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Abstract— We study an online convex optimization problem
where the player must satisfy an unknown constraint at all
rounds, while only observing the gradient and function value
of the constraint at the chosen actions. For this problem, we
develop an algorithm that uses an optimistic set, which overes-
timates the constraint, to identify low-regret actions while using
a pessimistic set, which underestimates the constraint, to ensure
constraint satisfaction. Our analysis shows that this algorithm

satisfies the constraint at all rounds while enjoying O(
√
T )

regret when the constraint function is smooth and strongly
convex. We then extend our algorithm to a setting with time-
varying constraints and prove that it enjoys similar guarantees
in this setting. Lastly, we demonstrate the effectiveness of our
algorithm with a set of numerical experiments.

I. INTRODUCTION

The online convex optimization (OCO) setting, due to

[1], is a sequential decision-making problem where a player

chooses a vector action xt at each round, and subsequently

observes the loss function ft and suffers the loss ft(xt).
This setting has received considerable attention due to its

broad applicability to fields ranging from online advertising

[2], [3] to network resource allocation [4], [5] and power

systems [6], [7].

In the conventional OCO setting, the constraints on the

player’s actions are assumed to be entirely known. However,

such constraints are often unknown in the real world, mo-

tivating various works with unknown constraints that either

ensure constraint violation grows sublinearly [8], [9], [10], or

that constraints are never violated [11], [12]. This work falls

into the latter category in that we want to ensure the con-

straints are never violated, despite providing the player with

limited information about them. Ensuring that constraints

are never violated is of utmost importance in safety-critical

applications, such as power systems and clinical trials, where

constraint violations could result in serious consequences,

such as infrastructure damage or patient harm.

In particular, we study a setting where the player needs to

satisfy a fixed, but unknown, constraint and receives feedback

of the constraint function value and gradient at each action

that she plays. Note that this type of constraint feedback

(first-order feedback) is often used in OCO problems with

constraints, e.g. [13], [14], although such works do not

ensure constraint satisfaction in every round (as we do).

To address our stated problem, we propose the algorithm

ROGD, which leverages both sets that underestimate the

constraint set (which we call pessimistic sets) and sets that

overestimate the constraint set (which we call optimistic
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sets) to efficiently balance the competing objectives of en-

suring low regret and maintaining constraint satisfaction.

Our analysis shows that this algorithm enjoys O(
√
T ) regret

when the constraint function is smooth and strongly convex.

Furthermore, we find that this algorithmic approach yields

similar guarantees in a setting where the constraints are

allowed to vary with time. The efficacy of our approach

is then demonstrated empirically via a series of numerical

experiments.

A. Related work

There is a large body of literature that study OCO with

time-varying constraints. In particular, [8], [13], [15], [16],

[17], [10], [18] study settings in which the constraints for a

given round are adversarily chosen after the player chooses

an action. In a related direction, [14], [18] studied a setting

where the constraint functions are sampled iid. These works

generally employ primal-dual methods to ensure that both

the regret and the cumulative constraint violation grow

sublinearly. This differs from our approach, where we aim

to ensure that a fixed constraint is never violated, while

providing limited feedback to the player.

Another related area of research is projection-free OCO,

which aims to develop algorithms that do not require the

costly projection operation that is required by standard OCO

algorithms. One prominent direction in projection-free OCO

aims to develop alternatives to projection that can be used

with standard algorithms [19], [20]. Another direction in this

field is focused on developing algorithms that use the cheaper

linear optimization oracle [21], [22], [23]. A third direction

in projection-free OCO avoids projections by allowing some

constraint violation [9], [24], [10]. Even though some of

these methods ensure that constraints are always satisfied

without access to a projection oracle, they still assume access

to some other oracle that uses the constraint, i.e. linear

optimization oracle [21], [22], [23], membership oracle [20],

or gradient and value of constraint function at any point [19].

This differs from our setting in which the player only receives

feedback at the points that are played.

Most relevantly, there have also been various works that

study OCO and other learning problems with unknown

constraints that always need to be satisfied. In particular,

[11] studies a safe OCO problem with an unknown lin-

ear constraint which the player receives noisy zero-order

feedback of, and proposes an algorithm that first performs

an iid exploration phase and then online gradient descent

to get Õ(dT 2/3) regret. This approach is then extended

to distributed settings with convex and nonconvex cost

functions in [12]. Our setting differs from [11], [12] in
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that we consider nonlinear (smooth and strongly convex)

constraints and provide the player with first-order feedback.

Our algorithmic approach also differs in that our algorithm

does not use a dedicated pure exploration phase to learn

the constraint but instead uses an action-selection rule that

automatically balances regret minimization and constraint

satisfaction.

Other related safe learning works are [25], which studies

an OCO problem where the cumulative loss at each round

needs to stay below a threshold, [26], [27], which study a

stochastic linear bandit problem with unknown constraints

and noisy feedback, and [28], [29], [30], which study zero-

order optimization where constraints need to always be

satisfied. Although these works address similar challenges as

we do, i.e. ensuring constraint satisfaction under uncertainty,

the underlying problem differs and therefore our setting

requires different methods.

B. Paper organization

We specify the problem setting in Section II, propose an

algorithm for this problem in Section III and then analyze

this algorithm in Section IV. In Section V, we extend our

approach to a setting with time-varying constraints. We then

provide numerical experiments in Section VI and concluding

remarks in Section VII.

C. Notation

We use O(·) to refer to big-O notation. Also, we denote

the 2-norm by ∥ · ∥. For a natural number n, we use [n] for

the set {1, 2, ..., n}. For a matrix M , we use M¦ to denote

the transpose of M . A set X ¦ R
d is referred to as convex

if (1− ¼)x+ ¼y ∈ X for all x, y ∈ X and ¼ ∈ [0, 1]. For a

convex set X , a function f : X → R is referred to as convex

if f((1−¼)x+¼y) f (1−¼)f(x)+¼f(y) for all x, y ∈ X
and ¼ ∈ [0, 1]. Also for a closed convex set X ¦ R

d and

a vector x ∈ R
d, we denote the projection operation with

ΠX (y) = argminx∈X ∥x − y∥. A useful fact is that for a

closed convex set X ¦ R
d and vectors y ∈ R

d and x ∈ X ,

it holds that ∥y − x∥ g ∥ΠX (y)− x∥.

II. PROBLEM SETUP

We study an online convex optimization problem with an

unknown constraint G = {x ∈ R
d : g(x) f 0}, where g is a

convex function. This problem can be viewed as an iterative

game between a player and an adversary, where at each round

t ∈ [T ]:

1) player chooses an action xt ∈ X ¦ R
d,

2) adversary chooses ft and player suffers cost ft(xt),
3) player observes ∇ft(xt), g(xt) and ∇g(xt).

1

Critically, the player must ensure that xt ∈ G for all t ∈ [T ]
despite the fact that G is initially unknown. We take the

action set X to be convex and closed, and refer to the feasible

set as Y = X ∩G. Furthermore, we only allow the adversary

1In many formulations of the OCO problem, the player is given access to
the entire cost function ft rather than just the gradient at the chosen action
∇ft(xt). However, our algorithm (and many common OCO algorithms)
only require access to ∇ft(xt), so we formulate our problem as such.

Algorithm 1: Restrained Online Gradient Descent

(ROGD)

Input: X , ¸, L,M .

1 Set x̃1 = 0 and x1 = 0.

2 for t = 1 to T do

3 Play xt and observe ∇ft(xt), g(xt),∇g(xt).
4 Update Yo

t and Yp
t with (1) and (2).

5 x̃t+1 = ΠYo

t
(x̃t − ¸∇ft(xt)).

6 µt = max{µ ∈ [0, 1] : xt + µ(x̃t+1 − xt) ∈ Yp
t }.3

7 xt+1 = xt + µt(x̃t+1 − xt).
8 end

to choose cost functions of the form ft : X → R that are

differentiable and convex, and take the constraint function

g : X → R to also be differentiable and convex.

In addition to ensuring constraint satisfaction, the player

also aims to minimize her loss compared to the best action in

hindsight. Concretely, the player aims to minimize her static

regret, which is defined as

Rs
T :=

T
∑

t=1

ft(xt)−
T
∑

t=1

ft(x∗),

where x∗ = argminx∈Y
∑T

t=1 ft(x). We use the following

assumptions.

Assumption 1 (Bounded gradients): For all x ∈ X and

t ∈ [T ], it holds that ∥∇ft(x)∥ f G .

Assumption 2 (Bounded action set): There exists a posi-

tive real D such that ∥x− y∥ f D for all x, y ∈ X .

Assumption 3 (Initial feasible point): It holds that 0 is in

X and g(0) f 0.

Assumption 4 (Smooth and strongly convex constraint):

The constraint function g is L-smooth and M -strongly

convex on the set X . That is, it holds for all x, y ∈ X that

g(y) g g(x) +∇g(x)¦(y − x) +
M

2
∥y − x∥2,

g(y) f g(x) +∇g(x)¦(y − x) +
L

2
∥y − x∥2,

where » := L/M > 1.2

Assumptions 1 and 2 are standard in the OCO setting,

e.g. [1]. Assumption 3 ensures that there is a feasible point

that is initially known by the player, which is necessary to

ensure constraint satisfaction in the first round. Assumption 4

specifies that the constraint function is smooth and strongly

convex, which is critical to our approach as it allows our

algorithm to construct spherical sets that tightly overesti-

mate and underestimate the constraint, respectively. This is

discussed further in the next section.

III. ALGORITHM

To address the stated problem, we propose the algorithm

Restrained Online Gradient Descent (ROGD) given in Al-

2Assumption 4 implies that the constraint set G is smooth and strongly
convex. Smooth action sets have been used for projection-free OCO [19]
and strongly convex action sets have been used to prove faster rates for the
Frank-Wolfe method in (offline) convex optimization [31].

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on April 21,2025 at 18:44:25 UTC from IEEE Xplore.  Restrictions apply. 



gorithm 1. This algorithm maintains a pessimistic set (Yp
t ),

which is known to be a subset of the true feasible set (Y),

and an optimistic set (Yo
t ), which is known to be a superset

of the true feasible set. In each round, the algorithm updates

the optimistic action (x̃t) with a projected gradient descent

step on the optimistic set (line 5), and then moves the played

action (xt) as far as possible towards the optimistic action

while staying within the pessimistic action set (lines 6 and 7).

Intuitively, the optimistic set is used to guide the algorithm

towards low-regret (but potentially unsafe) actions, while the

pessimistic set is used to ensure that the played actions do in

fact satisfy the constraints. Specifically, the optimistic action

is updated with projected gradient descent on the optimistic

set and so, given the analysis of the classical projected

gradient descent algorithm [1] and the fact that the optimistic

set contains the true feasible set, we know that the regret due

to the optimistic action will be low (i.e. O(
√
T )). However,

the optimistic action might not satisfy the constraint so we

cannot play the optimistic action. We instead play an action

that is in the pessimistic set, ensuring constraint satisfaction,

and is as close as possible to the optimistic action. Due to

the construction of the optimistic and pessimistic sets (as

discussed next) and with a step size ¸ that shrinks with

T (e.g. ¸ ≈ 1/
√
T ), this approach ensures that the played

actions stay near to the optimistic actions. As a result, the

regret of the played actions will also be low.

The optimistic and pessimistic sets are constructed using

the strong convexity and smoothness of the constraint func-

tion which is assured by Assumption 4. In particular, the

optimistic and pessimistic action sets are defined as

Yo
t :=

{

x ∈ X :

g(xt) +∇g(xt)
¦(x− xt) +

M

2
∥x− xt∥2 f 0

}

,

(1)

and,

Yp
t :=

{

x ∈ X :

g(xt) +∇g(xt)
¦(x− xt) +

L

2
∥x− xt∥2 f 0

}

(2)

respectively. It follows from these definitions that Yp
t ¦ Y ¦

Yo
t . Therefore, it holds that xt is in Y for all t given that xt

is chosen to be in Yp
t−1.

IV. REGRET ANALYSIS

In this section, we prove an upper bound on the static

regret of the proposed algorithm ROGD. The following

theorem shows that, after T rounds, ROGD enjoys static

3Note that the update of γt in line 6 is always well-defined in the sense
that there exists a µ ∈ [0, 1] such that xt + µ(x̃t+1 − xt) ∈ Yp

t for
every t ∈ [T ]. To see this, first note that if xt is in Y then g(xt) f 0
and therefore, xt is in Yp

t and choosing µ = 0 ensures that xt+1 =
xt + µ(x̃t+1 − xt) ∈ Yp

t ¦ Y . Since x1 ∈ Y by definition, it follows by
induction over t that γt is well-defined for all t ∈ [T ].

regret less than »DG
√
T with an appropriate choice of step

size ¸. Despite the fact that the constraint is unknown in this

setting, the static regret bound of ROGD only differs from the

static regret bound of standard online gradient descent with

known constraints by a factor of », which is the condition

number of the constraint function.

Theorem 1: Let Assumptions 1, 2, 3 and 4 hold. The static

regret of ROGD (Algorithm 1) satisfies

Rs
T f

(

»− 1

2

)

G2¸T +
D2

2¸
.

Choosing ¸ = D
G
√
T

ensures that Rs
T f »DG

√
T .

In the following subsections, we first provide the support-

ing lemmas and then give the proof of Theorem 1.

A. Supporting lemmas

There are three key lemmas that are needed to analyze

the performance of ROGD. The first lemma shows that the

scaling on the update of the played action (i.e. µt in line 6)

is lower bounded by a constant.

Lemma 1: Let Assumptions 3 and 4 hold. Then, we have

that µt g 1/» for all t ∈ [T ].
Proof: Let y := x̃t+1 − xt. Since x̃t+1 is in Yo

t by

definition, we know that

g(xt) +∇g(xt)
¦y +

M

2
∥y∥2 f 0

⇐⇒ ∇g(xt)
¦y +

M

2
∥y∥2 f −g(xt).

Then, we aim to find an ³ ∈ [0, 1] such that u = xt +
³(x̃t+1 − xt) = xt + ³y is in Yp

t . Due to the convexity of

X and the fact that xt and x̃t+1 are in X , we know that u
is in X for any such ³. Choosing ³ = 1/», we have that

g(xt) +∇g(xt)
¦(u− xt) +

L

2
∥u− xt∥2

= g(xt) + ³∇g(xt)
¦y + ³2L

2
∥y∥2

= g(xt) + ³

(

∇g(xt)
¦y + ³

L

2
∥y∥2

)

= g(xt) + ³

(

∇g(xt)
¦y +

M

2
∥y∥2

)

f g(xt)− ³g(xt)

= (1− ³)g(xt) f 0,

where the last inequality follows from the fact that xt is in Y
for all t and therefore g(xt) f 0. Since u = xt+³(x̃t+1−xt)
is in Yp

t with ³ = 1/» and µt is defined as the largest such

³, we know that µt g 1/» by definition.

We then use Lemma 1 to show that, with an appropriate

choice of step size, the distance between the optimistic and

played actions is always bounded by a constant.

Lemma 2: Let Assumptions 1, 3 and 4 hold. Fix any ϵ >
0. If ¸ = 1/κ

G(1−1/κ)ϵ, then it holds that ∥xt − x̃t∥ f ϵ for

all t.
Proof: We show this by induction. The base case holds

by definition as x̃1 = x1 = 0. Suppose that ∥xt − x̃t∥ f ϵ,
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then we have that

∥x̃t+1 − xt+1∥ = ∥x̃t+1 − xt − µt(x̃t+1 − xt)∥
= (1− µt)∥x̃t+1 − xt∥
f (1− 1/»)∥x̃t+1 − xt∥ (a)

= (1− 1/»)∥ΠYo

t
(x̃t − ¸∇ft(xt))− xt∥

f (1− 1/»)∥x̃t − ¸∇ft(xt)− xt∥ (b)

f (1− 1/»)(∥x̃t − xt∥+ ¸∥∇ft(xt)∥)
(c)

f (1− 1/»)(ϵ+ ¸G) (d)

= (1− 1/»)

(

ϵ+
1/»

G(1− 1/»)
ϵG

)

= ϵ,

where (a) follows from Lemma 1, (b) follows from the fact

that xt is in Yo
t , (c) is the triangle inequality and (d) uses

the induction hypothesis.

The last of the technical lemmas, given in the following,

provides a bound on the linearized loss at each round

with respect to an arbitrary point in the feasible set. The

lemma follows from the fact that the optimistic action is an

overestimate of the feasible set and therefore a projection

onto the optimistic set (as used by the algorithm in line 5)

will shrink the distance to any feasible action.

Lemma 3: Let Assumptions 1 and 4 hold. Then, for any

v ∈ Y , it holds that

∇ft(xt)
¦(x̃t − v)

f 1

2¸

(

∥x̃t − v∥2 − ∥x̃t+1 − v∥2
)

+
1

2
¸G2,

for all t ∈ [T ].
Proof: Because v ∈ Y ¦ Yo

t , we know that

∥x̃t+1 − v∥2

= ∥ΠYo

t
(x̃t − ¸∇ft(xt))− v∥2

f ∥x̃t − ¸∇ft(xt)− v∥2

= ∥x̃t − v∥2 − 2¸∇ft(xt)
¦(x̃t − v) + ¸2∥∇ft(xt)∥2

f ∥x̃t − v∥2 − 2¸∇ft(xt)
¦(x̃t − v) + ¸2G2.

The proof is complete by rearranging the last line and

dividing by 2¸.

B. Proof of Theorem 1

Leveraging Lemmas 1, 2 and 3, we prove Theorem 1 as

follows.

Proof: Since x∗ is in Y , we can use Lemma 3 with

v ← x∗ and sum over t to get

T
∑

t=1

∇ft(xt)
¦(x̃t − x∗)

f 1

2¸

T
∑

t=1

(∥x̃t − x∗∥2 − ∥x̃t+1 − x∗∥2) +
1

2
G2¸T

=
1

2¸
(∥x̃1 − x∗∥2 − ∥x̃T+1 − x∗∥2) +

1

2
G2¸T

f 1

2¸
D2 +

1

2
G2¸T.

(3)

Then, we can bound the static regret directly as

Rs
T =

T
∑

t=1

(ft(xt)− ft(x∗))

f
T
∑

t=1

∇ft(xt)
¦(xt − x∗) (a)

=

T
∑

t=1

∇ft(xt)
¦(xt − x̃t) +

T
∑

t=1

∇ft(xt)
¦(x̃t − x∗)

f G

T
∑

t=1

∥xt − x̃t∥+
T
∑

t=1

∇ft(xt)
¦(x̃t − x∗) (b)

f G2(1− 1/»)¸T

1/»
+

D2

2¸
+

1

2
G2¸T (c)

=

(

»− 1

2

)

G2¸T +
D2

2¸

= »DG
√
T , (d)

where (a) is due to the convexity of ft, (b) is due to Cauchy-

Schwarz and Assumption 1, (c) follows from applying

Lemma 2 to the first term and (3) to the second term, and

(d) uses the choice of step size ¸ = D
G
√
T

.

V. EXTENSION TO TIME-VARYING CONSTRAINTS

In this section, we extend our algorithm and analysis to

the setting where the constraints vary in each round. In

particular, we consider the time-varying constraint Gt =
{x ∈ R

d : gt(x) f 0} with the time-varying constraint

function gt, where the constraint sets are monotone, i.e.

G1 ¦ G2 ¦ ... ¦ GT . We also give the player feedback

on the constraint for the next round such that, in each round

t ∈ [T ], the player observes the feedback on the constraint

for round t+1, i.e. gt+1(xt) and ∇gt+1(xt).
4 In this setting,

the player must ensure that xt ∈ Gt for all t ∈ [T ]. We refer

to the feasible set in round t as Yt := X ∩ Gt.
Since the feasible set varies in each round, the notion of

static regret used in the original setting is ill-defined in this

setting. Instead, we measure the performance of the player

against the best action at each round, which is known as

dynamic regret. That is,

Rd
T :=

T
∑

t=1

ft(xt)−
T
∑

t=1

ft(x
∗
t )

where x∗
t = argminx∈Yt

ft(x).
We directly use Assumptions 1 and 2 from the original

setting and assume that the constraints at all time steps satisfy

Assumptions 3 and 4.

Remark 1: Our setting differs from most existing works

on OCO with time-varying constraints, e.g. [13], [30], in

that we consider 1) monotone constraint sets, 2) feedback

on the next constraint, 3) no constraint violation, and 4)

regret compared to the best action in the feasible set at each

4This type of feedback can be considered a “prediction” of future
constraints. Various types of predictions have been considered in the OCO
setting, e.g. [32], [33].
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round. Instead, existing works often consider 1) arbitrarily

varying constraints, 2) feedback on the constraint in the

current round, 3) sublinear constraint violation and 4) regret

compared to the best action that satisfies the constraint in all

rounds (referred to as the common feasible set).

A. Algorithm

In this section, we adapt ROGD (Algorithm 1) to the

setting with time-varying constraints. To do so, we need

to modify the algorithm to ensure that the optimistic set

overestimates the true feasible set and that the pessimistic set

underestimates the true feasible set. Specifically, we redefine

the optimistic and pessimistic sets as

Yo
t :=

{

x ∈ X :

gt+1(xt) +∇gt+1(xt)
¦(x− xt) +

M

2
∥x− xt∥2 f 0

}

,

and,

Yp
t :=

{

x ∈ X :

gt+1(xt) +∇gt+1(xt)
¦(x− xt) +

L

2
∥x− xt∥2 f 0

}

respectively. Then, it follows from the strong convexity and

smoothness of the constraint function that Yp
t ¦ Yt+1 ¦ Yo

t

for all t ∈ [T ]. Also, since xt ∈ Yp
t−1 and the constraint sets

are monotone, it holds that xt ∈ Yt ¦ Yt+1 ¦ ... ¦ YT .

B. Regret analysis

In this section, we give dynamic regret bounds for ROGD

in the setting with time-varying constraints. As is typical in

dynamic regret analysis, e.g. [1], we use the path length of

the optimal actions as defined in the following.

Definition 1: The path length of the optimal actions

(x∗
t )t∈[T ] is defined as

PT :=

T−1
∑

t=1

∥x∗
t − x∗

t+1∥.

With this, we then give the dynamic regret guarantees of

ROGD as follows.

Theorem 2: The dynamic regret of ROGD (Algorithm 1)

in the setting with time-varying constraints satisfies

Rd
T f

(

»− 1

2

)

G2¸T +
1

¸
D2 +

1

¸
DPT .

In particular, choosing ¸ =
√

(PT + 1)/T ensures that Rd
T

is O(
√

T (PT + 1)) where we use O(·) to hide all problem

parameters except PT and T .

We give the proof of Theorem 2 in Appendix A. This proof

follows by extending Lemmas 1, 2 and 3 to this setting and

then by bounding the regret in terms of the path length as

done in [1].

Remark 2: In order for the regret bound in Theorem 2 to

yield O(
√

T (PT + 1)) regret, the path length PT needs to be

known when choosing the step size ¸. In some applications,

the path length may not be known in advance, so we leave

it as future work to remove this requirement.

VI. NUMERICAL EXPERIMENTS

In order to validate the theoretical results and illustrate

the operation of ROGD, we give some numerical results

as shown in Figure 1. We consider three different types

of settings, fixed cost functions and constraint (Figures 1a),

time-varying cost functions and fixed constraint (Figure 1b),

and time-varying cost functions and constraints (Figure 1c).

In the following, we provide the details on each of these

settings.

For the setting with fixed cost functions and constraints

(Figure 1a), we consider a linear cost function and quadratic

constraint. In particular, we take the cost function to be

ft(x) = f(x) = [1 1]x for all t, the constraint function to be

g(x) = 4∥x∥2+[2 −2]x−2 and the action set to be X = B

where d = 2. We give the algorithm the information that the

constraint function is 1-strongly convex and 8-smooth. We

run ROGD with T = 100 and ¸ = D
G
√
T

where D = 2 and

G =
√
2, and plot the optimistic actions x̃t and the played

actions xt in Figure 1a. From this plot, we can see that the

optimistic actions may not satisfy the constraint, but they

“lead” the played actions toward the optimal action while

the played actions stay within the constraint.

For the setting with time-varying cost functions and a fixed

constraint (Figure 1b), we consider randomly sampled linear

cost functions and a quadratic constraint. In particular, we

take the cost functions to be ft(x) = ¹¦t x with ¹t ∼ U [0 1]d

and the constraint function to be of the form g(x) =
a∥x − b∥2 + c where d = 2. We consider 10 randomly

sampled settings where a ∼ U [1, 10], b ∼ U [−0.5 0.5]d

and c = −a in each trial. For each setting, we run ROGD

and online gradient descent (OGD), from [1], for each T ∈
{1×102, 2×102, ..., 5×104} with ¸ = D

G
√
T

, where D = 2

and G =
√
2. We give ROGD the information that g is 1-

strongly convex and 20-smooth and we give OGD the entire

constraint function. For both algorithms, the average static

regret (i.e. Rs
T /T ) is shown in Figure 1b with the average

over all settings shown as a line and ±1 standard deviation

shown as a shaded region. For both ROGD and OGD, the

value of Rs
T /T appears to go to zero as T grows, suggesting

that the regret is sublinear for this setting.

For the setting with time-varying cost functions and con-

straints (Figure 1c), we consider a smoothly changing linear

cost function and constraint. Specifically, we take the cost

functions to be ft(x) = ¹¦t x where ¹¦t varies with a constant

increment from [1 0] to [−1 0] along the unit circle and

the constraint function to be gt(x) = ∥x∥2 + ct where ct
varies with constant increment from −1 to −2. It follows

that PT f P̄T = 2Ã. We run ROGD and OGD in this

setting for each T ∈ {1 × 102, 2 × 102, ..., 3 × 104} with

¸ =
√

(P̄T + 1)/T . We give ROGD the information that g is

1-strongly convex and 5-smooth and we give OGD the entire

constraint function. The average dynamic regret is shown in
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(a) Played actions and optimistic actions
of ROGD in setting with a fixed cost
function.

(b) Average static regret of ROGD and
OGD in a setting with time-varying cost
functions and a fixed constraint.

(c) Average dynamic regret of ROGD and
OGD in a setting with time-varying cost
functions and constraints.

Fig. 1: Simulation results of our algorithm ROGD with only first-order feedback of the constraint and the existing algorithm

OGD with full knowledge of the constraint in settings with a fixed cost function and fixed constraint (a), time-varying cost

functions and fixed constraint (b) and time-varying cost functions and constraints (c).

Figure 1c, which indicates that Rd
T /T goes to 0 as T grows.

This suggests that the dynamic regret of both algorithms is

sublinear for this setting.

Note that in all of the discussed settings, we use ROGD

with a simplified update for µt in line 6. In particular, we set

µt = 1 if x̃t+1 is in Yp
t and µt =

1
κ otherwise. The theoretical

performance guarantees still hold with this modification and

the safety guarantees hold given Lemma 1.

VII. CONCLUSION

In this work, we study an online convex optimization

problem where the player needs to ensure that an unknown

constraint is satisfied at all rounds using only first-order

feedback at the chosen actions. To address this problem,

we propose the algorithm ROGD and prove that it enjoys

O(
√
T ) static regret under the assumption that the constraint

function is smooth and strongly convex. This algorithm

works by using an overestimate of the constraint set to

guide the algorithm towards low-regret actions, and using an

underestimate of the constraint set to ensure that the played

actions satisfy the constraints. We find this approach also

works in the more general setting where the constraints are

allowed to vary arbitrarily, provided that the constraint sets

are monotone and the algorithm receives feedback on the

constraint at the next time step. Numerical experiments are

given to illustrate our algorithmic approach and validate the

theoretical guarantees.

Some interesting directions for future work include (a)

investigating if the strong-convexity assumption on the con-

straint can be relaxed, (b) studying the same problem set-

ting with only zero-order feedback, and (c) seeing if the

assumptions made in the time-varying setting (i.e. monotone

constraint sets, predictions on next constraint, known path

length) can be removed.
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APPENDIX

A. Proof of Theorem 2

In this appendix, we prove Theorem 2, which gives

dynamic regret bounds on ROGD in the setting with time-

varying constraints. Before getting to the proof of the the-

orem, we first extend Lemmas 1, 2 and 3 to this setting as

follows.

Lemma 4: For ROGD (Algorithm 1) in the setting with

time-varying constraints (specified in Section V), we have

that µt g 1/» for all t ∈ [T ].
Proof: Since xt ∈ Gt by definition and Gt ¦ Gt+1, it

holds that gt+1(xt) f 0. Therefore, the proof of Lemma 1

applies replacing g with gt+1.

Lemma 5: Consider ROGD (Algorithm 1) in the setting

with time-varying constraints (specified in Section V). Also,

fix any ϵ > 0. If ¸ = 1/κ
G(1−1/κ)ϵ, then it holds that ∥xt −

x̃t∥ f ϵ for all t.
Proof: Note that xt ∈ Yt and Yt ¦ Yt+1 ¦ Yo

t so

it follows that xt ∈ Yo
t . Therefore, the proof of Lemma 2

applies.

Lemma 6: Consider ROGD (Algorithm 1) in the setting

with time-varying constraints (specified in Section V). Then,

for any v ∈ Yt, it holds that

∇ft(xt)
¦(x̃t − v)

f 1

2¸

(

∥x̃t − v∥2 − ∥x̃t+1 − v∥2
)

+
1

2
¸G2,

for all t ∈ [T ].
Proof: We have that v ∈ Yt ¦ Yt+1 ¦ Yo

t , so we can

use the proof of Lemma 3.

With these lemmas established, we prove Theorem 2 in

the following.

Proof: Due to the fact that x∗
t is in Yt by definition,

we can use Lemma 6 with v ← x∗
t and sum over t to get

T
∑

t=1

∇ft(xt)
¦(x̃t − x∗

t )

f 1

2¸

T
∑

t=1

(∥x̃t − x∗
t ∥2 − ∥x̃t+1 − x∗

t ∥2) +
1

2
G2¸T

=
1

2¸

T
∑

t=1

(∥x̃t∥2 − ∥x̃t+1∥2 + 2(x̃t+1 − x̃t)
¦x∗

t )

+
1

2
G2¸T

=
1

2¸
(∥x̃1∥2 − ∥x̃T+1∥2 + 2

T
∑

t=2

x̃¦
t (x

∗
t−1 − x∗

t )

+ 2x̃¦
T+1x

∗
T − 2x̃¦

1 x
∗
1) +

1

2
G2¸T

=
1

2¸
(∥x̃1 − x∗

1∥2 − ∥x̃T+1 − x∗
T ∥2 + ∥x∗

T ∥2 − ∥x∗
1∥2

+ 2

T
∑

t=2

x̃¦
t (x

∗
t−1 − x∗

t )) +
1

2
G2¸T

f 1

¸
(D2 +D

T
∑

t=2

∥x∗
t−1 − x∗

t ∥) +
1

2
G2¸T

f 1

¸
D2 +

1

¸
DPT +

1

2
G2¸T.

The proof is completed similar to Theorem 1.
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