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Low-resolution coarse-grained (CG) models provide significant computational and
conceptual advantages for simulating soft materials. However, the properties of CG
models depend quite sensitively upon the mapping, M, that maps each atomic config-
uration, r, to a CG configuration, R. In particular, M determines how the configura-
tional information of the atomic model is partitioned between the mapped ensemble
of CG configurations and the lost ensemble of atomic configurations that map to each
R.. In this work, we investigate how the mapping partitions the atomic configuration
space into CG and intra-site components. We demonstrate that the corresponding
coordinate transformation introduces a nontrivial Jacobian factor. This Jacobian
factor defines a labelling entropy that corresponds to the uncertainty in the atoms
that are associated with each CG site. Consequently, the labelling entropy effec-
tively transfers configurational information from the lost ensemble into the mapped
ensemble. Moreover, our analysis highlights the possibility of resonant mappings that
separate the atomic potential into CG and intra-site contributions. We numerically
illustrate these considerations with a Gaussian Network model for the equilibrium
fluctuations of actin. We demonstrate that the spectral quality, Q, provides a simple
metric for identifying high quality representations for actin. Conversely, we find that
neither maximizing nor minimizing the information content of the mapped ensemble
results in high quality representations. However, if one accounts for the labelling un-
certainty, Q(M) correlates quite well with the adjusted configurational information

loss, imap(l\/[), that results from the mapping.
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I. INTRODUCTION

Richard Hamming famously asserted that “the purpose of computing is insight not
numbers.” ' According to this premise, low resolution coarse-grained (CG) models provide a
uniquely powerful framework for studying complex systems.””’ By eliminating unnecessary
details, CG models provide the necessary computational efficiency for simulating length-
and time-scales that cannot be effectively addressed with, e.g., conventional all-atom (AA)
models. ™ Perhaps even more importantly, CG models provide researchers the opportunity
to eliminate unnecessary details and precisely focus their intellectual resources on the fea-
tures that are essential for understanding a particular phenomenon. ' Unfortunately, it is
not always easy to design CG models that properly distinguish “unnecessary details” from
“essential features.” Consequently, many recent studies have investigated the choice of CG

representation, i.e., the degrees of freedom that are explicitly treated by the CG model. "

There exist many coarse-graining approaches with varying advantages and limitations. =
In this work, we focus on bottom-up CG models that are based upon an underlying atomistic
model." ' In this case, the CG representation is precisely defined by a mapping, M, that
determines a unique CG configuration, R = M(r), for each AA configuration, r. Because
the properties of bottom-up models can depend quite sensitively upon the CG mapping, "~
recent, studies have proposed various metrics for optimizing M. ' These methods have
often employed network-based”” " or machine-learning tools.” ' In particular, one class
of studies has focused on preserving the large-amplitude, low-frequency motions of the AA
model.”»" 751 For instance, the essential dynamics coarse-graining (ED-CG) method of
Voth and coworkers'™ " first employs principle component analysis (PCA) to identify impor-
tant collective motions™ and then identifies CG sites with rigid atomic groups that preserve
these essential dynamics. Recently, they have extended the ED-CG method with K-means
clustering.”” Conversely, a second class of studies has focused on preserving the configura-
tional information of the AA model. In particular, Potestio and coworkers have proposed
minimizing the mapping entropy,””" =" which quantifies the configurational information

that is lost when viewing the AA model at the CG resolution.””

Very recently, Foley, Kidder, and coworkers have adopted a complementary approach for
investigating CG representations.”" "7 Specifically, they adopted the Gaussian Network
Model (GNM) as an analytically tractable high resolution model for the equilibrium fluctu-
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ations of globular proteins about their folded conformation.” " They employed Monte Carlo
(MC) methods to systematically explore and statistically characterize the entire space of CG
representations for the high resolution GNM. In particular, they focused on two metrics for
assessing the quality of a given mapping, M, based upon the mapped ensemble that results
from viewing the high resolution ensemble at the CG resolution: (1) the spectral quality,
Q(M), quantifies the mass-weighted covariance of the mapped ensemble; (2) the information
content, I(M), quantifies the information content of the mapped ensemble. In the case of the
GNM, I is perfectly anti-correlated with the mapping entropy, Inap, considered by Potestio
and coworkers: I, (M) = mI(M)+0b, where m < 0 and b are both independent of M."” CG
representations that maximized Q were highly consistent with the physical intuition that
CG sites should correspond to distinct structural features that move coherently."*"” Con-
versely, CG representations that minimized the mapping information loss, Iap, Were not
consistent with this intuition. Interestingly, @ and I,,,, were negatively correlated among
high-resolution representations, but positively correlated at lower resolutions.””"” This sug-
gests that it may be beneficial to design low-resolution representations that maximize the

information lost from the AA model.

While this proposal may initially seem counter-intuitive, it perhaps can be rationalized.
The vibrational density of states for soft materials typically contains many high frequency
modes. These high frequency modes are information-rich in that they describe localized mo-
tions that highly constrain the system. Conversely, the vibrational density of states typically
contains relatively few low frequency modes. These low frequency modes are information-
poor in that they describe delocalized motions that only weakly constrain the system. In this
sense, most of the information in high-resolution models is high-frequency “noise,” while rel-
atively little is low-frequency “physics.””" Thus, representations that minimize information

loss may focus on preserving noise at the expense of physics.

We consider this proposal more closely in the present work. We first analyze the relation-
ship between the mapping, M, and the information content of the corresponding mapped
ensemble. This analysis reveals a new source of information loss - the labelling entropy, Hy, -
that quantifies the uncertainty associated with the partitioning of atoms into CG particles.
This analysis also suggests the notion of a ‘resonance’ between a family of high resolution
potentials and a special CG mapping, M,. We numerically illustrate the consequences of

the labelling entropy with a GNM for actin, which is considerably more complex than the



proteins we have previously considered. We demonstrate that the spectral quality, Q, identi-
fies CG representations for actin that are consistent with our physical intuition. In contrast,
we do not obtain physically reasonable representations by either maximizing or minimizing
the mapping information loss, I.p. However, by accounting for the labelling entropy, the
adjusted information loss, imap = Lnap + Hy, is highly correlated with Q. Finally, we briefly
investigate resonant mappings by “atomizing” an idealized CG model and examining how
the properties of the CG model vary as the mapping moves off of resonance.

The remainder of this manuscript is organized as follows. Section II reviews the Kullback-
Leibler divergence’ "’ as a quantitative metric for information loss, analyzes a coordinate
transformation associated with the mapping, and introduces the labelling entropy, Hy,. Sec-
tion III develops simple approximate models that allow us to illustrate Hy, and its con-
sequences. Section IV summarizes our computational methods, while section V presents
calculations that numerically illustrate the analysis of Sections II and III. Section VI sum-
marizes our findings and provides concluding comments. Finally, one appendix considers the
impact of coarse-graining upon symmetries present in AA models, while a second appendix
calculates the Jacobian associated with the coordinate transformation that is defined by the

CG mapping.

II. THE MAPPING ENTROPY
A. Quantifying information content

We consider the canonical ensemble for an AA model with n atoms in a D-dimensional
spatial region D(V) with volume V = LP. We denote the AA potential by u(r) and the
AA configuration integral by z = [, vy dr exp[—Pu(r)]. The AA model is characterized by
the configurational probability density p,(r) = exp[—Su(r)]/z. We quantify the information

content of the AA canonical ensemble by

Ian = / dr pe(r) In [pe(r)/ ¢:(2)] (1)

(V)

which is the Kullback-Leibler divergence between p,(r) and the corresponding uniform distri-
bution for n atoms ¢,(r) = 1/V"™.%5" 15 A is nonnegative and is proportional to the (negative)

of the excess configurational entropy of the AA model.
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We define a mapping function, M(r), that determines a CG representation of each AA
configuration, R = M(r). The probability density for sampling a CG configuration, R, in

the resulting “mapped ensemble” is

pr(R) = zn(R)/z, )
where
(R) = [ drexpl-u(e) ksTISM(E) - R). 3)
DV

is the restricted configuration integral, i.e., the total Boltzmann weight that is mapped to
the CG configuration, R. The mapped probability density, pr(R), determines the configu-
rational information that is present in the mapped ensemble:

teo = [ dRpu(R)n [pn(R)/ an(R). @

DN (V)

where ggr(R) = 1/V¥ is the uniform distribution for the mapped configuration space. Iog
is proportional to (the negative of) the “apparent excess configurational entropy” present in
the mapped ensemble.”” The restricted configuration integral also determines the many-body

potential of mean force (PMF)
W(R) = —kpTIn [V 25 (R)] (5)

where we have defined n, = n — N as the number of particles that have been eliminated
from the CG model.””~"" The PMF is the AA free energy expressed as a function of CG
coordinates. Consequently, the PMF is the appropriate CG potential for reproducing both
structural and thermodynamic properties of the AA model.”>

For each CG configuration, R, the mapping also determines a “lost” subensemble, Sg,

of AA configurations that map to R:
Sr = {r e D"(V)[M(r) = R}. (6)
This subensemble is characterized by the conditioned distribution,
prn(r|R) = expl—u(r)/ksT]6(M(r) — R) /2r(R). (7)

We quantify the configurational information contained in Sg by

Imap(R) = /nc(li)er(ﬂR) In [pr|R(r|R)/Qr|R(r|R)} ) (8>



where ¢r(r|R) = V""6(M(r) — R) is the uniform conditioned distribution. This lost

information determines the entropic contribution to the PMF:
W(R) = Ew(R) + kgTl,.,(R), (9)

where Ew(R) = (u(r))g is a conditioned average of the atomic potential over Sg evaluated

according to pyr(r|R).”" Moreover, I.,(R) determines the temperature-dependence of
the PMF:
W (R)
= +kplnap(R). 10
(F52) = +hslus(®) (10

Note that Eq. (10) does not assume that either Eyw or I,,,, are independent of temperature,
since quite generally (0Ew(R)/0T)g = —kpT (Olmap(R)/0T)g."" (See SM.)
We define

Imap:/ dR pr(R)Lnap(R). (11)
DN(V)

as the average of I.,(R) over the mapped ensemble. Importantly, the KL divergence

satisfies a chain rule

IAA = ICG + IInap (12>

that partitions the configurational information of the AA model between the mapped ensem-
ble and the “lost” subensembles of AA configurations that map to each CG configuration.”
Thus, the configurational information that is eliminated by the mapping is stored in condi-
tioned distributions for the lost subensembles. In particular, the lost subensembles become
more informative as the mapped ensemble becomes less informative.

We note that our notation slightly departs from prior studies. In particular, we have
previously defined Sy (R) = —kplnap(R).”" Similarly, I,,., has been previously denoted

Himap OF —Smap-

B. Mapping AA to CG configurations

We now develop a formalism for analyzing the CG mapping. It is often convenient
to represent the atomic configuration with an n x D matrix, r = [r;,], where r;, is the
a Cartesian coordinate of atom i. Column « of this n x D matrix corresponds to the
Cartesian direction that is specified by e,. Row ¢ of this matrix corresponds to the Cartesian

coordinates of atom i: r; = >~ 1ia€,. For each atom, ¢ = 1,...,n, we now introduce a
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“label” vector, e;, that identifies the corresponding row of the configuration matrix: ejr =r;.
The n label vectors {e;};,—1 ., form a complete orthonormal basis for an n dimensional
“AA label space,” Vaa = span{e;};—1 _,, with ejej =d;and 1, = > ", eie;r. The AA

configuration may then be denoted:

n nD
r= Zei dr; = Z Tia€ia- (13)
i=1 ia=1

In the second expression, we have defined the set of nD orthonormal basis vectors {e;, =
e; ® e, } such that ejar = Tig.

Similarly, it is often convenient to represent the CG configuration as an N x D matrix,
R = [R;.). Accordingly, for each CG site I = 1,..., N, we define a label vector, e;, and
a corresponding N-dimensional “CG label space:” Ve = span{er};—; . n with e}eJ =077

and 1y = ijvzl eIe}. Thus, we may express the CG configuration in analogy to Eq. (13)

N ND
R = Z er® Ry = Z Rroera. (14)
I=1 Ta=1

In the first expression, R; = e}R = Zle Ri.e. specifies the Cartesian coordinates of site
I. In the second expression, we have defined the set of N D orthonormal basis vectors {e;, =
e; ® e, } such that e}aR = Rj,. Note that i = 1,...,n indicate AA labels, I =1,..., N
indicate CG labels, and a = 1,..., D indicate Cartesian directions.

As in most particle-based CG models, we consider linear mappings M : r — R = Mr

R[ = Zcuri, (15)
i=1

where ¢;; > 0 forall I =1,...,N and ¢ = 1,...,n. Note that the mapping coefficients do
not depend upon « and act equivalently on each Cartesian direction. Consequently, M may

be considered a transformation from AA label space to CG label space, M : Vaar — Vca,

N n N
M = Z Ze;che;r = Ze;c}, (16)
I=1

I=1 i=1
where we have defined a mapping vector, ¢; = Y, cr;&; € Vaa, for each CG site, I. In
the following, we shall not distinguish between M and its extension to the AA configuration
space, M=Mg1 p, where 1p = Zle eqe], is the identity operator for Cartesian space.
We impose several restrictions upon the CG mapping. In order to simply express these

restrictions, we define J,, = > e, € Vaa and Jy = Z?Ll e; € Veg as label vectors
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that act equivalently on each atom and site, respectively. In particular, we require that
the N mapping vectors, {ci,...,cy}, are linearly independent such that each site moves
independently of the others. Moreover, we require that the mapping coefficients for each

site I are normalized according to
Jic, = Z cr =1 (17)
This implies that MJ,, = Jx and ensures that, for any v € R?,

M(r+J,®@v)=Mr+Jy®v, (18)

i.e., if we displace each atom by v, then the mapping also displaces each site by v.

Note that if the AA distribution is invariant with respect to uniform translation of all
atoms, then Eq. (18) implies that the mapped ensemble will also preserve this symmetry.
More generally, Appendix A demonstrates that the mapped ensemble will be invariant with
respect to any symmetry, T, that is present in the AA ensemble as long as T and M commute,
ie., TM = MT.

In the following, we shall consider maps that partition the n atoms into N disjoint subsets.
More precisely, we define Vap = {1,...,n} as the set of atoms and V; = {i|cj; > 0} as the
subset that contributes to site I. We require that UY_,V; = Vx4 and that V;NV; = & for all
I # J. Note that this requirement excludes ‘decimation” and ‘slicing’ maps that associate
each CG site with a single atom. "7 We expect that it is straight-forward to relax this
restriction. Finally, we shall also assume that the mapping associates each site with a single
molecule, i.e., atoms in distinct molecules are not grouped together. This last assumption

becomes necessary for developing simple approximations in Section III.

C. Backmapping and projection operators

For each site, I = 1,..., N, we define a vector, j; = ZieVI e; € Vaa, that corresponds to
uniformly displacing all the atoms that contribute to site I. Because we require the atomic
groups, V7, to be disjoint, it follows that jjj(] = n;0r; where n; = |Vj| is the number of

atoms that contribute to site I. Moreover, Eq. (17) implies that

cljs =61y forall I,J=1,...,N (19)



When the mapping coefficients correspond to the center of geometry (cog) for the corre-
sponding atomic group, then c; and j; are parallel: cr.coq = n;'j;. More generally, there
is no simple relationship between c; and j;. Nevertheless, Eq. (19) holds for any disjoint
mapping.

We now define a “backmapping” operator from the CG particle space back to the AA

particle space:
N
B=) jel (20)
I=1

which is a simple example of a right inverse for M."" Because of Eq. (19), the combination
MB acts as the identity operator in Vog: MB = Z?{:l eIeJ} = 1y. More importantly,

Eq. (19) implies that the combination BM acts as an oblique projection operator’'’ in Vaa:

N
P=BM=> jcl. (21)

=1
In contrast to projection operators that are familiar from quantum mechanics, P is not
generally Hermitian, i.e., symmetric. Nevertheless, P is idempotent, P? = P, and projects
arbitrary elements of AA particle space, v € Vaa, onto a “CG” subspace that is spanned
by {ji,...,jn}. We define the complementary projection operator, Q = 1, — P, such that
P+Q=1, PQ=QP=0, and Q> = Q.

While we have defined P as a projection operator acting in AA particle space, Vaa,
this also trivially defines a projection operator in the AA configuration space. For any
AA displacement, ér = >  e; ® 0r;, P defines corresponding displacements in the CG
subspace of the AA configuration space. Specifically, each term, j Ic}, in Eq. (21) determines
a displacement dR; = 2?21 cr;0or; for CG site I and then moves each atom associated with
site I by 6R;:

N
Pér =Y j; @ iRy, (22)
=1

We now introduce dual bases for Vo in order to obtain an explicit expression for Q.
Accordingly, we let {Xy 4} = {Xn11....,X,} be a basis for null(P) such that cixy,, = 0

forall I = 1,...,N and k = 1,...,n,. The rank-nullity theorem implies that {x;} =

{ir,xy+x} = {j1,-- -, JN, XN41, - - -, X } forms a basis for Vas.”" We define a corresponding
n x n matrix X = [jr|xnix] = [Xeg|Xaa] where Xee = [j1---jn] is an n x N matrix
and Xap = [Xny1---X,] is an n X n, matrix. We define ZT = X~1. Since C}j(] = 015
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and CJ}XNJF;C = 0 for all T and k, it follows that Z = [Zcg|Zaa] where Zcg = [c1---cy]
and Zap = [zyi1---2y,] such that ZLAXCG = 0 and ZLAXAA = 1,.. We shall find it
convenient to assume that the set of {zyx} are orthonormal with respect to each other such
that Z}rv+kZN+k/ = O for all k, k" = 1,...,ny. This is always possible, e.g., by applying
the Gram-Schmidt procedure’’ to {zx.x} and the inverse transformation to {xyx}. The
resulting set of n vectors {z;} = {c;,zy,} form a dual basis with {x;} = {j;, xy4x} such
that >, XZ-ZZT = 1, is the identity operator for Vaa and zjxj =, foralle,7 =1,...n.
Finally, it follows that P = XC(;ZEG and the complementary projection operator may be

expressed

Q=XarZj, = ZXNMZ;VM. (23)
k=1

The SM explicitly illustrates this dual basis for both label space and configuration space.

D. The labelling entropy

We now employ the n linearly independent vectors, {z;} = {c;,zn1x}, to define

= cr foral I=1,...,N (24)
By =z, T forall k=1,...,ny (25)

such that
TZ(P+Q)FZBT+XAAf‘ (26)

where T = Mr and r = ZL Ar. Since the mapping coefficients are normalized according to
Eq. (17) it follows that the mapped coordinates, T; € D(V). Moreover, since the CG model
explicitly represents each molecule and each site is associated with a single molecule, in the
next section we shall interpret the r; coordinates as intrasite coordinates.

By construction there exists a 1-1 relationship between the n atomic coordinates r and
the set of n coordinates ¥ = (T,t): T = Z'r and r = X¥. However, this transformation is not
volume-preserving. In particular, Eq. (17) implies that |c;| = \/m < 1 whenever site

I is associated with more than one atom. Appendix B proves that the Jacobian associated

with this transformation is

@
or

|-t -t
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where we have defined a diagonal “participation” matrix
N
AN = Zelnle}. (28)
=1

We can now obtain a relatively simple expression for zgr. We define a(T,r) = u(r =

Br + Xar). It then follows that

@@wzlﬁ?/ﬁ|mmﬁﬂmmﬂwmﬂw@—Rx (20)

N(V)J Dy (Vi)

where the second integral is over
D, (V;F) = {t € R™*P|BT + Xaat € D"(V)}, (30)

i.e., the set of atomic displacements, r, such that, r(r,r) = BT 4+ XaaT, is in the AA

configuration space. The first integral may be trivially evaluated for all R € DY(V) to

obtain
w(R) = [|Ax]|"?2x(R) (31)
) = [di expl-piR. ) (32)
an(V?R)

Because the transformation r <» ¥ is 1-1, the factor, Zr(R) gives the total Boltzmann weight
for all the AA configurations that map to R.
Equations (5) and (31) imply that the PMF may be decomposed

W(R)=W(R) — kgTHy (33)

where

W(R) = —kpT'In [V " 2g(R)] (34)

and we have defined a “labelling entropy”
1 1 &
HLE§D1H||AN|| :§D ;:1 Inn; >0, (35)

which corresponds to the degeneracy of atoms associated with the CG sites. According to

Eq. (8), the information present in the lost subensemble Sg may be expressed:

Lnap(R) = Inap(R) — Hy, (36)
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where

oy (R) = / dF prr (FIR) In [V pryr ([R)] (37)
Dny (V5R)
and we have defined
pir(T|R) = exp[—Bu(R,1)]/2r(R) (38)

such that for any function f(r,R),

/dr pr(c[R)f(r, R) = / A pur(i|R)J(E R). (39)

(V) Doy (V5R)

where f(,R) = f(r(R,#),R).

Equation (36) decomposes the information lost in CG configuration R into two con-
tributions. The first contribution, . (R), reflects the distribution, pir(t|R), of internal
displacements, r. However, the second contribution reflects the uncertainty associated with
the partitioning of atoms between CG sites. Since this uncertainty reduces Iy, it effectively
increases the configurational information present in the mapped ensemble.

The labelling entropy attains its global minimum Hy,,i, = 0 for decimation maps in which
each site corresponds to a single atom, i.e., ny =1forall I =1,..., N.”> ' In the case that
N < n and each atom contributes to a single site, the minimum value of the labelling entropy
is %D In(ny, —1). For a fixed number of atoms, n, and CG sites, N < n, the labelling entropy
increases as the partitioning of atoms between CG sites becomes increasingly uniform. The
labelling entropy achieves its maximum Hy,ax = %DN In(n/N) when each site is associated
with an equal number of atoms, n; = n/N. If we quantify the resolution of the CG model by
r = N/n € 0,1], then Hymax(r) = —3 Dnr Inr, which attains its maximum at the resolution
r. = e ! ~ 0.37, i.e., when the CG model preserves approximately 37% of the AA degrees

of freedom.

III. SIMPLE APPROXIMATIONS AND MODELS
A. Local harmonic approximation

To this point our treatment has been exact. We now consider a very simple local har-
monic approximation for Eq. (32). Since we have required that the CG model explicitly

represents each molecule and since X AT describes intramolecular displacements about the
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back-mapped configuration, BR, we expect that (R, ) — oo for large intra-site displace-
ments. Accordingly, for each CG configuration, R, we define ug(R) as the minimum of the
AA potential within the subensemble, Sg, of AA configurations that map to R:

up(R) = g}gﬁ u(r) = f«e@rii(r\l/;R)ﬂ(R’ r). (40)
For simplicity, we assume that this minimum corresponds to a unique AA configuration,
rr, and define the corresponding intra-site displacements, rr = ZZAI'R, such that rg =

BR + Xaatr. We expand the AA potential quadratically about this minimum:
1 ~
(R, #) ~ ug(R) + idfThAAdf, (41)

where 6t =  — g and hap = HAA(R) = XLAh(rR)XAA is the projection of the AA Hessian
matrix, h = h(rg) = 0*u/drdr’|_, into the subspace of intra-site displacements. Since we
have assumed that rg is the unique minimizer of u(r) in Sg, we assume that ha, is positive

definite. Consequently, we can evaluate the resulting Gaussian integrals to obtain:

T expl g (R (42)
H@hAA(R)H
Note that the local harmonic approximation does not apply to implicit solvent CG models
that eliminate entire molecules from the CG representation. In order to apply this approxi-
mation to implicit solvent models, u(r) must be considered the free energy for the AA solute
coordinates after the solvent molecules have already been integrated out.

In this local harmonic approximation, the conditioned distribution of intra-site displace-

ments within the lost subensemble, Sg, is simply Gaussian

. — | R .
P (EIR) /(2 [ Car( R e |- 0715 (R | (43)
where
. ~1
Csx(R) = (6108"), = (Bhan(R)) (44)
is the conditioned covariance matrix describing fluctuations in the vibrational intra-site

degrees of freedom about the given CG configuration. The mapped distribution is

pr(R) ~ 271\/(27T)”*D [ANI71Cs: (R)| exp[—Buo (R)]. (45)

As expected, the mapped probability density, pr(R), is proportional to both the Boltzmann

weight of the most probable configuration in the lost subensemble Sgr, as well as to the
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magnitude of the AA fluctuations in Sg. Additionally, pr is uniformly scaled by the Jacobian
factor defining the labelling entropy, which does not relate to AA interactions, but is simply a
consequence of how atoms are grouped into CG sites. In this local harmonic approximation,

the PMF may be expressed according to Eq. (34) with an energetic component

1

that reflects both the temperature-independent minimizing energy, uo(R), and also the
temperature-dependent average energy of the ny,D internal vibrations. This approximation

also gives

1 2\ =P - 1
21n (-) ||Cs:(R)]| 1] —§nXD—HL (47)

Q
|

Lap (R) .

1 (@_Lz)“XDM 1

e —]_r]_ nX ; 48
2 o HANHD 2 (48)

where the volume is V' = LP. As expected In.,(R) increases as the lost subensemble

increases and ||Cs;(R)|| decreases.

becomes increasingly constrained, i.e., as HhAA(R)‘

However, I,,.p(R) is also reduced by the labelling entropy.

B. Harmonic model

We now specialize to harmonic AA potentials for which the preceding approximation is
exact:
1 1
Uharm(r) = §ArThAI‘ = 5 Z Zﬁ A’f’mhm;jﬁATjg. (49)
o g
Here Ar = r — r* describes the displacement from a reference configuration, r*, that mini-

mizes the AA potential and hia.jp = 0*Unarm/OTia0rjs].. is the Hessian of up,m,. We assume

o
the Hessian matrix, h, is positive semi-definite with a nullspace, null(h) = span{n,}, that is
associated with the uniform translation and rotation of all n atoms. This type of potential
naturally arises, e.g., in normal mode analysis when approximating a nonlinear molecular
mechanics potential about r*"**" or when defining an anisotropic network model”" from the

Tirion elastic network model.

By adopting Eq. (26), the harmonic potential may be explicitly expressed
1 — .
T (F. ) = 5 {AfThCGAf +2AFh AT + AfThAAAf} . (50)
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Here At = MAr, Ar = ZZ AAr, and we have partitioned the AA Hessian into a CG com-
ponent, hcg = B'hB, an AA component, has = XL A1hXaa, and a coupling component,
h, = B'hX,,. We assume that the CG mapping preserves the translational and rota-
tional symmetries of the AA potential, such that dimspan{Mn,} = dimnull(h). The SM
demonstrates that, as a consequence, haa is positive definite and, thus, invertible.

Given a fixed CG configuration, R, the AA potential, @pam (R, ), is minimized by

#r = i* — hy,hiAR, (51)
where AR = R—Mr*. Because iy, 18 bilinear in Cartesian coordinates, the local harmonic
approximation is exact:

lparm (R, T) = ug(R) + %&%AA&; (52)

where 0r = r — g, the minimizing AA potential is

up(R) = %ART HAR (53)
and the renormalized Hessian matrix is the Schur complement™

H = hee - hxﬁ;;hl, (54)

which is independent of R. Equation (54) explicitly demonstrates how intra-site interac-
tions impact the mapped ensemble and the CG potential through the coupling component,
h,. Moreover, Eq. (54) suggests that it may be possible to identify “resonant” maps that
eliminate this coupling component, such that the atomic potential can be separated into
independent CG and intra-site components. Section III D considers this possibility further.

Equation (54) corresponds to a previous result of Potestio and coworkers.”” The SM
explicitly demonstrates that Eq. (54) is also consistent with the generalization of our prior
result’’ for the Gaussian Network model: H' = QgMh!M'Qy, where ' denotes the Moore-
Penrose pseudo-inverse and Qg is the projector orthogonal to the nullspace of H."" Since haa
is full rank, the null spaces of h and H have the same dimension.”” The SM demonstrates

that each distinct null-vector, 1, of h maps onto a distinct null-vector 7, = Mn,, of H.

C. Gaussian Network Model

In order to numerically illustrate this framework, we further specialize to the Gaussian

network model (GNM)."”""*> Here we briefly summarize the key aspects of coarse-graining
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the GNM. Ref. 63 provides a much more detailed presentation.

The high resolution GNM represents each residue in a protein with its o carbon. The
GNM potential introduces a linear isotropic spring between each pair of residues that is in
contact (i.e., within a given cut-off, r.) in the equilibrium folded structure, r*. The resulting
one-dimensional potential (D = 1) is given by Eq. (49) with h = I'k where I is a dimensional

factor with units of energy/length? and & is
Rij = dldl] — Hija (55)

where 6;; = 1 if residues ¢ and j contact in r* and 0 otherwise, while d; = > J(£0) 0;;. The
GNM corresponds to a graph describing the network of springs: d; is the degree of residue i,
0;; corresponds to the adjacency matrix, and x;; defines the Kirchhoff or Laplacian matrix
for this graph.””"" The null space of k is spanned by J,, and we define Q, = 1,, — Jnn_lJL
as the projector orthogonal to this null-space. The information content of the AA model
may be expressed

Iaa = (n—1)hy + %lnt&. (56)

Here hy = In(L/Lyyp) — % may be interpreted as the information gained when replacing a

free translational degree of freedom by a vibrational degree of freedom with a characteristic
length-scale L.y, = \/W . In the second term of Eq. (56) we have defined t, =
n~'det;k where det;k is the product of the n — 1 positive eigenvalues of k. The Kirchhoff
matrix-tree theorem states that ¢, is the number of spanning trees that are present in
the AA GNM graph.”" Additionally, we define kK = g~'kg™! in terms of the diagonal

2t

mass-weighting matrix g = > ", eim;/ e;, where m; is the mass of atom 7. Finally, the

mass-weighted vibrational covariance matrix of the AA model may be expressed
c, = (BTR)". (57)

Given the CG mapping, M, the renormalized Hessian matrix is H = 'K where K is
positive semi-definite with a one-dimensional nullspace spanned by Jy = MJ,, and we define

the projector Qg = 1y — JNN_leV orthogonal to this nullspace. According to Eq. (54)
K = Ko — kefiaakl = (QkMKMIQk)' . (58)
The information content of the mapped ensemble is

1
ICG = (N — 1)h1 + 5 IHTK, (59)
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where Tx = N~ 'det; K and det; K is the product of the N — 1 positive eigenvalues of K. In
analogy to the AA case, we define K = G'KG! in terms of the mass-weighting matrix
G = Z?f:l erM 11/ Qe} where M7 is the mass of site /. The mass-weighted covariance matrix
for the mapped ensemble is then

C, = (5Ff<)l. (60)

The SM demonstrates that ¢, and Tk are related according to

te/ T = [|Raall /[|AN]] - (61)

Consequently, the information loss due to the mapping may be expressed
1 .
Lnap = nxha + 5 I ([|&aall /1 ANT]) (62)

Since h; is independent of the CG mapping, Eq. (62) makes it particularly clear that the
information lost by the CG mapping increases with the stiffness of the intra-site vibrations,
||kaal|, but is reduced by the labelling degeneracy, ||Ax|]|.

We define the spectral quality, Q, to quantify the ability of the CG mapping to preserve
the large scale motions of the AA model:

Try Qg V' (gr'g) VQi
Tr,Qz (gk'g) Qz

In the second expression, we have defined Qz = 1, — m;'gJ,Jig and Qx = 1y —

Q=TryC,/Tr,c, = (63)

M'GJ NJ}rVG as projection operators orthogonal to the nullspace of kK and K, respec-
tively, where m; = > m; and M; = Z?[Zl M; are the total mass of the AA and CG
models, respectively. Thus, Q appears very similar to a Rayleigh quotient for aligning
V = g 'M'G with the subspace corresponding to the largest eigenvalues of gk'g, while
accounting for the zero eigenvalue associated with free translational motion. The spectral
quality appears qualitatively similar to the scoring function employed in the variational
approach for Markov processes.” "'~ Appendix C compares the spectral quality with the
ED-CG metric.

D. Resonance between AA and CG models

Subsection 111 B suggested the possibility of resonant mappings that perfectly eliminate

the coupling between the CG and intra-site degrees of freedom in an underlying atomic
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model. In this subsection, we construct an atomic GNM that allows for such a resonance.
We first specify the special CG mapping, M, = Zjvzl eIc}, and construct a CG network
model that perfectly aligns with M,. We then “atomize” this CG model such that the
mapping, M, is resonant with the resulting atomic potential.

As before, we assume that the specified CG mapping, M,, partitions the n atoms into
N disjoint subsets, V; = {i|c;; > 0}, that are associated with each site. The mapping also
determines a corresponding back-mapping, B, = Zyzl J Ie}, and a corresponding participa-
tion matrix, Ay = Z;VZI em;e}, where n; = |V;| is the number of atoms that map to site
I.

We construct the CG model by first constructing a simple, connected CG graph, Gog =
(Vea, Ecc). This graph represents each site with a vertex, Vog = {1,..., N}, and introduces
edges, e;; € Fca, between the sites. This graph determines a CG adjacency matrix, © =
Z?fj:l el@UeTj, where ©;; = 1 for distinct sites I and J that are connected (e;; € Ecg);
otherwise O;; = 0. We now weight each edge according to the number of atoms associated
with the corresponding sites, w(e;;) = n;O; n, . This determines a weighted adjacency
matrix:

N

A= AN@AN = Z eIAUeB, (64)

I,J=1

where Ar; = w(eyy). Similarly, we define a corresponding weighted degree matrix:
N
D = Z eID]e} (65)
I=1

where D; = n;N; gives the weighted degree of vertex [ in terms of N; = 2]}/:1 Ormny,
which is the number of atoms that are associated with sites J that connect to site I. The

Laplacian matrix for the weighted graph is then
K, =D - A, (66)

which is semi-positive definite with a 1-dimensional null space that is spanned by Jy. The
generalized Kirchhoff-matrix tree theorem states that Tk, = N 'det; K, is the sum of
weights for all the spanning trees in the weighted CG graph.””™ We define a GNM-like
potential associated with the weighted CG graph:

1
W.(R) = §F5RTK*5R + const (67)
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where {R = R — R* for an arbitrary reference CG configuration, R* = Mr* and
const is configuration-independent constant. The resulting CG distribution is Pr(R)
exp [—3STORTK,IR].

We now atomize the CG potential, W,. We first transform K, from the CG configuration

space into the AA configuration space:

N
k., =MKM, = Z cr (Didry — Ary) CT;; (68)
1,J=1

such that orfk,.or = 6TTK,6F. Note that k, accounts for atomic interactions between CG

sites but not for interactions within sites. Consequently, we define
0k = ZpaknZl (69)

where Kk, is an arbitrary n, X n, matrix describing intra-site interactions and Zjx =

[ZN41 - 2y is the n X ny matrix defined in Section IIC. We define an AA spring matrix
k =k, + K, (70)
and a corresponding AA potential

u(r) = %Fér“@ér, (71)

*

where ér = r — r*. By construction, kKcqg = BIkB, = K, and k, = BikXs, = 0.
Consequently, Eq. (71) can be exactly decomposed into independent contributions from
CG and intra-site degrees of freedom. Moreover, every AA potential of the form given by
Egs. (68) — (71) corresponds to the CG potential given by Eq. (67). Equivalently, every
such AA model gives rise to the same mapped ensemble, pr(R) = Pr(R). Thus, we see
explicitly that the information lost from this AA model due to coarse-graining corresponds
to the intra-site spring matrix, k.. However, Eq. (71) does not necessarily correspond to an
atomic GNM.
We can gain additional insight by specializing to geometric-center mappings, ¢; = n; 'j;.
In this case,
N N
k.= Z NiP; — Z jI@IJjij (72)
=1 1,J=1
where P; = j ml_lj} is a projection operator describing the coarse-grained motion of the

atomic group associated with site I. Moreover, in this case we can explicitly construct an

atomic network, Gax, that is consistent with the CG network, Gcg.
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For each site, I, we construct a simple connected intra-site graph, G; = (V7, Ey), by
introducing edges e;; € E; between the atoms 7,j € V; that are associated with the site.
For each pair of atoms associated with the site, we set 8;; = 1 if e;; € Ey; otherwise 6;; = 0.
For each atom i € V;, we define d;; = Z]EVI 0;; as the number of intrasite edges to atom 4.

The Laplacian matrix for the intra-site graph, Gy, is

KIin = Z ez‘(dli5z‘j - gij)ej’- (73)

i?jGVI
We form the atomic graph, G'aa, by connecting the intra-site graphs, Gy, according to the

original CG network, Gog. Specifically, for each distinct pair of sites, I # J, we require

that all of the associated atoms, ¢ € V; and j € Vj, are either connected or not connected

n

according to ©r;: 0;; = O1;. The Laplacian for Gaa is kK = d — 6 where 0 = Zi,j:l eieije}

is the adjacency matrix and the degree matrix is

d= ZZel (d”—FN])eZT. (74)

I=1ieVy

It then follows that & is given by Eq. (70) with

N
ok = Zénl (75)
=1

0K = Krin + N/Qg (76)

and Q; = 1; — P; is a projection operator onto the internal motions of site I. The AA
GNM potential for G, is then given by Eq. (71). This AA potential maps to the same CG
Kirchhoff matrix, K,, for every choice of dk.

As might be expected, dk reflects independent, additive contributions for each site. How-
ever, these contributions reflect not only the intra-site bonding network, K,,, but also the
effects of inter-site bonds. Note that the Kirchhoff matrix, k;.., for a fully connected intra-
site graph, Gy, is proportional to the projection operator Q;: k. = n;Q;. Thus, Eq. (76)
indicates that the inter-site bonds have been uniformly smeared across the intrasite network
in dk;. Moreover, it follows that the information lost by coarse-graining reflects both the

intra-site bond networks, as well as the atomic bonds between CG sites:

N
|faall = [ ] detidks. (77)

I=1
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Equation (76) demonstrates that the inter-site connections systematically increase detdk;.
In particular, if the intra-site network is fully connected, K7, — 1;Qy, then det;dk; achieves
its maximum: det;0k; — (n;+ Nl)mfl. Moreover, it is interesting that the ratio of

weighted spanning trees for the AA and CG graphs can be expressed:

N

[ _

ﬁ = Hnl ldet15l<:,1. (78)
* I=1

IV. METHODS
A. High and low resolution models for actin

In section VA we adopt a Gaussian Network Model (GNM) as a simple model for the
equilibrium fluctuations of actin about its folded conformation. We defined the actin equi-
librium structure by the three-dimensional coordinates for the 369 residues in the PDB
structure 1J6Z, including the coordinates of the methylated histidine 73.”" Although adeno-
sine diphosphate (ADP) is present in this PDB structure, we did not explicitly represent
ADP in the GNM. The high resolution GNM represents each amino acid with its o carbon.
We employed ProDy version 3.0.4" to determine the Kirchhoff matrix, «, for the high res-
olution GNM, while adopting a cut-off of r. = 7.5 A to identify contacting residues. We
assigned the same mass, m, to each residue in the high resolution GNM.

We determined the normal mode frequencies, w;, of the high resolution GNM from the
eigenvalue equation [Tk —w?g?| = 0, where T' is the GNM spring constant, and g =
diag(m!/?) is the n x n mass-weighting matrix.””"” We define the frequency scale by wy =
\/F/_m and report dimensionless scaled frequencies @ = w/wy — w in the following.

We determined the CG coordinate, R;, of each site, I, by the geometric center of the
n; atoms associated with the site. We defined the mass, my, of site I by the net mass of
the associated atoms, i.e., m; = nym. We determined the normal mode frequencies, wy, of
the low resolution GNM from the eigenvalue equation 'K — w?G? = 0, where K is the
CG spring matrix, and G = diag(m}/ 2) is the N x N mass-weighting matrix. We report
dimensionless frequencies for the CG model by scaling with respect to the same constant,
wo-

Equation (62) expresses the mapping information loss as a sum of two terms, L., (M) =

nyxhi+3In (||Kaal| /||An|]). While the second term depends upon the details of the mapping,
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M, the first term depends only upon the number of degrees of freedom, n, = n — N, that
have been eliminated from the high resolution model. This first term is proportional to the
dimensional constant, hy = In[L/Ly;,] — 1/2, where L is the length of the system enclosing
the protein, L.y, = \/W is a characteristic length-scale for thermal vibrations, and
L/Ly, > 1 in order to analytically treat the GNM. For a fixed number of CG sites, N,
this first term, nyh, only introduces an overall shift defining the baseline for I,,,. In the
following numerical calculations, we adopted AI" = 1 A~2, which is qualitatively consistent

with the experimentally measured B-factors for actin,”” and L/L., ~ 79.8.

B. Mapping space

We consider N-site CG representations that partition the n atoms into N disjoint con-
nected subsets and associate a CG site with the geometric center of each subset. Each N-site
mapping, M, is in one-to-one correspondence with an atomic partition (V,...,Vy) where
Vi = {iley; > 0} such that UY_,V; = {1,...,n} and V; N V; = 0 for all I # J. (In order
to identify a unique partition, we order the sets V; such that atom 1 is in V; and set V;
contains the first atom that is not in the sets Vi,...,V;_1.) We require that the atoms, V7,
associated with each site, I, are connected by the springs of the high resolution GNM. We
defined the N-site mapping space, My, as the set of all such N-site maps.

We employed Monte Carlo (MC) simulations to explore the space, My, of N-site CG

representations for actin. Each MC simulation sampled a Boltzmann distribution
P(M; B, A, Epias) x exp [—B(E(M) + Ao (M) + Epias(M))] (79)

where £(M) is the base energy function, o*(M) = var{n,...,ny} is the variance in the
size of the N sites, and &pas(M) is a bias energy, while § and A\ are sampling parameters
analogous to the inverse temperature and external pressure in a constant NPT simulation.
Here we defined our base energy function as the non-trivial part of Iog and Lya,: E(M) =

InTx(M) = Int,, — In(||kaa(M)||/ ||An(M)]]). The bias potential is defined

1 1 1
Evias (M5 Qi €5, 07) = ko (QM) — Qu)* + ke (E(M) — &) + Shoed (*(M) — o)
(80)
where Qk, &, of, and the corresponding spring constants were chosen to target specific

regions of mapping space. In the majority of simulations kg = 0.
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As in our previous works, each MC simulation in My started from the same block map,
Mgy. Given a fixed number, N, of CG sites, we define the block size ngy = floor(n/N).
We define the block map, Mgy, by associating CG sites I = 1,..., N — 1 with the first
N — 1 blocks of ngy consecutive residues in the protein sequence. We associated the last
CG site with the remaining n — ngy (N — 1) residues. Starting from Mpy, we employed
a steal move set to perform a random walk through mapping space. Given a map, M, a
steal move proposes a new map, M’, by moving a single atom between two sites in such a
way that both modified sites remain connected. The move is accepted or rejected according
to a criterion that satisfies detailed balance. The MC simulations employed NetworkX to
analyze the graph associated with each map.”” We performed each MC simulation for 2.5
x10° steps, while discarding the first 5 x 103 MC steps as equilibration and sampling every
10*" map from the remainder of the simulation. Ref. provides a much more detailed

description of both mapping space and our MC methods.

C. CG Bond Distributions

In section VA we present CG bond length distributions for different N = 2-site CG
representations of the high resolution actin GNM. For these calculations, we define the high
resolution configuration by the x-coordinates of the a carbons for the n = 369 residues
in the actin sequence, r = (x1,...,x,). Similarly, we define the high resolution reference
configuration, r*, by the corresponding x-coordinates in the PDB structure 1J6Z.”” The N =
2-site CG representation specifies the x-coordinates for the 2 sites, R = (X3, X3), while the
mapped reference structure R* = Mr* = (X7, X3) explicitly depends upon the mapping,
M. The N = 2-site mapped distribution is

pr(R; M) o exp [—%ﬁféRTKéR} = exp [—iﬁm (R— R*)*| o« pr(R; M). (81)

In the first Gaussian expression JR = R — R* and K = K(M) is the CG Kirchhoff matrix,

which depends upon M according to Eq. (58). In the second Gaussian A = A(M) is the

positive eigenvalue of K(M), R = X; — X5 is the CG bond length, and R* = X} — X is the

CG bond length in the mapped reference structure, R*. This second Gaussian determines
the mapped bond length distribution, pgr(R; M).

Section V A also presents bond distributions for randomly selected maps that are repre-

sentative of particular values for the spectral quality and labelling entropy. For each target
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value of the spectral quality, Q;, we identified the set, S(Q;), of all sampled maps, M, with
Q,;—0.0005 < Q(M) < Q;+0.0005. Similarly, given the set of labelling entropies, {Hy, (M)},
for the sampled maps, we selected 7 representative values, Hy, ;. Since the spectrum for the
labelling entropy is discrete, we associated each representative value, Hy,, also with the
adjacent values in the spectrum. This allows us to identify a set, S(Q;, Hr), of sampled
maps with corresponding values of the spectral quality and labelling entropy. We randomly
selected one map, M, from this set, S(Q;, Hr;x), i.e., according to a uniform distribution.
We presented the bond distribution for each sampled map as a function of the displacement

from equilibrium, 6R = R — R*.

D. Perturbing AA spring matrices

In Section V B, we consider the impact of perturbing the underlying spring matrix, &,
either by shuffling or deleting randomly selected springs. Let G = (Vaa, E) be the graph
associated with k., where Vaa = {1,...,n} is the set of n atoms and E = {e;;} is the set
of springs defined by k.. We define the set of backbone springs, Ei, = {e;; € E||i — j| = 1},
and the set of long-ranged springs E, = E — E}, = {e;; € E||li — j| > 1}. We determined
a set of springs, Fy, to perturb by randomly sampling a fraction, f, of the springs in E,
without replacement. In the case of shuffling experiments, we first randomly selected one
atom k of the pair {7, j} for each sampled spring e;; € E,. We then randomly selected a new
atom k' ¢ {i,j} that was not connected to atom k. We replaced the spring e;; € E with a
new spring ey ¢ E with k € {i,5} and &' ¢ {7,7}. In the case of deletion experiments, we
simply deleted the springs in Fy from E. In both cases, we repeated this process 100 times

for each fraction, f, of edges.

E. Distance in mapping space

As in our previous studies,””"" we adopt the variation of information (VI) as a formal
metric for measuring the distance between representations based upon the overlap between
the corresponding atomic partitions.”” Consider a mapping, M, that corresponds to the
atomic partition (Vi,...,Vy), where Vi = {ilc;; > 0} is the set of atoms associated site

I. We define n; = |V;| as the number of atoms in the set V; and Pr(M) = n;/n as the
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probability of randomly selecting an atom in V;. The entropy of this partition”’ is then
N
Hy(M) = — 37 Py (M) In P, (M), (52)
I=1

Now consider a second mapping, M’ ~ (V/,...,VY), where V], = {i|cp; > 0} is the set of
atoms associated with site I’ in M’. We define n;» as the number of atoms in the set V;NV7,.
We then define Pr; (M, M') = n;/n as the probability of randomly selecting an atom that
is associated with both site I in M and also site I’ in M'. Given the two representations, M
and M’ we define the joint entropy, Hy(IM, M’), and the mutual information, MI(IM, M),

associated with the corresponding partitions”’ by

Hy(M,M') = =) > Prp(M, M) In Py (M, M) (83)

I=11'=1

(84)

MI(M,M/) = —iiPH/(M,M’)In{

I=11'=1

Prr(M, M) }
P (M) Pp (M)
The VI quantifies the information in P;p(M,M’) that is not shared between the two

mappings
VI(IM,M’) = Ho(M,M’) — MI(M,M’) = H;(M) + H;(M') — 2MI(M, M’). (85)

In Section V B, we employ VI to measure the distance of a map, M, from the resonant

mapping, M., according to d,(M) = VI(M, M,,).

V. RESULTS AND DISCUSSION
A. Labelling entropy

We first investigate the impact of the CG mapping, M(r), upon the partitioning of atomic
configurational information between the mapped distribution, pr(R), and the conditioned
distribution, pyr(r|R), that describes the atomic degrees of freedom that are eliminated
from the CG model. We adopt a GNM as a simple high resolution model for the equilibrium
fluctuations of actin about its folded conformation. The high resolution GNM represents
each amino acid with its o carbon and introduces an isotropic linear spring between each
pair of contacting residues that are within r. = 7.5 A in the folded reference structure, r*.

For simplicity, we assign the same mass, m, to each amino acid.
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FIG. 1.  Analysis of the high resolution GNM for actin. Panel a presents a ribbon cartoon of
the reference folded structure, r*. Each amino acid is colored according to its biochemical domain
assignment.”’ Domains 1, 2, 3, and 4 are colored blue, red, yellow, and green, respectively. Panel
b presents intensity plots of the AA Kirchhoff matrix, k, and the scaled vibrational covariance
matrix, B¢, = k!, above and below the diagonal, respectively. The horizontal bars adjacent to
each axis indicate the domain assignment of each residue. Panel ¢ presents the density of vibrational
states for the AA GNM, which has been normalized to integrate to 1. The vertical lines in panel
¢ present the vibrational frequency for various N = 2-site CG representations. The dashed blue,
dotted green, and dashed-dotted orange lines correspond to the representations that maximize
Q, maximize Ijap, and minimize Iy,p, respectively. The dotted-dashed black line corresponds to
the block map, Mps, that was employed as the initial map for the MC simulations described in

Sec. IVB. 26



Figure la presents a ribbon cartoon of this reference actin structure, r*. The protein
secondary structure primarily consists of a-helices and [-strands that are connected by
turns and coils. Previous biochemical studies have decomposed the actin structure into four
domains that are indicated by the colors in Fig. 1a.”"

The top half of Fig. 1b presents the upper half of the Kirchhoff matrix, &, for the high
resolution actin GNM. Each black mark in Fig. 1b identifies a pair of contacting residues
in the reference structure. The color bars parallel to the two axes indicate the domain
assignment of each residue. The black marks that are slightly above the diagonal of Fig. 1b
indicate contacts between residues that are close in sequence, while black marks that are
further above the diagonal indicate contacts between distinct secondary structures. The
large majority of contacts correspond to residues within the same domain. The Kirchhoff
matrix also indicates significant inter-domain contacts between domains 1 and 2, between
domains 1 and 3, and between domains 3 and 4.

The bottom half of Fig. 1b presents the lower half of the scaled covariance matrix, fI'c, =
k!. The covariance matrix highlights strong positive correlations within domains 2 and 4.
The covariance matrix also emphasizes that the motion of domains 1 and 2 are strongly
anti-correlated with the motion of domains 3 and 4.

The bottom panel of Fig. 1c presents the normalized density of vibrational states for
the high resolution GNM. As expected, the density of states includes a few low frequency
normal modes and many high frequency normal modes.

We consider N-site maps that partition the 369 « carbons into N disjoint sets, Vi, ..., Vy,
of connected atoms. We define the CG coordinate, Ry, of site I by the geometric center of
the corresponding atomic set, V;. We explored the space of CG maps by performing Monte
Carlo (MC) simulations with an ergodic “steal” move set. Starting from a given map, M,
the steal move set creates a new map, M’, by moving a single atom to a new site.

Figure 2 characterizes three particular N = 2-site mappings that were sampled dur-
ing these MC simulations. The top panel presents the mapped probability distribution,
pr(R; M), for the CG bond-length, R = Ry — Rs, defined by each CG representation, M.
Clearly, the CG bond distributions are very different for the three mappings. The ribbon
cartoons indicate the corresponding atomic partitions, which are also indicated by the hori-
zontal bars below the distributions. In the cartoons and the horizontal bars, each residue is

colored according to the associated CG site. The vertical lines in Fig. 1c indicate the vibra-
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FIG. 2. Mapped bond distributions for three different N=2-site representations of the high
resolution GNM. The red arrow indicates the single residue that is assigned to the second site in
the map, Mlﬁ;.ap’ with maximal information loss. The five horizontal bars present various partitions
of the 369 amino acids. The first bar colors the biochemical domains 1 and 2 blue, while coloring

93,

domains 3 and 4 red.”””" The remaining 4 bars assign residues according to (2) the two rigid
domains identified by the SPECTRUS webserver;”” (3) the map, Mg, that maximizes Q; (4) the

map, Ml;.ap’ that minimizes Inap; and (5) the map, Ml?;ap’ that maximizes Iiap.

tional frequencies for these three representations. The first three entries of Table I further
characterize these 2-site maps. In particular, Table I reports the spectral quality, Q(M),
and mapping information loss, L., (M), for each mapping, M. The spectral quality, which
is defined by Eq. (63), quantifies the extent to which a given mapping preserves the low
frequency, large amplitude motions of the high resolution model. Conversely, I,,p, quantifies

the configurational information that is lost due to the mapping according to Eq. (12).

The blue distribution in Fig. 2 corresponds to the sampled map, My, with maximal
spectral quality. Because Mg optimally preserves the mass-weighted covariance, the associ-
ated atomic partitioning nicely aligns with the lowest frequency breathing mode of the high
resolution GNM. Consequently, Mg effectively associates the first CG site with domains 1
and 2, while associating the second CG site with domains 3 and 4. This mapping is highly

consistent with our physical intuition and, indeed, almost perfectly aligns with the two most
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TABLE I. Extreme representations of the actin GNM with N= 2-, 4-, and 12-sites. For each
representation, we report the spectral quality (Q), mapping information loss (Imap), and labelling
entropy (Hp,). We also report the number of intra-site and inter-site bonds, np.Intra and 1y Inter,
respectively. Consider a high-resolution bond between two atoms, ¢ and j, that are associated with
CG sites, I and J, respectively. We classify the bond as intra-site if I = J (i.e., the atoms are

assigned to the same site) and inter-site if I # J (i.e., the atoms are assigned to different sites).

N Mapping Q Imap Hp, Mbilntra  "b;Inter
2 max Q: Mo 0.112 1795.2 5.2 1637 43
2 |max Lpap: Ml$ap 0.005 1795.8 3.0 1675 5)

2 |min Lyap: MIE.ap 0.001 1793.0 5.2 767 913
4 max Q: Mg 0.222 1785.3 8.8 1578 102
4 |max Lpap: MIr-'r—lap 0.024 17874 3.5 1652 28
4 |min Lpap: Mmap 0.004 17794 9.0 404 1276
12 max Q: Mg 0.362 1743.7 20.2 1296 384
12 |max Lyap: Ml$ap 0.052 1751.1 4.0 1598 82
12 |min Lpap: MI;.ap 0.144 1732.6 20.1 387 1293

rigid regions identified by the SPECTRUS webserver.

Because Mg defines the two sites by splitting the actin structure into two distinct halves,
the equilibrium bond length in the mapped ensemble is quite long. Moreover, because
M preserves the low-frequency breathing mode, the corresponding mapped distribution is
quite broad and relatively uninformative. Conversely, Mo partitions the actin residues such
that the overwhelming majority of the high resolution GNM bonds are intra-site bonds,
i.e., between residues that are associated with the same CG site. This results in a rather
sharp conditioned distribution, pyr, governing the intra-site degrees of freedom in the lost
ensemble. Accordingly, the mapping information loss, Iy.p(Mg), for this mapping is rather
large.

The orange distribution corresponds to the sampled mapping, MI;ap, with minimal in-
formation loss, i.e., minimal I,,,. The two sites are again quite similar in size. However,
this mapping is not consistent with our physical intuition because the two sites do not cor-

respond to coherent structural features. Rather the two sites appear to form alternating
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stripes on both the protein sequence and the folded structure. Consequently, 1\/111—“ap maps
the two sites almost on top of each other, which results in a very short equilibrium bond
length in the mapped ensemble. For the same reason, more than half of the bonds in the
underlying GNM are now inter-site bonds, i.e., between residues associated with distinct
sites. The many inter-site bonds strongly constrain the motion of the CG sites. This re-
sults in a very narrow and, thus, highly informative mapped probability density. In this
case, MI;]ap appears to maximize configurational information in the mapped ensemble by
preserving localized high frequency “noise” from the AA model.

The two preceding cases suggest that it may be advantageous to adopt CG maps that
mazximize the lost configurational information, I.,. This would appear to simplify the
mapped ensemble, pg(R), by minimizing the high frequency noise that is preserved from
the AA model. Moreover, this approach would maximize the information contained in the
conditioned distribution, pyr(r|R), which should minimize the effective degeneracy of each
CG configuration, R, and render back-mapping efforts more meaningful. However, this
intuition fails.

The green distribution in Fig. 2 corresponds to the sampled mapping, MIf;ap’ that maxi-
mizes Iap. This mapping associates one site with a single residue in a flexible loop, while
representing the remainder of the protein with a single site. As a result, only 5 of the
underlying GNM bonds connect residues that have been assigned to different sites. Conse-
quently, the corresponding mapped distribution is very broad and, thus, information-poor.
Nevertheless, MI?;ap is clearly inconsistent with our physical intuition.

In order to understand these observations, we analyze the space of 2-site CG representa-
tions. Figure 3b presents a scatter plot of {Q(M), L.p(M)} for the 2-site representations
that we sampled during our MC simulations of mapping space. The blue, orange, and green
stars indicate the three maps My, MI;W, and MI;ap, respectively, that were considered in
Fig. 2. The remaining points are colored according to the labelling entropy, Hy, = % > Inng.

The colors appear to form stripes on the scatter plot in Fig. 3b. The stripes of a given
color are consistent with our initial intuition. Among maps with a given labelling entropy,
increasing I,.p reduces Icg, which results in a broader mapped distribution that better
preserves large scale motions and, thus, increases Q. Equation (62) clearly explains this
observation. Fixing Hy, corresponds to fixing ||Ay|| = exp[2HL]. Consequently, increasing

Imap corresponds to increasing ||kaal|, which effectively transfers atomic bonds from the
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FIG. 3. Analysis of N=2-site representations for actin. Panel b presents a scatter plot of sampled
representations as a function of Q and I,,,p. Each point of this scatter plot is colored according to
Hj,. Panel a presents a scatter plot of the same representations as a function © and imap = Imap+Hr.
The blue, orange and green stars indicate the maps Mg, MI;,ap’ MIfBap’ respectively, from Fig. 2.
The red star, which obscures the blue star, indicates the CG representation that associates site 1

with the first two actin domains and site 2 with the second two actin domains.

mapped ensemble into the lost ensemble. This results in larger displacements in the mapped
ensemble and, thus, increases Q.

Figure 3 also reveals why our initial intuition failed. The colors in Fig. 3b demonstrate
that I,.p systematically increases as Hy, decreases, as indicated by Eq. (62). In particu-
lar, the minimally informative mapping, Ml$ap, maximizes I,p by minimizing Hy, with a

representation that associates one site with a single residue. Conversely, the maximally
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informative mapping, ML—W, and the mapping with maximal spectral quality, Mg, both
correspond to rather homogeneous mass distributions and, thus, relatively high labelling
entropy.

This suggests defining a modified mapping information loss, imap = Lap + Hp, = nyhy +
s1In||Raall, that may provide a better predictor for the spectral quality, Q, by accounting
for the labelling entropy. Figure 3 demonstrates that this is indeed the case: imap and Q
appear perfectly correlated among N = 2-site maps.

These results indicate that the information content of the mapped ensemble, Icg = Iaa —
Imap = Iaa —imap—l—HL, systematically increases as the mapping becomes more homogeneous,
as quantified by the labelling entropy, Hy, = %ln [|An||. Section II motivated this effect
via the Jacobian associated with the transformation to CG coordinates in Eq. (27), while
Appendix B derived this effect for the GNM via the determinant identity in Eq. (B1). This
effect can also be motivated by simple statistical considerations.

We have partitioned the n atomic coordinates r = (ry,...,r,), into two disjoint sets,
V1 and V5, and defined the CG coordinates R; = nl_l Zievf r;. The central limit theorem
suggests that, as ny — oo, the variance, 012%[, in the CG coordinate, Ry, should scale as nl_l.
For simplicity, we approximate the variance in both site coordinates by 02R1 ~ 0% /n;, where
o2 corresponds to the variance in the coordinates of a characteristic atom. Assuming that

the CG coordinates are weakly correlated, the variance in the CG bond length, R = R — R,

is
2 2 2
2 o 2 2 NUT UT nar
JRNJR1+0R2N——|——:
ny

ny ||An|l

Thus, given these simplifying approximations, the width of the mapped ensemble scales

(86)

inversely with ||Ay|| = nins. If we define ¢ = ny/n as the fraction of atoms assigned to site
1, then 0% ~ n~'o?/f(¢) where f(¢) = ¢(1 — ¢). On the interval 0 < ¢ < 1, f(¢) achieves
its maximum at ¢ = 1/2 and approaches its minimum as ¢ — 0 or 1. Therefore, at least
in this simple example, the uncertainty in the mapped ensemble systematically decreases as
the mapping becomes increasingly uniform.

The preceding analysis considered an extremely simple case. Nevertheless, Fig. 4 demon-
strates that these considerations qualitatively apply for the actin GNM. Figure 4 presents
mapped bond displacement distributions, pgr(dR; M), for representative 2-site CG represen-
tations with varying labelling entropies, Hy,. The top, middle, and bottom panels compare

representations with relatively low, intermediate, and high spectral quality, respectively.
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FIG. 4. Mapped bond displacement distributions, pr (0 R; M), for representative N=2-site maps,
M. The top, middle, and bottom panels correspond to representations with relatively low (Q =
0.002), moderate (Q = 0.052), and high (Q = 0.092) spectral quality. Each curve is colored
according to the labelling entropy, Hy,, of the corresponding mapping. Section IV C describes these

calculations in greater detail.

As expected, the mapped ensemble generally broadens as Q increases. Moreover, among
representations with a given spectral quality, the uncertainty in the mapped ensemble sys-
tematically increases as the labelling entropy decreases, i.e., as the site size distribution
becomes increasingly heterogeneous. Consequently, there exist maps with very heteroge-
neous site distributions that are characterized by both very low spectral quality and also

very broad, uninformative mapped ensembles.

To this point we have focused on two-site CG representations. We now briefly consider
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FIG. 5. CG representations that maximize Q (left), minimize I;y,p (center), and maximize Iyap
(right) for N = 4-site (top) and 12-site (bottom) representations. The horizontal bars between the
two rows of representations indicate corresponding residue assignments. In each vertical stack of
horizontal bars, the top and bottom bars indicate the corresponding 4- and 12-site CG represen-
tations, respectively, while the central bar indicates the 4 domains identified in the biochemical
literature.”” In the left-most stack, the second and fourth horizontal bars indicate the rigid domain

decomposition identified by the SPECTRUS webserver’® for 4 and 12 domains, respectively.

slightly higher resolution representations of actin. We again performed MC simulations to

explore mapping space for N = 4- and 12-sites.

The left column of Fig. 5 presents the sampled maps, Mg, that maximize Q for N =
4- and 12-site representations. The dashed blue curves in Fig. 6 demonstrate that these
maps nicely preserve the lowest frequency modes of the AA model, while filtering out the
high frequency modes. Table I indicates that these maps are characterized by a relatively
high labelling entropy and, thus, a relatively uniform mass distribution. Moreover, these
maps are characterized by a relatively large number of intrasite bonds, which corresponds
to a broad mapped distribution, pr(R), and a narrow conditioned distribution, pyr(r|R).
At both resolutions, the map My is consistent with our physical intuition, as it assigns the
CG sites to distinct structural motifs. These representations are also quite consistent with

the rigid domains identified by the SPECTRUS webserver.” Interestingly, the 4-site map

34



with maximal spectral quality aligns almost perfectly with the four actin domains that are
discussed in the biochemical literature.”” Moreover, this 4-site representation appears similar
to the CG representation recently identified by combining the ED-CG method with K-means
clustering.”” Thus, the spectral quality appears to be a reasonable metric for identifying high

quality CG representations of actin with N = 2, 4, or 12 sites.

3.0

— AA

--—- Max Q
Min Imap

...... Max [map

- - Block Map

FIG. 6. Normalized vibrational DoS for various CG representations of actin. The solid black
curve presents the AA DoS, while the dotted-dashed black curve present results for the block map,
Mpgpy. The dashed blue, dotted green, and dashed-dotted orange curves present results for the
representations that maximize Q, maximize I,ap, and minimize Iyap, respectively. Panels a and b

present results for N = 4 and 12 -site representations, respectively.

The center and right columns of Fig. 5 present the sampled maps, er;ap and Mmap,
that minimize and maximize the mapping information loss, I,,ap, respectively. The dashed-
dotted orange and dotted green curves in Fig. 6 present the vibrational densities of states
for these representations. The representations that minimize I, do not associate CG
sites with coherent groups. Rather, these representations partition residues in such a way
that more than 75 % of the atomic springs link residues in distinct CG sites. As a result,

these representations generate very narrow mapped ensembles that reflect the localized and,
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thus, informative high-frequency motions of the high resolution model. Conversely, the
representations that maximize I, represent the overwhelming majority of the protein with
a single residue, which results in a relatively small value for the labelling entropy, Hy,.
Consequently, Fig. 5 indicates that neither minimizing nor maximizing I,,,, is consistent

with our physical intuition.
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FIG. 7. Analysis of N = 4-site (left) and 12-site (right) representations for actin in analogy to
Fig. 3. Panels b and d present a scatter plot of sampled representations as a function of Q@ and
Imap with each point colored according to Hy,. Panels a and c present scatter plots of the same
representations as a function Q and imap = Imap + Hr. The blue, orange, and green stars indicate
the three maps from Fig. 5 that maximize Q, minimize I,,p, and maximize Iy, respectively. The
blue stars in panels a and b are obscured by the red star, which indicates the mapping defined by

the biochemical domain structure.

Figure 7 demonstrates that the labelling entropy also plays a significant role for higher
resolution representations. The bottom row of Fig. 7 presents a scatter plot of Q and I,
for sampled CG representations with N = 4- and 12-sites. As in Fig. 3, we have colored the
points according to the labelling entropy, Hy, (M), for the corresponding CG representation,
M. There appears to be a significant correlation between Q and I,,,, among maps with a
given Hp, but I,., systematically increases as Hj, decreases. Consequently, there is little
correlation between Q and I,., across the ensemble of sampled maps. The top row of

Fig. 7 presents corresponding scatter plots of Q and imap = Inap + Hy that account for
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the information loss associated with the site assignments. As in Fig. 3 for N = 2-site
representations, Fig. 7 demonstrates a very strong positive correlation between Q and imap
for N = 4 and 12, although this correlation is no longer perfectly 1-to-1 at these higher

resolutions.

B. Resonance between AA and CG models

In Section ITID, we considered the possibility of a “resonance” between a high resolu-
tion model and a CG mapping. In this case, the high resolution potential is separable and
does not couple the AA and CG subspaces of the high resolution configuration space. We
construct this resonance by first specifying a CG spring matrix, K,, along with a corre-
sponding CG mapping, M,. We use M, to project K, into the AA configuration space,
K, = k., = MIK*M* We define the high resolution spring matrix, &, by decorating k.,
with atomic details, k: k = k,+0k. By construction, the mapping, M, perfectly preserves
the underlying CG component of the AA model, while eliminating these atomic details. In
this section, we briefly consider how robust this resonance is to the choice of mapping and

to the details of the atomic potential.
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FIG. 8. Toy model illustrating “resonance” between an atomic model and the CG mapping.
Panels a and b present the corresponding CG and AA spring matrices, K, and k., respectively.

Panel ¢ presents the normalized vibrational density of states for both models.
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Figure 8 illustrates a toy model for this notion of resonance. Figure 8a presents the spring
matrix, K,, for an N = 9-site CG model. This spring matrix is reminiscent of the GNM for
three anti-parallel [ strands. For simplicity, we assume that the mapping, M,, defines the
coordinates of each CG site, I, from the geometric center for ny = 40 consecutive atoms in
the protein sequence. As above, we assume that each atom has the same mass, m, and that
each CG site has a mass m; = 40m.

The CG spring matrix, K, is the Laplacian matrix for the weighted graph, G¢q, that is
shown in the inset of Fig. 8c. We weight each CG edge, €1, in Gog by w(ery) =n; X ny =
1600. Figure 8b presents the corresponding all-atom (AA) spring matrix, k.. As discussed
in Section IITD, there exists a family of AA spring matrices, kK = k, 4+ dk, that are all
resonant with K, but that differ in atomic details, dx. For simplicity, we have selected the
AA spring matrix, K., in this family that is maximally connected, i.e., k. = (n; + N;)Qy.
Each spring in the CG network is 1600 times stronger than the atomic springs, but the AA
network compensates for this by introducing 1600 springs between each pair of connected
CG sites. Note also that, while the toy AA model has a similar number of atoms to the

actin GNM, this toy model is much more strongly coupled.

TABLE II. Normal mode frequencies, w, and degeneracies, 2(w), for the AA and CG toy models.

w  [Qaa(w)|Qcc(w)

6.325 2 2
8.944 1 1
10.954| 158 2

12.649| 158 2
14.142| 39 0
15.492 1 1

The blue curve in Fig. 8c presents the normalized vibrational density of states, p(w), for
the AA toy model, which is also summarized in Table II. The AA density of states (DoS)
contains 359 finite modes, but these are distributed across only 6 finite frequencies due to
the high symmetry of k. In particular, the AA DoS contains two symmetric modes at the
fundamental frequency, w =~ 6, as well as a single mode at w ~ 9. As expected the AA DoS

is overwhelmingly dominated by higher frequency modes, w > 10.
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The orange curve in Fig. 8c presents the normalized vibrational DoS for the CG model.
While the CG DoS contains only 8 modes, it perfectly preserves 5 of the 6 finite frequen-
cies in the AA DoS.”" Moreover, the CG model perfectly preserves both of the symmetric
fundamental modes at w =~ 6, as well as the slightly higher nondegenerate mode at w ~ 9.
However, the shape of the CG DoS is dramatically different from the AA DoS. Whereas less
than 1 % of the AA modes have frequencies below 10, nearly 40 % of the CG modes have
frequencies below 10. Due to the high symmetry of the toy model and the strength of the
CG springs, the high frequency AA mode at w ~ 16 actually lies in the CG subspace and is
preserved by the mapping. Nevertheless, the resonant mapping perfectly preserves all low
frequency modes of the AA model and completely filters out the high frequency modes that
reflect atomic decorations.

Given the fixed AA spring matrix, &, in Fig. 8b, we now consider how the properties of
the CG model deteriorate as the CG mapping, M, moves off resonance. Specifically, starting
from the resonant mapping, M,, we consider each neighboring map, M, that differs by the
assignment of a single atom. We select the map, My, that has lowest spectral quality
within this neighborhood. We repeat this process to step through mapping space in order to
generate a sequence of maps of decreasing spectral quality, Q(M.,) > Q(Mg;) > Q(Mgs) >

- > Q(Mgy), until the walk terminates when we reach a map, Mg, that has lower
spectral quality than any of its neighbors. While this walk provides some local information
about moving off resonance, it does not address the statistical properties of mapping space.
It may be beneficial to statistically characterize the neighborhood of M, in future work.

Figure 9 characterizes this walk away from the resonant mapping, M. During the first 45
steps in this walk, site 9 grows by stealing atoms from site 1. This results in the formation
of new CG springs that couple site 9 to sites 1, 2, and 6. These new springs break the
degeneracy of the lowest frequency modes. While the frequency of mode 1 remains near
its initial value, the frequency of mode 2 rapidly increases. Consequently, the spectral
quality decreases from Q = 0.0373 to 0.0322. Nevertheless, the CG spring matrix, K(Mggs),
preserves much of the original structure in K, after 45 steps in this walk.

During the next 45 steps, site 9 continues to grow by stealing atoms from sites 3 and 7.
This further strengthens the CG springs from site 9 to sites 2 and 6, while also introducing
new CG springs from site 9 to sites 3, 5, and 7. During these steps, the frequencies of the

first and third CG normal modes rapidly increase, while the spectral quality decreases to
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FIG. 9.  Walk though mapping space by perturbing the resonant mapping, M., to reduce Q.
Panel a presents Q (blue) and I, (orange) as a function of the number of steps, Ny, on this
walk. The dashed red curve in panel a presents an exponential fit to Q(Ng). Panel b presents
the corresponding 8 finite normal mode frequencies, wy, of the CG model. The legend indicates
the order of the normal mode frequencies, w; < we < --- < wg. Panels ¢ and d present the CG
spring matrix, K(k., M), after 45 and 90 steps along this walk. The middle horizontal color bar
between panels ¢ and d indicate the initial assignment of the 360 atoms into 9 CG sites, i.e., site
I is initially associated with the I*" block of 40 amino acids. The horizontal color bars above and
below this middle color bar indicate the assignment of atoms that have been moved from their

initial partition during the first 45 and 90 steps, respectively, of this walk.

0.0284. After 90 steps, the CG spring matrix, K(Mgq), bears relatively little resemblance
to K..

As the walk proceeds further, site 9 continues to grow by stealing atoms from other sites.
In these later stages of the walk, the unusually high CG frequency, ws, slightly decreases from
~ 16 to ~ 14. The frequencies of the other CG modes all systematically increase. All of the
CG modes are in the high frequency range, w; > 10, by the end of the walk. Interestingly,
the spectral quality decreases less rapidly as the walk progresses. Consequently, as we
move off resonance, Q(Ny) appears to decay in a manner that is qualitatively similar to
an exponential. Conversely, the adjusted mapping information, imap, decreases in a more

nearly linear manner.

Figure 10 characterizes a second walk away from the resonant mapping, M,. Each step
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FIG. 10. Walk though mapping space by perturbing the resonant mapping, M,, to maximize
d(M,M,). Panel a presents Q (blue) and I, (orange) as a function of the number of steps,
Ngt, on this walk. The dashed red curve in panel a presents an exponential fit to Q(Ng). Panel
b presents the corresponding 8 finite normal mode frequencies, wy, of the CG model. The legend
indicates the order of the normal mode frequencies, w; < wy < --- < wg. Panels ¢ and d present
the CG spring matrix, K(k., M), after 80 and 160 steps along this walk. The middle horizontal
color bar between panels ¢ and d indicate the initial assignment of the 360 atoms into 9 CG sites,
i.e., site I is initially associated with the I*® block of 40 amino acids. The horizontal color bars
above and below this middle color bar indicate the assignment of atoms that have been moved

from their initial partition during the first 80 and 160 steps, respectively, of this walk.

of this walk selects the neighboring map, My, 1, that is farthest from M,, while using
the variation of information (VI) to define the distance, d(M, M,) = VI(M, M,), between
maps based upon the similarity in the corresponding partitions. As the walk proceeds, the
atoms appear to be “randomly” re-assigned among the 9 sites and the CG spring matrix,
K(k., M), becomes increasingly blurred. The underlying CG spring matrix, K,, is easily
visible after 80 steps, but has become much less clear after 160 steps. Interestingly, this
walk preserves the degeneracy present in the density of states for the original CG spring
matrix. However, the frequencies of the CG normal modes all converge towards a single
high frequency, w; =~ 12. This walk terminates when the final CG spring matrix connects all
of the sites with similarly weak springs, which results in a final spectral quality of Qg ~
0.0219. The spectral quality again appears to exponentially decay along this walk.

To this point, we have considered the sensitivity of this resonance to the details of the
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CG mapping, M, for a given high resolution GNM with spring matrix, k.. Figures 9 and
10 demonstrate that Q rapidly decreases as we move away from the resonant mapping, M.,.
Interestingly, though, the features of the original CG spring matrix, K, = K, (k., M.,),
remain visible in the resulting CG spring matrix, K(k,, M), even after 45 steps away from
the resonant mapping, M,. We now briefly consider how robust this resonance is to the

details of the AA spring matrix, &, for the fixed CG mapping, M,.
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FIG. 11. Impact of randomly shuffling springs in the original high resolution spring matrix, K.,
according to the protocol of Sec. IV D. Panel a presents statistics for the spectral quality, Q(M., f),
and adjusted mapping information, imap(M*, f), of the resonant mapping, M,, as a function of
the fraction, f, of high-resolution springs that have been re-assigned. The red curve presents an
exponential fit to Q(M,, f). The solid, dashed, and dotted lines present the mean, quartiles, and
extrema obtained from 100 independent numerical experiments. Panel b presents a typical AA
spring matrix, k(f), when f = 1/2 of the original springs have been reassigned. Panel ¢ presents

the resulting CG spring matrix, K(f) = K(k(f), M,).

We first consider the effect of randomly re-assigning a fraction, f, of the springs in
the high resolution spring matrix, k., according to the protocol described in Sec. IV D. In
order to identify statistically significant trends, we repeat this procedure 100 times for each
f. Figure 11a demonstrates that Q(f) decays nearly exponentially with f. Interestingly,
while Q appears quite sensitive to f, Q appears surprisingly insensitive to the identity of the
reassigned springs. Conversely, imap( f) initially increases as springs are randomly reassigned,
but begins to decrease with f after half of the springs have been reassigned. Moreover, in
comparison to Q, imap appears much more sensitive to the identity of the springs that are

reshuffied.
Figure 11b presents the corresponding AA spring matrix &(f) for f = 0.50 from one trial
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of this numerical experiment. Once half of the springs have been re-assigned, the spectral
quality of the model has decreased from 0.037 to 0.024. At this point, the pattern of the
original AA spring matrix is barely perceptible. As a consequence of randomly reassigning
the AA springs, the connections in the CG spring matrix, K(f), are weaker. Moreover,
K(f) now includes effective connections that were not present in K,. Nevertheless, Fig. 11c
demonstrates that the K(f) remains quite similar to the underlying CG spring matrix, K.,.
Thus, it appears that this resonance remains quite robust with respect to even half of the

AA springs being reassigned.
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FIG. 12. Impact of randomly deleting springs in the original high resolution spring matrix, K.,
according to the protocol of Sec. IV D. Panel a presents statistics for the spectral quality, Q(M., f),
and adjusted mapping information, imap(M*, f), of the resonant mapping, M., as a function of the
fraction, f, of high-resolution springs that have been deleted. The solid, dashed, and dotted lines
present the mean, quartiles, and extrema obtained from 100 independent numerical experiments.
Panel b presents a typical AA spring matrix, k(f), when f = 1/2 of the original springs have been
deleted. Panel ¢ presents the resulting CG spring matrix, K(f) = K(k(f), My).

Finally, Figure 12 considers the effect of randomly deleting a fraction, f, of the springs
in the high resolution spring matrix, k., according to the protocol described in Sec. IV D.
In this case, Q(f) initially increases slowly as springs are deleted, but then increases more
rapidly for f > 0.50. Conversely, Lyap(f) monotonically decreases increasingly rapidly as
springs are deleted. In both cases, we expect that this reflects a general shift of the AA
density of states to lower frequencies as springs are removed.

Figure 12b presents the AA spring matrix &(f) from one trial after f = 0.50 of the
springs have been deleted. In this case, the pattern of k, is unperturbed, although it is

much fainter. Conversely, the CG Kirchoff matrix, K(f), in Figure 12¢ perfectly preserves
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the connectivity of K,, although the effective CG springs are much weaker.

VI. CONCLUSIONS

The mapping, M, profoundly impacts CG models. In particular, M determines both the
mapped distribution, pr(R), of CG configurations and also the conditioned distribution,
Prjr(r|R), describing the lost subensemble of AA configurations that map to each CG con-
figuration, R. The information content of this lost subensemble, I,,,,(R), determines the
degeneracy of AA configurations that map to R and, thus, governs the physical significance
and computational feasibility of back-mapping approaches.'""»'"" Moreover, L., (R) deter-
mines both the entropic component and also the temperature-dependence of the exact CG
potential, W(R). In particular, any estimates of thermodynamic energies or entropies with
CG models should account for I, (R).

Accordingly, in this work we have investigated the relationship between the mapping
and the CG model. Our analysis of the mapping identifies a simple back-mapping operator
and a corresponding projection operator for relating the motion of AA and CG models.
This analysis also provides a simple partitioning of the AA configuration space into CG and
intra-site subspaces. In order to preserve translational motion between AA and CG models,
the coefficients defining M must sum to 1 for each site, i.e., they must be L! normalized.
Consequently, the mapped distribution and the PMF must both be invariant with respect
to any translational or rotational symmetries present in the AA model. More generally,
Appendix A demonstrates that the mapped distribution and PMF will be invariant with
respect to any symmetry operator, T, that commutes with the mapping, M.

The partitioning of AA coordinates implies a formal partitioning of the underlying high
resolution potential into CG, intra-site, and coupling components. In the case of linear mod-
els, one can readily see how the coupling between CG and intra-site coordinates impacts the
mapped ensemble and the CG effective potential.”” This partitioning suggests the general
possibility of “resonant” mappings that eliminate the coupling between the CG and intra-site
coordinates. More generally, resonant mappings arise when the AA potential can be sepa-
rated into independent, additive contributions governing the CG and intra-site coordinates.
In this case, the intra-site interactions do not impact either the mapped ensemble or the CG

effective potential. Consequently, resonant mappings seem like an idealization of “perfect”
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coarse-graining. These considerations are certainly not new and perhaps intuitively obvious.

Nevertheless, the present work hopefully provides additional insight.

Because the mapping coefficients are L! normalized, the partitioning into CG and intra-
site coordinates introduces a nontrivial Jacobian factor that equals the determinant of the
participation matrix, ||Ay||. This Jacobian determines a “labelling entropy,” Hy, = In||A x|,
that systematically increases as the CG sites become increasingly uniform in size. Because it
quantifies the uncertainty in the atoms associated with each CG site, Hy, effectively reduces
the information content of the conditioned distribution, p,r, describing the lost ensemble.
Conversely, Hy, effectively increases the information content of the mapped ensemble. While
the labelling entropy is perhaps unexpected, we show that it can be qualitatively motivated
by simple statistical considerations for weakly correlated CG coordinates. Moreover, Hy,
can be explicitly derived for linear models as an identity relating the determinants of the
Hessian matrices describing the AA and CG models. We speculate that Hy may arise
naturally in a coarse-graining formalism that explicitly treated the indistinguishability of

equivalent particles.

We numerically illustrated these considerations with a Gaussian Network Model (GNM)
for the equilibrium fluctuations of actin about its folded conformations. Our calculations
indicated that the spectral quality, Q, provides a good metric for identifying CG repre-
sentations that are consistent with our physical intuition. Since it attempts to preserve
low-frequency, large-amplitude motions, the spectral quality is qualitatively similar to many
metrics that have been previously developed for identifying rigid protein domains that move
coherently.”»" = =520 Representations with high spectral quality associate CG sites
with compact, highly connected atomic groups that generate broad mapped ensembles be-
cause the sites are weakly constrained by relatively few inter-site bonds. In particular, the
4-site representation, Mg, that maximized Q aligns very nicely with the four rigid domains
identified by the Spectrus webserver,”” as well as the four domains that have been previ-
ously identified in the biochemical literature.”” Moreover, this representation appears quite
similar to the 4-site representation that was identified by combining the ED-CG method
with K-means clustering to analyze microsecond molecular dynamics simulations of an AA
model for actin. In comparison, minimal resources are required to identify Mg via steepest

descent of Q for the actin GNM. Thus, we anticipate that Q may be a useful metric for
identifying high quality CG representations of systems that fluctuate about an equilibrium
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conformation. We anticipate that it may be possible to generalize Q for more complex
systems that transition between multiple conformations by generalizing the Rayleigh-type
quotient of Eq. (63) or by considering linear discriminant analsysis.

In contrast, neither minimizing nor maximizing the mapping information loss, Iap, iden-
tifies CG representations that are consistent with our physical intuition. Representations
that minimize I,,,, associate CG sites with diffuse, interspersed atomic groups. The resulting
mapped ensemble is very narrow and, thus, highly informative because the sites are highly
constrained by many inter-site bonds. Conversely, maps that maximize I, tend to repre-
sent the large majority of the protein with a single site, while associating the remaining sites
with individual residues. These maps generate very broad mapped ensembles by minimizing
the number of inter-site bonds, but also minimize the labelling entropy. By accounting for
the labelling entropy, the adjusted information loss, imap = Imap + Hi, correlates very well
with the spectral quality, Q, for the present CG representations of the GNM.

We also numerically illustrated a notion of resonance between an AA model and a CG
mapping. In this case, we specified an underlying CG spring matrix, K,, and a corresponding
CG mapping, M,.. We then atomized K, in order to determine a family of AA spring matrice,
{k.}, that are all resonant with M,. By construction, the resonant mapping perfectly
preserved the low frequency modes of the AA spring matrix, while eliminating the irrelevant
high resolution details. Given a fixed AA spring matrix, k., the spectral quality, Q(M),
exponentially decreased as the mapping, M, moved away from resonance. Nevertheless,
the CG spring matrix, K(M), remained quite similar to the underlying spring matrix, K,,
even after 45 steps away from resonance. Conversely, given the fixed CG mapping, M,, the
spectral quality, Q(f), exponentially decreased with the fraction, f, of springs that were
randomly reassigned from the original AA spring matrix, k.. Interestingly, the CG spring
matrix, K(k), remained quite similar to the original underlying CG spring matrix, K., even
when half of the original AA springs were randomly reassigned.

Of course, we do not anticipate finding a perfect resonance when coarse-graining soft
materials. Given a realistic high resolution model, it may be possible to identify nearly
resonant mappings by minimizing the memory kernel describing the dynamics of the CG
variables, as suggested by Voth, Dinner, and coworkers. ’” The present results suggest that
the spectral quality may also be a particularly simple metric for finding nearly resonant

mappings. Moreover, the present results suggest that the idealized CG representation of
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the system remains visible rather far from resonance. Thus, systematic coarse-graining may
generate “sloppy” models that preserve robust, underlying features that are often obscured
by high resolution details.

The present work also indicates many directions for future work. While the GNM provides
a qualitatively reasonable description for equilibrium fluctuations about a single free energy
minimum, it has many significant limitations. For instance, the present GNM considers a
single energy scale, a single mass scale, a single length scale, and, most importantly, a single
free energy minima. Clearly, future investigations should investigate the impact of the
mapping upon more complex models. In particular, it will be interesting to generalize O for
more complex models that transition between multiple free energy minimum. We anticipate
that it may be useful to explore the relationship between Q and the VAMP score employed in
Markov state models.”""~"* Similarly, it will be interesting to investigate the importance of
Hy, and I, for systems of interacting molecules and for systems with multiple mass, length,
and energy scales. Finally, it would also be interesting to consider the ramifications of the

present transformation for modeling dynamical properties. Nevertheless, we hope that
this work may provide useful insight for considering the mapping and how it influences the

properties of CG models.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional results and analysis, including an explicit
illustration of the dual basis introduced in Sec. IIC and the derivation of the identity,

Eq. (61).

ACKNOWLEDGMENTS

KMK acknowledges the financial support of a Marie Sklodowska-Curie science achieve-
ment graduate scholarship in Chemistry from Penn State. KMK and WGN acknowledge
financial support from the National Science Foundation (Grant Nos. CHE-1856337 and
CHE-2154433). KMK and WGN also gratefully acknowledge very fruitful collaborations
with M. Scott Shell that lead to this work. WGN gratefully acknowledges enlightening

conversations with Xiantao Li, Raffaello Potestio, and Markus Deserno, as well as help-

47



ful discussions with Nick Jackson, Ben Curlee, Sanchay Agarwal, Lucus Mussi, and Maria
Lesniewski. Portions of this research were conducted with Advanced Cyberlnfrastructure
computational resources provided by The Institute for Computational and Data Sciences at
The Pennsylvania State University (http://icds.psu.edu). Additionally, parts of this research
used the Expanse resource at the San Diego Supercomputer Center though allocation TG-
CHE170062 from the Extreme Science and Engineering Discovery Environment (XSEDE),

which was supported by National Science Foundation grant number TG-CHE170062. This
work also used allocation CHE170062 from the Advanced Cyberinfrastructure Coordina-
tion Ecosystem: Services & Support (ACCESS) program, which is supported by National
Science Foundation grants #2138259, #2138286, #2138307, #2137603, and #2138296. Fig-
ures 1-4 employed VMD. ' VMD is developed with NIH support by the Theoretical and
Computational Biophysics group at the Beckman Institute, University of 2510 Illinois at
Urbana-Champaign. We employed Matplotlib for all figures' © and performed all matrix

calculations with NumPy.

AUTHOR DECLARATIONS
Conflict of interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding

author upon reasonable request.

APPENDIX A: MAPPING SYMMETRIES TO COARSE-GRAINED
RESOLUTION

We briefly consider the impact of the CG mapping upon symmetries that are present in
an AA model. Specifically, we consider symmetries that correspond to an operator, T, that
acts as a bijective, volume-preserving mapping of the AA configuration space D™(V') onto

itself. We also assume that a corresponding operator exists on the CG configuration space,
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DN (V).
Any symmetry, T, of the AA potential for which u(r) = u(Tr) will leave the mapped
ensemble, pgr(R), and, consequently, the PMF, W (R), invariant as long as the AA model

ergodically samples configuration space and T commutes with the mapping operator, MT =

TM.'"" This follows because

2r(R) = /Dn(%‘l;)exp[—ﬁu(r)]é(l\/[r - R)
= An?i)exp[—ﬁu(Tr)]é(Mr -R)

A —

'|dr’ exp[—Bu(r)|§(MT ¥ — R)

TDn(V)

dr’ exp[—ﬁu(r’)]é(l\/lj’ilr’ - R)
(V)

_ / dr’ exp[—Bu(r')]5(T My’ — R)

D (V)

I I
— S
~

= / dr’ exp[—Bu(r')]6(Mr’ — TR) = zz(TR) (A1)
DY)

The second line follows because u(7r) = u(r) for the symmetry operator, 7. The third line
follows by transforming variables r — r’ = 7'r, while the fourth line relies upon the symmetry
being volume preserving and bijective. The fifth line follows because we have assumed that T
and M commute, while the sixth line follows because 7" is bijective and volume preserving.
Of course, symmetries that are present in the AA potential may be broken because the
boundary conditions of the AA model are not consistent with the symmetry (e.g., periodic
boundary conditions are not commensurate with rotational symmetry) or because the AA
model does not ergodically sample configuration space (e.g., simulations of lipid bilayers

break symmetry).

Here we focus on translational and rotational symmetries in D = 3 dimensions because
they are most commonly relevant to AA models. For each Cartesian direction, «, and each
distance, d, we define a translational symmetry operator, T tra(d)r = r+dJ, ®e,, that dis-
places each atom a distance d along e,. Similarly, we define a rotational symmetry operator,
Trot;a(ﬁ)r =", € @ Q(0)r;, where ©,(0) = exp[G,0] corresponds to the D x D matrix
describing a rotation of # about the a Cartesian axis and Gy, is the corresponding generator

for infinitesimal rotations.''© These continuous symmetry operators define an infinitesimal
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displacement, nt, as t — 0, such that
Tt DB v+ nt+0(?). (A2)

In particular, M. = J, ® €, and Nyot;0 = Z?:l e; ® G,r; correspond to infinitesimal trans-
lational and rotational displacements about the minimum of the AA potential, r*. Assuming
that the AA potential is invariant with respect to the continuous symmetry operator, T(t),

it then follows that
R 1
u(r®) = u(T(O)r") 23 u(r*) + §nThnt2 +O(t%) (A3)

where h = h(r*) is the Hessian of the AA potential about its minimum. Since this identity
holds for all £ — 0, it follows that the symmetry operator, T, defines an element, 7 in the
nullspace of h. We assume that the only symmetries of the AA potential correspond to
uniform rotations and translations, such that null(h) = span{m.q, Mot.a fa=1.23-

Note that both translational and rotational symmetry operators commute with the CG
mapping, M. In the following, we will neglect the effect of boundary conditions and assume
that these operators provide a bijective, volume-preserving mapping of the configuration
space. Consequently, Eq. (A1) implies that the PMF will be invariant with respect to
uniform rotations and translations. Therefore, 7., = Mnu,. = Jy ® €, and 7,4, =
Mnot:a = Z?[Zl er ® G,R; lie in the nullspace of the CG Hessian, H. In most cases,
one expects that the corresponding set of 6 vectors, {M,..> Mot fa=1,23, Will be linearly
independent. However, in certain special cases, e.g., for N = 2 site representations, the
three mapped rotational eigenvectors, {7,.., }, can become linearly dependent such that the
dimensionality of null(H) may be smaller than the dimensionality of null(h).

The argument that leads to Eq. (A1) also holds for more general symmetries, e.g., particle
permutations or discrete rotations about bonds. In this case, one may need to more carefully
distinguish the action of the symmetry upon the AA and CG configurations, T'xx and
Tea, respectively. In particular, if M “coarse-grains” over an AA symmetry, T an, then
one expects that the corresponding CG symmetry operator simply reduces to an identity
operator, Teg = 1. Conversely, if M is not commensurate with an AA symmetry, Tan,
then the CG model may preserve a remnant of the symmetry, Tcq, that satisfies, TocM =
MTAA, such that the mapped distribution is invariant with respect to Tee. However, Tan

and T'oq may have rather different forms.
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APPENDIX B: ANALYSIS OF THE JACOBIAN ||Z||

We are interested in the determinant of the matrix, Z = [z;], where {z;} = {c;,zn1x} is
a set of n linearly independent vectors that span Vas ~ R". We have defined the n, = n— N
vectors {zy 1} to be orthonormal Z}[V_,’_kZN+k/ = Ogpr- Moreover, the set {z;} are dual to the
n linearly independent vectors {x;} = {j;, Xy &} such that zx; = §;; for all 4,5 = 1,...n.

In particular, this implies that

Z}L\ij]:O forallk=1,...,ngI=1,...,N
We define
—1/2.
Zgr =Ny JI
for I =1,..., N. Because the mapping corresponds to disjoint atomic groups it follows that
ZT@IZ@J =y forall I,J =1,...,N. Consequently, the set {zg,znr} forms a complete

orthonormal basis for Vaa. Since z),,¢; = nl_l/Zéu, it follows that

Nx
~1/2
Cr=n; "TZgr+ E YIKZN k>
k=1

where vy, = zj\, . xC1- This decomposition allows us to determine the desired determinant:

~1/2 nx t
np g+ 305 VikZy g
1zl = ||21]| = o '
ZN4k
~1/2 N
IR /Z;ral . —1/2 Z;ral
- f = |1 t
ZN4w =1 ZNr

a /
B —-1/2
e

The second line follows because determinants are unchanged by the addition of rows, while
the third row follows because {zgs, Zn 1k} form a complete orthonormal basis. We then have

the desired result:

-1 1/2
1Z]| ™ = ||Ax]" (B1)
where Ay = Z?[:l emle} is a diagonal participation matrix.

o1



APPENDIX C: COMPARISON WITH ED-CG METHOD

Here we briefly compare the ED-CG metric with the spectral quality. The ED-CG method
was originally developed for coarse-graining simulations of complex biomolecules.”” Let
r(t) = {ri(t),...,r,(t)} be the coordinates for n atoms in D dimensions at time ¢ after elim-
inating overall rotational and translational motion. Given n; configurations, we define the
mean position of atom i by ¥; = n; ' 1", r;(¢) and the displacement by Ar;(t) = r;(t) — T;.

We define the covariance matrix by

niz _ UAU', (C1)

where the last expression is the SVD decomposition of C: A = diag{\, As,..., \up} is a
diagonal matrix of eigenvalues that are sorted in decreasing order (i.e., \y > Ay > ---) and
U = [uy, uy,...,u,p| is the matrix of corresponding eigenvectors. The essential dynamics
subspace’” is defined by the first ngp eigenvectors of C: Ugp = [uy, ..., Uy, ]. We define
Argp(t) = UL Ar(t) and Cgp = UgpCUL, as projections onto this subspace. Given a
mapping, M, that partitions the n atoms into N disjoint atomic groups, Vi,...,Vy, the
ED-CG metric may be expressed

N

(M) = %ZNlDZZ S Aren(t) - Aren(t) (©2)

I=14€Vy j(>i)eVr

N
= % > > > {Cepui — 2Ceps; + Cepys}- (C3)
I=1 i€V j(>i)eV;

In Eq. (C3) Crpyj = 25:1 CEbjialja traces Cgp over Cartesian directions. The ED-CG
method identifies the optimal map by minimizing x?. According to Eq. (C2), the ED-CG
method attempts to define CG sites that correspond to atomic groups that move rigidly
within the ED subspace.

In the case of linear network models, we can analytically evaluate x?(M) from Eq. (C3). In
the following calculations, we define the ED-CG subspace by the first ngp = 10 eigenvectors.
Once Cgp has been determined, calculating x?(M) requires approximately half the time of
computing Q(M) for the maps that we consider in this work.

Figure 13a presents a scatter plot comparing x*(M) and Q(M) for sampled N-site maps
of actin. As expected, the spectral quality and ED-CG metrics are anti-correlated. We
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FIG. 13.  Scatter plot of Q(M) and x?(M) for CG representations of actin sampled by MC
simulations in mapping space. Blue, orange, and green points correspond to N = 2, 4, and 12-site
representations, respectively. The dashed lines indicate best fit lines to the scatter plots. The
legend indicates the slopes, m, and quality of fit parameters, 72, for these lines. Panel (a) presents
a scatter plot for all sampled maps at each resolution. Panel (b) presents sampled maps that are

nearly uniform with the specified variance, o2(M).

intuitively expect that sites corresponding to rigid atomic groups (i.e., relatively low x?)
will tend to undergo relatively large amplitude motion (i.e., relatively high Q). However,
Fig. 13a demonstrates that this (anti-)correlation is quite weak when considered across the
entirety of mapping space.

Figure 13b presents a scatter plot for a subset of the sampled maps at each resolution
with minimal site-size variance, 0?(M) = var{n}, where n; is the number of residues that
M associates with site /. Among these nearly uniform maps, x? and Q are nearly perfectly

(anti-)correlated.

We observed similar trends in our prior study of mapping space for ubiquitin.”’ We
proposed there that Eq. (C3) can be used to rationalize these trends. First, note that
each term, X?j = {Cgpui — 2CEp;ij + Crpyjj}, in Eq. (C3) is large and positive because
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the diagonal elements of the covariance matrix tend to be much larger than off-diagonal
elements. Moreover, we note that Eq. (C3) contains W(M) = 1N x n; x (n; — 1) such
terms. Importantly, W (M) grows linearly with ¢?(M). For these reasons, x* may tend to

favor nearly uniform maps with small o%(M).
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