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Safe Online Convex Optimization with First-order Feedback

Spencer Hutchinson and Mahnoosh Alizadeh

Abstract— We study an online convex optimization problem
where the player must satisfy an unknown constraint at all
rounds, while only observing the gradient and function value
of the constraint at the chosen actions. For this problem, we
develop an algorithm that uses an optimistic set, which overes-
timates the constraint, to identify low-regret actions while using
a pessimistic set, which underestimates the constraint, to ensure
constraint satisfaction. Our analysis shows that this algorithm
satisfies the constraint at all rounds while enjoying O(v/T)
regret when the constraint function is smooth and strongly
convex. We then extend our algorithm to a setting with time-
varying constraints and prove that it enjoys similar guarantees
in this setting. Lastly, we demonstrate the effectiveness of our
algorithm with a set of numerical experiments.

I. INTRODUCTION

The online convex optimization (OCO) setting, due to
[1], is a sequential decision-making problem where a player
chooses a vector action x; at each round, and subsequently
observes the loss function f; and suffers the loss fi(x).
This setting has received considerable attention due to its
broad applicability to fields ranging from online advertising
[2], [3] to network resource allocation [4], [5] and power
systems [6], [7].

In the conventional OCO setting, the constraints on the
player’s actions are assumed to be entirely known. However,
such constraints are often unknown in the real world, mo-
tivating various works with unknown constraints that either
ensure constraint violation grows sublinearly [8], [9], [10], or
that constraints are never violated [11], [12]. This work falls
into the latter category in that we want to ensure the con-
straints are never violated, despite providing the player with
limited information about them. Ensuring that constraints
are never violated is of utmost importance in safety-critical
applications, such as power systems and clinical trials, where
constraint violations could result in serious consequences,
such as infrastructure damage or patient harm.

In particular, we study a setting where the player needs to
satisfy a fixed, but unknown, constraint and receives feedback
of the constraint function value and gradient at each action
that she plays. Note that this type of constraint feedback
(first-order feedback) is often used in OCO problems with
constraints, e.g. [13], [14], although such works do not
ensure constraint satisfaction in every round (as we do).
To address our stated problem, we propose the algorithm
ROGD, which leverages both sets that underestimate the
constraint set (which we call pessimistic sets) and sets that
overestimate the constraint set (which we call optimistic
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sets) to efficiently balance the competing objectives of en-
suring low regret and maintaining constraint satisfaction.
Our analysis shows that this algorithm enjoys O(v/T) regret
when the constraint function is smooth and strongly convex.
Furthermore, we find that this algorithmic approach yields
similar guarantees in a setting where the constraints are
allowed to vary with time. The efficacy of our approach
is then demonstrated empirically via a series of numerical
experiments.

A. Related work

There is a large body of literature that study OCO with
time-varying constraints. In particular, [8], [13], [15], [16],
[17], [10], [18] study settings in which the constraints for a
given round are adversarily chosen after the player chooses
an action. In a related direction, [14], [18] studied a setting
where the constraint functions are sampled iid. These works
generally employ primal-dual methods to ensure that both
the regret and the cumulative constraint violation grow
sublinearly. This differs from our approach, where we aim
to ensure that a fixed constraint is never violated, while
providing limited feedback to the player.

Another related area of research is projection-free OCO,
which aims to develop algorithms that do not require the
costly projection operation that is required by standard OCO
algorithms. One prominent direction in projection-free OCO
aims to develop alternatives to projection that can be used
with standard algorithms [19], [20]. Another direction in this
field is focused on developing algorithms that use the cheaper
linear optimization oracle [21], [22], [23]. A third direction
in projection-free OCO avoids projections by allowing some
constraint violation [9], [24], [10]. Even though some of
these methods ensure that constraints are always satisfied
without access to a projection oracle, they still assume access
to some other oracle that uses the constraint, i.e. linear
optimization oracle [21], [22], [23], membership oracle [20],
or gradient and value of constraint function at any point [19].
This differs from our setting in which the player only receives
feedback at the points that are played.

Most relevantly, there have also been various works that
study OCO and other learning problems with unknown
constraints that always need to be satisfied. In particular,
[11] studies a safe OCO problem with an unknown lin-
ear constraint which the player receives noisy zero-order
feedback of, and proposes an algorithm that first performs
an iid exploration phase and then online gradient descent
to get O(dT?/®) regret. This approach is then extended
to distributed settings with convex and nonconvex cost
functions in [12]. Our setting differs from [11], [12] in
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that we consider nonlinear (smooth and strongly convex)
constraints and provide the player with first-order feedback.
Our algorithmic approach also differs in that our algorithm
does not use a dedicated pure exploration phase to learn
the constraint but instead uses an action-selection rule that
automatically balances regret minimization and constraint
satisfaction.

Other related safe learning works are [25], which studies
an OCO problem where the cumulative loss at each round
needs to stay below a threshold, [26], [27], which study a
stochastic linear bandit problem with unknown constraints
and noisy feedback, and [28], [29], [30], which study zero-
order optimization where constraints need to always be
satisfied. Although these works address similar challenges as
we do, i.e. ensuring constraint satisfaction under uncertainty,
the underlying problem differs and therefore our setting
requires different methods.

B. Paper organization

We specify the problem setting in Section II, propose an
algorithm for this problem in Section III and then analyze
this algorithm in Section IV. In Section V, we extend our
approach to a setting with time-varying constraints. We then
provide numerical experiments in Section VI and concluding
remarks in Section VII.

C. Notation

We use O(-) to refer to big-O notation. Also, we denote
the 2-norm by || - ||. For a natural number n, we use [n] for
the set {1,2,...,n}. For a matrix M, we use M to denote
the transpose of M. A set X C R? is referred to as convex
if (1—XNz+AyeXforall z,y € X and A € [0, 1]. For a
convex set X', a function f : X — R is referred to as convex
if f(1=Nz+Xy) < (A=) f(z)+Af(y) forall z,y € X
and A € [0,1]. Also for a closed convex set X C R? and
a vector z € R, we denote the projection operation with
Iy (y) = argmingey |z — yl|. A useful fact is that for a
closed convex set X C R? and vectors Yy € R? and z € X,
it holds that ||y — z|| > || TLy(y) — =||.

II. PROBLEM SETUP

We study an online convex optimization problem with an
unknown constraint G = {x € R% : g(z) < 0}, where g is a
convex function. This problem can be viewed as an iterative
game between a player and an adversary, where at each round
telT:

1) player chooses an action x; € X C RY,

2) adversary chooses f; and player suffers cost fi(x¢),

3) player observes V fi(z;), g(z;) and Vg(z;).!
Critically, the player must ensure that x; € G for all ¢ € [T
despite the fact that G is initially unknown. We take the
action set X to be convex and closed, and refer to the feasible
set as Y = X' NG. Furthermore, we only allow the adversary

!In many formulations of the OCO problem, the player is given access to
the entire cost function f; rather than just the gradient at the chosen action
V ft(x+). However, our algorithm (and many common OCO algorithms)
only require access to V f¢(z¢), so we formulate our problem as such.

Algorithm 1: Restrained Online Gradient Descent
(ROGD)
Input: X', n, L, M.
1 Set ; = 0 and ;1 = O.
2 fort=1to T do
3 Play z; and observe V fi(xt), g(x+), Vg(xs).
4 Update )¢ and Y with (1) and (2).
s | i1 = Hyp (T = 0V fi(a)).
6 | v =max{p€[0,1]:z+ p(Fy1 —z) € YF}3
7
8

Tep1 = T + Y (Tep1 — @1).
end

to choose cost functions of the form f; : X — R that are
differentiable and convex, and take the constraint function
g : X — R to also be differentiable and convex.

In addition to ensuring constraint satisfaction, the player
also aims to minimize her loss compared to the best action in
hindsight. Concretely, the player aims to minimize her static
regret, which is defined as

T T
Ry = filz) = felw.),
t=1 t=1

where x, = argmin, Zle fi(x). We use the following
assumptions.

Assumption 1 (Bounded gradients): For all x € X and
t € [T), it holds that ||V fy(z)|| < G .

Assumption 2 (Bounded action set): There exists a posi-
tive real D such that ||z —y|| < D for all z,y € X.

Assumption 3 (Initial feasible point): It holds that O is in
X and ¢(0) < 0.

Assumption 4 (Smooth and strongly convex constraint):
The constraint function g is L-smooth and M-strongly
convex on the set X'. That is, it holds for all x,y € X that

0(9) 2 gla) + Vo) (y — 2) + iy —

o(y) < (o) + Vo) (y — ) + 2y

where k := L/M > 1.2

Assumptions 1 and 2 are standard in the OCO setting,
e.g. [1]. Assumption 3 ensures that there is a feasible point
that is initially known by the player, which is necessary to
ensure constraint satisfaction in the first round. Assumption 4
specifies that the constraint function is smooth and strongly
convex, which is critical to our approach as it allows our
algorithm to construct spherical sets that tightly overesti-
mate and underestimate the constraint, respectively. This is
discussed further in the next section.

III. ALGORITHM

To address the stated problem, we propose the algorithm
Restrained Online Gradient Descent (ROGD) given in Al-

2 Assumption 4 implies that the constraint set G is smooth and strongly
convex. Smooth action sets have been used for projection-free OCO [19]
and strongly convex action sets have been used to prove faster rates for the
Frank-Wolfe method in (offline) convex optimization [31].
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gorithm 1. This algorithm maintains a pessimistic set (yg’ ),
which is known to be a subset of the true feasible set ())),
and an optimistic set ()7), which is known to be a superset
of the true feasible set. In each round, the algorithm updates
the optimistic action (T) with a projected gradient descent
step on the optimistic set (line 5), and then moves the played
action (x;) as far as possible towards the optimistic action
while staying within the pessimistic action set (lines 6 and 7).

Intuitively, the optimistic set is used to guide the algorithm
towards low-regret (but potentially unsafe) actions, while the
pessimistic set is used to ensure that the played actions do in
fact satisfy the constraints. Specifically, the optimistic action
is updated with projected gradient descent on the optimistic
set and so, given the analysis of the classical projected
gradient descent algorithm [1] and the fact that the optimistic
set contains the true feasible set, we know that the regret due
to the optimistic action will be low (i.e. O(v/T)). However,
the optimistic action might not satisfy the constraint so we
cannot play the optimistic action. We instead play an action
that is in the pessimistic set, ensuring constraint satisfaction,
and is as close as possible to the optimistic action. Due to
the construction of the optimistic and pessimistic sets (as
discussed next) and with a step size n that shrinks with
T (g n=~1/ V/T), this approach ensures that the played
actions stay near to the optimistic actions. As a result, the
regret of the played actions will also be low.

The optimistic and pessimistic sets are constructed using
the strong convexity and smoothness of the constraint func-
tion which is assured by Assumption 4. In particular, the
optimistic and pessimistic action sets are defined as

Yy = {x eX:
glzy) + Vg(z) " (x — x4) + %Hm —x))? < 0},
(D
and,
Y= {a: ex:

L
o) + Vo(ar) (o - ) + 5o~ < 0}
2

respectively. It follows from these definitions that J/tp cCycC
Y?. Therefore, it holds that z; is in Y for all ¢ given that x;
is chosen to be in VP ;.

IV. REGRET ANALYSIS

In this section, we prove an upper bound on the static
regret of the proposed algorithm ROGD. The following
theorem shows that, after T rounds, ROGD enjoys static

3Note that the update of ¢ in line 6 is always well-defined in the sense
that there exists a p € [0, 1] such that ¢ + u(Ti41 — @) € .')/f for
every t € [T]. To see this, first note that if ¢ is in ) then g(z¢) < 0
and therefore, x+ is in )}tp and choosing 1 = 0 ensures that x¢41 =
i + p(Tr41 — xt) € )/f C Y. Since x1 € Y by definition, it follows by
induction over ¢ that ~; is well-defined for all ¢ € [T7.

regret less than xDG+/T with an appropriate choice of step
size n. Despite the fact that the constraint is unknown in this
setting, the static regret bound of ROGD only differs from the
static regret bound of standard online gradient descent with
known constraints by a factor of x, which is the condition
number of the constraint function.

Theorem 1: Let Assumptions 1, 2, 3 and 4 hold. The static
regret of ROGD (Algorithm 1) satisfies

1 D?
R < — ) G*nT + —.
e (H 2) L
Choosing n = GL\% ensures that RS, < kDGVT.
In the following subsections, we first provide the support-
ing lemmas and then give the proof of Theorem 1.

A. Supporting lemmas

There are three key lemmas that are needed to analyze
the performance of ROGD. The first lemma shows that the
scaling on the update of the played action (i.e. 7; in line 6)
is lower bounded by a constant.

Lemma 1: Let Assumptions 3 and 4 hold. Then, we have
that v > 1/ for all ¢t € [T].

Proof: Let y := Zyy1 — x¢. Since T4y 1S in V7 by
definition, we know that

M
9(we) + V() "y + - [lyl* <0
T M 2
@éVAM)y+§WMIS—Mm)

Then, we aim to find an « € [0,1] such that v = z; +
a(Zyy1 — ) = x + ay is in Y. Due to the convexity of
X and the fact that x; and Z;4; are in X, we know that u
is in X for any such a. Choosing oo = 1/k, we have that

L
9(@) + Vg(z) " (u— ) + 5\\u — z?
L
= g(z0) +aVg(z) Ty + o5 [yl
L
=g(xy) + (Vg(xt)Ty + a2y||2)

—g(e0) + (Va0 Ty + 5 1ol

< g(xe) — ag(z)
= (1 —a)g(x:) <0,

where the last inequality follows from the fact that x; is in Y
for all ¢ and therefore g(z:) < 0. Since u = x4+ (Tt41—xt)
is in )Y with o = 1/k and ~y, is defined as the largest such
«, we know that v; > 1/k by definition. |

We then use Lemma 1 to show that, with an appropriate
choice of step size, the distance between the optimistic and
played actions is always bounded by a constant.

Lemma 2: Let Assumptions 1, 3 and 4 hold. Fix any € >
0.Ifn = €, then it holds that ||z, — & < € for
all ¢.

Proof: We show this by induction. The base case holds
by definition as £; = x; = 0. Suppose that ||z — Z| < ¢,

1/k
G(1-1/k)
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then we have that

=Y (Tog1 — x4)]|
= (L= 3)[|Tt41 — 24|

Zt41 — Tegall = (|41 — 24

< (1= 1/R)|1Ze41 — 4| (a)
= (1= 1/k)|Myp (Z¢ — 0V fe(21)) — 24|
<A =1/8)|T — 0V fi(ze) — 24| (b)
< (A =1/8)(12e = ze|| + 0l V fe(ze)]])

()
<(1-1/k)(e+nG) (d)

1/k
G 1/n) €G>

where (a) follows from Lemma 1, (b) follows from the fact
that z; is in Y7, (c) is the triangle inequality and (d) uses
the induction hypothesis. [ ]

The last of the technical lemmas, given in the following,
provides a bound on the linearized loss at each round
with respect to an arbitrary point in the feasible set. The
lemma follows from the fact that the optimistic action is an
overestimate of the feasible set and therefore a projection
onto the optimistic set (as used by the algorithm in line 5)
will shrink the distance to any feasible action.

Lemma 3: Let Assumptions 1 and 4 hold. Then, for any
v € Y, it holds that

Vfilwe) T (Z — v)

(1-1/k) <e+

:G,

< 5 (I3 =0l = 3141 = o) + 576%
for all t € [T7.
Proof: Because v € Y C Yy, we know that
[
= [Myp (2 = 0V fel@e)) — v]?
<& =V file) = of?

= |2 — o[> = 20V fe(we) " (3 — 0) + 0P|V o)

< |[& — ol = 20V fi(ae) T (@ — ) + G,
The proof is complete by rearranging the last line and
dividing by 2n. [ ]
B. Proof of Theorem 1

Leveraging Lemmas 1, 2 and 3, we prove Theorem 1 as
follows.
Proof: Since x, is in ), we can use Lemma 3 with
v < x, and sum over t to get

T
> Viila) T
t=1
a 1
D =l = 7 — o) + 56T

t:l

jt — $*>

IN

(121 = 2.l ~

¥l= 8=

. 1
[Zr 11— 2?) + §G2nT
1 1
—D?+ —G*nT
oy Te

IN

Then, we can bound the static regret directly as

T
Ry = Z (fe(ze) = felzs))
T
<D Vilw) (we - ) (a)
t;l .
=D Vil (e — &) + Z Vfe(w) " (@ — @)
t=1
T
Z lze — &l + Zfo o) (@ —x)  (®)
(1 —1/k)nT D2 1
S 1, tat ST (©)
D2
- (K - ) G 277
= kDGVT, (d

where (a) is due to the convexity of f;, (b) is due to Cauchy-
Schwarz and Assumption 1, (c¢) follows from applying
Lemma 2 to the first term and (3) to the second term, and
(d) uses the choice of step size n = GL\;T' [ ]

V. EXTENSION TO TIME-VARYING CONSTRAINTS

In this section, we extend our algorithm and analysis to
the setting where the constraints vary in each round. In
particular, we consider the time-varying constraint G, =
{x € R? : g;(z) < 0} with the time-varying constraint
function g¢;, where the constraint sets are monotone, i.e.
g1 C Gy C ... € Gr. We also give the player feedback
on the constraint for the next round such that, in each round
t € [T, the player observes the feedback on the constraint
for round t+1, i.e. g1 1(z¢) and Vgy 11 (z¢).* In this setting,
the player must ensure that z; € G, for all ¢ € [T']. We refer
to the feasible set in round ¢ as ); := X N G;.

Since the feasible set varies in each round, the notion of
static regret used in the original setting is ill-defined in this
setting. Instead, we measure the performance of the player
against the best action at each round, which is known as
dynamic regret. That is,

Ry = filwe) =Y fila)

where z} = argmin, v, fi(x).

We directly use Assumptions 1 and 2 from the original
setting and assume that the constraints at all time steps satisfy
Assumptions 3 and 4.

Remark 1: Our setting differs from most existing works
on OCO with time-varying constraints, e.g. [13], [30], in
that we consider 1) monotone constraint sets, 2) feedback
on the next constraint, 3) no constraint violation, and 4)
regret compared to the best action in the feasible set at each

“This type of feedback can be considered a “prediction” of future
constraints. Various types of predictions have been considered in the OCO
setting, e.g. [32], [33].
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round. Instead, existing works often consider 1) arbitrarily
varying constraints, 2) feedback on the constraint in the
current round, 3) sublinear constraint violation and 4) regret
compared to the best action that satisfies the constraint in all
rounds (referred to as the common feasible set).

A. Algorithm

In this section, we adapt ROGD (Algorithm 1) to the
setting with time-varying constraints. To do so, we need
to modify the algorithm to ensure that the optimistic set
overestimates the true feasible set and that the pessimistic set
underestimates the true feasible set. Specifically, we redefine
the optimistic and pessimistic sets as

Yy =

{xe)(:

M
gria(e0) + Vo (@) (@ = 1) + o — il < 0},

and,

VP =

{zGA’:

L
a0 + Vg (@) (@ = 1) + 5l — ] <0

respectively. Then, it follows from the strong convexity and
smoothness of the constraint function that yf C Vi1 C VY
for all t € [T7]. Also, since z; € J;_; and the constraint sets
are monotone, it holds that x, € Y, C V41 C ... C Vr.

B. Regret analysis

In this section, we give dynamic regret bounds for ROGD
in the setting with time-varying constraints. As is typical in
dynamic regret analysis, e.g. [1], we use the path length of
the optimal actions as defined in the following.

Definition 1: The path length of the optimal actions
(7} )¢ is defined as

T-1
Pri= i —ainll.

With this, we then givéitlhe dynamic regret guarantees of
ROGD as follows.

Theorem 2: The dynamic regret of ROGD (Algorithm 1)
in the setting with time-varying constraints satisfies

1 1 1
R} < <n — ) G*nT + -D*+ -DPr.
2 U U

In particular, choosing 7 = \/(Pr + 1)/T ensures that R%
is O(y/T(Pr + 1)) where we use O(-) to hide all problem

parameters except Pr and 7.

We give the proof of Theorem 2 in Appendix A. This proof
follows by extending Lemmas 1, 2 and 3 to this setting and
then by bounding the regret in terms of the path length as
done in [1].

Remark 2: In order for the regret bound in Theorem 2 to
yield O(\/T(Pr + 1)) regret, the path length Pr needs to be

known when choosing the step size 7. In some applications,
the path length may not be known in advance, so we leave
it as future work to remove this requirement.

VI. NUMERICAL EXPERIMENTS

In order to validate the theoretical results and illustrate
the operation of ROGD, we give some numerical results
as shown in Figure 1. We consider three different types
of settings, fixed cost functions and constraint (Figures 1a),
time-varying cost functions and fixed constraint (Figure 1b),
and time-varying cost functions and constraints (Figure 1c).
In the following, we provide the details on each of these
settings.

For the setting with fixed cost functions and constraints
(Figure 1a), we consider a linear cost function and quadratic
constraint. In particular, we take the cost function to be
fi(x) = f(x) = [1 1] for all ¢, the constraint function to be
g(z) = 4]|z]|> +[2 — 2]z — 2 and the action set to be X = B
where d = 2. We give the algorithm the information that the
constraint function is 1-strongly convex and 8-smooth. We

run ROGD with 7" = 100 and n = GL&? where D = 2 and

G = /2, and plot the optimistic actions #; and the played
actions z; in Figure la. From this plot, we can see that the
optimistic actions may not satisfy the constraint, but they
“lead” the played actions toward the optimal action while
the played actions stay within the constraint.

For the setting with time-varying cost functions and a fixed
constraint (Figure 1b), we consider randomly sampled linear
cost functions and a quadratic constraint. In particular, we
take the cost functions to be f;(z) = 6,z with 6, ~ U[0 1]¢
and the constraint function to be of the form g(z) =
al|z — b||?> + ¢ where d = 2. We consider 10 randomly
sampled settings where a ~ U[1,10], b ~ U[-0.5 0.5]¢
and ¢ = —a in each trial. For each setting, we run ROGD
and online gradient descent (OGD), from [1], for each T' €
{1x10%,2x 102, ...,5 x 10*} with n = GLﬁ where D = 2
and G = V2. We give ROGD the information that g is 1-
strongly convex and 20-smooth and we give OGD the entire
constraint function. For both algorithms, the average static
regret (i.e. R5./T) is shown in Figure 1b with the average
over all settings shown as a line and +1 standard deviation
shown as a shaded region. For both ROGD and OGD, the
value of R5./T appears to go to zero as T’ grows, suggesting
that the regret is sublinear for this setting.

For the setting with time-varying cost functions and con-
straints (Figure 1c), we consider a smoothly changing linear
cost function and constraint. Specifically, we take the cost
functions to be f;(x) = 6, x where 6§, varies with a constant
increment from [1 0] to [—1 0] along the unit circle and
the constraint function to be g:(z) = ||z|* + ¢; where ¢
varies with constant increment from —1 to —2. It follows
that Pr < Pr = 27. We run ROGD and OGD in this
setting for each 7' € {1 x 10%,2 x 10?,...,3 x 10*} with
n = +/(Pr +1)/T. We give ROGD the information that g is
1-strongly convex and 5-smooth and we give OGD the entire
constraint function. The average dynamic regret is shown in
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(a) Played actions and optimistic actions (b) Average static regret of ROGD and (c) Average dynamic regret of ROGD and
of ROGD in setting with a fixed cost OGD in a setting with time-varying cost OGD in a setting with time-varying cost
function. functions and a fixed constraint. functions and constraints.

Fig. 1: Simulation results of our algorithm ROGD with only first-order feedback of the constraint and the existing algorithm
OGD with full knowledge of the constraint in settings with a fixed cost function and fixed constraint (a), time-varying cost
functions and fixed constraint (b) and time-varying cost functions and constraints (c).
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APPENDIX
A. Proof of Theorem 2

In this appendix, we prove Theorem 2, which gives
dynamic regret bounds on ROGD in the setting with time-
varying constraints. Before getting to the proof of the the-
orem, we first extend Lemmas 1, 2 and 3 to this setting as
follows.

Lemma 4: For ROGD (Algorithm 1) in the setting with
time-varying constraints (specified in Section V), we have
that v > 1/ for all ¢t € [T].

Proof: Since x; € G; by definition and G; C G;4, it
holds that g;y1(z;) < 0. Therefore, the proof of Lemma 1
applies replacing g with g;41. [ ]

Lemma 5: Consider ROGD (Algorithm 1) in the setting
with time-varying constraints (specified in Section V). Also,
fix any € > 0. If = ﬁe, then it holds that ||z; —
Z¢|| < € for all ¢.

Proof: Note that x; € Y, and V; C Vip1 € Y7 so
it follows that x; € ). Therefore, the proof of Lemma 2
applies. [ ]

Lemma 6: Consider ROGD (Algorithm 1) in the setting
with time-varying constraints (specified in Section V). Then,
for any v € ), it holds that

V() T (@ —v)
1 1
< % (12 — v]|* = (|51 — v[|*) + 577G2,

for all ¢t € [T7.
Proof: We have that v € V; C V11 C )7, so we can
use the proof of Lemma 3. [ ]
With these lemmas established, we prove Theorem 2 in
the following.
Proof: Due to the fact that x} is in ); by definition,
we can use Lemma 6 with v <— z} and sum over ¢ to get

T
> Viilwe) (@ — )
t=1
~ *112 ~ *12 1 2
D U = af | = @41 — 27 ]1%) + SGT

T
= Z(Hi"tHQ — &1 ? + 2(Fe1 — F4) ")

1
1 T
o (7] =zl + 2 & (274 —27)
N t=2
~ * ~ * 1
+ 28y — 23] o) + §G277T

1, -
= g, l# = e e A e A e 1

T
~ * * 1
+2 Zx;r(xt—l — i) + §G277T
t=2

IN
S|

T
* * 1
(D? + DZ iy —2fll) + §G277T
t=2

1 1 1
< —-D?*+ —DPr + -G*T.

n n 2
The proof is completed similar to Theorem 1. [ ]
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