. Quantifying the contributions of energy storage in A thermoset shape memory polymer with high stress recovery: A molecular dynamics study. *Polymer*, 213:123319, (2021).

Yan C , Feng X , Li G. From drug molecules to thermoset shape memory polymer: a machine learning approach. *ACS Appl. Mater. Interfaces*, 13:60508–60521, (2021).

Yan C , Lin X , Feng X , Yang H , Mensah P , Li G. Advancing flame retardant prediction: a self-enforcing machine learning approach for small datasets. *Appl. Phys. Lett.*, 122:251902, (2023).

Yan C , Feng X , Konlan J , Mensah P , Li G. Overcome the barrier: designing novel thermally robust shape memory vitrimer by establishing a new machine learning framework. *Phys. Chem. Chem. Phys.*, 25:30049–30065, (2023).

Yan C , Li G. The rise of machine learning in polymer discovery. *Adv. Intell. Syst.*, 5:2200243, (2023).

Liao WT , Li G. Metaheuristic-based inverse design of materials – a survey. *J. Materomics*, 6:414–430, (2020).

Kirkpatrick S , Gelatt CD , Vecchi MP . Optimization by simulated annealing. *Science*, 220:671–680, (1983).

Dueck D , Scheuer T. Threshold accepting – a general purpose optimization algorithm appearing superior to simulated annealing. *J. Comput. Phys.*, 90:161–175, (1990).

Glover F. Future paths for integer programming and links to artificial intelligence. *Comput. Operat. Re.*, 13:533–549, (1986).

den Besten M , Stutzle T , Dorigo M. Design of iterated local search algorithms - An example application to the single machine total weighted tardiness problem. In *LNCS 2037*, Edited by EJW Boers, 441–451, (2001).

Goldberg DE . *Genetic Algorithms in Search, Optimization & Machine Learning*. Addison Wesley, (1989).

Kennedy J , Eberhart R Particle swarm optimization. In *Proceedings of IEEE International Conference on Neural Networks*, Piscataway, NJ, 1942–1948, (1995).

Storn R , Price K. Different evolution—a simple and effective heuristic for global optimization over continuous spaces. *J. Glob. Optim.*, 11:341–359, (1997).

Dorigo M , Stützle T. *Ant Colony Optimization*. Cambridge, MA: MIT Press, (2004).

Karaboga D , Basturk B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. *J. Glob. Optim.*, 39:459–471, (2007).

Cheng MY , Prayogo D. Symbiotic organisms search: A new metaheuristic optimization algorithm. *Comput. Struct.*, 139:98–112, (2014).

Talbi E-G. A taxonomy of hybrid metaheuristics. *J. Heuristics*, 8:541–564, (2002).

Blum C , Puchinger J , Raidl GR , Roli A. Hybrid metaheuristics in combinatorial optimization: a survey. *Appl. Soft Comput.*, 11:4135–4151, (2011).

Liao TW . Two hybrid differential evolution algorithms for engineering design optimization. *Appl. Soft Comput.*, 10:1188–1199, (2010).

Yi HZ , Duan Q , Liao TW . Three improved hybrid metaheuristic algorithms for engineering design optimization. *Appl. Soft Comput.*, 13:2433–2444, (2013).

Mladenovic N , Brimberg J , Hansen P , Moreno-Perez JA . The p-median problem: A survey of metaheuristic approaches. *Eur. J. Operat. Res.*, 179:927–939, (2007).

Liao TW , Egbelu PJ , Sarker BR , Leu SS . Metaheuristics for project and construction management - a state-of-the-art review. *Autom. Constr.*, 20:491–505, (2011).

Zavala GR , Nebro AJ , Luna F , Coello CAC . A survey of multi-objective metaheuristics applied to structural optimization. *Struct. Multidiscip. Optim.*, 49:537–558, (2014).

Blum C , Roli A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. *ACM Comput. Survey*, 35:268–308, (2003).

Alqahtani A. Kernel Ridge regression for prediction of streamflow in arid regions: a case study in Saudi Arabia. *J. Hydrol.*, 563:199–212, (2018).

Hassan HM , Abdelrahman OM , Morsy MS . Development of a support vector machine model for predicting the elastic modulus of self-compacting concrete. *Constr. Build. Mater.*, 249:118811, (2020).

Haghgo M , Saadatzi MN . Neural network approach for predicting the ductility of steel sheets in deep drawing process. *J. Mater. Eng. Perform.*, 28:123–130, (2019).

Jiang W , Li J , Chen C , Wang D , Li H. A machine learning approach to predicting thermal conductivity of polymers based on molecular dynamics simulations. *Materials*, 12:2088, (2019).

Ilyas IF , Rekatsinas T. Machine learning and data cleaning: Which serves the other? *ACM J. Data Inform. Quality*, 14:13, (2023).

Li W , Li W , Liu L , Li Y. Review of machine learning in structural health monitoring. *Eng. Struct.*, 198:109481, (2019).

Mandal S , Adhikari S , Mahesh PA . Machine learning approaches in structural engineering: A review. *J. Civil Struct. Health Monit.*, 11:777–803, (2021).

Ghosh S , Das S. Machine learning for civil infrastructure monitoring: a review. *Struct. Infrastruct. Eng.*, 17:628–648, (2021).

Shorten C , Khoshgoftaar TM . A survey on image data augmentation for deep learning. *J. Big Data*, 6:60, (2019).

Sajjad M , Khan S , Muhammad K , Wu WQ , Ullah A , Baik SW . Multi-grade brain tumor classification using deep CNN with extensive data augmentation. *J. Comput. Sci.*, 30:174–182, (2019).

Lemley J , Bazrafkan S , Corcoran P. Smart augmentation learning an optimal data augmentation strategy. *IEEE Access*, 5:5858–5869, (2017).

Alkadri AM , Elkorany A , Ahmed C. Enhancing detection of Arabic social spam using data augmentation and machine learning. *Appl. Sci.-BASEL*, 12:11388, (2022).

Chlap P , Min H , Vandenberg N , Dowling J , Holloway L , Haworth A. A review of medical image data augmentation techniques for deep learning applications. *J. Med. Imag. Radiat. Oncol.*, 65:545–563, (2021).

Virkkunen, I , Koskinen, T , Jessen-Juhler, O , Rinta-aho, J. Augmented ultrasonic data for machine learning. *J. Nondestruct. Eval.*, 40:4, (2021).

Seo J , Kapania RK . Topology optimization with advanced CNN using mapped physics-based data. *Struct. Multidiscip. Optim.*, 66:21, (2023).

Gibson J , Hire A , Hennig RG . Data-augmentation for graph neural network learning of the relaxed energies of unrelaxed structures. *NPJ Computat. Mater.*, 8:211, (2022).

Byun S , Yu JY , Cheon S , Lee SH , Park SH , Lee TKY . Enhanced prediction of anisotropic deformation behavior using machine learning with data augmentation. *J. Magnes. Alloy.*, 12:186–196, (2024).

Wang H , Hu Y. Artificial intelligence and machine learning in civil engineering: A comprehensive review. *Adv. Eng. Softw.*, 164:103912, (2021).

Lin T-S , Coley CW , Mochigase H , Beech HK , Wang W , Wang Z , Woods E , Craig SL , Johnson JA , Kalow JA , Jensen KF , Olsen BD . BigSMILES: A structurally based line notation for describing macromolecules. *ACS Centr. Sci.*, 5:1523–1531, (2019).

Fan J , Li G. High enthalpy storage thermoset network with giant stress and energy output in rubbery state. *Nat. Commun.*, 9:642, (2018).

Feng X , Fan J , Li A , Li G. Multi-reusable thermoset with anomalous flame triggered shape memory effect. *ACS Appl. Mater. Interf.*, 11:16075–16086, (2019).

Feng X , Fan J , Li A , Li G. Biobased tannic acid crosslinked epoxy thermosets with hierarchical molecular structure and tunable properties: Damping, shape memory and recyclability. *ACS Sustain. Chem. Eng.*, 8:874–883, (2020).

Feng X , Li G. Versatile phosphate diester based flame retardant vitrimers via catalyst-free mixed transesterification. *ACS Appl. Mater. Interf.*, 12:57486–57496, (2020).

Feng X , Li G. High-temperature shape memory photopolymer with intrinsic flame retardancy and record-high recovery stress. *Appl. Mater. Today*, 23:101056, (2021).

Feng X , Li G. Catalyst-free β -hydroxy phosphate ester exchange for robust fire-proof vitrimers. *Chem. Eng. J.*, 417:129132, (2021).

Feng X , Li G. Room-temperature self-healable and mechanically robust thermoset polymer for healing delamination and recycling carbon fiber. *ACS Appl. Mater. Interf.*, 13:53099–53110, (2021).

Feng X , Li G. UV curable, flame retardant, and pressure-sensitive adhesives with two-way shape memory effect. *Polymer*, 249:124835, (2022).

Wick C , Peters A , Li G. Simulation study of shape memory polymer networks formed by free radical polymerization. *Polymer*, 281:126114, (2023).

Nourian P , Wick C , Li G , Peters A. Correlation between cyclic topology and shape memory properties of an amine-based thermoset shape memory polymer: a coarse-grained molecular dynamics study. *Smart Mater. Struct.*, 31:105014, (2022).

Shafe A , Wick C , Peters A , Liu X , Li G. Effect of atomistic fingerprints on thermomechanical properties of epoxy-diamine thermoset shape memory polymers. *Polymer*, 242:124577, (2022).

Lu L , Pan J , Li G. Recyclable high performance epoxy based on transesterification reaction. *J. Mater. Chem. A*, 5:21505–21513, (2017).

Li A , Fan J , Li G. Recyclable thermoset shape memory polymer with high stress and energy output via facile UV-curing. *J. Mater. Chem. A*, 6:11479–11487, (2018).

Lu L , Cao J , Li G. Giant reversible elongation upon cooling and contraction upon heating for a crosslinked cis poly(1,4-butadiene) system at temperatures below zero Celsius. *Sci. Rep.*, 8:14233, (2018).

Feng X , Li G. Photo-crosslinkable and ultrastable poly(1,4-butadiene) based organogel with record-high reversible elongation upon cooling and contraction upon heating. *Polymer*, 262:125477, (2022).

Sarrafan S , Li G. Conductive and ferromagnetic syntactic foam with shape memory and self-healing/recycling capabilities. *Adv. Funct. Mater.*, 34:2308085, (2024).

Challapalli A , Li G. 3D printable biomimetic rod with superior buckling resistance designed by machine learning. *Sci. Rep.*, 10:20716, (2020).

Wang A , Li G. Stress memory of a thermoset shape memory polymer. *J. Appl. Polym. Sci.*, 132:42112, (2015).

Challapalli A , Patel D , Li G. Inverse machine learning framework for optimizing lightweight metamaterials. *Mater. Des.*, 208:109937, (2021).

Structural Optimization of Biomimetic Rods Using Machine Learning Regression

Vincent JFV , Olga AB . Materials in nature. *Mater. Today*, 6:37–42, (2003).

Lee H , Lee BP , Messersmith PB . A reversible wet/dry adhesive inspired by mussels and geckos. *Nature*, 448(7151):338, (2007).

Autumn K , Sitti M , Liang YCA , Peattie AM , Hansen WR , Sponberg S , Kenny TW , Fearing R , Israelachvili JN , Full RJ . Evidence for van der Waals adhesion in gecko setae. *Proc. Nat. Acad. Sci. United States of America*, 99:12252–12256, (2002).

Liu YW , Wang H , Li JC , Li PY , Li SJ . Gecko-inspired controllable adhesive: Structure, fabrication, and application. *Biomimetics*, 9:149, (2024).

Olender J , Young C. Examination of gecko-inspired dry adhesives for heritage conservation as an example of iterative design and testing process for new adhesives. *European Phys. J. Plus*, 138:644, (2023).

Ha NS , Lu GX , Xiang XM . Energy absorption of a bio-inspired honeycomb sandwich panel. *J. Mater. Sci.*, 54:6286–6300, (2019).

Gibson LJ . Woodpecker pecking: How woodpeckers avoid brain injury. *J. Zool.*, 270:462–465, (2006).

Sandeep CS , Evans TM . Biomimetic intruder tip design for horizontal penetration into a granular pile. *Bioinspiration & Biomimetics*, 18:064001, (2023).

Zhang WP , Li RA , Yang QZ , Fu Y , Kong XQ . Impact resistance of a fiber metal laminate skin bio-inspired composite Sandwich panel with a rubber and foam dual core. *Materials*, 16:453, (2023).

Liu YZ , Qiu XM , Yu TX , Tao JW , Cheng Z. How does a woodpecker work? An impact dynamics approach. *Acta Mech. Sinica*, 31:181–190, (2015).

Tang ZY , Kotov NA , Magonov S , Ozturk B. Nanostructured artificial nacre. *Nat. Mater.*, 2:413, (2003).

Mao LB , Gao HL , Yao HB , Liu L , Cölfen H , Liu G , Chen SM , Li SK , Yan YX , Liu YY , Yu SH . Synthetic nacre by predesigned matrix-directed mineralization. *Science*, 354:107–110, (2016).

Sellinger A , Weiss PM , Nguyen A , Lu YF , Assink RA , Gong WL , Brinker CJ . Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. *Nature*, 394:256–260, (1998).

Manoonpong P , Patanè L , Xiong XF , Brodoline I , Dupeyroux J , Viollet S , Arena P , Serres JR . Insect-inspired robots: Bridging biological and artificial systems. *Sensors*, 21:7609,

(2021).

Dixit S , Stefanska A. Bio-logic, a review on the biomimetic application in architectural and structural design. *AIN SHAMS Eng. J.*, 14:101822, (2023).

Wegst UGK , Bai H , Saiz E , Tomsia AP , Ritchie RO . Bioinspired structural materials. *Nat. Mater.*, 14:23–36, (2015).

Munch E , Launey ME , Alsem DH , Saiz E , Tomsia AP , Ritchie RO . Tough, bio-inspired hybrid materials. *Science*, 322:1516–1520, (2008).

Gao HJ , Ji BH , Jäger IL , Arzt E , Fratzl P. Materials become insensitive to flaws at nanoscale: Lessons from nature. *Proc. Nat. Acad. Sci. United States of America*, 100:5597–5600, (2003).

Bhushan B. Biomimetics: Lessons from nature-an overview. *Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.*, 365:9–24, (2007).

Ahamed MK , Wang HX , Hazell PJ . From biology to biomimicry: Using nature to build better structures-a review. *Constr. Build. Mater.*, 320:126195, (2022).

Da DC , Qian XP . Fracture resistance design through biomimicry and topology optimization. *Extreme Mech. Lett.*, 40:100890, (2020).

Sanga R , Kilumile M , Mohamed F. Alternative clay bricks inspired from termite mound biomimicry. *Case Stud. Constr. Mater.*, 16:e00977, (2022).

Nor MSAM , Aliff M , Samsiah N. A review of a biomimicry swimming robot using smart actuator. *Int. J. Adv. Comput. Sci. Appl.*, 12:395–405, (2021).

Kumar A , Al-Jumaili A , Bazaka O , Ivanova EP , Levchenko I , Bazaka K , Jacob MV . Functional nanomaterials, synergisms, and biomimicry for environmentally benign marine antifouling technology. *Mater. Horiz.*, 8:3201–3238, (2021).

Barba A , Diez-Escudero A , Espanol M , Bonany M , Sadowska JM , Guillem-Martí J , Öhman-Mägi C , Persson C , Manzanares MC , Franch J , Ginebra MP . Impact of biomimicry in the design of osteoinductive bone substitutes: Nanoscale matters. *ACS Appl. Mater. Interf.*, 11:8818–8830, (2019).

du Plessis A , Babafemi AJ , Paul SC , Panda B , Tran JP , Broeckhoven C. Biomimicry for 3D concrete printing: A review and perspective. *Addit. Manuf.*, 38:101823, (2021).

Eadie L , Ghosh TK . Biomimicry in textiles: Past, present and potential. An overview. *J. R. Soc. Interf.*, 8:761–775, (2011).

Nouri A , Zarkesh A. Efficient configuration in architectural structures based on biomimicry principles in femur bone using hurricane geometry. *Innov. Infrastruct. Solut.*, 9:53, (2024).

Bhushan B. Biomimetics: Lessons from nature – an overview. *Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci.*, 367:1445–1486, (2009).

Nji J , Li G. A biomimic shape memory polymer based self-healing particulate composite. *Polymer*, 51:6021–6029, (2010).

Li G , Nettles D. Thermomechanical characterization of a shape memory polymer based self-repairing syntactic foam. *Polymer*, 51:755–762, (2010).

Li G , Uppu N. Shape memory polymer based self-healing syntactic foam: 3-d confined thermomechanical characterization. *Compos. Sci. Techno.*, 70:1419–1427, (2010).

Ross JL . Autonomous materials from biomimicry. *MRS Bullet.*, 44:119–123, (2019).

Mayer G. Rigid biological systems as models for synthetic composites. *Science*, 310:1144–1147, (2005).

Yang Y , Song X , Li XJ , Chen ZY , Zhou C , Zhou QF , Chen Y. Recent progress in biomimetic additive manufacturing technology: From materials to functional structures. *Adv. Mater.*, 30:1706539, (2018).

Shyy W , Kang CK , Chirarattananon P , Ravi S , Liu H. Aerodynamics, sensing and control of insect-scale flapping-wing flight. *Proc. R. Soc. A Math. Phys. Eng. Sci.*, 472:20150712, (2016).

Li JL , Huang ZR , Liu G , An QL , Chen M. Topology optimization design and research of lightweight biomimetic three-dimensional lattice structures based on laser powder bed fusion. *J. Manuf. Process*, 74:220–232, (2022).

Vogel S. Comparative Biometeorology: Integrated Approaches in Adaptation and Acclimation. Springer Science & Business Media, (2013).

Meyers MA , Mckittrick J , Chen PU . Structural biological materials: Critical mechanics-materials connections. *Science*, 339:773–779, (2013).

Zhao N , Wang Z , Cai C , Shen H , Liang F , Wang D , Wang C , Zhu T , Guo J , Wang Y , Liu X , Duan C , Wang H , Mao Y , Jia X , Dong H , Zhang X , Xu J. Bioinspired materials: From low to high dimensions. *Adv. Mater.*, 33:2100234, (2021).

Espinosa HD , Seunghwa R. A review on mechanical properties of bamboo and bio-based composites. *Front. Mater.*, 7:51, (2020).

Pohl G. *Biomimetics for Architecture: Learning from Nature*. Springer Science & Business Media, (2011).

Theraulaz G , Bonabeau E. A brief history of stigmergy. *Artif. Life*, 5:97–116, (1999).

Seidel R , Gerhard MA . On the structural design of trees. *J. Theor. Biol.*, 210:171–183, (2001).

Gibson LJ , Ashby MF . *Cellular Solids: Structure and Properties*. Cambridge University Press, (1997).

Barthelat F , Botsis P. Biological materials and structures for impact protection. *J. R. Soc. Interf.*, 7:19–34, (2010).

LeCun Y , Bengio Y , Hinton G. Deep learning. *Nature*, 521:436–444, (2015).

Schmelzle S. Deep learning for materials science. *Adv. Intell. Syst.*, 2:1900122, (2020).

Yan C , Feng X , Li G. From drug molecules to thermoset shape memory polymer: A machine learning approach. *ACS Appl. Mater. Interf.*, 13:60508–60521, (2021).

AlAli M , Mattar Y , Alzaim MA , Beheiry S. Applications of biomimicry in architecture, construction and civil engineering. *Biomimetics*, 8:202, (2023).

Dottore ED , Mondini A , Rowe N , Mazzolai B. A growing soft robot with climbing plant-inspired adaptive behaviors for navigation in unstructured environments. *Sci. Robot.*, 9:86, (2024).

Yoseph BC . *Biomimetics: Biologically Inspired Technologies*. CRC Press, (2006).

Benyus JM . *Biomimicry: Innovation Inspired by Nature*. Harper Collins, (2009).

Ultimaker BV , Ultimaker Cura, version 4.7.1,

Utrecht S , Kovan V , Altan G , Topal ES . Effect of layer thickness and print orientation on strength of 3D printed and adhesively bonded single lap joints. *J. Mech. Sci. Technol.*, 31:2197–2201, (2017).

Aru M , Ghanshyam P , Tran DH , Turab L , Rami R. Machine learning strategy for accelerated design of polymer dielectrics. *Sci. Rep.*, 10:20952, (2016).

Wu S , Kondo Y. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. *Comput. Mater.*, 5:66, (2019).

Cao YF , Wu W , Zhang HL , Pan JM . Prediction of the elastic modulus of self-compacting concrete based on SVM. *Trans Tech Publications*, 357:1023–1026, (2013).

Chen H , Qian C , Liang C , Kang W. An approach for predicting the compressive strength of cement-based materials exposed to sulfate attack. *PLoS One*, 13:0191370, (2018).

Salehia H , Burgueño R. Emerging artificial intelligence methods in structural engineering. *Eng. Struct.*, 171:170–189, (2018).

Liang L , Liu M , Martin C , Sun W. A deep learning approach to estimate stress distribution: A fast and accurate surrogate of finite-element analysis. *J. R. Soc. Interf.*, 15:20170844, (2018).

Qi Z , Zhang N , Liu Y , Chen W. Prediction of mechanical properties of carbon fiber based on cross-scale FEM and machine learning. *Compos. Struct.*, 212:199–206, (2019).

Capuano G , Julian J. Smart finite elements: A novel machine learning application. *Comput. Methods Appl. Mech. Eng.*, 345:363–384, (2019).

Matrinez F , Moreno MJ , Matrinez M , Solves JA , Loreta D. A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time. *Comput. Biol. Med.*, 90:116–124, (2017).

Smola A , Vishwanathan SVN . *Introduction to Machine Learning*. Cambridge University Press, (2010).

Structural Optimization of Lattice Structures

Gibson LJ , Ashby MF . *Cellular Solids: Structure and Properties*. Cambridge University Press, (1999).

Saba N , Jawaaid M , Alothman OY , Paridah MT , Hassan A. *Lightweight Composites from Natural Fibers: Development and Applications*. Springer, (2016).

Wu W , Jiang H , Shi Y. Additive manufacturing of gyroid structures with superior impact absorption capability. *Scientific Reports*, 7:1–9, (2017).

Yang C , Li Y , Sun G , Li L , Zhang J. Hollow micro-truss lattice structures for enhanced energy absorption. *International Journal of Impact Engineering*, 127:130–141, (2019).

Adhikari S , Pankaj P , Chakraborty S. Mechanical and damping properties of pyramid truss sandwich panels. *Composite Structures*, 224:111103, (2019).

Tobia M , Martin L , Bill L , Zhan M , Qia O , Faruque M. SLM lattice structures: Properties, performance, applications and challenges. *Materials & Design*, 183:108137, (2019).

Deshpande VS , Fleck NA , Ashby MF . Effective properties of the octet-truss lattice material. *Journal of Mechanics and Physics of Solids*, 49:1747–1769, (2001).

Radek V , Dane K , David P. Impact resistance of different types of lattice structures manufactured by SLM. *Science Journal*, 6:1579–1585, (2016).

Evans AG , He MY , Deshpande VS , Hutchinson JW , Jacobsen AJ , Barvosa-Carter W. Concepts for enhanced energy absorption using hollow micro-lattices. *International Journal of Impact Engineering*, 37:947–959, (2010).

Yang JS , Ma L , Rüdiger S. Hybrid lightweight composite pyramidal truss sandwich panels with high damping and stiffness efficiency. *Composites Structures*, 148:85–96, (2016).

Zhang X , Chen H , Li M , Liu X , Li J. Bioinspired kagome sandwich panels with titanium core. *Composites Science and Technology*, 170:179–187, (2019).

Yan C , Hao L , Hussein A , Bubb S. Design and testing of bio-inspired sandwich structures with hierarchical honeycomb cores. *Composite Structures*, 108:636–645, (2014).

Lee HJ , Kang KJ . Bending response of graded lattice core sandwich structures. *Composite Structures*, 211:134–145, (2019).

Lee JY , Kim HJ , Hong SW , Choi WJ , Choi JH . Development of tetrahedral core sandwich structures using CFRP laminates. *Composite Structures*, 97:349–356, (2013).

Mao Y , Guan Z , Liu Y. Topology optimization of lattice structures with design-dependent loading. *Journal of Applied Mechanics*, 82:031006, (2015).

Tancogne-Dejean T , Mohr D. Elastically-isotropic truss lattice materials of reduced plastic anisotropy. *International Journal of Solids and Structures*, 138:24–39, (2018).

Ang XJ , Li YJ . Topology optimization of a novel cuttlebone-like lattice for improved energy absorption. *International Journal of Impact Engineering*, 132:103289, (2019).

Messner MC . Optimal lattice-structured materials. *Journal of the Mechanics and Physics of Solids*, 96:162–183, (2016).

Yang S , Cui Y , Chen Y. Multiscale fuzzy optimization of octet-truss lattice structure for crashworthiness design. *Composite Structures*, 210:889–900, (2019).

Nasrullah M , Hayat N , Liao WH , Shahzad M. A comparative study of the mechanical behavior of additively manufactured regular lattices for crashworthiness applications. *International Journal of Impact Engineering*, 117:85–99, (2018).

Watts KC . Topology optimization of maximally stiff multiscale structures. *International Journal of Solids and Structures*, 134:17–32, (2018).

Wang J , Chen W. Numerical homogenization for periodic lattice structures. *Journal of the Mechanics and Physics of Solids*, 60:2030–2048, (2012).

Pan C , Han YF , Lu JP . Design and optimization of lattice structures: A review. *Applied Science-BASEL*, 10:6374, (2020).

Liu H , Long LC . Equivalent homogenization design method for stretching-bending hybrid lattice structures. *Journal of Mechanical Science and Technology*, 37:4169–4178, (2023).

Yin HF , Zhang WZ , Zhu LC , Meng FB , Liu JE , Wen GL . Review on lattice structures for energy absorption properties. *Composite Structures*, 304:116397, (2023).

Vasiliev VV , Barynin VA , Razin AF . Anisogrid composite lattice structures –Development and aerospace applications. *Composite Structures*, 94:1117–1127, (2012).

Hunt CJ , Morabito F , Grace C , Zhao Y , Woods BKS . A review of composite lattice structures. *Composite Structures*, 284:115120, (2022).

Kechagias S , Karunaseelan KJ , Oosterbeek RN , Jeffers JRT . The coupled effect of aspect ratio and strut micro-deformation mode on the mechanical properties of lattice structures. *Mechanics of Materials*, 191:104944, (2024).

Dong Y , Chen KJ , Liu H , Li J , Liang ZH , Kan QH . Adjustable mechanical performances of 4D-printed shape memory lattice structures. *Composite Structures*, 334:117971, (2024).

Wagner MA , Lumpe TS , Chen T , Shea K. Programmable, active lattice structures: Unifying stretch-dominated and bending-dominated topologies. *Extreme Mechanics Letters*, 29:100461, (2019).

Khaderi SN , Deshpande VS , Fleck NA . The stiffness and strength of the gyroid lattice. *International Journal of Solids and Structures*, 51:3866–3877, (2014).

Xiao LJ , Xu X , Feng GZ , Li S , Song WD , Jiang ZX . Compressive performance and energy absorption of additively manufactured metallic hybrid lattice structures. *International Journal of Mechanical Sciences*, 219:107093, (2022).

Zhang MY , Yang ZY , Lu ZX , Liao BH , He XF . Effective elastic properties and initial yield surfaces of two 3D lattice structures. *International Journal of Mechanical Sciences*, 138:146–158, (2018).

Vafeefar M , Moerman KM , Vaughan TJ . Experimental and computational analysis of energy absorption characteristics of three biomimetic lattice structures under compression. *Journal of the Mechanical Behavior of Biomedical Materials*, 151:106328, (2024).

Bhat C , Kumar A , Lin SC , Jeng JY . Design, fabrication, and properties evaluation of novel nested lattice structures. *Additive Manufacturing*, 68:103510, (2023).

Torquato S. *Random Heterogeneous Materials: Microstructure and Macroscopic Properties*. Springer Science & Business Media, (2002).

Gurson AL . Continuum theory of ductile rupture by void nucleation and growth: Part i-yield criteria and flow rules for porous ductile media. *Journal of Engineering Materials and Technology*, 99:2–15, (1977).

Deshpande VS , Ashby MF , Fleck NA . Foam topology: Bending versus stretching dominated architectures. *Acta Materialia*, 49:1035–1040, (2001).

Kollmann HT , Abueidda DW , Koric S , Guleryuz E , Sobh NA . Deep learning for topology optimization of 2D metamaterials. *Materials & Design*, 196:109098, (2020).

Wilt JK , Yang C , Gu GX . Accelerating auxetic metamaterial design with deep learning. *Advanced Engineering Materials*, 22:1901266, (2020).

Chang YF , Wang H , Dong QX . Machine learning-based inverse design of auxetic metamaterial with zero Poisson's ratio. *Materials Today Communications*, 30:103186, (2022).

Wang MH , Sun S , Zhang TY . Machine learning accelerated design of auxetic structures. *Materials & Design*, 234:112334, (2023).

Peng XL , Xu BX . Data-driven inverse design of composite triangular lattice structures. *International Journal of Mechanical Sciences*, 265:108900, (2024).

Liu S , Acar P. Generative adversarial networks for inverse design of two-dimensional spinodoid metamaterials. *AIAA Journal*, 62:2433–2442, (2024).

Kumar S , Tan SH , Zheng L , Kochmann DM . Inverse-designed spinodoid metamaterials. *NPJ Computational Materials*, 6:73, (2020).

Zheng L , Kumar S , Kochmann DM . Data-driven topology optimization of spinodoid metamaterials with seamlessly tunable anisotropy. *Current Methods in Applied Mechanics and Engineering*, 383:113894, (2021).

Ma W , Cheng F , Liu YM . Deep-learning-enabled on-demand design of chiral metamaterials. *ACS Nano*, 12:6326–6334, (2018).

Ashalley E , Acheampong K , Besteiro LV , Yu P , Neogi A , Govorov AO , Wang ZM . Multitask deep-learning-based design of chiral plasmonic metamaterials. *Photonics Research*, 8:1213–1225, (2020).

Gu LL , Liu HZ , Wei ZC , Wu RH , Guo JP . Optimized design of plasma metamaterial absorber based on machine learning. *Photonics*, 10:874, (2023).

Qiu YH , Chen SX , Hou ZY , Wang JJ , Shen J , Li CY . Chiral metasurface for near-field imaging and far-field holography based on deep learning. *Micromachines*, 14:789, (2023).

Aru M , Ghanshyam P , Tran DH , Turab L , Rami R. Machine learning strategy for accelerated design of polymer dielectrics. *Scientific Reports*, 10:20952, (2016).

Wu S , Kondo Y. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. *Computational Materials*, 5:66, (2019).

Yan C , Feng X , Konlan J , Mensah P , Li G. Overcome the barrier: Designing novel thermally robust shape memory vitrimers by establishing a new machine learning framework. *Physical Chemistry Chemical Physics*, 25:30049–30065, (2023).

Yan C , Lin X , Feng X , Yang H , Mensah P , Li G. Advancing flame retardant prediction: A self-enforcing machine learning approach for small datasets. *Applied Physics Letters*, 122:251902, (2023).

Yan C , Li G. The rise of machine learning in polymer discovery. *Advanced Intelligent Systems*, 5:2200243, (2023).

Yan C , Feng X , Li G. From drug molecules to thermoset shape memory polymer: A machine learning approach. *ACS Applied Materials & Interfaces*, 13:60508–60521, (2021).

Yan C , Feng X , Wick C , Peters A , Li G. Machine learning assisted discovery of new thermoset shape memory polymers based on a small training dataset. *Polymer*, 214:123351, (2021).

Cao YF , Wu W , Zhang HL , Pan JM . Prediction of the elastic modulus of self-compacting concrete based on SVM. *Trans Tech Publications*, 357:1023–1026, (2013).

Li A , Challapalli A , Li G. 4D printing of recyclable lightweight architectures using high recovery stress shape memory polymer. *Scientific Reports*, 9:7621, (2019).

Li A , Fan J , Li G. Recyclable thermoset shape memory polymer with high stress and energy output via facile UV-curing. *Journal of Materials Chemistry A*, 6:11479–11487, (2018).

Rasmussen CE . Gaussian processes in machine learning. *Advanced Lectures on Machine Learning*, 3176, (2013).

Challapalli A , Li G. 3D printable biomimetic rod with superior buckling resistance designed by machine learning. *Scientific Reports*, 10:20716, (2020).

Inverse Machine Learning Using Generative Adversarial Networks

Gao H , Ji T , Lin W , Guo X , Zhang T. Forward machine learning for designing biomimetic rods with superior buckling resistance. *Journal of Mechanical Design*, 142:081701, (2020).

Lin W , Ji T , Gao H , Guo X , Zhang T. Optimizing lattice structures by forward machine learning. *Journal of Mechanical Design*, 142:091703, (2020).

Chen K , Chen Y , Li K , Ma J , Wang L. Deep learning for materials design: A review. *Journal of Materials Science*, 56:2161–2190, (2021).

Jin L , Zhou Y , Chen J , Huang L. Recent advances in inverse design of materials using deep generative models. *Computational Materials Science*, 162:121–131, (2019).

Teimouri A , Alinia M , Kamarian S , Saber-Samandari S , Li G , Song JI . Design optimization of additively manufactured sandwich beams through experimentation, machine learning, and imperialist competitive algorithm. *Journal of Engineering Design*, 35:320–337, (2024).

Challapalli A , Li G. 3D printable biomimetic rod with superior buckling resistance designed by machine learning. *Scientific Reports*, 10:20716, (2020).

Challapalli A , Li G. Machine learning assisted design of new lattice core for Sandwich structures with superior load carrying capacity. *Scientific Reports*, 11:18552, (2021).

Gómez-Bombarelli R , Wei JN , Duvenaud D , Hernández-Lobato JM , Sánchez-Lengeling B , Sheberla D , Aguilera-Iparraguirre J , Hirzel TD , Adams RP , Aspuru-Guzik A. Automatic chemical design using a data-driven continuous representation of molecules. *ACS Central Science*, 4:268–276, (2018).

Ma Q , Li Y , Li Z , Li B , Liu Y. Inverse design of nanostructures with machine learning: A review. *Nanoscale*, 12:18137–18153, (2020).

Kang Y , Lee J , Kim H , Kim J. Generative adversarial networks for material science. *Computational Materials Science*, 158:460–471, (2019).

Wang H , Li J , Zhang Y , Li Y , Li L. Design of metamaterials by inverse machine learning: A review. *Materials*, 14:2668, (2021).

Ma J , Yang Z , Zhou L , Wang J. Inverse design of nanostructured materials using generative models. *Physical Chemistry Chemical Physics*, 22:24720–24730, (2020).

Guo X , Huang B , Zhang T. Design of lattice materials with optimal mechanical properties. *Extreme Mechanics Letters*, 14:30–40, (2017).

Ma Q , Yan C , Chen C , Huang B , Zhang T. Inverse design of nanophotonic structures using complementary convex optimization. *Journal of Optics*, 21:035102, (2019).

Molesky S , Lin Z , Piggott AY , Jin W , Vucković J , Rodriguez AW . Inverse design for nanophotonics. *Nature Photonics*, 12:659–670, (2018), (2018).

Teimouri A , Challapalli A , Konlan J , Li G. Machine learning assisted design and optimization of plate-lattice structures with superior specific recovery force. *Giant*, 18:100282, (2024).

Goodfellow I , Pouget-Abadie J , Mirza M , Xu B , Warde-Farley D , Ozair S , Courville A , Bengio Y. Generative adversarial networks. *Advances in Neural Information Processing Systems* 63: 139–144, (2014).

Shorten C , Khoshgoftaar TM . A survey on image data augmentation for deep learning. *Journal of Big Data*, 6:60, (2019).

Minaee S , Boykov YY , Porikli F , Plaza AJ , Kehtarnavaz N , Terzopoulos D. Image segmentation using deep learning: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligent*, 44:3523–3542, (2023).

Karras T , Laine S , Aila T. A style-based generator architecture for generative adversarial networks. *IEEE Transactions on Pattern Analysis and Machine Intelligent*, 43:4217–4228, (2021).

Pouyanfar S , Sadiq S , Yan YL , Tian HM , Tao YD , Reyes MP , Shyu ML , Chen SC , Iyengar SS . A survey on deep learning: Algorithms, techniques, and applications. *ACM Computing Surveys*, 51:92, (2019).

Borji A. Pros and cons of GAN evaluation measures. *Computer Vision and Image Understanding*, 179:41–65, (2019).

Pan ZQ , Yu WJ , Yi XK , Khan A , Yuan F , Zheng YH . Recent progress on generative adversarial networks (GANs): A survey. *IEEE Access*, 7:36322–36333, (2019).

Shao SY , Wang P , Yan RQ . Generative adversarial networks for data augmentation in machine fault diagnosis. *Computers in Industry*, 106:85–93, (2019).

Lloyd S , Weedbrook C. Quantum generative adversarial learning. *Physical Review Letters*, 121:040502, (2018).

Wang ZR , Wang J , Wang YR . An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition. *Neurocomputing*, 310:213–222, (2018).

Zhang W , Li X , Jia XD , Ma H , Luo Z , Li X. Machinery fault diagnosis with imbalanced data using deep generative adversarial networks. *Measurement*, 152:107377, (2020).

Fiore U , De Santis A , Perla F , Zanetti P , Palmieri F. Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. *Information Science*, 479:448–455, (2019).

Shen YJ , Yang CY , Tang XO , Zhou BL . InterFaceGAN: Interpreting the disentangled face representation learned by GANs. *IEEE Transactions on Pattern Analysis and Machine Intelligent*, 44:2004–2018, (2022).

Gui J , Sun ZA , Wen YG , Tao DC , Ye JP . A review on generative adversarial networks: Algorithms, theory, and applications. *IEEE Transactions on Knowledge and Data Engineering*, 35:3313–3332, (2023).

Hong Y , Hwang U , Yoo J , Yoon S. How generative adversarial networks and their variants work: An overview. *ACM Computing Survey*, 52:10, (2019).

Wu F. English Vocabulary learning aid system using digital twin wasserstein generative adversarial network optimized with jelly fish optimization algorithm. *Applied Artificial*

Intelligence, 38:2327908, (2024).

Li F , Zhang JL , Li KW , Peng Y , Zhang HT , Xu YP , Yu Y , Zhang YT , Liu ZW , Wang Y , Huang L , Zhou FF . GANSamples-ac4C: Enhancing ac4C site prediction via generative adversarial networks and transfer learning. *Analytical Biochemistry*, 689:115495, (2024).

Cheng XW , Huang K , Zou Y , Ma SJ . SleepEGAN: A GAN-enhanced ensemble deep learning model for imbalanced classification of sleep stages. *Biomedical Signal Processing and Control*, 92:106020, (2024).

Kong Q , Shibuta Y. Predicting materials properties with generative models: Applying generative adversarial networks for heat flux generation. *Journal of Physics-Condensed Matter*, 36:195901, (2024).

Yu ZR , Cui W. Robust hyperspectral image classification using generative adversarial networks. *Information Science*, 666:120452, (2024).

Zhang FL , Wang ZP , Wang QF , Ji QC . Predicting thermal stress in binary composites through advanced generative adversarial networks. *MRS Communications*, 14:397–401, (2024).

Huynh N , Deshpande G. A review of the applications of generative adversarial networks to structural and functional MRI based diagnostic classification of brain disorders. *Frontiers in Neuroscience*, 18:1333712, (2024).

Wang X , Mi Y , Zhang X. 3D human pose data augmentation using generative adversarial networks for robotic-assisted movement quality assessment. *Frontiers in Neurorobotics*, 18:1371385, (2024).

Dannehl M , Delouille V , Barra V. An experimental study on EUV-to-magnetogram image translation using conditional generative adversarial networks. *Earth and Space Science*, 11:e2023EA002974, (2024).

Zhang CH , Yu S , Tian ZY , Yu JJQ . Generative adversarial networks: A survey on attack and defense perspective. *ACM Computing Surveys*, 56:91, (2024).

Alshammari K , Alshammari R , Alshammari A , Alkhudaydi T. An improved pear disease classification approach using cycle generative adversarial network. *Scientific Reports*, 14:6680, (2024).

Zhao PH , Ding ZJ , Li Y , Zhang XH , Zhao YQ , Wang HJ , Yang Y. SGAD-GAN: Simultaneous generation and anomaly detection for time-series sensor data with generative adversarial networks. *Mechanical Systems and Signal Processing*, 210:111141, (2024).

Yan C , Feng X , Li G. From drug molecules to thermoset shape memory polymer: A machine learning approach. *ACS Applied Materials & Interfaces*, 13:60508–60521, (2021).

Karras T , Laine S , Aila TA. Style-Based Generator Architecture for Generative Adversarial Networks. *arXiv preprint arXiv:1812.04948*, (2018).

Nie D , Zhang H , Adeli E , Liu L , Shen D. 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. *Medical Image Analysis*, 43:128–139, (2018).

Zhao J , Song Y , Li Y , Li X , Li H. Adversarial learning-based anomaly detection on hyperspectral images. *IEEE Transactions on Geoscience and Remote Sensing*, 57:6548–6561, (2019).

Akcay S , Atapour-Abarghouei A , Breckon TP . Gandomly: Semi-Supervised Anomaly Detection via Adversarial Training. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops*, 68–77, (2019).

Zhu JY , Park T , Isola P , Efros AA . Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. *Proceedings of the IEEE International Conference on Computer Vision*, 2242–2251, (2017).

Korshunova I , Myslinski M , Guha T , Boukhelifa N , Seidel HP . Fast and deep deformation approximations. *ACM Transactions on Graphics*, 37:137, (2018).

Arik SO , Chrzanowski M , Coates A , Firat A , Hestness J , Sengupta S. GANs trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in Neural Information Processing Systems*, 31:700–710, (2019).

Challapalli A , Patel D , Li G. Inverse machine learning framework for optimizing lightweight metamaterials. *Materials and Design*, 208:109937, (2021).

Challapalli A , Konlan J , Patel D , Li G. Discovery of cellular unit cells with high natural frequency and energy absorption capabilities by an inverse machine learning framework. *Frontiers in Mechanical Engineering*, 7:779098, (2021).

Phi NH , Bui HN , Moon SY , Lee JW . Controlled synthesis of space-time modulated metamaterial for enhanced nonreciprocity by machine learning. *Advanced Intelligent Systems*, 6:2300565, (2024).

Liu S , Acar P. Generative adversarial networks for inverse design of two-dimensional spinodoid metamaterials. *AIAA Journal*, 62:2433–2442, (2024).

Tran T , Amirkulova FA , Khatami E. Broadband acoustic metamaterial design via machine learning. *Journal of Theoretical and Computational Acoustics*, 30:2240005, (2022).

Qian C , Tan RK , Ye WJ . Design of architected composite materials with an efficient, adaptive artificial neural network-based generative design method. *Acta Materialia*, 225:117548, (2022).

Guo BY , Deng L , Zhang HT . Non-local generative machine learning-based inverse design for scattering properties. *Optics Express*, 31:20872–20886, (2023).

Zhang D , Qin A , Shen S , Trinch A , Lu GX . Energy absorption analysis of origami structures based on small number of samples using conditional GAN. *Thin-Walled Structures*, 188:110772, (2023).

Maxwell JC . On the calculation of the equilibrium and stiffness of frames. *Philosophical Magazine*, 27:294, (1864).

Evans AG , Hutchinson JW , Ashby MF . Multifunctionality of cellular metal systems. *Progress in Materials Science*, 43:171–221, (1998).

Deshpande VS , Fleck NA , Ashby MF . Foam topology bending vs stretching dominated architecture. *Acta Materialia*, 49:1035–1040, (2001).

Deshpande VS , Fleck NA , Ashby MF . Effective properties of the octet-truss lattice material. *Journal of the Mechanics and Physics of Solids*, 49:1747–1769, (2001).

Gibson LJ , Ashby MF . *Cellular Solids: Structure and Properties*, (2nd ed.). Cambridge University Press, Cambridge, MA, (1997).

Gibson JL , Ashby FM . The mechanics of three-dimensional cellular materials. *Proceedings of the Royal Society of London A*, 382:43–59, (1982).

Gibson JL . Cellular solids. *MRS Bulletin*, 28:270–274, (2003).

Zhang Q , Yang X , Li P , Huang G , Feng S , Shen C , Han B , Zhang X , Jin F , Xu F , Lu TJ . Bioinspired engineering of honeycomb structure – Using nature to inspire human innovation. *Progress in Materials Science*, 74:332–400, (2015).

Ha NS , Lu G. A review of recent research on bio-inspired structures and materials for energy absorption applications. *Composites Part B: Engineering*, 181:107496, (2020).

An X , Fan H. Hybrid design and energy absorption of luffa-sponge-like hierarchical cellular structures. *Materials & Design*, 106:247–257, (2016).

Tsang HH , Raza S. Impact energy absorption of bio-inspired tubular sections with structural hierarchy. *Composite Structures*, 195:199–210, (2018).

Tsang HH , Tse KM , Chan KY , Lu G , Lau KT . Energy absorption of muscle-inspired hierarchical structure: Experimental investigation. *Composite Structures*, 226:111250, (2019).

Yu X , Pan L , Chen J. Experimental and numerical study on the energy absorption abilities of trabecular–honeycomb biomimetic structures inspired by beetle elytra. *Journal of Material Science*, 54:2193–2204, (2019).

Zhang Y , Gao L , Xiao M. Maximizing natural frequencies of inhomogeneous cellular structures by kriging-assisted multiscale topology optimization. *Computers & Structures*, 230:106197, (2020).

Huang X , Zuo ZH , Xie YM . Evolutionary topological optimization of vibrating continuum structures for natural frequencies. *Computers and Structures*, 88:357–364, (2010).

Singiresu SR . *Mechanical Vibrations*, Sixth edition. Pearson Education Limited, United Kingdom, (2018).

Qiu C , Guan Z , Jiang S , Li Z. A method of determining effective elastic properties of honeycomb cores based on equal strain energy. *Chinese Journal of Aeronautics*, 30:2, (2017).

Autar KK . *Mechanics of Composite Materials*. New York: Taylor & Francis, (2006).

Vapnik V. *The Nature of Statistical Learning Theory*. New York: Springer, (1995).

Rasmussen CE , Williams CKI . *Gaussian Processes for Machine Learning*. Cambridge, Massachusetts: MIT Press, (2006).

Design and Optimization of Mechanical Metamaterials Using Correlation Analysis

David L , Bourell MC , Leu D , Rosen W. Roadmap for Additive Manufacturing-Identifying the Future of Freeform Processing. Edited and Published by Austin: University of Texas, (2009).

Compton BG , Lewis JA . 3D-printing of lightweight cellular composites. *Advanced Materials*, 26:5930–5935, (2014).

Kabir SMF , Mathur K , Seyam AFM . A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties. *Composite Structures*, 232:111476, (2020).

Tibbits S. The emergence of “4D printing”. TED Conference, (2013).

Tibbits S. 4D printing: Multi-material shape change. *Architectural Design*, 84:116–121, (2014).

Khoo ZX , Teoh JEM , Liu Y , Chua CK , Yang S , An J , Leong KF , Yeong WY . 3D printing of smart materials: A review on recent progresses in 4D printing. *Virtual and Physical Prototyping*, 10:103–122, (2015).

Momeni F , Hassani N , Liu X , Ni J. A review of 4D printing. *Materials and Design*, 122:42–79, (2017).

Melly SK , Liu L , Liu Y , Leng J. On 4D printing as a revolutionary fabrication technique for smart structures. *Smart Materials and Structures*, 29:083001, (2020).

Kuang X , Roach DJ , Wu JT , Hamel CM , Ding Z , Wang TJ , Dunn ML , Qi HJ . Advances in 4D printing: Materials and applications. *Advanced Functional Materials*, 29:1805290, (2019).

Yang C , Boorugu M , Dopp A , Ren J , Martin R , Han D , Choi W , Lee H. 4D printing reconfigurable, deployable and mechanically tunable metamaterials. *Materials Horizons*, 6:1244–1250, (2019).

Kuang X , Chen K , Dunn CK , Wu J , Li VCF , Qi HJ . 3D printing of highly stretchable, shape-memory, and self-healing elastomer toward novel 4D printing. *ACS Applied Materials & Interfaces*, 10:7381–7388, (2018).

Invernizzi M , Turri S , Levi M , Suriano R. 4D printed thermally activated self-healing and shape memory polycaprolactone-based polymers. *European Polymer Journal*, 101:169–176, (2018).

Momeni F , Ni J. Nature-inspired smart solar concentrators by 4D printing. *Renewable Energy*, 122:35–44, (2018).

Zolfagharian A , Kaynak A , Khoo SY , Kouzani A. Pattern-driven 4D printing. *Sensors and Actuators A*, 274:231–243, (2018).

Bodaghi M , Damanpack AR , Liao WH . Triple shape memory polymers by 4D printing. *Smart Materials and Structures*, 27:065010, (2018).

Liu G , Zhao Y , Wu G , Lu J. Origami and 4D printing of elastomer-derived ceramic structures. *Science Advances*, 4, eaat0641: (2018).

Choong YYC , Maleksaeedi S , Eng B , Wei J , Su PC . 4D printing of high performance shape memory polymer using stereolithography. *Materials and Design*, 126:219–225, (2017).

Ding Z , Yuan C , Peng X , Wang T , Qi HJ , Dunn ML . Direct 4D printing via active composite materials. *Science Advances*, 3:e1602890, (2017).

Yang H , Leow WR , Wang T , Wang J , Yu J , He K , Qi D , Wan C , Chen X. 3D printed photoresponsive devices based on shape memory composites. *Advanced Materials*, 29:1701627, (2017).

Zarek M , Mansour N , Shapira S , Cohn D. 4D printing of shape memory-based personalized endoluminal medical devices. *Macromolecular Rapid Communications*, 38:1600628, (2017).

Huang L , Jiang R , Wu J , Song J , Bai H , Li B , Zhao Q , Xie T. Ultrafast digital printing toward 4D shape changing materials. *Advanced Materials*, 29:1605390, (2017).

Zarek M , Layani M , Cooperstein I , Sachyani E , Cohn D , Magdassi S. 3D printing of shape memory polymers for flexible electronic devices. *Advanced Materials*, 28:4449–4454, (2016).

Wu J , Yuan C , Ding Z , Isakov M , Mao Y , Wang T , Dunn ML , Qi HJ . Multi-shape active composites by 3D printing of digital shape memory polymers. *Scientific Reports*, 6:24224, (2016).

Gladman AS , Matsumoto EA , Nuzzo RG , Mahadevan L , Lewis JA . Biomimetic 4D printing. *Nature Materials*, 15:413–419, (2016).

Ge Q , Dunn CK , Qi HJ , Dunn ML . Active origami by 4D printing. *Smart Materials and Structures*, 23:094007, (2014).

Ge Q , Qi HJ , Dunn ML . Active materials by four-dimension printing. *Applied Physics Letters*, 103:131901, (2013).

Li A , Challapalli A , Li G . 4D printing of recyclable lightweight architectures using high recovery stress shape memory polymer. *Scientific Reports*, 9:7621, (2019).

Abedin R , Feng X , Pojman J Jr. , Ibekwe A , Mensah P , Warner I , Li G . A thermoset shape memory polymer based syntactic foam with flame retardancy and 3D printability. *ACS Applied Polymer Materials*, 4:1183–1195, (2022).

Ren LQ , Wu Q , Li JY , He YL , Zhang YL , Zhou XL , Wu SY , Liu QP , Li BQ . 4D printing of customizable and reconfigurable mechanical metamaterials. *International Journal of Mechanical Sciences*, 270:109112, (2024).

Lin C , Xin XZ , Tian LF , Zhang D , Liu LW , Liu YJ , Leng JS . Thermal-, magnetic-, and light-responsive 4D printed SMP composites with multiple shape memory effects and their promising applications. *Composites Part B: Engineering*, 274:111257, (2024).

Isaac CW , Dusdeck F . Recent progress in 4D printed energy-absorbing metamaterials and structures. *Virtual and Physical Prototyping*, 18:e2197436, (2023).

Wu Y , Han Y , Wei ZX , Xie Y , Yin J , Qian J . 4D printing of chiral mechanical metamaterials with modular programmability using shape memory polymer. *Advanced Functional Materials*, 33:2306442, (2023).

Owens CAH , Wang YP , Farzinazar S , Yang C , Lee HW , Lee JH . Tunable thermal transport in 4D printed mechanical metamaterials. *Materials & Design*, 231:111992, (2023).

Ma LH , Wei TY , Rao W , Zhang K , Gao H , Chen XJ , Zhang XC . 4D printed chiral metamaterials with negative swelling behavior. *Smart Materials and Structures*, 32:015014, (2023).

Peng XR , Wu S , Sun XH , Yue L , Montgomery SM , Demoly F , Zhou K , Zhao RR , Qi HJ . 4D printing of freestanding liquid crystal elastomers via hybrid additive manufacturing. *Advanced Materials*, 34:2204890, (2022).

Bodaghi M , Damanpack AR , Liao WH . Adaptive metamaterials by functionally graded 4D printing. *Materials & Design*, 135:26–36, (2017).

Xin XZ , Liu LW , Liu YJ , Leng JS . 4D printing auxetic metamaterials with tunable, programmable, and reconfigurable mechanical properties. *Advanced Functional Materials*, 30:2004226, (2020).

Yan C , Li G . Design oriented constitutive modeling of amorphous shape memory polymers and its application to multiple length scale lattice structures. *Smart Materials and Structures*, 28:095030, (2019).

Tao R , Ji LT , Li Y , Wan ZS , Hu WX , Wu WW , Liao BB , Ma LH , Fang DN . 4D printed origami metamaterials with tunable compression twist behavior and stress-strain curves. *Composites Part B: Engineering*, 201:108344, (2020).

Huang S , Chen Y . 4D printing: A new trend in three-dimensional printing. *Assemble*, 51:12–14, (2013).

Wu J , Yuan C , Peng Y , Guo Z , Zhang H . 4D printing of shape memory polymers with multiple programmable actuators. *Journal of Materials Chemistry B*, 7:2885–2891, (2019).

Ge Q , Qi HJ , Dunn ML . Volumetric additive manufacturing via tomographic reconstruction. *Science Advances*, 2:e1600324, (2016).

Wallin TJ , Pikul J , Shepherd RF . 3D printing of soft robotic systems. *Nature Review Materials*, 3:84–100, (2018).

Saadi MASR , Maguire A , Pottackal NT , Thakur MSH , Ikram MM , Hart AJ , Ajayan PM , Rahman MM . Direct ink writing: A 3D printing technology for diverse materials. *Advanced Materials*, 34:2108855, (2022).

Mu QY , Wang L , Dunn CK , Kuang X , Duan F , Zhang Z , Qi HJ , Wang TJ . Digital light processing 3D printing of conductive complex structures. *Additive Manufacturing*, 18:74–83, (2017).

Zhang B , Li HG , Cheng JX , Ye HT , Sakhaei AH , Yuan C , Rao P , Zhang YF , Chen Z , Wang R , He XN , Liu J , Xiao R , Qu SX , Ge Q . Mechanically robust and UV-curable shape-

memory polymers for digital light processing based 4D printing. *Advanced Materials*, 33:2101298, (2021).

Caprioli M , Roppolo I , Chiappone A , Larush L , Pirri CF , Magdassi S. 3D-printed self-healing hydrogels via digital light processing. *Nature Communications*, 12:2462, (2021).

Zhang Y , Huang LM , Song HJ , Ni CJ , Wu JJ , Zhao Q , Xie T. 4D printing of a digital shape memory polymer with tunable high performance. *ACS Applied Materials & Interfaces*, 11:32408–32413, (2019).

Rossegger E , Höller R , Reisinger D , Strasser J , Fleisch M , Griesser T , Schlägl S. Digital light processing 3D printing with thiol-acrylate vitrimers. *Polymer Chemistry*, 12:639–644, (2021).

Li HG , Zhang BA , Wang R , Yang XD , He XN , Ye HT , Cheng JX , Yuan C , Zhang YF , Ge Q. Solvent-free upcycling vitrimers through digital light processing-based 3D printing and bond exchange reaction. *Advanced Functional Materials*, 32:2111030, (2022).

Madrid-Wolff J , Toombs J , Rizzo R , Bernal PN , Porcincula D , Walton R , Wang B , Kotz-Helmer F , Yang Y , Kaplan D , Zhang YS , Zenobi-Wong M , Mcleod RR , Rapp B , Schwartz J , Shusteff M , Talyor H , Levato R , Moser C. A review of materials used in tomographic volumetric additive manufacturing. *MRS 50th Anniversary Prospective*, 13:764–785, (2023).

Wang X , Xu S , Zhou S , Xu W , Leary M , Choong P , Qian M , Brandt M , Xie YM . Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. *Biomaterials*, 83:127–141, (2016).

Bhargav A , Sanjairaj V , Rosa V , Feng LW , Fuh YH . Applications of additive manufacturing in dentistry: A review. *Journal of Biomedical Materials Research Part B: Applied Biomaterials*, 106:2058–2064, (2018).

Nguyen DT , Meyers C , Yee TD , Dudukovic NA , Destino JF , Zhu C , Duoss EB , Baumann TF , Suratwala T , Smay JE , Dylla-Spears R. 3D-printed transparent glass. *Advanced Materials*, 29:1701181, (2017).

Gong H , Bickham BP , Woolley AT , Nordin GP . Custom 3D printer and resin for 18 $\mu\text{m} \times 20 \mu\text{m}$ microfluidic flow channels. *Lab on Chip*, 17:2899–2909, (2017).

Ngo TD , Kashani A , Imbalzano G , Nguyen KTQ , Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. *Composites Part B: Engineering*, 143:172–196, (2018).

Kelly BE , Bhattacharya I , Heidari H , Shusteff M , Spadaccini SM , Taylor HK . Volumetric additive manufacturing via tomographic reconstruction. *Science*, 363:1075–1079, (2019).

Sachs E , Wylonis E , Allen S , Cima M , Guo H. Production of injection molding tooling with conformal cooling channels using the three dimensional printing process. *Polymer Engineering and Science*, 40:1232–1247, (2000).

Shusteff M , Browar AEM , Kelly BE , Henriksson J , Weisgraber TH , Panas RM , Fang NX , Spadaccini CM . One-step volumetric additive manufacturing of complex polymer structures. *Science Advance*, 3:eaao5496, (2017).

Bernal PN , Delrot P , Loterie D , Li Y , Malda J , Moser C , Levato R. Volumetric bioprinting of complex living-tissue constructs within seconds. *Advanced Materials*, 31:1904209, (2019).

Toombs JT , Luitz M , Cook CC , Jenne S , Li CC , Rapp BE , Kotz-Helmer F , Taylor HK . Volumetric additive manufacturing of silica glass with microscale computed axial lithography. *Science*, 376:308, (2022).

Weisgraber TH , de Beer MP , Huang S , Karnes JJ , Cook CC , Shusteff M. Virtual volumetric additive manufacturing (VirtualVAM). *Advanced Materials Technology*, 8:2301054, (2023).

Ahn D , Stevens LM , Zhou K , Page ZA . Rapid high-Resolution visible light 3D printing. *ACS Central Science*, 6:1555–1563, (2020).

Darkes-Burkey C , Shepherd RF . High-resolution 3D printing in seconds. *Nature*, 588:594–595, (2020).

Regehly M , Garmshausen Y , Reuter M , König NF , Israel E , Kelly DP , Chou CY , Koch K , Asfari B , Hecht S. Xolography for linear volumetric 3D printing. *Nature*, 588:620–627, (2020).

Shusteff M , Browar AEM , Kelly BE , Henriksson J , Weisgraber TH , Panas RM , Fang NX , Spadaccini CM . One-step volumetric additive manufacturing of complex polymer structures. *Science Advances*, 3:eaao5496, (2017).

Hart AJ , Rao A. How to print a 3D object all at once: A tomography-based method prints polymer objects volumetrically. *Science*, 363:1042–1043, (2019).

Liu YJ , Du HY , Liu LW , Leng JS . Shape memory polymers and their composites in aerospace applications: A review. *Smart Materials and Structures*, 23:023001, (2014).

Lan X , Liu YJ , Lv HB , Wang XH , Leng JS , Du SY . Fiber reinforced shape-memory polymer composite and its application in a deployable hinge. *Smart Materials and Structures*, 18:024002, (2009).

Mao YQ , Yu K , Isakov MS , Wu JT , Dunn ML , Qi HJ . Sequential self-folding structures by 3D printed digital shape memory polymers. *Scientific Reports*, 5:13616, (2015).

Liu TW , Bai JB , Fantuzzi N , Zhang X. Thin-walled deployable composite structures: A review. *Progress in Aerospace Sciences*, 146:100985, (2024).

Liu W , Kong DY , Zhao W , Leng JS . Multi-stimulus responsive shape memory polyurea incorporating stress-mismatching structure for soft actuators and reversible deployable structures. *Composite Structures*, 334:117966, (2024).

Kang D , Jeong JM , Jeong KI , Kim SS . Improving the deformability and recovery moment of shape memory polymer composites for bending actuators: Multiple neutral axis skins and deployable core. *ACS Applied Materials & Interfaces*, 15:33944–33956, (2023).

Lendlein A , Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. *Science*, 296:1673–1676, (2002).

Lendlein A , Kelch S. Shape-memory polymers as stimuli-sensitive implant materials. *Clinical Hemorheology and Microcirculation*, 32:105–116, (2005).

Li YR , Meng Q , Chen SJ , Ling PX , Kuss MA , Duan B , Wu SH . Advances, challenges, and prospects for surgical suture materials. *Acta Biomaterialia*, 168:78–112, (2023).

Sun SQ , Chen CX , Zhang JH , Hu JS . Biodegradable smart materials with self-healing and shape memory function for wound healing. *RSC Advances*, 13:3155–3163, (2023).

Yakacki CM , Shandas R , Lanning C , Rech B , Eckstein A , Gall K. Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. *Biomaterials*, 28:2255–2263, (2007).

Wache HM , Tartakowska DJ , Henrich A , Wagner MH . Development of a polymer stent with shape memory effect as a drug delivery system. *Journal of Materials Science-Materials in Medicine*, 14:109–112, (2003).

Van Daele L , Chausse V , Parmentier L , Brancart J , Pegueroles M , Van Vlierberghe S , Dubrule P. 3D-printed shape memory poly(alkylene terephthalate) scaffolds as cardiovascular stents revealing enhanced endothelialization. *Advanced Healthcare Materials*, (2024). DOI: 10.1002/adhm.202303498.

Zhu Y , Deng KC , Zhou JW , Lai C , Ma ZW , Zhang H , Pan JZ , Shen LY , Bucknor MD , Ozhinsky E , Kim S , Chen GJ , Ye SH , Zhang Y , Liu DH , Gao CY , Xu YH , Wang HA , Wagner WR . Shape-recovery of implanted shape-memory devices remotely triggered via image-guided ultrasound heating. *Nature Communications*, 15:1123, (2024).

Sarrafan S , Li G. Conductive and ferromagnetic syntactic foam with shape memory and self-Healing/Recycling capabilities. *Advanced Functional Materials*, 34:2308085, (2024).

Mahmud S , Konlan J , Deicaza J , Li G. Coir/glass hybrid fiber reinforced thermoset composite laminates with room-temperature self-healing and shape memory properties. *Industrial Crops and Products*, 201:116895, (2023).

Tetteh O , Mensah P , Li G. Repeated healing of low velocity impact induced damage in orthogrid-stiffened Sandwich panel. *Journal of Composite Materials*, 57:3619–3632, (2023).

Konlan J , Feng X , Li G. A multifunctional hybrid extrinsic-intrinsic self-healing laminated composites. *Smart Materials and Structures*, 32:075006, (2023).

Konlan J , Mensah P , Ibekwe S , Li G. A laminated vitrimer composite with strain sensing, delamination self-healing, deicing, and room-temperature shape restoration properties. *Journal of Composite Materials*, 56:2267–2278, (2022).

Feng X , Li G. Room-temperature self-healable and mechanically robust thermoset polymer for healing delamination and recycling carbon fiber. *ACS Applied Materials and Interfaces*, 13:53099–53110, (2021).

Afful HQ , Ibekwe S , Mensah P , Li G. Influence of uniaxial compression on the shape memory behavior of vitrimer composite embedded with tension-programmed unidirectional shape memory polymer fibers. *Journal of Applied Polymer Science*, 138:50429, (2021).

Feng X , Li G. Versatile phosphate diester-based flame retardant vitrimers via catalyst-free mixed transesterification. *ACS Applied Materials & Interfaces*, 12:57486–57496, (2020).

Feng X , Li G. Catalyst-free β -hydroxy phosphate ester exchange for robust fire-proof vitrimers. *Chemical Engineering Journal*, 417:129132, (2021).

Feng X , Fan J , Li A , Li G. Biobased tannic acid crosslinked epoxy thermosets with hierarchical molecular structure and tunable properties: Damping, shape memory and recyclability. *ACS Sustainable Chemistry & Engineering*, 8:874–883, (2020).

Feng X , Fan J , Li A , Li G. Multi-reusable thermoset with anomalous flame triggered shape memory effect. *ACS Applied Materials & Interfaces*, 11:16075–16086, (2019).

Lu L , Pan J , Li G. Recyclable high performance epoxy based on transesterification reaction. *Journal of Materials Chemistry A*, 5:21505–21513, (2017).

Lu L , Fan J , Li G. Intrinsic healable and recyclable thermoset epoxy based on shape memory effect and transesterification reaction. *Polymer*, 105:10–18, (2016).

Zhang P , Ogunmeken B , Ibekwe S , Jerro D , Pang SS , Li G. Healing of shape memory polyurethane fiber reinforced syntactic foam subjected to tensile stress. *Journal of Intelligent Material Systems and Structures*, 27:1792–1801, (2016).

Champagne J , Pang SS , Li G. Effects of partial confinement and local heating on healing efficiencies of self-healing particulate composites. *Composites Part B: Engineering*, 97:344–352, (2016).

Shojaei A , Sharafi S , Li G. A multiscale theory of self-crack-healing with solid healing agent assisted by shape memory effect. *Mechanics of Materials*, 81:25–40, (2015).

Li G , Zhang P. A self-healing particulate composite reinforced with strain hardened short shape memory polymer fibers. *Polymer*, 54:5075–5086, (2013).

Li G , Ajisafe O , Meng H. Effect of strain hardening of shape memory polymer fibers on healing efficiency of thermosetting polymer composites. *Polymer*, 54:920–928, (2013).

Li G , Meng H , Hu J. Healable thermoset polymer composite embedded with stimuli-responsive fibers. *Journal of the Royal Society Interfaces*, 9:3279–3287, (2012).

Nji J , Li G. Damage healing ability of a shape memory polymer based particulate composite with small thermoplastic contents. *Smart Materials and Structures*, 21:025011, (2012).

Nji J , Li G. A biomimic shape memory polymer based self-healing particulate composite. *Polymer*, 51:6021–6029, (2010).

Li G , Uppu N. Shape memory polymer based self-healing syntactic foam: 3-d confined thermomechanical characterization. *Composites Science and Technology*, 70:1419–1427, (2010).

John M , Li G. Self-healing of Sandwich structures with grid stiffened shape memory polymer syntactic foam core. *Smart Materials and Structures*, 19:075013, (2010).

Nji J , Li G. A self-healing 3D woven fabric reinforced shape memory polymer composite for impact mitigation. *Smart Materials and Structures*, 19:035007, (2010).

Li G , Nettles D. Thermomechanical characterization of a shape memory polymer based self-repairing syntactic foam. *Polymer*, 51:755–762, (2010).

Li G , John M. A self-healing smart syntactic foam under multiple impacts. *Composites Science and Technology*, 68:3337–3343, (2008).

Yang Q , Li G. A spider silk like shape memory polymer fiber for vibration damping. *Smart Materials and Structures*, 23:105032, (2014).

Sharafi S , Li G. A multiscale approach for modeling actuation response of polymeric artificial muscle. *Soft Matter*, 11:3833–3843, (2015).

Sharafi S , Li G. Multiscale modeling of vibration damping response of shape memory polymer fibers. *Composites Part B-Engineering*, 91:306–314, (2016).

Zhang P , Ayaugbokor U , Ibekwe S , Jerro D , Pang SS , Mensah P , Li G. Healing of polymeric artificial muscle reinforced ionomer composite by resistive heating. *Journal of Applied Polymer Science*, 133:43660, (2016).

Yang Q , Li G. A top-down multi-scale modeling for actuation response of polymeric artificial muscles. *Journal of the Mechanics and Physics of Solids*, 92:237–259, (2016).

Yang Q , Fan J , Li G. Artificial muscles made of chiral two-way shape memory polymer fibers. *Applied Physics Letters*, 109:183701, (2016).

Zhang P , Li G. Fishing line artificial muscle reinforced composite for impact mitigation and on-demand damage healing. *Journal of Composite Materials*, 50:4235–4249, (2016).

Fan J , Li G. High performance and tunable artificial muscle based on two-way shape memory polymer. *RSC Advances*, 7:1127–1136, (2017).

Fan J , Li G. High enthalpy storage thermoset network with giant stress and energy output in rubbery state. *Nature Communications*, 9:642, (2018).

Li A , Fan J , Li G. Recyclable thermoset shape memory polymer with high stress and energy output via facile UV-curing. *Journal of Materials Chemistry A*, 6:11479–11487, (2018).

Feng X , Li G. high-temperature shape memory photopolymer with intrinsic flame retardancy and record-high recovery stress. *Applied Materials Today*, 23: 101056, (2021).

Wick C , Peters A , Li G. Quantifying the contributions of energy storage in A thermoset shape memory polymer with high stress recovery: A molecular dynamics study. *Polymer*, 213:123319, (2021).

Yan C , Li G. A mechanism based four-chain constitutive model for enthalpy driven thermoset shape memory polymers with finite deformation. *Journal of Applied Mechanics-Transactions of ASME*, 87:061007, (2020).

Li G , Wang A. Cold, warm, and hot programming of shape memory polymers. *Journal of Polymer Science Part B: Polymer Physics*, 54:1319–1339, (2016).

Li G , Shojaei A. A viscoplastic theory of shape memory polymer fibers with application to self-healing materials. *Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences*, 468:2319–2346, (2012).

Xu W , Li G. Thermoviscoelastic modeling and testing of shape memory polymer based self-healing syntactic foam programmed at glassy temperature. *ASME Journal of Applied Mechanics*, 78:061017, (2011).

Li G , Xu W. Thermomechanical behavior of thermoset shape memory polymer programmed by cold-compression: Testing and constitutive modeling. *Journal of the Mechanics and Physics of Solids*, 59:1231–1250, (2011).

Li C , Wu Y , Guo Y. Enhancement of shape memory effect and recovery stress of shape memory polymer nanocomposites. *Journal of Materials Science*, 53:5874–5885, (2018).

Chen J , Yan D , Zhou Y. Shape memory polyurethane nanocomposites with enhanced recovery stress via synergistic effect of graphene and polyhedral oligomeric silsesquioxane. *Journal of Materials Chemistry C*, 4:348–357, (2016).

Yang Y , Wang Y , Qiu J. Experimental study on the recovery stress of lattice structures made from shape memory polymers. *Journal of Materials Science*, 55:9834–9844, (2020).

Fang X , Wen J , Cheng L , Yu D , Zhang H , Gumbsch P. Programmable gear-based mechanical metamaterials. *Nature Materials*, 21:869–876, (2022).

Zhao Y , Zhang H , Leng J. 3D printed auxetic structures with tunable mechanical properties for medical devices. *Materials & Design*, 203:109637, (2021).

Wang X , Yang Y , Zhang Q. Hierarchically structured metamaterials with strain-dependent solid-solid phase change for micro-actuators and grippers. *Acta Mechanica Solida Sinica*, 33:228–240, (2020).

Yang Y , Zhang H , Liu Y. Review on two-dimensional and three-dimensional auxetic structures. *Journal of Materials Science*, 54:13047–13068, (2019).

Attallah MM , El-Safty S , Mahmoud AM . The unique behavior of auxetic structures and their potential applications. *Journal of Materials Science*, 55:13699–13718, (2020).

Deng K , Zhang Y , Kang Z. Topology optimization of cellular auxetic metamaterials. *Journal of Applied Mechanics*, 87, 101006: (2020).

Evans KE , Nkansah MA , Hutchinson IJ , Rogers SC . Molecular network design. *Nature*, 404:850–853, (2000).

Lakes RS . Foam structures with a negative Poisson's ratio. *Science*, 235:1038–1040, (1987).

Wang Y , Liu Y , Wang X , Zhang P , Cheng H. Shape-memory polymers with high shape recovery strain and its application in a passive morphing airfoil. *Smart Materials and Structures*, 24:125023, (2015).

Meng H , Li G. A review of stimuli-responsive shape memory polymer composites. *Polymer*, 54:2199–2221, (2013).

Yang Q , Li G. Temperature, and rate dependent thermomechanical modeling of shape memory polymers with physics-based phase evolution law. *International Journal of Plasticity*, 80:168–186, (2016).

Evans AG , Hutchinson JW , Ashby MF . Multifunctionality of cellular metal systems. *Progress in Materials Science*, 43:171–221, (1998).

Maxwell JC . On the calculation of the equilibrium and stiffness of frames. *Philosophical Magazine*, 27:294, (1864).

Deshpande VS , Fleck NA , Ashby MF . Foam topology bending vs stretching dominated architecture. *Acta Materialia*, 49:1035–1040, (2001).

Deshpande VS , Fleck NA , Ashby MF . Effective properties of the octet-truss lattice material. *Journal of the Mechanics and Physics of Solids*, 49:1747–1769, (2001).

Zhang P , Heyne MA , To AC . Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3D printing, and testing. *Journal of the Mechanics and Physics of Solids*, 83:285–300, (2015).

Panda B , Leite M , Biswal BB , Niu X , Garg A. Experimental and numerical modelling of mechanical properties of 3D printed honeycomb structures. *Measurement*, 116:495–506, (2018).

Sha Y , Jiani L , Haoyu C , Robert OR , Jun X. Design and strengthening mechanisms in hierarchical architected materials processed using additive manufacturing. *International Journal of Mechanical Sciences*, 149:150–163, (2018).

Tan XP , Tan YJ , Chow CSL , Tor SB , Yeong WY . Metallic powder-bed based 3D printing of cellular scaffolds for orthopedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties, and biocompatibility. *Science and Engineering C*, 76:1328–1343, (2017).

Challapalli A , Li G. Machine learning assisted design of new lattice core for Sandwich structures with superior load carrying capacity. *Scientific Reports*, 11:18552, (2021).

Challapalli A , Li G. 3D printable biomimetic rod with superior buckling resistance designed by machine learning. *Scientific Reports*, 10:20716, (2020).

Challapalli A , Patel D , Li G. Inverse machine learning framework for optimizing lightweight metamaterials. *Materials & Design*, 208:109937, (2021).

Challapalli A , Konlan J , Patel D , Li G. Discovery of cellular unit cells with high natural frequency and energy absorption capabilities by an inverse machine learning framework. *Frontiers in Mechanical Engineering*, 7:779098, (2021).

Agresti A. *Categorical Data Analysis*. John Wiley & Sons, (2018).

Gang Z , Wenlong D , Jing T , Jingshou L , Yang G , Siyu S , Ruyue W , Ning S. Spearman rank correlations analysis of the elemental, mineral concentrations, and mechanical parameters of the lower Cambrian Niutitang Shale: A case study. *Journal of Petroleum Science and Engineering (Part C)* 208, 109550: (2022).

Lin WT , Wu YC , Cheng A , Chao SJ , Hsu HM . Engineering properties and correlation analysis of fiber cementitious materials. *Materials*, 7:7423–7435, (2014).

Tummala R. Predictive Modeling of FMOL Health System Utilization Using Machine Learning Algorithms and Retrospective Study of COVID Tested Patients, LSU Master's Theses. (2021).

Chengwei X , Jiaqi Y , Rui ME , Chunming R. Using Spearman's correlation coefficients for exploratory data analysis on big dataset. *Concurrency and Computation: Practice and Experience*, 28:3866–3878, (2016).

Bonett DG , Wright TA . Sample size requirements for estimating Pearson, Kendall and Spearman correlations. *Psychometrika*, 65:23–28, (2000).

Summary and Future Perspectives

Litjens , et al. A survey on deep learning in medical image analysis. *Medical Image Analysis*, 42:60–88, (2017).

Beam AL , Kohane IS . Big data and machine learning in health care. *JAMA*, 319(13):1317–1318, (2018).

Abdelhafiz D , Yang C , Ammar R , Nabavi S. Deep convolutional neural networks for mammography: Advances, challenges and applications. *BMC Bioinformatics*, 20:281, (2019).

Dai L , et al. A deep learning system for detecting diabetic retinopathy across the disease spectrum. *Nature Communications*, 12(1):3242, (2021).

Sheer R , et al. Predictive risk models to identify patients at high-risk for severe clinical outcomes with chronic kidney disease and type 2 diabetes. *Journal of Primary Care Community Health*, 13:21501319211063726, (2021).

Damen JA , et al. Prediction models for cardiovascular disease risk in the general population: Systematic review. *British Publisher of Medical Journals*, 353:i2416, (2016).

Vora LK , Gholap AD , Jetha K , Thakur RRS , Solanki HK , Chavda VP . Artificial intelligence in pharmaceutical technology and drug delivery design. *Pharmaceutics*, 15(7):1916, (2023).

Zhang H , Liu X , Cheng W , Wang T , Chen Y. Prediction of drug-target binding affinity based on deep learning models. *Computers in Biology and Medicine*, 174:108435, ISSN 0010-4825, (2024).

Pattnaik D , Ray S , Raman R. Applications of artificial intelligence and machine learning in the financial services industry: A bibliometric review. *Helijon*, 10(1):e23492, ISSN 2405-8440, (2024).

Sargeant H. Algorithmic decision-making in financial services: Economic and normative outcomes in consumer credit. *AI Ethics*, 3:1295–1311, (2023).

Cao L , Yang Q , Yu PS . Data science and AI in FinTech: An overview. *International Journal of Data Science*, 12:81–99, (2021).

Waleed HS , Andrew G , John Y. Financial fraud: A review of anomaly detection techniques and recent advances. *Expert Systems with Applications*, 193:116429, (2022).

Galina B , Helmut K. Reducing false positives in fraud detection: Combining the red flag approach with process mining. *International Journal of Accounting Information Systems*, 31:1–16, (2018).

Rane N , Choudhary S , Rane J. Hyper-personalization for enhancing customer loyalty and satisfaction in customer relationship management (CRM) systems. *Social Science Research Network*, (2023).

Jisun A , Haewoon K , Soon, gyo J , Joni S , Bernard J. Customer segmentation using online platforms: Isolating behavioral and demographic segments for persona creation via aggregated user data. *Social Networks*, 8:54, (2018).

Andrés M , Claudia S , Sergiy P , Clemens P , Markus H. A machine learning framework for customer purchase prediction in the non-contractual setting. *European Journal of Operational Research*, 281(3):588–596, (2020).

Tawseef AS , Tabasum R , Faisal RL . Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. *Computers and Electronics in Agriculture*, 198:107119, (2022).

Benos L , Tagarakis AC , Dolias G , Berruto R , Kateris D , Bochtis D. Machine learning in agriculture: A comprehensive updated review. *Sensors*, 21(11):3758, (2021).

Mesías-Ruiz GA , Pérez-Ortiz M , Dorado J , De Castro AI , Peña JM . Boosting precision crop protection towards agriculture via machine learning and emerging technologies: A contextual review. *Frontier of Plant Science*, 14:1143326, (2023).

Popescu SM , Mansoor S , Wani OA , Kumar SS , Sharma V , Sharma A , Arya VM , Kirkham MB , Hou D , Bolan N , Chung YS . Artificial intelligence and IoT driven technologies for environmental pollution monitoring and management. *Frontier of Environmental Science*, 12:1336088, (2024).

Musanase C , Vodacek A , Hanyurwimfura D , Uwitonze A , Kabandana I. Data-driven analysis and machine learning-based crop and fertilizer recommendation system for revolutionizing farming practices. *Agriculture*, 13(11):2141, (2023).

Buja I , Sabella E , Monteduro AG , Chiriacò MS , De Bellis L , Luvisi A , Maruccio G. Advances in plant disease detection and monitoring: From traditional assays to in-field diagnostics. *Sensors*, 21(6):2129, (2021).

Anne-Katrin M. Plant disease detection by imaging sensors – Parallels and specific demands for precision agriculture and plant phenotyping. *Plant Disease*, 100(2):241–251, (2016).

Alexander YS , Bridget RS . How can big data and machine learning benefit environment and water management: A survey of methods, applications, and future directions. *Environmental Research Letters*, 14:073001, (2019).

Federica Z , Elisa F , Christian S , Silvia T , Sinem A , Andrea C , Antonio M. Exploring machine learning potential for climate change risk assessment. *Earth-Science Reviews*, 220:103752, (2021).

Nikitas A , Michalakopoulou K , Njoya ET , Karampatzakis D. Artificial intelligence, transport and the smart city: Definitions and dimensions of a new mobility era. *Sustainability*, 12(7):2789, (2020).

Haghigat AK , Ravichandra-Mouli V , Chakraborty P et al. Applications of deep learning in intelligent transportation systems. *Journal of Big Data Analysis*, 2:115–145 (2020).

Hasan U , Whyte A , Jassmi H. A review of the transformation of road transport systems: Are we ready for the next step in artificially intelligent sustainable transport? *Applied System Innovation*, 3(1):1, (2020).

Khayyam H , Javadi B , Jalili M , Jazar RN Artificial Intelligence and Internet of Things for Autonomous Vehicles. *Nonlinear Approaches in Engineering Applications*. Springer, (2020).

Fayyad J , Jaradat MA , Gruyer D , Najjaran H. Deep learning sensor fusion for autonomous vehicle perception and localization: A review. *Sensors*, 20(15):4220, (2020).

Arzoo M , Kumar N. Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and challenges. *Vehicular Communications*, 20:100184, ISSN 2214-2096, (2019).

Wagner-Pacifici R , Mohr JW , Breiger RL Ontologies, methodologies, and new uses of big data in the social and cultural sciences. *Big Data & Society*, 2(2), (2015).

Xiaoling S , Yiwan Y. Knowledge discovery: Methods from data mining and machine learning. *Social Science Research*, 110:102817, (2023).

Krishna PK . A literature review on application of sentiment analysis using machine learning techniques. *International Journal of Applied Engineering and Management Letters*, 4(2):41–77, (2020).

Gutierrez E , Karwowski W , Fiok K , Davahli MR , Liciaga T , Ahram T. Analysis of human behavior by mining textual data: Current research topics and analytical techniques. *Symmetry*, 13(7):1276, (2021).

Khrais L. Role of artificial intelligence in shaping consumer demand in e-commerce. *Future Internet*, 12(12):226, (2020).

Amin SA , Philips J , Tabrizi N *Current Trends in Collaborative Filtering Recommendation Systems*. Springer, 11517, (2019).

Fontanella F , Colace M , Molinara A , Scotto DF , Stanco F. Pattern recognition and artificial intelligence techniques for cultural heritage. *Pattern Recognition Letters*, 138:23–29, (2020).

Memon J , Sami M , Khan RA , Uddin M. Handwritten optical character recognition (OCR): A Comprehensive Systematic Literature Review, 8:142642–142668, (2020).

Martin K. Ethical implications and accountability of algorithms. *Journal of Bus Ethics*, 160:835–850, (2019).

Tsamados A et al. The Ethics of Algorithms: Key Problems and Solutions. In: Floridi, L. (eds) *Ethics, Governance, and Policies in Artificial Intelligence*. *Philosophical Studies Series*, 144. Springer, (2021).

Mittelstadt BD , Allo P , Taddeo M , Wachter S , Floridi L The ethics of algorithms: Mapping the debate. *Big Data & Society*, 3(2), (2016).

Tony KT , Sudhir K. Privacy rights and data security: GDPR and personal data markets. *Management Science*, 69(8):4389–4412, (2022).

Pot M , Kieusseyan N , Prainsack B. Not all biases are bad: Equitable and inequitable biases in machine learning and radiology. *Insights Imaging*, 12:13, (2021).

Felzmann H , Fosch-Vilaronga E , Lutz C et al. Towards transparency by design for artificial intelligence. *Science & Engineering Ethics*, 26:3333–3361, (2020).

Radanliev P , Santos O , Brandon-Jones A , Joinson A. Ethics and responsible AI deployment. *Frontier of Artificial Intelligence*, 7:1377011, (2024).

Studer S , Bui TB , Drescher C , Hanuschkin A , Winkler L , Peters S , Müller K-R. Towards CRISP-ML(q): A machine learning process model with quality assurance methodology. *Machine Learning and Knowledge Extraction*, 3(2):392–413, (2021).

Hassija V , Chamola V , Mahapatra A et al. Interpreting black-box models: A review on explainable artificial intelligence. *Cognitive Computation*, 16:45–74 (2024).

Yogesh KD , et.al, Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. *International Journal of Information Management*, 57:101994, (2021).

Strielkowski W , Vlasov A , Selivanov K , Muraviev K , Shakhnov V. Prospects and challenges of the machine learning and data-driven methods for the predictive analysis of power systems: A review. *Energies*, 16:1–31, (2023).