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Low-resolution coarse-grained (CG) models provide significant computational and

conceptual advantages for simulating soft materials. However, the properties of CG

models depend quite sensitively upon the mapping, M, that maps each atomic config-

uration, r, to a CG configuration, R. In particular, M determines how the configura-

tional information of the atomic model is partitioned between the mapped ensemble

of CG configurations and the lost ensemble of atomic configurations that map to each

R. In this work, we investigate how the mapping partitions the atomic configuration

space into CG and intra-site components. We demonstrate that the corresponding

coordinate transformation introduces a nontrivial Jacobian factor. This Jacobian

factor defines a labelling entropy that corresponds to the uncertainty in the atoms

that are associated with each CG site. Consequently, the labelling entropy effec-

tively transfers configurational information from the lost ensemble into the mapped

ensemble. Moreover, our analysis highlights the possibility of resonant mappings that

separate the atomic potential into CG and intra-site contributions. We numerically

illustrate these considerations with a Gaussian Network model for the equilibrium

fluctuations of actin. We demonstrate that the spectral quality, Q, provides a simple

metric for identifying high quality representations for actin. Conversely, we find that

neither maximizing nor minimizing the information content of the mapped ensemble

results in high quality representations. However, if one accounts for the labelling un-

certainty, Q(M) correlates quite well with the adjusted configurational information

loss, Îmap(M), that results from the mapping.
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I. INTRODUCTION

Richard Hamming famously asserted that “the purpose of computing is insight not

numbers.”1 According to this premise, low resolution coarse-grained (CG) models provide a

uniquely powerful framework for studying complex systems.2,3 By eliminating unnecessary

details, CG models provide the necessary computational efficiency for simulating length-

and time-scales that cannot be effectively addressed with, e.g., conventional all-atom (AA)

models.4–6 Perhaps even more importantly, CG models provide researchers the opportunity

to eliminate unnecessary details and precisely focus their intellectual resources on the fea-

tures that are essential for understanding a particular phenomenon.7–9 Unfortunately, it is

not always easy to design CG models that properly distinguish “unnecessary details” from

“essential features.” Consequently, many recent studies have investigated the choice of CG

representation, i.e., the degrees of freedom that are explicitly treated by the CG model.10,11

There exist many coarse-graining approaches with varying advantages and limitations.12–14

In this work, we focus on bottom-up CG models that are based upon an underlying atomistic

model.11,15 In this case, the CG representation is precisely defined by a mapping, M, that

determines a unique CG configuration, R = M(r), for each AA configuration, r. Because

the properties of bottom-up models can depend quite sensitively upon the CG mapping,16–27

recent studies have proposed various metrics for optimizing M.10,11,28 These methods have

often employed network-based29–33 or machine-learning tools.34–41 In particular, one class

of studies has focused on preserving the large-amplitude, low-frequency motions of the AA

model.29,31,32,42–47 For instance, the essential dynamics coarse-graining (ED-CG) method of

Voth and coworkers48–52 first employs principle component analysis (PCA) to identify impor-

tant collective motions53 and then identifies CG sites with rigid atomic groups that preserve

these essential dynamics. Recently, they have extended the ED-CG method with K-means

clustering.54 Conversely, a second class of studies has focused on preserving the configura-

tional information of the AA model. In particular, Potestio and coworkers have proposed

minimizing the mapping entropy,38,55–58 which quantifies the configurational information

that is lost when viewing the AA model at the CG resolution.59,60

Very recently, Foley, Kidder, and coworkers have adopted a complementary approach for

investigating CG representations.28,61–63 Specifically, they adopted the Gaussian Network

Model (GNM) as an analytically tractable high resolution model for the equilibrium fluctu-
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ations of globular proteins about their folded conformation.64–66 They employed Monte Carlo

(MC) methods to systematically explore and statistically characterize the entire space of CG

representations for the high resolution GNM. In particular, they focused on two metrics for

assessing the quality of a given mapping, M, based upon the mapped ensemble that results

from viewing the high resolution ensemble at the CG resolution: (1) the spectral quality,

Q(M), quantifies the mass-weighted covariance of the mapped ensemble; (2) the information

content, I(M), quantifies the information content of the mapped ensemble. In the case of the

GNM, I is perfectly anti-correlated with the mapping entropy, Imap, considered by Potestio

and coworkers: Imap(M) = mI(M)+b, where m < 0 and b are both independent of M.63 CG

representations that maximized Q were highly consistent with the physical intuition that

CG sites should correspond to distinct structural features that move coherently.62,63 Con-

versely, CG representations that minimized the mapping information loss, Imap, were not

consistent with this intuition. Interestingly, Q and Imap were negatively correlated among

high-resolution representations, but positively correlated at lower resolutions.62,63 This sug-

gests that it may be beneficial to design low-resolution representations that maximize the

information lost from the AA model.

While this proposal may initially seem counter-intuitive, it perhaps can be rationalized.67

The vibrational density of states for soft materials typically contains many high frequency

modes. These high frequency modes are information-rich in that they describe localized mo-

tions that highly constrain the system. Conversely, the vibrational density of states typically

contains relatively few low frequency modes. These low frequency modes are information-

poor in that they describe delocalized motions that only weakly constrain the system. In this

sense, most of the information in high-resolution models is high-frequency “noise,” while rel-

atively little is low-frequency “physics.”67 Thus, representations that minimize information

loss may focus on preserving noise at the expense of physics.

We consider this proposal more closely in the present work. We first analyze the relation-

ship between the mapping, M, and the information content of the corresponding mapped

ensemble. This analysis reveals a new source of information loss - the labelling entropy, HL -

that quantifies the uncertainty associated with the partitioning of atoms into CG particles.

This analysis also suggests the notion of a ‘resonance’ between a family of high resolution

potentials and a special CG mapping, M∗. We numerically illustrate the consequences of

the labelling entropy with a GNM for actin, which is considerably more complex than the

3



proteins we have previously considered. We demonstrate that the spectral quality, Q, identi-

fies CG representations for actin that are consistent with our physical intuition. In contrast,

we do not obtain physically reasonable representations by either maximizing or minimizing

the mapping information loss, Imap. However, by accounting for the labelling entropy, the

adjusted information loss, Îmap = Imap + HL, is highly correlated with Q. Finally, we briefly

investigate resonant mappings by “atomizing” an idealized CG model and examining how

the properties of the CG model vary as the mapping moves off of resonance.

The remainder of this manuscript is organized as follows. Section II reviews the Kullback-

Leibler divergence68,69 as a quantitative metric for information loss, analyzes a coordinate

transformation associated with the mapping, and introduces the labelling entropy, HL. Sec-

tion III develops simple approximate models that allow us to illustrate HL and its con-

sequences. Section IV summarizes our computational methods, while section V presents

calculations that numerically illustrate the analysis of Sections II and III. Section VI sum-

marizes our findings and provides concluding comments. Finally, one appendix considers the

impact of coarse-graining upon symmetries present in AA models, while a second appendix

calculates the Jacobian associated with the coordinate transformation that is defined by the

CG mapping.

II. THE MAPPING ENTROPY

A. Quantifying information content

We consider the canonical ensemble for an AA model with n atoms in a D-dimensional

spatial region D(V ) with volume V = LD. We denote the AA potential by u(r) and the

AA configuration integral by z =
∫︁
Dn(V )

dr exp[−βu(r)]. The AA model is characterized by

the configurational probability density pr(r) = exp[−βu(r)]/z. We quantify the information

content of the AA canonical ensemble by

IAA =

∫︂
Dn(V )

dr pr(r) ln [pr(r)/ qr(r)] , (1)

which is the Kullback-Leibler divergence between pr(r) and the corresponding uniform distri-

bution for n atoms qr(r) = 1/V n.68,69 IAA is nonnegative and is proportional to the (negative)

of the excess configurational entropy of the AA model.70
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We define a mapping function, M(r), that determines a CG representation of each AA

configuration, R = M(r). The probability density for sampling a CG configuration, R, in

the resulting “mapped ensemble” is71

pR(R) = zR(R)/z, (2)

where

zR(R) =

∫︂
Dn(V )

dr exp[−u(r)/kBT ]δ(M(r) −R) , (3)

is the restricted configuration integral, i.e., the total Boltzmann weight that is mapped to

the CG configuration, R. The mapped probability density, pR(R), determines the configu-

rational information that is present in the mapped ensemble:

ICG =

∫︂
DN (V )

dR pR(R) ln [pR(R)/ qR(R)] , (4)

where qR(R) = 1/V N is the uniform distribution for the mapped configuration space. ICG

is proportional to (the negative of) the “apparent excess configurational entropy” present in

the mapped ensemble.60 The restricted configuration integral also determines the many-body

potential of mean force (PMF)

W (R) = −kBT ln
[︁
V −nxzR(R)

]︁
, (5)

where we have defined nx ≡ n − N as the number of particles that have been eliminated

from the CG model.72–74 The PMF is the AA free energy expressed as a function of CG

coordinates. Consequently, the PMF is the appropriate CG potential for reproducing both

structural and thermodynamic properties of the AA model.28,75

For each CG configuration, R, the mapping also determines a “lost” subensemble, SR,

of AA configurations that map to R:

SR = {r ∈ Dn(V )|M(r) = R} . (6)

This subensemble is characterized by the conditioned distribution,

pr|R(r|R) = exp[−u(r)/kBT ]δ(M(r) −R) /zR(R). (7)

We quantify the configurational information contained in SR by

Imap(R) =

∫︂
Dn(V )

dr pr|R(r|R) ln
[︁
pr|R(r|R)

/︁
qr|R(r|R)

]︁
, (8)
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where qr|R(r|R) = V −nxδ(M(r) −R) is the uniform conditioned distribution. This lost

information determines the entropic contribution to the PMF:

W (R) = EW(R) + kBT Imap(R), (9)

where EW(R) ≡ ⟨u(r)⟩R is a conditioned average of the atomic potential over SR evaluated

according to pr|R(r|R).28,75 Moreover, Imap(R) determines the temperature-dependence of

the PMF: (︃
∂W (R)

∂T

)︃
R

= +kBImap(R). (10)

Note that Eq. (10) does not assume that either EW or Imap are independent of temperature,

since quite generally (∂EW(R)/∂T )R = −kBT (∂Imap(R)/∂T )R.61 (See SM.)

We define

Imap =

∫︂
DN (V )

dR pR(R)Imap(R). (11)

as the average of Imap(R) over the mapped ensemble. Importantly, the KL divergence

satisfies a chain rule69

IAA = ICG + Imap (12)

that partitions the configurational information of the AA model between the mapped ensem-

ble and the “lost” subensembles of AA configurations that map to each CG configuration.28,61

Thus, the configurational information that is eliminated by the mapping is stored in condi-

tioned distributions for the lost subensembles. In particular, the lost subensembles become

more informative as the mapped ensemble becomes less informative.

We note that our notation slightly departs from prior studies. In particular, we have

previously defined SW (R) = −kBImap(R).61 Similarly, Imap has been previously denoted

Hmap or −Smap.55,59,60

B. Mapping AA to CG configurations

We now develop a formalism for analyzing the CG mapping. It is often convenient

to represent the atomic configuration with an n × D matrix, r = [riα], where riα is the

α Cartesian coordinate of atom i. Column α of this n × D matrix corresponds to the

Cartesian direction that is specified by eα. Row i of this matrix corresponds to the Cartesian

coordinates of atom i: ri =
∑︁D

α=1 riαeα. For each atom, i = 1, . . . , n, we now introduce a
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“label” vector, ei, that identifies the corresponding row of the configuration matrix: e†ir = ri.

The n label vectors {ei}i=1,...,n form a complete orthonormal basis for an n dimensional

“AA label space,” VAA = span{ei}i=1,...,n, with e†iej = δij and 1n =
∑︁n

i=1 eie
†
i . The AA

configuration may then be denoted:

r =
n∑︂

i=1

ei ⊗ ri =
nD∑︂
iα=1

riαeiα. (13)

In the second expression, we have defined the set of nD orthonormal basis vectors {eiα ≡

ei ⊗ eα} such that e†iαr = riα.

Similarly, it is often convenient to represent the CG configuration as an N ×D matrix,

R = [RIα]. Accordingly, for each CG site I = 1, . . . , N , we define a label vector, eI , and

a corresponding N -dimensional “CG label space:” VCG = span{eI}I=1,...,N with e†IeJ = δIJ

and 1N =
∑︁N

I=1 eIe
†
I . Thus, we may express the CG configuration in analogy to Eq. (13)

R =
N∑︂
I=1

eI ⊗RI =
ND∑︂
Iα=1

RIαeIα. (14)

In the first expression, RI = e†IR =
∑︁D

α=1 RIαeα specifies the Cartesian coordinates of site

I. In the second expression, we have defined the set of ND orthonormal basis vectors {eIα ≡

eI ⊗ eα} such that e†IαR = RIα. Note that i = 1, . . . , n indicate AA labels, I = 1, . . . , N

indicate CG labels, and α = 1, . . . , D indicate Cartesian directions.

As in most particle-based CG models, we consider linear mappings M : r → R = Mr

RI =
n∑︂

i=1

cIiri, (15)

where cIi ≥ 0 for all I = 1, . . . , N and i = 1, . . . , n. Note that the mapping coefficients do

not depend upon α and act equivalently on each Cartesian direction. Consequently, M may

be considered a transformation from AA label space to CG label space, M : VAA → VCG,

M =
N∑︂
I=1

n∑︂
i=1

eIcIie
†
i =

N∑︂
I=1

eIc
†
I , (16)

where we have defined a mapping vector, cI =
∑︁n

i=1 cIiei ∈ VAA, for each CG site, I. In

the following, we shall not distinguish between M and its extension to the AA configuration

space, M̃ ≡ M⊗ 1D, where 1D ≡
∑︁D

α=1 eαe
†
α is the identity operator for Cartesian space.

We impose several restrictions upon the CG mapping. In order to simply express these

restrictions, we define Jn ≡
∑︁n

i=1 ei ∈ VAA and JN =
∑︁N

I=1 eI ∈ VCG as label vectors
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that act equivalently on each atom and site, respectively. In particular, we require that

the N mapping vectors, {c1, . . . , cN}, are linearly independent such that each site moves

independently of the others. Moreover, we require that the mapping coefficients for each

site I are normalized according to

J†
ncI =

n∑︂
i=1

cIi = 1. (17)

This implies that MJn = JN and ensures that, for any v ∈ RD,

M (r + Jn ⊗ v) = Mr + JN ⊗ v, (18)

i.e., if we displace each atom by v, then the mapping also displaces each site by v.

Note that if the AA distribution is invariant with respect to uniform translation of all

atoms, then Eq. (18) implies that the mapped ensemble will also preserve this symmetry.

More generally, Appendix A demonstrates that the mapped ensemble will be invariant with

respect to any symmetry, T̂ , that is present in the AA ensemble as long as T̂ and M commute,

i.e., T̂M = MT̂ .

In the following, we shall consider maps that partition the n atoms into N disjoint subsets.

More precisely, we define VAA = {1, . . . , n} as the set of atoms and VI = {i|cIi > 0} as the

subset that contributes to site I. We require that ∪N
I=1VI = VAA and that VI ∩VJ = ∅ for all

I ̸= J . Note that this requirement excludes ‘decimation’ and ‘slicing’ maps that associate

each CG site with a single atom.47,55 We expect that it is straight-forward to relax this

restriction. Finally, we shall also assume that the mapping associates each site with a single

molecule, i.e., atoms in distinct molecules are not grouped together. This last assumption

becomes necessary for developing simple approximations in Section III.

C. Backmapping and projection operators

For each site, I = 1, . . . , N , we define a vector, jI =
∑︁

i∈VI
ei ∈ VAA, that corresponds to

uniformly displacing all the atoms that contribute to site I. Because we require the atomic

groups, VI , to be disjoint, it follows that j†IjJ = nIδIJ where nI = |VI | is the number of

atoms that contribute to site I. Moreover, Eq. (17) implies that

c†IjJ = δIJ for all I, J = 1, . . . , N (19)
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When the mapping coefficients correspond to the center of geometry (cog) for the corre-

sponding atomic group, then cI and jI are parallel: cI;cog = n−1
I jI . More generally, there

is no simple relationship between cI and jI . Nevertheless, Eq. (19) holds for any disjoint

mapping.

We now define a “backmapping” operator from the CG particle space back to the AA

particle space:

B ≡
N∑︂
I=1

jIe
†
I , (20)

which is a simple example of a right inverse for M.76 Because of Eq. (19), the combination

MB acts as the identity operator in VCG: MB =
∑︁N

I=1 eIe
†
I = 1N . More importantly,

Eq. (19) implies that the combination BM acts as an oblique projection operator77 in VAA:

P ≡ BM =
N∑︂
I=1

jIc
†
I . (21)

In contrast to projection operators that are familiar from quantum mechanics, P is not

generally Hermitian, i.e., symmetric. Nevertheless, P is idempotent, P2 = P, and projects

arbitrary elements of AA particle space, v ∈ VAA, onto a “CG” subspace that is spanned

by {j1, . . . , jN}. We define the complementary projection operator, Q ≡ 1n − P, such that

P + Q = 1n, PQ = QP = 0, and Q2 = Q.

While we have defined P as a projection operator acting in AA particle space, VAA,

this also trivially defines a projection operator in the AA configuration space. For any

AA displacement, δr =
∑︁n

i=1 ei ⊗ δri, P defines corresponding displacements in the CG

subspace of the AA configuration space. Specifically, each term, jIc
†
I , in Eq. (21) determines

a displacement δRI =
∑︁n

i=1 cIiδri for CG site I and then moves each atom associated with

site I by δRI :

Pδr =
N∑︂
I=1

jI ⊗ δRI . (22)

We now introduce dual bases for VAA in order to obtain an explicit expression for Q.

Accordingly, we let {xN+k} ≡ {xN+1, . . . ,xn} be a basis for null(P) such that c†IxN+k = 0

for all I = 1, . . . , N and k = 1, . . . , nx. The rank-nullity theorem implies that {xi} =

{jI ,xN+k} = {j1, . . . , jN ,xN+1, . . . ,xn} forms a basis for VAA.77 We define a corresponding

n × n matrix X = [jI |xN+k] = [XCG|XAA] where XCG = [j1 · · · jN ] is an n × N matrix

and XAA = [xN+1 · · ·xn] is an n × nx matrix. We define Z† = X−1. Since c†IjJ = δIJ
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and c†IxN+k = 0 for all I and k, it follows that Z = [ZCG|ZAA] where ZCG = [c1 · · · cN ]

and ZAA = [zN+1 · · · zn] such that Z†
AAXCG = 0 and Z†

AAXAA = 1nx . We shall find it

convenient to assume that the set of {zN+k} are orthonormal with respect to each other such

that z†N+kzN+k′ = δk,k′ for all k, k′ = 1, . . . , nx. This is always possible, e.g., by applying

the Gram-Schmidt procedure77 to {zN+k} and the inverse transformation to {xN+k}. The

resulting set of n vectors {zi} = {cI , zN+k} form a dual basis with {xi} = {jI ,xN+k} such

that
∑︁n

i=1 xiz
†
i = 1n is the identity operator for VAA and z†ixj = δij for all i, j = 1, . . . n.

Finally, it follows that P = XCGZ
†
CG and the complementary projection operator may be

expressed

Q = XAAZ
†
AA =

nx∑︂
k=1

xN+kz
†
N+k. (23)

The SM explicitly illustrates this dual basis for both label space and configuration space.

D. The labelling entropy

We now employ the n linearly independent vectors, {zi} = {cI , zN+k}, to define

rI ≡ c†Ir for all I = 1, . . . , N (24)

r̂k ≡ z†N+kr for all k = 1, . . . , nx (25)

such that

r = (P + Q) r = Br + XAAr̂ (26)

where r = Mr and r̂ = Z†
AAr. Since the mapping coefficients are normalized according to

Eq. (17) it follows that the mapped coordinates, rI ∈ D(V ). Moreover, since the CG model

explicitly represents each molecule and each site is associated with a single molecule, in the

next section we shall interpret the r̂k coordinates as intrasite coordinates.

By construction there exists a 1-1 relationship between the n atomic coordinates r and

the set of n coordinates r̃ = (r, r̂): r̃ = Z†r and r = Xr̃. However, this transformation is not

volume-preserving. In particular, Eq. (17) implies that |cI | ≡
√︁∑︁n

i=1 c
2
Ii < 1 whenever site

I is associated with more than one atom. Appendix B proves that the Jacobian associated

with this transformation is ⃓⃓⃓⃓⃓⃓⃓⃓
∂r̃

∂r

⃓⃓⃓⃓⃓⃓⃓⃓
=
⃓⃓⃓⃓
Z†⃓⃓⃓⃓D = ||∆N ||−D/2 (27)
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where we have defined a diagonal “participation” matrix40

∆N ≡
N∑︂
I=1

eInIe
†
I . (28)

We can now obtain a relatively simple expression for zR. We define ũ(r, r̂) = u(r =

Br + XAAr̂). It then follows that

zR(R) =

∫︂
DN (V )

dr

∫︂
D̂nx (V ;r)

dr̂ ||∆N ||D/2 exp[−βũ(r, r̂)] δ(r−R) , (29)

where the second integral is over

D̂nx(V ; r) ≡ {r̂ ∈ Rnx×D|Br + XAAr̂ ∈ Dn(V )}, (30)

i.e., the set of atomic displacements, r̂, such that, r(r, r̂) ≡ Br + XAAr̂, is in the AA

configuration space. The first integral may be trivially evaluated for all R ∈ DN(V ) to

obtain

zR(R) = ||∆N ||D/2 ẑR(R) (31)

ẑR(R) ≡
∫︂
D̂nx (V ;R)

dr̂ exp[−βũ(R, r̂)] (32)

Because the transformation r ↔ r̃ is 1-1, the factor, ẑR(R) gives the total Boltzmann weight

for all the AA configurations that map to R.

Equations (5) and (31) imply that the PMF may be decomposed

W (R) = Ŵ (R) − kBTHL (33)

where

Ŵ (R) = −kBT ln
[︁
V −nx ẑR(R)

]︁
(34)

and we have defined a “labelling entropy”

HL ≡ 1

2
D ln ||∆N || =

1

2
D

N∑︂
I=1

lnnI ≥ 0, (35)

which corresponds to the degeneracy of atoms associated with the CG sites. According to

Eq. (8), the information present in the lost subensemble SR may be expressed:

Imap(R) = Îmap(R) − HL, (36)
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where

Îmap(R) =

∫︂
D̂nx (V ;R)

dr̂ pr̂|R(r̂|R) ln
[︁
V nxpr̂|R(r̂|R)

]︁
(37)

and we have defined

pr̂|R(r̂|R) = exp[−βũ(R, r̂)]/ẑR(R) (38)

such that for any function f(r,R),∫︂
Dn(V )

dr pr|R(r|R)f(r,R) =

∫︂
D̂nx (V ;R)

dr̂ pr̂|R(r̂|R)f̃(r̂,R), (39)

where f̃(r̂,R) = f(r(R, r̂),R).

Equation (36) decomposes the information lost in CG configuration R into two con-

tributions. The first contribution, Îmap(R), reflects the distribution, pr̂|R(r̂|R), of internal

displacements, r̂. However, the second contribution reflects the uncertainty associated with

the partitioning of atoms between CG sites. Since this uncertainty reduces Imap, it effectively

increases the configurational information present in the mapped ensemble.

The labelling entropy attains its global minimum HL;min = 0 for decimation maps in which

each site corresponds to a single atom, i.e., nI = 1 for all I = 1, . . . , N .32,47 In the case that

N < n and each atom contributes to a single site, the minimum value of the labelling entropy

is 1
2
D ln(nx−1). For a fixed number of atoms, n, and CG sites, N < n, the labelling entropy

increases as the partitioning of atoms between CG sites becomes increasingly uniform. The

labelling entropy achieves its maximum HL;max = 1
2
DN ln(n/N) when each site is associated

with an equal number of atoms, nI = n/N . If we quantify the resolution of the CG model by

r = N/n ∈ [0, 1], then HL;max(r) = −1
2
Dnr ln r, which attains its maximum at the resolution

r∗ = e−1 ≈ 0.37, i.e., when the CG model preserves approximately 37% of the AA degrees

of freedom.

III. SIMPLE APPROXIMATIONS AND MODELS

A. Local harmonic approximation

To this point our treatment has been exact. We now consider a very simple local har-

monic approximation for Eq. (32). Since we have required that the CG model explicitly

represents each molecule and since XAAr̂ describes intramolecular displacements about the
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back-mapped configuration, BR, we expect that ũ(R, r̂) → ∞ for large intra-site displace-

ments. Accordingly, for each CG configuration, R, we define u0(R) as the minimum of the

AA potential within the subensemble, SR, of AA configurations that map to R:

u0(R) = min
r∈SR

u(r) = min
r̂∈D̂nx (V ;R)

ũ(R, r̂). (40)

For simplicity, we assume that this minimum corresponds to a unique AA configuration,

rR, and define the corresponding intra-site displacements, r̂R = Z†
AArR, such that rR =

BR + XAAr̂R. We expand the AA potential quadratically about this minimum:

ũ(R, r̂) ≈ u0(R) +
1

2
δr̂†ĥAAδr̂, (41)

where δr̂ = r̂− r̂R and ĥAA ≡ ĥAA(R) ≡ X†
AAh(rR)XAA is the projection of the AA Hessian

matrix, h ≡ h(rR) ≡ ∂2u/∂r∂r′|rR , into the subspace of intra-site displacements. Since we

have assumed that rR is the unique minimizer of u(r) in SR, we assume that ĥAA is positive

definite. Consequently, we can evaluate the resulting Gaussian integrals to obtain:

ẑR(R) ≈

⌜⃓⃓⎷ (2π)nxD⃓⃓⃓⃓⃓⃓
βĥAA(R)

⃓⃓⃓⃓⃓⃓ exp[−βu0(R)]. (42)

Note that the local harmonic approximation does not apply to implicit solvent CG models

that eliminate entire molecules from the CG representation. In order to apply this approxi-

mation to implicit solvent models, u(r) must be considered the free energy for the AA solute

coordinates after the solvent molecules have already been integrated out.78

In this local harmonic approximation, the conditioned distribution of intra-site displace-

ments within the lost subensemble, SR, is simply Gaussian

pr̂|R(r̂|R) ≈
√︂

(2π)−nxD ||Cδr̂(R)||−1 exp

[︃
−1

2
δr̂†C−1

δr̂ (R)δr̂

]︃
, (43)

where

Cδr̂(R) ≡
⟨︁
δr̂δr̂†

⟩︁
R

=
(︂
βĥAA(R)

)︂−1

(44)

is the conditioned covariance matrix describing fluctuations in the vibrational intra-site

degrees of freedom about the given CG configuration. The mapped distribution is

pR(R) ≈ z−1

√︂
(2π)nxD ||∆N ||D ||Cδr̂(R)|| exp[−βu0(R)]. (45)

As expected, the mapped probability density, pR(R), is proportional to both the Boltzmann

weight of the most probable configuration in the lost subensemble SR, as well as to the
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magnitude of the AA fluctuations in SR. Additionally, pR is uniformly scaled by the Jacobian

factor defining the labelling entropy, which does not relate to AA interactions, but is simply a

consequence of how atoms are grouped into CG sites. In this local harmonic approximation,

the PMF may be expressed according to Eq. (34) with an energetic component

EW(R) ≈ u0(R) +
1

2
nxDkBT (46)

that reflects both the temperature-independent minimizing energy, u0(R), and also the

temperature-dependent average energy of the nxD internal vibrations. This approximation

also gives

Imap(R) ≈ 1

2
ln

[︄(︃
L2

2π

)︃nxD

||Cδr̂(R)||−1

]︄
− 1

2
nxD − HL (47)

=
1

2
ln

⎡⎣(︃βL2

2π

)︃nxD

⃓⃓⃓⃓⃓⃓
ĥAA(R)

⃓⃓⃓⃓⃓⃓
||∆N ||D

⎤⎦− 1

2
nxD, (48)

where the volume is V = LD. As expected Imap(R) increases as the lost subensemble

becomes increasingly constrained, i.e., as
⃓⃓⃓⃓⃓⃓
ĥAA(R)

⃓⃓⃓⃓⃓⃓
increases and ||Cδr̂(R)|| decreases.

However, Imap(R) is also reduced by the labelling entropy.

B. Harmonic model

We now specialize to harmonic AA potentials for which the preceding approximation is

exact:

uharm(r) =
1

2
∆r†h∆r =

1

2

∑︂
iα

∑︂
jβ

∆riαhiα;jβ∆rjβ. (49)

Here ∆r = r − r∗ describes the displacement from a reference configuration, r∗, that mini-

mizes the AA potential and hiα;jβ = ∂2uharm/∂riα∂rjβ|r∗ is the Hessian of uharm. We assume

the Hessian matrix, h, is positive semi-definite with a nullspace, null(h) = span{ηφ}, that is

associated with the uniform translation and rotation of all n atoms. This type of potential

naturally arises, e.g., in normal mode analysis when approximating a nonlinear molecular

mechanics potential about r∗79,80 or when defining an anisotropic network model81 from the

Tirion elastic network model.82

By adopting Eq. (26), the harmonic potential may be explicitly expressed

ũharm(r, r̂) =
1

2

{︂
∆r†hCG∆r + 2∆r†hx∆r̂ + ∆r̂†ĥAA∆r̂

}︂
. (50)
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Here ∆r = M∆r, ∆r̂ = Z†
AA∆r, and we have partitioned the AA Hessian into a CG com-

ponent, hCG = B†hB, an AA component, ĥAA = X†
AAhXAA, and a coupling component,

hx = B†hXAA. We assume that the CG mapping preserves the translational and rota-

tional symmetries of the AA potential, such that dim span{Mηφ} = dim null(h). The SM

demonstrates that, as a consequence, ĥAA is positive definite and, thus, invertible.

Given a fixed CG configuration, R, the AA potential, ũharm(R, r̂), is minimized by

r̂R = r̂∗ − ĥ
−1

AAh
†
x∆R, (51)

where ∆R = R−Mr∗. Because uharm is bilinear in Cartesian coordinates, the local harmonic

approximation is exact:

ũharm(R, r̂) = u0(R) +
1

2
δr̂†ĥAAδr̂, (52)

where δr̂ = r̂− r̂R, the minimizing AA potential is

u0(R) =
1

2
∆R†H∆R (53)

and the renormalized Hessian matrix is the Schur complement83,84

H = hCG − hxĥ
−1

AAh
†
x, (54)

which is independent of R. Equation (54) explicitly demonstrates how intra-site interac-

tions impact the mapped ensemble and the CG potential through the coupling component,

hx. Moreover, Eq. (54) suggests that it may be possible to identify “resonant” maps that

eliminate this coupling component, such that the atomic potential can be separated into

independent CG and intra-site components. Section III D considers this possibility further.

Equation (54) corresponds to a previous result of Potestio and coworkers.32 The SM

explicitly demonstrates that Eq. (54) is also consistent with the generalization of our prior

result61 for the Gaussian Network model: HI = QHMhIM†QH, where I denotes the Moore-

Penrose pseudo-inverse and QH is the projector orthogonal to the nullspace of H.77 Since ĥAA

is full rank, the null spaces of h and H have the same dimension.84 The SM demonstrates

that each distinct null-vector, ηφ, of h maps onto a distinct null-vector ηφ ≡ Mηφ of H.

C. Gaussian Network Model

In order to numerically illustrate this framework, we further specialize to the Gaussian

network model (GNM).65,66,85 Here we briefly summarize the key aspects of coarse-graining
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the GNM. Ref. 63 provides a much more detailed presentation.

The high resolution GNM represents each residue in a protein with its α carbon. The

GNM potential introduces a linear isotropic spring between each pair of residues that is in

contact (i.e., within a given cut-off, rc) in the equilibrium folded structure, r∗. The resulting

one-dimensional potential (D = 1) is given by Eq. (49) with h = Γκ where Γ is a dimensional

factor with units of energy/length2 and κ is

κij = diδij − θij, (55)

where θij = 1 if residues i and j contact in r∗ and 0 otherwise, while di =
∑︁

j(̸=i) θij. The

GNM corresponds to a graph describing the network of springs: di is the degree of residue i,

θij corresponds to the adjacency matrix, and κij defines the Kirchhoff or Laplacian matrix

for this graph.86,87 The null space of κ is spanned by Jn and we define Qκ ≡ 1n − Jnn
−1J†

n

as the projector orthogonal to this null-space. The information content of the AA model

may be expressed

IAA = (n− 1)h1 +
1

2
ln tκ. (56)

Here h1 = ln(L/Lvib) − 1
2

may be interpreted as the information gained when replacing a

free translational degree of freedom by a vibrational degree of freedom with a characteristic

length-scale Lvib =
√︁

2πkBT/Γ. In the second term of Eq. (56) we have defined tκ ≡

n−1det1κ where det1κ is the product of the n− 1 positive eigenvalues of κ. The Kirchhoff

matrix-tree theorem states that tκ is the number of spanning trees that are present in

the AA GNM graph.88,89 Additionally, we define ˜︁κ ≡ g−1κg−1 in terms of the diagonal

mass-weighting matrix g ≡
∑︁n

i=1 eim
1/2
i e†i , where mi is the mass of atom i. Finally, the

mass-weighted vibrational covariance matrix of the AA model may be expressed

cv = (βΓ˜︁κ)I . (57)

Given the CG mapping, M, the renormalized Hessian matrix is H = ΓK where K is

positive semi-definite with a one-dimensional nullspace spanned by JN = MJn and we define

the projector QK = 1N − JNN
−1J†

N orthogonal to this nullspace. According to Eq. (54)

K = κCG − κxκ̂
−1
AAκ

†
x =

(︁
QKMκIM†QK

)︁I
. (58)

The information content of the mapped ensemble is

ICG = (N − 1)h1 +
1

2
lnTK, (59)
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where TK = N−1det1K and det1K is the product of the N − 1 positive eigenvalues of K. In

analogy to the AA case, we define ˜︁K ≡ G−1KG−1 in terms of the mass-weighting matrix

G ≡
∑︁N

I=1 eIM
1/2
I e†I where MI is the mass of site I. The mass-weighted covariance matrix

for the mapped ensemble is then

Cv =
(︂
βΓ˜︁K)︂I . (60)

The SM demonstrates that tκ and TK are related according to

tκ/TK = ||κ̂AA|| / ||∆N || . (61)

Consequently, the information loss due to the mapping may be expressed

Imap = nxh1 +
1

2
ln (||κ̂AA|| / ||∆N ||) . (62)

Since h1 is independent of the CG mapping, Eq. (62) makes it particularly clear that the

information lost by the CG mapping increases with the stiffness of the intra-site vibrations,

||κ̂AA||, but is reduced by the labelling degeneracy, ||∆N ||.

We define the spectral quality, Q, to quantify the ability of the CG mapping to preserve

the large scale motions of the AA model:

Q ≡ TrN Cv/ Trn cv =
TrN Q ˜︁KV† (︁gκIg

)︁
VQ ˜︁K

Trn Q˜︁κ (gκIg) Q˜︁κ . (63)

In the second expression, we have defined Q˜︁κ = 1n − m−1
t gJnJ

†
ng and Q ˜︁K = 1N −

M−1
t GJNJ

†
NG as projection operators orthogonal to the nullspace of ˜︁κ and ˜︁K, respec-

tively, where mt =
∑︁n

i=1mi and Mt =
∑︁N

I=1 MI are the total mass of the AA and CG

models, respectively. Thus, Q appears very similar to a Rayleigh quotient for aligning

V ≡ g−1M†G with the subspace corresponding to the largest eigenvalues of gκIg, while

accounting for the zero eigenvalue associated with free translational motion. The spectral

quality appears qualitatively similar to the scoring function employed in the variational

approach for Markov processes.47,90–92 Appendix C compares the spectral quality with the

ED-CG metric.48

D. Resonance between AA and CG models

Subsection III B suggested the possibility of resonant mappings that perfectly eliminate

the coupling between the CG and intra-site degrees of freedom in an underlying atomic
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model. In this subsection, we construct an atomic GNM that allows for such a resonance.

We first specify the special CG mapping, M∗ =
∑︁N

I=1 eIc
†
I , and construct a CG network

model that perfectly aligns with M∗. We then “atomize” this CG model such that the

mapping, M∗, is resonant with the resulting atomic potential.

As before, we assume that the specified CG mapping, M∗, partitions the n atoms into

N disjoint subsets, VI = {i|cIi > 0}, that are associated with each site. The mapping also

determines a corresponding back-mapping, B∗ =
∑︁N

I=1 jIe
†
I , and a corresponding participa-

tion matrix, ∆N =
∑︁N

I=1 eInIe
†
I , where nI = |VI | is the number of atoms that map to site

I.

We construct the CG model by first constructing a simple, connected CG graph, GCG =

(VCG, ECG). This graph represents each site with a vertex, VCG = {1, . . . , N}, and introduces

edges, eIJ ∈ ECG, between the sites. This graph determines a CG adjacency matrix, Θ =∑︁N
I,J=1 eIΘIJe

†
J , where ΘIJ = 1 for distinct sites I and J that are connected (eIJ ∈ ECG);

otherwise ΘIJ = 0. We now weight each edge according to the number of atoms associated

with the corresponding sites, w(eIJ) = nIΘIJnJ . This determines a weighted adjacency

matrix:

A ≡ ∆NΘ∆N =
N∑︂

I,J=1

eIAIJe
†
J , (64)

where AIJ = w(eIJ). Similarly, we define a corresponding weighted degree matrix:

D =
N∑︂
I=1

eIDIe
†
I (65)

where DI = nINI gives the weighted degree of vertex I in terms of NI ≡
∑︁N

J=1 ΘIJnJ ,

which is the number of atoms that are associated with sites J that connect to site I. The

Laplacian matrix for the weighted graph is then

K∗ ≡ D−A, (66)

which is semi-positive definite with a 1-dimensional null space that is spanned by JN . The

generalized Kirchhoff-matrix tree theorem states that TK∗ = N−1det1K∗ is the sum of

weights for all the spanning trees in the weighted CG graph.88,89 We define a GNM-like

potential associated with the weighted CG graph:

W∗(R) =
1

2
ΓδR†K∗δR + const (67)
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where δR = R − R∗ for an arbitrary reference CG configuration, R∗ = Mr∗, and

const is configuration-independent constant. The resulting CG distribution is PR(R) ∝

exp
[︁
−1

2
βΓδR†K∗δR

]︁
.

We now atomize the CG potential, W∗. We first transform K∗ from the CG configuration

space into the AA configuration space:

k∗ ≡ M†
∗K∗M∗ =

N∑︂
I,J=1

cI (DIδIJ − AIJ) c†J , (68)

such that δr†k∗δr = δr†K∗δr. Note that k∗ accounts for atomic interactions between CG

sites but not for interactions within sites. Consequently, we define

δκ ≡ ZAAκ̂∗Z
†
AA, (69)

where κ̂∗ is an arbitrary nx × nx matrix describing intra-site interactions and ZAA =

[zN+1 · · · zn] is the n× nx matrix defined in Section II C. We define an AA spring matrix

κ ≡ k∗ + δκ, (70)

and a corresponding AA potential

u(r) =
1

2
Γδr†κδr, (71)

where δr = r − r∗. By construction, κCG ≡ B†
∗κB∗ = K∗ and κx ≡ B†

∗κXAA = 0.

Consequently, Eq. (71) can be exactly decomposed into independent contributions from

CG and intra-site degrees of freedom. Moreover, every AA potential of the form given by

Eqs. (68) – (71) corresponds to the CG potential given by Eq. (67). Equivalently, every

such AA model gives rise to the same mapped ensemble, pR(R) = PR(R). Thus, we see

explicitly that the information lost from this AA model due to coarse-graining corresponds

to the intra-site spring matrix, κ̂∗. However, Eq. (71) does not necessarily correspond to an

atomic GNM.

We can gain additional insight by specializing to geometric-center mappings, cI ≡ n−1
I jI .

In this case,

k∗ =
N∑︂
I=1

NIPI −
N∑︂

I,J=1

jIΘIJ j
†
J , (72)

where PI = jIn
−1
I j†I is a projection operator describing the coarse-grained motion of the

atomic group associated with site I. Moreover, in this case we can explicitly construct an

atomic network, GAA, that is consistent with the CG network, GCG.
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For each site, I, we construct a simple connected intra-site graph, GI = (VI , EI), by

introducing edges eij ∈ EI between the atoms i, j ∈ VI that are associated with the site.

For each pair of atoms associated with the site, we set θij = 1 if eij ∈ EI ; otherwise θij = 0.

For each atom i ∈ VI , we define dIi =
∑︁

j∈VI
θij as the number of intrasite edges to atom i.

The Laplacian matrix for the intra-site graph, GI , is

κI;in =
∑︂
i,j∈VI

ei(dIiδij − θij)e
†
j. (73)

We form the atomic graph, GAA, by connecting the intra-site graphs, GI , according to the

original CG network, GCG. Specifically, for each distinct pair of sites, I ̸= J , we require

that all of the associated atoms, i ∈ VI and j ∈ VJ , are either connected or not connected

according to ΘIJ : θij = ΘIJ . The Laplacian for GAA is κ = d− θ where θ =
∑︁n

i,j=1 eiθije
†
j

is the adjacency matrix and the degree matrix is

d =
N∑︂
I=1

∑︂
i∈VI

ei (dIi + NI) e
†
i . (74)

It then follows that κ is given by Eq. (70) with

δκ =
N∑︂
I=1

δκI (75)

δκI = κI;in + NIQI (76)

and QI = 1I − PI is a projection operator onto the internal motions of site I. The AA

GNM potential for GAA is then given by Eq. (71). This AA potential maps to the same CG

Kirchhoff matrix, K∗, for every choice of δκ.

As might be expected, δκ reflects independent, additive contributions for each site. How-

ever, these contributions reflect not only the intra-site bonding network, κI;in, but also the

effects of inter-site bonds. Note that the Kirchhoff matrix, κI;c, for a fully connected intra-

site graph, GI;c is proportional to the projection operator QI : κI;c = nIQI . Thus, Eq. (76)

indicates that the inter-site bonds have been uniformly smeared across the intrasite network

in δκI . Moreover, it follows that the information lost by coarse-graining reflects both the

intra-site bond networks, as well as the atomic bonds between CG sites:

||κ̂AA|| =
N∏︂
I=1

det1δκI . (77)
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Equation (76) demonstrates that the inter-site connections systematically increase det1δκI .

In particular, if the intra-site network is fully connected, κI;in → nIQI , then det1δκI achieves

its maximum: det1δκI → (nI + NI)
nI−1. Moreover, it is interesting that the ratio of

weighted spanning trees for the AA and CG graphs can be expressed:

tκ
TK∗

=
N∏︂
I=1

n−1
I det1δκI . (78)

IV. METHODS

A. High and low resolution models for actin

In section V A we adopt a Gaussian Network Model (GNM) as a simple model for the

equilibrium fluctuations of actin about its folded conformation. We defined the actin equi-

librium structure by the three-dimensional coordinates for the 369 residues in the PDB

structure 1J6Z, including the coordinates of the methylated histidine 73.93 Although adeno-

sine diphosphate (ADP) is present in this PDB structure, we did not explicitly represent

ADP in the GNM. The high resolution GNM represents each amino acid with its α carbon.

We employed ProDy version 3.0.494 to determine the Kirchhoff matrix, κ, for the high res-

olution GNM, while adopting a cut-off of rc = 7.5 A to identify contacting residues. We

assigned the same mass, m, to each residue in the high resolution GNM.

We determined the normal mode frequencies, ωi, of the high resolution GNM from the

eigenvalue equation |Γκ− ω2
i g

2| = 0, where Γ is the GNM spring constant, and g =

diag(m1/2) is the n × n mass-weighting matrix.63,79 We define the frequency scale by ω0 =√︁
Γ/m and report dimensionless scaled frequencies ω̃ ≡ ω/ω0 → ω in the following.

We determined the CG coordinate, RI , of each site, I, by the geometric center of the

nI atoms associated with the site. We defined the mass, mI , of site I by the net mass of

the associated atoms, i.e., mI = nIm. We determined the normal mode frequencies, ωI , of

the low resolution GNM from the eigenvalue equation |ΓK− ω2
IG

2| = 0, where K is the

CG spring matrix, and G = diag(m
1/2
I ) is the N × N mass-weighting matrix. We report

dimensionless frequencies for the CG model by scaling with respect to the same constant,

ω0.

Equation (62) expresses the mapping information loss as a sum of two terms, Imap(M) =

nxh1+
1
2

ln (||κ̂AA|| / ||∆N ||). While the second term depends upon the details of the mapping,
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M, the first term depends only upon the number of degrees of freedom, nx = n − N , that

have been eliminated from the high resolution model. This first term is proportional to the

dimensional constant, h1 ≡ ln[L/Lvib] − 1/2, where L is the length of the system enclosing

the protein, Lvib =
√︁

2π/βΓ is a characteristic length-scale for thermal vibrations, and

L/Lvib ≫ 1 in order to analytically treat the GNM. For a fixed number of CG sites, N ,

this first term, nxh1, only introduces an overall shift defining the baseline for Imap. In the

following numerical calculations, we adopted βΓ = 1 A−2, which is qualitatively consistent

with the experimentally measured B-factors for actin,93 and L/Lvib ≈ 79.8.

B. Mapping space

We consider N -site CG representations that partition the n atoms into N disjoint con-

nected subsets and associate a CG site with the geometric center of each subset. Each N -site

mapping, M, is in one-to-one correspondence with an atomic partition (V1, . . . , VN) where

VI = {i|cIi > 0} such that ∪N
I=1VI = {1, . . . , n} and VI ∩ VJ = ∅ for all I ̸= J . (In order

to identify a unique partition, we order the sets VI such that atom 1 is in V1 and set VI

contains the first atom that is not in the sets V1, . . . , VI−1.) We require that the atoms, VI ,

associated with each site, I, are connected by the springs of the high resolution GNM. We

defined the N -site mapping space, MN , as the set of all such N -site maps.

We employed Monte Carlo (MC) simulations to explore the space, MN , of N -site CG

representations for actin. Each MC simulation sampled a Boltzmann distribution

P(M; β, λ, Ebias) ∝ exp
[︁
−β(E(M) + λσ2(M) + Ebias(M))

]︁
, (79)

where E(M) is the base energy function, σ2(M) = var{n1, . . . , nN} is the variance in the

size of the N sites, and Ebias(M) is a bias energy, while β and λ are sampling parameters

analogous to the inverse temperature and external pressure in a constant NPT simulation.

Here we defined our base energy function as the non-trivial part of ICG and Imap: E(M) =

lnTK(M) = ln tκ − ln (||κ̂AA(M)|| / ||∆N(M)||). The bias potential is defined

Ebias(M;Qk, Ek, σ2
k) =

1

2
kQ (Q(M) −Qk)2 +

1

2
kE (E(M) − Ek)2 +

1

2
kσ2λ

(︁
σ2(M) − σ2

k

)︁2
,

(80)

where Qk, Ek, σ2
k, and the corresponding spring constants were chosen to target specific

regions of mapping space. In the majority of simulations kQ = 0.
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As in our previous works, each MC simulation in MN started from the same block map,

MBN . Given a fixed number, N , of CG sites, we define the block size nBN = floor(n/N).

We define the block map, MBN , by associating CG sites I = 1, . . . , N − 1 with the first

N − 1 blocks of nBN consecutive residues in the protein sequence. We associated the last

CG site with the remaining n − nBN(N − 1) residues. Starting from MBN , we employed

a steal move set to perform a random walk through mapping space. Given a map, M, a

steal move proposes a new map, M′, by moving a single atom between two sites in such a

way that both modified sites remain connected. The move is accepted or rejected according

to a criterion that satisfies detailed balance. The MC simulations employed NetworkX to

analyze the graph associated with each map.95 We performed each MC simulation for 2.5

×105 steps, while discarding the first 5 ×103 MC steps as equilibration and sampling every

10th map from the remainder of the simulation. Ref. 63 provides a much more detailed

description of both mapping space and our MC methods.

C. CG Bond Distributions

In section V A we present CG bond length distributions for different N = 2-site CG

representations of the high resolution actin GNM. For these calculations, we define the high

resolution configuration by the x-coordinates of the α carbons for the n = 369 residues

in the actin sequence, r = (x1, . . . , xn). Similarly, we define the high resolution reference

configuration, r∗, by the corresponding x-coordinates in the PDB structure 1J6Z.93 The N =

2-site CG representation specifies the x-coordinates for the 2 sites, R = (X1, X2), while the

mapped reference structure R∗ = Mr∗ = (X∗
1 , X

∗
2 ) explicitly depends upon the mapping,

M. The N = 2-site mapped distribution is

pR(R;M) ∝ exp

[︃
−1

2
βΓδR†KδR

]︃
= exp

[︃
−1

4
βΓΛ (R−R∗)2

]︃
∝ pR(R;M). (81)

In the first Gaussian expression δR = R−R∗ and K = K(M) is the CG Kirchhoff matrix,

which depends upon M according to Eq. (58). In the second Gaussian Λ = Λ(M) is the

positive eigenvalue of K(M), R = X1−X2 is the CG bond length, and R∗ = X∗
1 −X∗

2 is the

CG bond length in the mapped reference structure, R∗. This second Gaussian determines

the mapped bond length distribution, pR(R;M).

Section V A also presents bond distributions for randomly selected maps that are repre-

sentative of particular values for the spectral quality and labelling entropy. For each target
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value of the spectral quality, Qj, we identified the set, S(Qj), of all sampled maps, M, with

Qj−0.0005 ≤ Q(M) ≤ Qj+0.0005. Similarly, given the set of labelling entropies, {HL(M)},

for the sampled maps, we selected 7 representative values, HL;k. Since the spectrum for the

labelling entropy is discrete, we associated each representative value, HL;k, also with the

adjacent values in the spectrum. This allows us to identify a set, S(Qj,HL;k), of sampled

maps with corresponding values of the spectral quality and labelling entropy. We randomly

selected one map, M, from this set, S(Qj,HL;k), i.e., according to a uniform distribution.

We presented the bond distribution for each sampled map as a function of the displacement

from equilibrium, δR = R−R∗.

D. Perturbing AA spring matrices

In Section V B, we consider the impact of perturbing the underlying spring matrix, κ∗,

either by shuffling or deleting randomly selected springs. Let G = (VAA, E) be the graph

associated with κ∗, where VAA = {1, . . . , n} is the set of n atoms and E = {eij} is the set

of springs defined by κ∗. We define the set of backbone springs, Eb = {eij ∈ E||i− j| = 1},

and the set of long-ranged springs En = E − Eb = {eij ∈ E||i − j| > 1}. We determined

a set of springs, Ex, to perturb by randomly sampling a fraction, f , of the springs in En

without replacement. In the case of shuffling experiments, we first randomly selected one

atom k of the pair {i, j} for each sampled spring eij ∈ Ex. We then randomly selected a new

atom k′ /∈ {i, j} that was not connected to atom k. We replaced the spring eij ∈ E with a

new spring ekk′ /∈ E with k ∈ {i, j} and k′ /∈ {i, j}. In the case of deletion experiments, we

simply deleted the springs in Ex from E. In both cases, we repeated this process 100 times

for each fraction, f , of edges.

E. Distance in mapping space

As in our previous studies,62,63 we adopt the variation of information (VI) as a formal

metric for measuring the distance between representations based upon the overlap between

the corresponding atomic partitions.96 Consider a mapping, M, that corresponds to the

atomic partition (V1, . . . , VN), where VI = {i|cIi > 0} is the set of atoms associated site

I. We define nI = |VI | as the number of atoms in the set VI and PI(M) = nI/n as the
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probability of randomly selecting an atom in VI . The entropy of this partition69 is then

H1(M) = −
N∑︂
I=1

PI(M) lnPI(M). (82)

Now consider a second mapping, M′ ∼ (V ′
1 , . . . , V

′
N), where V ′

I′ = {i|cI′i > 0} is the set of

atoms associated with site I ′ in M′. We define nII′ as the number of atoms in the set VI∩V ′
I′ .

We then define PII′(M,M′) = nII′/n as the probability of randomly selecting an atom that

is associated with both site I in M and also site I ′ in M′. Given the two representations, M

and M′, we define the joint entropy, H2(M,M′), and the mutual information, MI(M,M′),

associated with the corresponding partitions69 by

H2(M,M′) = −
N∑︂
I=1

N∑︂
I′=1

PII′(M,M′) lnPII′(M,M′) (83)

MI(M,M′) = −
N∑︂
I=1

N∑︂
I′=1

PII′(M,M′) ln

[︃
PII′(M,M′)

PI(M)PI′(M′)

]︃
. (84)

The VI quantifies the information in PII′(M,M′) that is not shared between the two

mappings96

VI(M,M′) = H2(M,M′) − MI(M,M′) = H1(M) + H1(M
′) − 2MI(M,M′). (85)

In Section V B, we employ VI to measure the distance of a map, M, from the resonant

mapping, M∗, according to d∗(M) ≡ VI(M,M∗).

V. RESULTS AND DISCUSSION

A. Labelling entropy

We first investigate the impact of the CG mapping, M(r), upon the partitioning of atomic

configurational information between the mapped distribution, pR(R), and the conditioned

distribution, pr|R(r|R), that describes the atomic degrees of freedom that are eliminated

from the CG model. We adopt a GNM as a simple high resolution model for the equilibrium

fluctuations of actin about its folded conformation. The high resolution GNM represents

each amino acid with its α carbon and introduces an isotropic linear spring between each

pair of contacting residues that are within rc = 7.5 A in the folded reference structure, r∗.

For simplicity, we assign the same mass, m, to each amino acid.
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I

I

FIG. 1. Analysis of the high resolution GNM for actin. Panel a presents a ribbon cartoon of

the reference folded structure, r∗. Each amino acid is colored according to its biochemical domain

assignment.93 Domains 1, 2, 3, and 4 are colored blue, red, yellow, and green, respectively. Panel

b presents intensity plots of the AA Kirchhoff matrix, κ, and the scaled vibrational covariance

matrix, βΓcv = κI, above and below the diagonal, respectively. The horizontal bars adjacent to

each axis indicate the domain assignment of each residue. Panel c presents the density of vibrational

states for the AA GNM, which has been normalized to integrate to 1. The vertical lines in panel

c present the vibrational frequency for various N = 2-site CG representations. The dashed blue,

dotted green, and dashed-dotted orange lines correspond to the representations that maximize

Q, maximize Imap, and minimize Imap, respectively. The dotted-dashed black line corresponds to

the block map, MB2, that was employed as the initial map for the MC simulations described in

Sec. IVB. 26



Figure 1a presents a ribbon cartoon of this reference actin structure, r∗. The protein

secondary structure primarily consists of α-helices and β-strands that are connected by

turns and coils. Previous biochemical studies have decomposed the actin structure into four

domains that are indicated by the colors in Fig. 1a.93,97

The top half of Fig. 1b presents the upper half of the Kirchhoff matrix, κ, for the high

resolution actin GNM. Each black mark in Fig. 1b identifies a pair of contacting residues

in the reference structure. The color bars parallel to the two axes indicate the domain

assignment of each residue. The black marks that are slightly above the diagonal of Fig. 1b

indicate contacts between residues that are close in sequence, while black marks that are

further above the diagonal indicate contacts between distinct secondary structures. The

large majority of contacts correspond to residues within the same domain. The Kirchhoff

matrix also indicates significant inter-domain contacts between domains 1 and 2, between

domains 1 and 3, and between domains 3 and 4.

The bottom half of Fig. 1b presents the lower half of the scaled covariance matrix, βΓcv =

κI. The covariance matrix highlights strong positive correlations within domains 2 and 4.

The covariance matrix also emphasizes that the motion of domains 1 and 2 are strongly

anti-correlated with the motion of domains 3 and 4.

The bottom panel of Fig. 1c presents the normalized density of vibrational states for

the high resolution GNM. As expected, the density of states includes a few low frequency

normal modes and many high frequency normal modes.

We consider N -site maps that partition the 369 α carbons into N disjoint sets, V1, . . . , VN ,

of connected atoms. We define the CG coordinate, RI , of site I by the geometric center of

the corresponding atomic set, VI . We explored the space of CG maps by performing Monte

Carlo (MC) simulations with an ergodic “steal” move set. Starting from a given map, M,

the steal move set creates a new map, M′, by moving a single atom to a new site.63

Figure 2 characterizes three particular N = 2-site mappings that were sampled dur-

ing these MC simulations. The top panel presents the mapped probability distribution,

pR(R;M), for the CG bond-length, R = R1 − R2, defined by each CG representation, M.

Clearly, the CG bond distributions are very different for the three mappings. The ribbon

cartoons indicate the corresponding atomic partitions, which are also indicated by the hori-

zontal bars below the distributions. In the cartoons and the horizontal bars, each residue is

colored according to the associated CG site. The vertical lines in Fig. 1c indicate the vibra-
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Domains

I
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I
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FIG. 2. Mapped bond distributions for three different N=2-site representations of the high

resolution GNM. The red arrow indicates the single residue that is assigned to the second site in

the map, MI+map
, with maximal information loss. The five horizontal bars present various partitions

of the 369 amino acids. The first bar colors the biochemical domains 1 and 2 blue, while coloring

domains 3 and 4 red.93,97 The remaining 4 bars assign residues according to (2) the two rigid

domains identified by the SPECTRUS webserver;98 (3) the map, MQ, that maximizes Q; (4) the

map, MI−map
, that minimizes Imap; and (5) the map, MI+map

, that maximizes Imap.

tional frequencies for these three representations. The first three entries of Table I further

characterize these 2-site maps. In particular, Table I reports the spectral quality, Q(M),

and mapping information loss, Imap(M), for each mapping, M. The spectral quality, which

is defined by Eq. (63), quantifies the extent to which a given mapping preserves the low

frequency, large amplitude motions of the high resolution model. Conversely, Imap quantifies

the configurational information that is lost due to the mapping according to Eq. (12).

The blue distribution in Fig. 2 corresponds to the sampled map, MQ, with maximal

spectral quality. Because MQ optimally preserves the mass-weighted covariance, the associ-

ated atomic partitioning nicely aligns with the lowest frequency breathing mode of the high

resolution GNM. Consequently, MQ effectively associates the first CG site with domains 1

and 2, while associating the second CG site with domains 3 and 4. This mapping is highly

consistent with our physical intuition and, indeed, almost perfectly aligns with the two most
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TABLE I. Extreme representations of the actin GNM with N= 2-, 4-, and 12-sites. For each

representation, we report the spectral quality (Q), mapping information loss (Imap), and labelling

entropy (HL). We also report the number of intra-site and inter-site bonds, nb;Intra and nb;Inter,

respectively. Consider a high-resolution bond between two atoms, i and j, that are associated with

CG sites, I and J , respectively. We classify the bond as intra-site if I = J (i.e., the atoms are

assigned to the same site) and inter-site if I ̸= J (i.e., the atoms are assigned to different sites).

N Mapping Q Imap HL nb;Intra nb;Inter

2 max Q: MQ 0.112 1795.2 5.2 1637 43

2 max Imap: MI+map
0.005 1795.8 3.0 1675 5

2 min Imap: MI−map
0.001 1793.0 5.2 767 913

4 max Q: MQ 0.222 1785.3 8.8 1578 102

4 max Imap: MI+map
0.024 1787.4 3.5 1652 28

4 min Imap: MI−map
0.004 1779.4 9.0 404 1276

12 max Q: MQ 0.362 1743.7 20.2 1296 384

12 max Imap: MI+map
0.052 1751.1 4.0 1598 82

12 min Imap: MI−map
0.144 1732.6 20.1 387 1293

rigid regions identified by the SPECTRUS webserver.98

Because MQ defines the two sites by splitting the actin structure into two distinct halves,

the equilibrium bond length in the mapped ensemble is quite long. Moreover, because

MQ preserves the low-frequency breathing mode, the corresponding mapped distribution is

quite broad and relatively uninformative. Conversely, MQ partitions the actin residues such

that the overwhelming majority of the high resolution GNM bonds are intra-site bonds,

i.e., between residues that are associated with the same CG site. This results in a rather

sharp conditioned distribution, pr|R, governing the intra-site degrees of freedom in the lost

ensemble. Accordingly, the mapping information loss, Imap(MQ), for this mapping is rather

large.

The orange distribution corresponds to the sampled mapping, MI−map
, with minimal in-

formation loss, i.e., minimal Imap. The two sites are again quite similar in size. However,

this mapping is not consistent with our physical intuition because the two sites do not cor-

respond to coherent structural features. Rather the two sites appear to form alternating
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stripes on both the protein sequence and the folded structure. Consequently, MI−map
maps

the two sites almost on top of each other, which results in a very short equilibrium bond

length in the mapped ensemble. For the same reason, more than half of the bonds in the

underlying GNM are now inter-site bonds, i.e., between residues associated with distinct

sites. The many inter-site bonds strongly constrain the motion of the CG sites. This re-

sults in a very narrow and, thus, highly informative mapped probability density. In this

case, MI−map
appears to maximize configurational information in the mapped ensemble by

preserving localized high frequency “noise” from the AA model.

The two preceding cases suggest that it may be advantageous to adopt CG maps that

maximize the lost configurational information, Imap. This would appear to simplify the

mapped ensemble, pR(R), by minimizing the high frequency noise that is preserved from

the AA model. Moreover, this approach would maximize the information contained in the

conditioned distribution, pr|R(r|R), which should minimize the effective degeneracy of each

CG configuration, R, and render back-mapping efforts more meaningful. However, this

intuition fails.

The green distribution in Fig. 2 corresponds to the sampled mapping, MI+map
, that maxi-

mizes Imap. This mapping associates one site with a single residue in a flexible loop, while

representing the remainder of the protein with a single site. As a result, only 5 of the

underlying GNM bonds connect residues that have been assigned to different sites. Conse-

quently, the corresponding mapped distribution is very broad and, thus, information-poor.

Nevertheless, MI+map
is clearly inconsistent with our physical intuition.

In order to understand these observations, we analyze the space of 2-site CG representa-

tions. Figure 3b presents a scatter plot of {Q(M), Imap(M)} for the 2-site representations

that we sampled during our MC simulations of mapping space. The blue, orange, and green

stars indicate the three maps MQ, MI−map
, and MI+map

, respectively, that were considered in

Fig. 2. The remaining points are colored according to the labelling entropy, HL = 1
2

∑︁
I lnnI .

The colors appear to form stripes on the scatter plot in Fig. 3b. The stripes of a given

color are consistent with our initial intuition. Among maps with a given labelling entropy,

increasing Imap reduces ICG, which results in a broader mapped distribution that better

preserves large scale motions and, thus, increases Q. Equation (62) clearly explains this

observation. Fixing HL corresponds to fixing ||∆N || = exp[2HL]. Consequently, increasing

Imap corresponds to increasing ||κ̂AA||, which effectively transfers atomic bonds from the
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FIG. 3. Analysis of N=2-site representations for actin. Panel b presents a scatter plot of sampled

representations as a function of Q and Imap. Each point of this scatter plot is colored according to

HL. Panel a presents a scatter plot of the same representations as a functionQ and Îmap = Imap+HL.

The blue, orange and green stars indicate the maps MQ, MI−map
, MI+map

, respectively, from Fig. 2.

The red star, which obscures the blue star, indicates the CG representation that associates site 1

with the first two actin domains and site 2 with the second two actin domains.

mapped ensemble into the lost ensemble. This results in larger displacements in the mapped

ensemble and, thus, increases Q.

Figure 3 also reveals why our initial intuition failed. The colors in Fig. 3b demonstrate

that Imap systematically increases as HL decreases, as indicated by Eq. (62). In particu-

lar, the minimally informative mapping, MI+map
, maximizes Imap by minimizing HL with a

representation that associates one site with a single residue. Conversely, the maximally
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informative mapping, MI−map
, and the mapping with maximal spectral quality, MQ, both

correspond to rather homogeneous mass distributions and, thus, relatively high labelling

entropy.

This suggests defining a modified mapping information loss, Îmap = Imap + HL = nxh1 +

1
2

ln ||κ̂AA||, that may provide a better predictor for the spectral quality, Q, by accounting

for the labelling entropy. Figure 3 demonstrates that this is indeed the case: Îmap and Q

appear perfectly correlated among N = 2-site maps.

These results indicate that the information content of the mapped ensemble, ICG = IAA−

Imap = IAA− Îmap+HL, systematically increases as the mapping becomes more homogeneous,

as quantified by the labelling entropy, HL = 1
2

ln ||∆N ||. Section II motivated this effect

via the Jacobian associated with the transformation to CG coordinates in Eq. (27), while

Appendix B derived this effect for the GNM via the determinant identity in Eq. (B1). This

effect can also be motivated by simple statistical considerations.

We have partitioned the n atomic coordinates r = (r1, . . . , rn), into two disjoint sets,

V1 and V2, and defined the CG coordinates RI = n−1
I

∑︁
i∈VI

ri. The central limit theorem

suggests that, as nI → ∞, the variance, σ2
RI

, in the CG coordinate, RI , should scale as n−1
I .

For simplicity, we approximate the variance in both site coordinates by σ2
RI

≈ σ2
r/nI , where

σ2
r corresponds to the variance in the coordinates of a characteristic atom. Assuming that

the CG coordinates are weakly correlated, the variance in the CG bond length, R = R1−R2,

is

σ2
R ≈ σ2

R1
+ σ2

R2
≈ σ2

r

n1

+
σ2
r

n2

=
nσ2

r

||∆N ||
. (86)

Thus, given these simplifying approximations, the width of the mapped ensemble scales

inversely with ||∆N || = n1n2. If we define ϕ ≡ n1/n as the fraction of atoms assigned to site

1, then σ2
R ≈ n−1σ2

r/f(ϕ) where f(ϕ) = ϕ(1 − ϕ). On the interval 0 ≤ ϕ ≤ 1, f(ϕ) achieves

its maximum at ϕ = 1/2 and approaches its minimum as ϕ → 0 or 1. Therefore, at least

in this simple example, the uncertainty in the mapped ensemble systematically decreases as

the mapping becomes increasingly uniform.

The preceding analysis considered an extremely simple case. Nevertheless, Fig. 4 demon-

strates that these considerations qualitatively apply for the actin GNM. Figure 4 presents

mapped bond displacement distributions, pR(δR;M), for representative 2-site CG represen-

tations with varying labelling entropies, HL. The top, middle, and bottom panels compare

representations with relatively low, intermediate, and high spectral quality, respectively.
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FIG. 4. Mapped bond displacement distributions, pR(δR;M), for representative N=2-site maps,

M. The top, middle, and bottom panels correspond to representations with relatively low (Q =

0.002), moderate (Q = 0.052), and high (Q = 0.092) spectral quality. Each curve is colored

according to the labelling entropy, HL, of the corresponding mapping. Section IVC describes these

calculations in greater detail.

As expected, the mapped ensemble generally broadens as Q increases. Moreover, among

representations with a given spectral quality, the uncertainty in the mapped ensemble sys-

tematically increases as the labelling entropy decreases, i.e., as the site size distribution

becomes increasingly heterogeneous. Consequently, there exist maps with very heteroge-

neous site distributions that are characterized by both very low spectral quality and also

very broad, uninformative mapped ensembles.

To this point we have focused on two-site CG representations. We now briefly consider
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FIG. 5. CG representations that maximize Q (left), minimize Imap (center), and maximize Imap

(right) for N = 4-site (top) and 12-site (bottom) representations. The horizontal bars between the

two rows of representations indicate corresponding residue assignments. In each vertical stack of

horizontal bars, the top and bottom bars indicate the corresponding 4- and 12-site CG represen-

tations, respectively, while the central bar indicates the 4 domains identified in the biochemical

literature.93 In the left-most stack, the second and fourth horizontal bars indicate the rigid domain

decomposition identified by the SPECTRUS webserver98 for 4 and 12 domains, respectively.

slightly higher resolution representations of actin. We again performed MC simulations to

explore mapping space for N = 4- and 12-sites.

The left column of Fig. 5 presents the sampled maps, MQ, that maximize Q for N =

4- and 12-site representations. The dashed blue curves in Fig. 6 demonstrate that these

maps nicely preserve the lowest frequency modes of the AA model, while filtering out the

high frequency modes. Table I indicates that these maps are characterized by a relatively

high labelling entropy and, thus, a relatively uniform mass distribution. Moreover, these

maps are characterized by a relatively large number of intrasite bonds, which corresponds

to a broad mapped distribution, pR(R), and a narrow conditioned distribution, pr|R(r|R).

At both resolutions, the map MQ is consistent with our physical intuition, as it assigns the

CG sites to distinct structural motifs. These representations are also quite consistent with

the rigid domains identified by the SPECTRUS webserver.98 Interestingly, the 4-site map
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with maximal spectral quality aligns almost perfectly with the four actin domains that are

discussed in the biochemical literature.93 Moreover, this 4-site representation appears similar

to the CG representation recently identified by combining the ED-CG method with K-means

clustering.54 Thus, the spectral quality appears to be a reasonable metric for identifying high

quality CG representations of actin with N = 2, 4, or 12 sites.

I

I

a)

b)

FIG. 6. Normalized vibrational DoS for various CG representations of actin. The solid black

curve presents the AA DoS, while the dotted-dashed black curve present results for the block map,

MBN . The dashed blue, dotted green, and dashed-dotted orange curves present results for the

representations that maximize Q, maximize Imap, and minimize Imap, respectively. Panels a and b

present results for N = 4 and 12 -site representations, respectively.

The center and right columns of Fig. 5 present the sampled maps, MI−map
and MI+map

,

that minimize and maximize the mapping information loss, Imap, respectively. The dashed-

dotted orange and dotted green curves in Fig. 6 present the vibrational densities of states

for these representations. The representations that minimize Imap do not associate CG

sites with coherent groups. Rather, these representations partition residues in such a way

that more than 75 % of the atomic springs link residues in distinct CG sites. As a result,

these representations generate very narrow mapped ensembles that reflect the localized and,
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thus, informative high-frequency motions of the high resolution model. Conversely, the

representations that maximize Imap represent the overwhelming majority of the protein with

a single residue, which results in a relatively small value for the labelling entropy, HL.

Consequently, Fig. 5 indicates that neither minimizing nor maximizing Imap is consistent

with our physical intuition.

a)

b)

c)

d)

I
I

FIG. 7. Analysis of N = 4-site (left) and 12-site (right) representations for actin in analogy to

Fig. 3. Panels b and d present a scatter plot of sampled representations as a function of Q and

Imap with each point colored according to HL. Panels a and c present scatter plots of the same

representations as a function Q and Îmap = Imap +HL. The blue, orange, and green stars indicate

the three maps from Fig. 5 that maximize Q, minimize Imap, and maximize Imap, respectively. The

blue stars in panels a and b are obscured by the red star, which indicates the mapping defined by

the biochemical domain structure.

Figure 7 demonstrates that the labelling entropy also plays a significant role for higher

resolution representations. The bottom row of Fig. 7 presents a scatter plot of Q and Imap

for sampled CG representations with N = 4- and 12-sites. As in Fig. 3, we have colored the

points according to the labelling entropy, HL(M), for the corresponding CG representation,

M. There appears to be a significant correlation between Q and Imap among maps with a

given HL, but Imap systematically increases as HL decreases. Consequently, there is little

correlation between Q and Imap across the ensemble of sampled maps. The top row of

Fig. 7 presents corresponding scatter plots of Q and Îmap = Imap + HL that account for
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the information loss associated with the site assignments. As in Fig. 3 for N = 2-site

representations, Fig. 7 demonstrates a very strong positive correlation between Q and Îmap

for N = 4 and 12, although this correlation is no longer perfectly 1-to-1 at these higher

resolutions.

B. Resonance between AA and CG models

In Section III D, we considered the possibility of a “resonance” between a high resolu-

tion model and a CG mapping. In this case, the high resolution potential is separable and

does not couple the AA and CG subspaces of the high resolution configuration space. We

construct this resonance by first specifying a CG spring matrix, K∗, along with a corre-

sponding CG mapping, M∗. We use M∗ to project K∗ into the AA configuration space,

K∗ → k∗ = M†
∗K∗M∗. We define the high resolution spring matrix, κ, by decorating k∗

with atomic details, δκ: κ = k∗+δκ. By construction, the mapping, M∗, perfectly preserves

the underlying CG component of the AA model, while eliminating these atomic details. In

this section, we briefly consider how robust this resonance is to the choice of mapping and

to the details of the atomic potential.

a)

b)

c)

FIG. 8. Toy model illustrating “resonance” between an atomic model and the CG mapping.

Panels a and b present the corresponding CG and AA spring matrices, K∗ and κ∗, respectively.

Panel c presents the normalized vibrational density of states for both models.
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Figure 8 illustrates a toy model for this notion of resonance. Figure 8a presents the spring

matrix, K∗, for an N = 9-site CG model. This spring matrix is reminiscent of the GNM for

three anti-parallel β strands. For simplicity, we assume that the mapping, M∗, defines the

coordinates of each CG site, I, from the geometric center for nI = 40 consecutive atoms in

the protein sequence. As above, we assume that each atom has the same mass, m, and that

each CG site has a mass mI = 40m.

The CG spring matrix, K∗, is the Laplacian matrix for the weighted graph, GCG, that is

shown in the inset of Fig. 8c. We weight each CG edge, eIJ , in GCG by w(eIJ) = nI × nJ =

1600. Figure 8b presents the corresponding all-atom (AA) spring matrix, κ∗. As discussed

in Section III D, there exists a family of AA spring matrices, κ = k∗ + δκ, that are all

resonant with K∗ but that differ in atomic details, δκ. For simplicity, we have selected the

AA spring matrix, κ∗, in this family that is maximally connected, i.e., δκI∗ = (nI + NI)QI .

Each spring in the CG network is 1600 times stronger than the atomic springs, but the AA

network compensates for this by introducing 1600 springs between each pair of connected

CG sites. Note also that, while the toy AA model has a similar number of atoms to the

actin GNM, this toy model is much more strongly coupled.

TABLE II. Normal mode frequencies, ω, and degeneracies, Ω(ω), for the AA and CG toy models.

ω ΩAA(ω) ΩCG(ω)

6.325 2 2

8.944 1 1

10.954 158 2

12.649 158 2

14.142 39 0

15.492 1 1

The blue curve in Fig. 8c presents the normalized vibrational density of states, ρ(ω), for

the AA toy model, which is also summarized in Table II. The AA density of states (DoS)

contains 359 finite modes, but these are distributed across only 6 finite frequencies due to

the high symmetry of κ. In particular, the AA DoS contains two symmetric modes at the

fundamental frequency, ω ≈ 6, as well as a single mode at ω ≈ 9. As expected the AA DoS

is overwhelmingly dominated by higher frequency modes, ω > 10.
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The orange curve in Fig. 8c presents the normalized vibrational DoS for the CG model.

While the CG DoS contains only 8 modes, it perfectly preserves 5 of the 6 finite frequen-

cies in the AA DoS.87 Moreover, the CG model perfectly preserves both of the symmetric

fundamental modes at ω ≈ 6, as well as the slightly higher nondegenerate mode at ω ≈ 9.

However, the shape of the CG DoS is dramatically different from the AA DoS. Whereas less

than 1 % of the AA modes have frequencies below 10, nearly 40 % of the CG modes have

frequencies below 10. Due to the high symmetry of the toy model and the strength of the

CG springs, the high frequency AA mode at ω ≈ 16 actually lies in the CG subspace and is

preserved by the mapping. Nevertheless, the resonant mapping perfectly preserves all low

frequency modes of the AA model and completely filters out the high frequency modes that

reflect atomic decorations.

Given the fixed AA spring matrix, κ, in Fig. 8b, we now consider how the properties of

the CG model deteriorate as the CG mapping, M, moves off resonance. Specifically, starting

from the resonant mapping, M∗, we consider each neighboring map, M, that differs by the

assignment of a single atom. We select the map, MQ1, that has lowest spectral quality

within this neighborhood. We repeat this process to step through mapping space in order to

generate a sequence of maps of decreasing spectral quality, Q(M∗) > Q(MQ1) > Q(MQ2) >

· · · > Q(MQ∞), until the walk terminates when we reach a map, MQ∞, that has lower

spectral quality than any of its neighbors. While this walk provides some local information

about moving off resonance, it does not address the statistical properties of mapping space.

It may be beneficial to statistically characterize the neighborhood of M∗ in future work.

Figure 9 characterizes this walk away from the resonant mapping, M∗. During the first 45

steps in this walk, site 9 grows by stealing atoms from site 1. This results in the formation

of new CG springs that couple site 9 to sites 1, 2, and 6. These new springs break the

degeneracy of the lowest frequency modes. While the frequency of mode 1 remains near

its initial value, the frequency of mode 2 rapidly increases. Consequently, the spectral

quality decreases from Q = 0.0373 to 0.0322. Nevertheless, the CG spring matrix, K(MQ45),

preserves much of the original structure in K∗ after 45 steps in this walk.

During the next 45 steps, site 9 continues to grow by stealing atoms from sites 3 and 7.

This further strengthens the CG springs from site 9 to sites 2 and 6, while also introducing

new CG springs from site 9 to sites 3, 5, and 7. During these steps, the frequencies of the

first and third CG normal modes rapidly increase, while the spectral quality decreases to
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FIG. 9. Walk though mapping space by perturbing the resonant mapping, M∗, to reduce Q.

Panel a presents Q (blue) and Îmap (orange) as a function of the number of steps, Nst, on this

walk. The dashed red curve in panel a presents an exponential fit to Q(Nst). Panel b presents

the corresponding 8 finite normal mode frequencies, ωI , of the CG model. The legend indicates

the order of the normal mode frequencies, ω1 ≤ ω2 ≤ · · · ≤ ω8. Panels c and d present the CG

spring matrix, K(κ∗,M), after 45 and 90 steps along this walk. The middle horizontal color bar

between panels c and d indicate the initial assignment of the 360 atoms into 9 CG sites, i.e., site

I is initially associated with the Ith block of 40 amino acids. The horizontal color bars above and

below this middle color bar indicate the assignment of atoms that have been moved from their

initial partition during the first 45 and 90 steps, respectively, of this walk.

0.0284. After 90 steps, the CG spring matrix, K(MQ90), bears relatively little resemblance

to K∗.

As the walk proceeds further, site 9 continues to grow by stealing atoms from other sites.

In these later stages of the walk, the unusually high CG frequency, ω8, slightly decreases from

≈ 16 to ≈ 14. The frequencies of the other CG modes all systematically increase. All of the

CG modes are in the high frequency range, ωI ≥ 10, by the end of the walk. Interestingly,

the spectral quality decreases less rapidly as the walk progresses. Consequently, as we

move off resonance, Q(Nst) appears to decay in a manner that is qualitatively similar to

an exponential. Conversely, the adjusted mapping information, Îmap, decreases in a more

nearly linear manner.

Figure 10 characterizes a second walk away from the resonant mapping, M∗. Each step
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FIG. 10. Walk though mapping space by perturbing the resonant mapping, M∗, to maximize

d(M,M∗). Panel a presents Q (blue) and Îmap (orange) as a function of the number of steps,

Nst, on this walk. The dashed red curve in panel a presents an exponential fit to Q(Nst). Panel

b presents the corresponding 8 finite normal mode frequencies, ωI , of the CG model. The legend

indicates the order of the normal mode frequencies, ω1 ≤ ω2 ≤ · · · ≤ ω8. Panels c and d present

the CG spring matrix, K(κ∗,M), after 80 and 160 steps along this walk. The middle horizontal

color bar between panels c and d indicate the initial assignment of the 360 atoms into 9 CG sites,

i.e., site I is initially associated with the Ith block of 40 amino acids. The horizontal color bars

above and below this middle color bar indicate the assignment of atoms that have been moved

from their initial partition during the first 80 and 160 steps, respectively, of this walk.

of this walk selects the neighboring map, Mdt+1, that is farthest from M∗, while using

the variation of information (VI) to define the distance, d(M,M∗) = VI(M,M∗), between

maps based upon the similarity in the corresponding partitions. As the walk proceeds, the

atoms appear to be “randomly” re-assigned among the 9 sites and the CG spring matrix,

K(κ∗,M), becomes increasingly blurred. The underlying CG spring matrix, K∗, is easily

visible after 80 steps, but has become much less clear after 160 steps. Interestingly, this

walk preserves the degeneracy present in the density of states for the original CG spring

matrix. However, the frequencies of the CG normal modes all converge towards a single

high frequency, ωI ≈ 12. This walk terminates when the final CG spring matrix connects all

of the sites with similarly weak springs, which results in a final spectral quality of Qd∞ ≈

0.0219. The spectral quality again appears to exponentially decay along this walk.

To this point, we have considered the sensitivity of this resonance to the details of the
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CG mapping, M, for a given high resolution GNM with spring matrix, κ∗. Figures 9 and

10 demonstrate that Q rapidly decreases as we move away from the resonant mapping, M∗.

Interestingly, though, the features of the original CG spring matrix, K∗ = K∗(κ∗,M∗),

remain visible in the resulting CG spring matrix, K(κ∗,M), even after 45 steps away from

the resonant mapping, M∗. We now briefly consider how robust this resonance is to the

details of the AA spring matrix, κ, for the fixed CG mapping, M∗.

% Edges Reassigned

a) b)

c)

I

Fit

FIG. 11. Impact of randomly shuffling springs in the original high resolution spring matrix, κ∗,

according to the protocol of Sec. IVD. Panel a presents statistics for the spectral quality, Q(M∗, f),

and adjusted mapping information, Îmap(M∗, f), of the resonant mapping, M∗, as a function of

the fraction, f , of high-resolution springs that have been re-assigned. The red curve presents an

exponential fit to Q(M∗, f). The solid, dashed, and dotted lines present the mean, quartiles, and

extrema obtained from 100 independent numerical experiments. Panel b presents a typical AA

spring matrix, κ(f), when f = 1/2 of the original springs have been reassigned. Panel c presents

the resulting CG spring matrix, K(f) = K(κ(f),M∗).

We first consider the effect of randomly re-assigning a fraction, f , of the springs in

the high resolution spring matrix, κ∗, according to the protocol described in Sec. IV D. In

order to identify statistically significant trends, we repeat this procedure 100 times for each

f . Figure 11a demonstrates that Q(f) decays nearly exponentially with f . Interestingly,

while Q appears quite sensitive to f , Q appears surprisingly insensitive to the identity of the

reassigned springs. Conversely, Îmap(f) initially increases as springs are randomly reassigned,

but begins to decrease with f after half of the springs have been reassigned. Moreover, in

comparison to Q, Îmap appears much more sensitive to the identity of the springs that are

reshuffled.

Figure 11b presents the corresponding AA spring matrix κ(f) for f = 0.50 from one trial
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of this numerical experiment. Once half of the springs have been re-assigned, the spectral

quality of the model has decreased from 0.037 to 0.024. At this point, the pattern of the

original AA spring matrix is barely perceptible. As a consequence of randomly reassigning

the AA springs, the connections in the CG spring matrix, K(f), are weaker. Moreover,

K(f) now includes effective connections that were not present in K∗. Nevertheless, Fig. 11c

demonstrates that the K(f) remains quite similar to the underlying CG spring matrix, K∗.

Thus, it appears that this resonance remains quite robust with respect to even half of the

AA springs being reassigned.

% Edges Deleted

I
a) b)

c)

FIG. 12. Impact of randomly deleting springs in the original high resolution spring matrix, κ∗,

according to the protocol of Sec. IVD. Panel a presents statistics for the spectral quality, Q(M∗, f),

and adjusted mapping information, Îmap(M∗, f), of the resonant mapping, M∗, as a function of the

fraction, f , of high-resolution springs that have been deleted. The solid, dashed, and dotted lines

present the mean, quartiles, and extrema obtained from 100 independent numerical experiments.

Panel b presents a typical AA spring matrix, κ(f), when f = 1/2 of the original springs have been

deleted. Panel c presents the resulting CG spring matrix, K(f) = K(κ(f),M∗).

Finally, Figure 12 considers the effect of randomly deleting a fraction, f , of the springs

in the high resolution spring matrix, κ∗, according to the protocol described in Sec. IV D.

In this case, Q(f) initially increases slowly as springs are deleted, but then increases more

rapidly for f ≥ 0.50. Conversely, Imap(f) monotonically decreases increasingly rapidly as

springs are deleted. In both cases, we expect that this reflects a general shift of the AA

density of states to lower frequencies as springs are removed.

Figure 12b presents the AA spring matrix κ(f) from one trial after f = 0.50 of the

springs have been deleted. In this case, the pattern of κ∗ is unperturbed, although it is

much fainter. Conversely, the CG Kirchoff matrix, K(f), in Figure 12c perfectly preserves
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the connectivity of K∗, although the effective CG springs are much weaker.

VI. CONCLUSIONS

The mapping, M, profoundly impacts CG models. In particular, M determines both the

mapped distribution, pR(R), of CG configurations and also the conditioned distribution,

pr|R(r|R), describing the lost subensemble of AA configurations that map to each CG con-

figuration, R. The information content of this lost subensemble, Imap(R), determines the

degeneracy of AA configurations that map to R and, thus, governs the physical significance

and computational feasibility of back-mapping approaches.11,99,100 Moreover, Imap(R) deter-

mines both the entropic component and also the temperature-dependence of the exact CG

potential, W (R). In particular, any estimates of thermodynamic energies or entropies with

CG models should account for Imap(R).

Accordingly, in this work we have investigated the relationship between the mapping

and the CG model. Our analysis of the mapping identifies a simple back-mapping operator

and a corresponding projection operator for relating the motion of AA and CG models.

This analysis also provides a simple partitioning of the AA configuration space into CG and

intra-site subspaces. In order to preserve translational motion between AA and CG models,

the coefficients defining M must sum to 1 for each site, i.e., they must be L1 normalized.

Consequently, the mapped distribution and the PMF must both be invariant with respect

to any translational or rotational symmetries present in the AA model. More generally,

Appendix A demonstrates that the mapped distribution and PMF will be invariant with

respect to any symmetry operator, T̂ , that commutes with the mapping, M.

The partitioning of AA coordinates implies a formal partitioning of the underlying high

resolution potential into CG, intra-site, and coupling components. In the case of linear mod-

els, one can readily see how the coupling between CG and intra-site coordinates impacts the

mapped ensemble and the CG effective potential.32 This partitioning suggests the general

possibility of “resonant” mappings that eliminate the coupling between the CG and intra-site

coordinates. More generally, resonant mappings arise when the AA potential can be sepa-

rated into independent, additive contributions governing the CG and intra-site coordinates.

In this case, the intra-site interactions do not impact either the mapped ensemble or the CG

effective potential. Consequently, resonant mappings seem like an idealization of “perfect”
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coarse-graining. These considerations are certainly not new and perhaps intuitively obvious.

Nevertheless, the present work hopefully provides additional insight.

Because the mapping coefficients are L1 normalized, the partitioning into CG and intra-

site coordinates introduces a nontrivial Jacobian factor that equals the determinant of the

participation matrix, ||∆N ||. This Jacobian determines a “labelling entropy,” HL = ln ||∆N ||,

that systematically increases as the CG sites become increasingly uniform in size. Because it

quantifies the uncertainty in the atoms associated with each CG site, HL effectively reduces

the information content of the conditioned distribution, pr|R, describing the lost ensemble.

Conversely, HL effectively increases the information content of the mapped ensemble. While

the labelling entropy is perhaps unexpected, we show that it can be qualitatively motivated

by simple statistical considerations for weakly correlated CG coordinates. Moreover, HL

can be explicitly derived for linear models as an identity relating the determinants of the

Hessian matrices describing the AA and CG models. We speculate that HL may arise

naturally in a coarse-graining formalism that explicitly treated the indistinguishability of

equivalent particles.

We numerically illustrated these considerations with a Gaussian Network Model (GNM)

for the equilibrium fluctuations of actin about its folded conformations. Our calculations

indicated that the spectral quality, Q, provides a good metric for identifying CG repre-

sentations that are consistent with our physical intuition. Since it attempts to preserve

low-frequency, large-amplitude motions, the spectral quality is qualitatively similar to many

metrics that have been previously developed for identifying rigid protein domains that move

coherently.29,31,32,42–52,54,101–103 Representations with high spectral quality associate CG sites

with compact, highly connected atomic groups that generate broad mapped ensembles be-

cause the sites are weakly constrained by relatively few inter-site bonds. In particular, the

4-site representation, MQ, that maximized Q aligns very nicely with the four rigid domains

identified by the Spectrus webserver,98 as well as the four domains that have been previ-

ously identified in the biochemical literature.93 Moreover, this representation appears quite

similar to the 4-site representation that was identified by combining the ED-CG method

with K-means clustering to analyze microsecond molecular dynamics simulations of an AA

model for actin. In comparison, minimal resources are required to identify MQ via steepest

descent of Q for the actin GNM. Thus, we anticipate that Q may be a useful metric for

identifying high quality CG representations of systems that fluctuate about an equilibrium

45



conformation. We anticipate that it may be possible to generalize Q for more complex

systems that transition between multiple conformations by generalizing the Rayleigh-type

quotient of Eq. (63) or by considering linear discriminant analsysis.104

In contrast, neither minimizing nor maximizing the mapping information loss, Imap, iden-

tifies CG representations that are consistent with our physical intuition. Representations

that minimize Imap associate CG sites with diffuse, interspersed atomic groups. The resulting

mapped ensemble is very narrow and, thus, highly informative because the sites are highly

constrained by many inter-site bonds. Conversely, maps that maximize Imap tend to repre-

sent the large majority of the protein with a single site, while associating the remaining sites

with individual residues. These maps generate very broad mapped ensembles by minimizing

the number of inter-site bonds, but also minimize the labelling entropy. By accounting for

the labelling entropy, the adjusted information loss, Îmap = Imap + HL, correlates very well

with the spectral quality, Q, for the present CG representations of the GNM.

We also numerically illustrated a notion of resonance between an AA model and a CG

mapping. In this case, we specified an underlying CG spring matrix, K∗, and a corresponding

CG mapping, M∗. We then atomized K∗ in order to determine a family of AA spring matrice,

{κ∗}, that are all resonant with M∗. By construction, the resonant mapping perfectly

preserved the low frequency modes of the AA spring matrix, while eliminating the irrelevant

high resolution details. Given a fixed AA spring matrix, κ∗, the spectral quality, Q(M),

exponentially decreased as the mapping, M, moved away from resonance. Nevertheless,

the CG spring matrix, K(M), remained quite similar to the underlying spring matrix, K∗,

even after 45 steps away from resonance. Conversely, given the fixed CG mapping, M∗, the

spectral quality, Q(f), exponentially decreased with the fraction, f , of springs that were

randomly reassigned from the original AA spring matrix, κ∗. Interestingly, the CG spring

matrix, K(κ), remained quite similar to the original underlying CG spring matrix, K∗, even

when half of the original AA springs were randomly reassigned.

Of course, we do not anticipate finding a perfect resonance when coarse-graining soft

materials. Given a realistic high resolution model, it may be possible to identify nearly

resonant mappings by minimizing the memory kernel describing the dynamics of the CG

variables, as suggested by Voth, Dinner, and coworkers.105 The present results suggest that

the spectral quality may also be a particularly simple metric for finding nearly resonant

mappings. Moreover, the present results suggest that the idealized CG representation of

46



the system remains visible rather far from resonance. Thus, systematic coarse-graining may

generate “sloppy” models that preserve robust, underlying features that are often obscured

by high resolution details.67

The present work also indicates many directions for future work. While the GNM provides

a qualitatively reasonable description for equilibrium fluctuations about a single free energy

minimum, it has many significant limitations. For instance, the present GNM considers a

single energy scale, a single mass scale, a single length scale, and, most importantly, a single

free energy minima. Clearly, future investigations should investigate the impact of the

mapping upon more complex models. In particular, it will be interesting to generalize Q for

more complex models that transition between multiple free energy minimum. We anticipate

that it may be useful to explore the relationship between Q and the VAMP score employed in

Markov state models.47,90–92 Similarly, it will be interesting to investigate the importance of

HL and Imap for systems of interacting molecules and for systems with multiple mass, length,

and energy scales. Finally, it would also be interesting to consider the ramifications of the

present transformation for modeling dynamical properties.106–109 Nevertheless, we hope that

this work may provide useful insight for considering the mapping and how it influences the

properties of CG models.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional results and analysis, including an explicit

illustration of the dual basis introduced in Sec. II C and the derivation of the identity,

Eq. (61).
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APPENDIX A: MAPPING SYMMETRIES TO COARSE-GRAINED

RESOLUTION

We briefly consider the impact of the CG mapping upon symmetries that are present in

an AA model. Specifically, we consider symmetries that correspond to an operator, T̂ , that

acts as a bijective, volume-preserving mapping of the AA configuration space Dn(V ) onto

itself. We also assume that a corresponding operator exists on the CG configuration space,
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DN(V ).

Any symmetry, T̂ , of the AA potential for which u(r) = u(T̂r) will leave the mapped

ensemble, pR(R), and, consequently, the PMF, W (R), invariant as long as the AA model

ergodically samples configuration space and T̂ commutes with the mapping operator, MT̂ =

T̂M.115 This follows because

zR(R) ≡
∫︂
Dn(V )

dr exp[−βu(r)]δ(Mr−R)

=

∫︂
Dn(V )

dr exp[−βu(T̂r)]δ(Mr−R)

=

∫︂
T̂Dn(V )

|T̂
−1
|dr′ exp[−βu(r′)]δ(MT̂

−1
r′ −R)

=

∫︂
Dn(V )

dr′ exp[−βu(r′)]δ(MT̂
−1
r′ −R)

=

∫︂
Dn(V )

dr′ exp[−βu(r′)]δ(T̂
−1
Mr′ −R)

=

∫︂
Dn(V )

dr′ exp[−βu(r′)]δ(Mr′ − T̂R) = zR(T̂R) (A1)

The second line follows because u(T̂r) = u(r) for the symmetry operator, T̂ . The third line

follows by transforming variables r → r′ = T̂r, while the fourth line relies upon the symmetry

being volume preserving and bijective. The fifth line follows because we have assumed that T̂

and M commute, while the sixth line follows because T̂ is bijective and volume preserving.

Of course, symmetries that are present in the AA potential may be broken because the

boundary conditions of the AA model are not consistent with the symmetry (e.g., periodic

boundary conditions are not commensurate with rotational symmetry) or because the AA

model does not ergodically sample configuration space (e.g., simulations of lipid bilayers

break symmetry).

Here we focus on translational and rotational symmetries in D = 3 dimensions because

they are most commonly relevant to AA models. For each Cartesian direction, α, and each

distance, d, we define a translational symmetry operator, T̂ tr;α(d)r → r+dJn⊗eα, that dis-

places each atom a distance d along eα. Similarly, we define a rotational symmetry operator,

T̂ rot;α(θ)r =
∑︁n

i=1 ei ⊗Ωα(θ)ri, where Ωα(θ) = exp[Gαθ] corresponds to the D ×D matrix

describing a rotation of θ about the α Cartesian axis and Gα is the corresponding generator

for infinitesimal rotations.116 These continuous symmetry operators define an infinitesimal
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displacement, ηt, as t → 0, such that

T̂ (t)r
t→0−→ r + ηt + O(t2). (A2)

In particular, ηtr;α = Jn⊗ eα and ηrot;α =
∑︁n

i=1 ei⊗Gαr
∗
i correspond to infinitesimal trans-

lational and rotational displacements about the minimum of the AA potential, r∗. Assuming

that the AA potential is invariant with respect to the continuous symmetry operator, T̂ (t),

it then follows that

u(r∗) = u(T̂ (t)r∗)
t→0−→ u(r∗) +

1

2
η†hηt2 + O(t3) (A3)

where h ≡ h(r∗) is the Hessian of the AA potential about its minimum. Since this identity

holds for all t → 0, it follows that the symmetry operator, T̂ , defines an element, η in the

nullspace of h. We assume that the only symmetries of the AA potential correspond to

uniform rotations and translations, such that null(h) = span{ηtr;α,ηrot;α}α=1,2,3.

Note that both translational and rotational symmetry operators commute with the CG

mapping, M. In the following, we will neglect the effect of boundary conditions and assume

that these operators provide a bijective, volume-preserving mapping of the configuration

space. Consequently, Eq. (A1) implies that the PMF will be invariant with respect to

uniform rotations and translations. Therefore, ηtr;α ≡ Mηtr;α = JN ⊗ eα and ηrot;α ≡

Mηrot;α =
∑︁N

I=1 eI ⊗ GαR
∗
I lie in the nullspace of the CG Hessian, H. In most cases,

one expects that the corresponding set of 6 vectors, {ηtr;α,ηrot;α}α=1,2,3, will be linearly

independent. However, in certain special cases, e.g., for N = 2 site representations, the

three mapped rotational eigenvectors, {ηrot;α}, can become linearly dependent such that the

dimensionality of null(H) may be smaller than the dimensionality of null(h).

The argument that leads to Eq. (A1) also holds for more general symmetries, e.g., particle

permutations or discrete rotations about bonds. In this case, one may need to more carefully

distinguish the action of the symmetry upon the AA and CG configurations, T̂AA and

T̂CG, respectively. In particular, if M “coarse-grains” over an AA symmetry, T̂AA, then

one expects that the corresponding CG symmetry operator simply reduces to an identity

operator, T̂CG = 1̂. Conversely, if M is not commensurate with an AA symmetry, T̂AA,

then the CG model may preserve a remnant of the symmetry, T̂CG, that satisfies, T̂CGM =

MT̂AA, such that the mapped distribution is invariant with respect to T̂CG. However, T̂AA

and T̂CG may have rather different forms.
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APPENDIX B: ANALYSIS OF THE JACOBIAN ||Z||

We are interested in the determinant of the matrix, Z = [zi], where {zi} = {cI , zN+k} is

a set of n linearly independent vectors that span VAA ∼ Rn. We have defined the nx = n−N

vectors {zN+k} to be orthonormal z†N+kzN+k′ = δkk′ . Moreover, the set {zi} are dual to the

n linearly independent vectors {xi} = {jI ,xN+k} such that z†ixj = δij for all i, j = 1, . . . n.

In particular, this implies that

z†N+kjI = 0 for all k = 1, . . . , nx; I = 1, . . . , N

We define

z∅I = n
−1/2
I jI

for I = 1, . . . , N . Because the mapping corresponds to disjoint atomic groups it follows that

z†∅Iz∅J = δIJ for all I, J = 1, . . . , N . Consequently, the set {z∅I , zN+k} forms a complete

orthonormal basis for VAA. Since z†∅IcJ = n
−1/2
I δIJ , it follows that

cI = n
−1/2
I z∅I +

nx∑︂
k=1

γIkzN+k,

where γIk = z†N+kcI . This decomposition allows us to determine the desired determinant:

||Z|| =
⃓⃓⃓⃓
Z†⃓⃓⃓⃓ =

⃓⃓⃓⃓
⃓⃓
⃓⃓⃓⃓
⃓⃓ n−1/2

I z†∅I +
∑︁nx

k=1 γIkz
†
N+k

z†N+k′

⃓⃓⃓⃓
⃓⃓
⃓⃓⃓⃓
⃓⃓

=

⃓⃓⃓⃓
⃓⃓
⃓⃓⃓⃓
⃓⃓ n−1/2

I z†∅I

z†N+k′

⃓⃓⃓⃓
⃓⃓
⃓⃓⃓⃓
⃓⃓ =

(︄
N∏︂
I=1

n
−1/2
I

)︄ ⃓⃓⃓⃓
⃓⃓
⃓⃓⃓⃓
⃓⃓ z†∅I

z†N+k′

⃓⃓⃓⃓
⃓⃓
⃓⃓⃓⃓
⃓⃓

=

(︄
N∏︂
I=1

n
−1/2
I

)︄
.

The second line follows because determinants are unchanged by the addition of rows, while

the third row follows because {z∅I , zN+k} form a complete orthonormal basis. We then have

the desired result:

||Z||−1 = ||∆N ||1/2 (B1)

where ∆N =
∑︁N

I=1 eInIe
†
I is a diagonal participation matrix.

51



APPENDIX C: COMPARISON WITH ED-CG METHOD

Here we briefly compare the ED-CG metric with the spectral quality. The ED-CG method

was originally developed for coarse-graining simulations of complex biomolecules.48 Let

r(t) = {r1(t), . . . , rn(t)} be the coordinates for n atoms in D dimensions at time t after elim-

inating overall rotational and translational motion. Given nt configurations, we define the

mean position of atom i by ri ≡ n−1
t

∑︁nt

t=1 ri(t) and the displacement by ∆ri(t) = ri(t)− ri.

We define the covariance matrix by

C ≡ 1

nt

nt∑︂
t=1

∆r(t)∆r†(t) = UΛU†, (C1)

where the last expression is the SVD decomposition of C: Λ = diag{λ1, λ2, . . . , λnD} is a

diagonal matrix of eigenvalues that are sorted in decreasing order (i.e., λ1 ≥ λ2 ≥ · · · ) and

U = [u1,u2, . . . ,unD] is the matrix of corresponding eigenvectors. The essential dynamics

subspace53 is defined by the first nED eigenvectors of C: UED = [u1, . . . ,unED
]. We define

∆rED(t) = U†
ED∆r(t) and CED = UEDCU†

ED as projections onto this subspace. Given a

mapping, M, that partitions the n atoms into N disjoint atomic groups, V1, . . . , VN , the

ED-CG metric may be expressed

χ2(M) ≡ 1

nt

nt∑︂
t=1

1

ND

N∑︂
I=1

∑︂
i∈VI

∑︂
j(≥i)∈VI

|∆ri;ED(t) − ∆rj;ED(t)|2 (C2)

=
1

ND

N∑︂
I=1

∑︂
i∈VI

∑︂
j(≥i)∈VI

{CED;ii − 2CED;ij + CED;jj} . (C3)

In Eq. (C3) CED;ij ≡
∑︁D

α=1CED;iα|jα traces CED over Cartesian directions. The ED-CG

method identifies the optimal map by minimizing χ2. According to Eq. (C2), the ED-CG

method attempts to define CG sites that correspond to atomic groups that move rigidly

within the ED subspace.

In the case of linear network models, we can analytically evaluate χ2(M) from Eq. (C3). In

the following calculations, we define the ED-CG subspace by the first nED = 10 eigenvectors.

Once CED has been determined, calculating χ2(M) requires approximately half the time of

computing Q(M) for the maps that we consider in this work.

Figure 13a presents a scatter plot comparing χ2(M) and Q(M) for sampled N -site maps

of actin. As expected, the spectral quality and ED-CG metrics are anti-correlated. We
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a)

b)

FIG. 13. Scatter plot of Q(M) and χ2(M) for CG representations of actin sampled by MC

simulations in mapping space. Blue, orange, and green points correspond to N = 2, 4, and 12-site

representations, respectively. The dashed lines indicate best fit lines to the scatter plots. The

legend indicates the slopes, m, and quality of fit parameters, r2, for these lines. Panel (a) presents

a scatter plot for all sampled maps at each resolution. Panel (b) presents sampled maps that are

nearly uniform with the specified variance, σ2(M).

intuitively expect that sites corresponding to rigid atomic groups (i.e., relatively low χ2)

will tend to undergo relatively large amplitude motion (i.e., relatively high Q). However,

Fig. 13a demonstrates that this (anti-)correlation is quite weak when considered across the

entirety of mapping space.

Figure 13b presents a scatter plot for a subset of the sampled maps at each resolution

with minimal site-size variance, σ2(M) = var{nI}, where nI is the number of residues that

M associates with site I. Among these nearly uniform maps, χ2 and Q are nearly perfectly

(anti-)correlated.

We observed similar trends in our prior study of mapping space for ubiquitin.63 We

proposed there that Eq. (C3) can be used to rationalize these trends. First, note that

each term, χ2
ij ≡ {CED;ii − 2CED;ij + CED;jj}, in Eq. (C3) is large and positive because
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the diagonal elements of the covariance matrix tend to be much larger than off-diagonal

elements. Moreover, we note that Eq. (C3) contains W (M) = 1
2
N × nI × (nI − 1) such

terms. Importantly, W (M) grows linearly with σ2(M). For these reasons, χ2 may tend to

favor nearly uniform maps with small σ2(M).

REFERENCES

1R. W. Hamming. Numerical methods for scientists and engineers. McGraw-Hill, New

York, 1962.

2C. Peter and K. Kremer. Multiscale simulation of soft matter systems. Faraday Discuss.,

144:9–24, 2010.

3Friederike Schmid. Understanding and Modeling Polymers: The Challenge of Multiple

Scales. ACS Polymers Au, 3(1):28–58, February 2023.

4MG Guenza, M Dinpajooh, J McCarty, and IY Lyubimov. Accuracy, transferability, and

efficiency of coarse-grained models of molecular liquids. J. Phys. Chem. B, 122(45):10257–

10278, 2018.

5Thomas E. Gartner and Arthi Jayaraman. Modeling and simulations of polymers: A

roadmap. Macromolecules, 52(3):755–786, 2019.

6Satyen Dhamankar and Michael A. Webb. Chemically specific coarse-graining of polymers:

Methods and prospects. Journal of Polymer Science, 59(22):2613–2643, 2021.

7M. Muller, K. Katsov, and M. Schick. Biological and synthetic membranes: What can be

learned from a coarse-grained description? Phys. Rep., 434(5-6):113–176, 2006.

8M. Deserno. Mesoscopic membrane physics: Concepts, simulations, and selected applica-

tions. Macromol. Rapid Comm., 30(9-10):752–771, 2009.

9F. Schmid. Toy amphiphiles on the computer: What can we learn from generic models?

Macromol. Rapid Comm., 30(9-10):741–751, 2009.

10Marco Giulini, Marta Rigoli, Giovanni Mattiotti, Roberto Menichetti, Thomas Tarenzi,

Raffaele Fiorentini, and Raffaello Potestio. From System Modeling to System Analy-

sis: The Impact of Resolution Level and Resolution Distribution in the Computer-Aided

Investigation of Biomolecules. Front. Mol. Biosci., 8:676976, June 2021.

11W. G. Noid. Perspective: Advances, challenges, and insight for predictive coarse-grained

models. J. Phys. Chem. B, 127:4174–4207, 2023.

54



12W. G. Noid. Perspective: coarse-grained models for biomolecular systems. J. Chem.

Phys., 139(9):090901, 2013.

13Helgi I. Ingólfsson, Cesar A. Lopez, Jaakko J. Uusitalo, Djurre H. de Jong, Srinivasa M.

Gopal, Xavier Periole, and Siewert J. Marrink. The power of coarse graining in biomolec-

ular simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci., 4(3):225–248, 2014.
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