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to change based on the vehicle’s physical configuration and
payload requirements. Actuator parameters such as elec-
tric motor torque constants are susceptible to variations
based on the operating environment (Ali et al., 2016). Tire
friction data is seldom provided by manufacturers, and tire
performance can vary due to factors including tire wear
and driving surface conditions (Rajamani, 2012).

This paper addresses the estimation of plant and actuator
parameter values for a commonly accepted second-order,
nonlinear, three Degree-of-Freedom (3-DOF), linear-in-
the-parameters ground vehicle dynamical model. As is the
case with many vehicles, most of the plant and actuator
model parameters are not known a priori. The value of
many of these parameters are generally not possible to
estimate analytically from first principles and, as a result,
these model parameters must be determined experimen-
tally.

This study reports a novel Nullspace Adaptive Identifi-
cation (NSAID) algorithm to estimate both plant and
actuator parameter values for a widely accepted ground
vehicle dynamical model. We report the first simulation
and experimental evaluation of the performance of the
NSAID algorithm in achieving parameter identification for
a ground vehicle model. This approach relies solely upon
knowledge of the control input signals and vehicle body-
velocity measurement signals, without requiring accelera-
tion signals or sensing.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews previous literature. Section 3 reviews the
ground vehicle plant and actuator model and presents a

Accurate dynamical models for ground vehicles are use-
ful for a variety of applications including the following:
(1) Forward Simulation and Testing: New control sys-
tems can be refined within a simulated environment that
utilizes a vehicle’s dynamical model prior to being de-
ployed to resource-intensive hardware trials. (2) Model-
Based Control and Navigation Systems: Dynamical plant
and actuator models can be incorporated into model-based
control and navigation systems to provide improved per-
formance in comparison to conventional non-model-based
approaches (Kiencke and Nielsen, 2005). (3) Safer Driver
Assistance Systems: Instead of using sensors alone to warn
or react to an operator’s input, dynamical models can be
used to adjust operator commands such that the vehicle
always remains in a safe operational envelope (Holzmann
et al., 2006). (4) Fault Detection: Model-based fault de-
tection and isolation techniques can use knowledge of a
system’s dynamics to localize faults (Mao and Whitcomb,
2021). (5) Robust State Estimation: Dynamical Models are
useful for estimating vehicle states that can not be exactly
measured due to sensor limitations (Sen et al., 2015).

Experimentally determining precise model parameter val-
ues for a vehicle can be a formidable challenge. Plant pa-
rameters such as mass and moments of inertia are subject
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actuator parameters simultaneously, does not require acceleration measurements, can be utilized
offline or online during vehicle operation, and can be applied with open or closed-loop control.
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new adaptive NSAID identifier for this model, an exten-
sion of the approach reported in (Harris et al., 2023).
Section 4 reports the results of a numerical simulation
study employing the NSAID algorithm and compares the
estimated parameter values to their true values. Section
5 reports the results of an experimental evaluation which
uses data from a 1/10th scale ground vehicle and NSAID
to estimate model parameter values. Section 6 summarizes
and concludes.

2. LITERATURE REVIEW

Vehicle parameter estimation consists broadly of two ap-
proaches: sensor-based and model-based methods. Sensor-
based methods involve the incorporation of additional sen-
sors into a vehicle design to monitor the value of specific
parameter(s) of interest, (Reina et al., 2017). In (Erdogan
et al., 2011) the authors report a method of determining
the tire-road friction coefficient by using a specialized
piezoelectric sensor embedded in a tire. Since most vehicles
and components do not come equipped with additional
specialized sensors, implementing sensor-based methods
can be challenging and costly.

Model-based methods use the signals from existing vehi-
cle sensor data in conjunction with vehicle control input
signals to estimate parameters. Least Squares (LS) is one
method that can be used to estimate model parameters
from experimental data. Recursive Least Squares (RLS)
identification has also been used for vehicle parameter
estimation and can be used for iterative, online updates
while the vehicle is operating (Rajamani, 2012). However,
both LS and RLS methods require linear and rotational
acceleration measurements to determine parameters in sec-
ond order dynamic models. The disadvantage is that linear
acceleration signals, commonly acquired by differentiating
velocity measurements or using acceleration sensors, are
prone to noise. Even with dedicated acceleration sensors,
the true body-acceleration signal is obscured by the grav-
itational acceleration acting on a vehicle body frame with
dynamic attitude. In (Vahidi et al., 2005), the authors
report a model-based method for measuring vehicle mass
and road grade and note that “the signals recorded from
the accelerometers were noisy and therefore we decided
not to use these signals for obtaining accelerations.”

Kalman Filters (KF) have also been used to estimate
ground vehicle model parameters. In (Bevly et al., 2006)
the authors report on a Kalman Filter approach used to
estimate tire slip angles. The authors also note issues with
linear acceleration measurement error and report a kine-
matic Kalman Filter method to improve the acceleration
measurements that were ultimately used to estimate the
tire cornering stiffness model parameters.

The NSAID approach differs from model-based parameter
estimation methods such as LS and KF methods in that it
does not require acceleration measurements and has been
analytically proven to guarantee parameter convergence to
the set of true parameters (Harris et al., 2023).

3. BICYCLE MODEL AND NSAID ALGORITHM

Section 3.1 reviews a commonly accepted vehicle dynamics
model. Section 3.2 reports an NSAID algorithm for this
plant model. Section 3.3 outlines the Lyapunov stability
proof of the NSAID algorithm.

3.1 Ground Vehicle Bicycle Dynamics Model

A 3-DOF ground vehicle dynamical model where the lat-
eral and heading (i.e. steering) dynamics use the com-
monly accepted “Bicycle Model” takes the form

Table 1. Variable Definitions and units

ẋ Longitudinal velocity (Body-frame) m/s
ẏ Lateral velocity (Body-frame) m/s

ψ̇ Yaw rate (Body-frame) rad/s
Im Motor Current A
δ Front tire steering angle rad

Table 2. Parameter Definitions, Units,
and (A)ctuator / (P)lant Designation

lf Distance, center of mass to front wheel m P
lr Distance, center of mass to rear wheel m P
m Vehicle mass kg P
Jz z-axis moment of inertia kg ·m2 P
Kt Motor drive-train torque constant N/A A
Crr Rolling resistance coefficient N · s/m P
Cαf Front tire cornering stiffness N/rad A
Cαr Rear tire cornering stiffness N/rad P
C∆ Cαf + Cαr N/rad P
CΣ Cαf − Cαr N/rad P

ẍ = Kt
Im
m

− Crrẋ

m
+ ẏψ̇ (1)

ÿ = −Cαf + Cαr

mẋ
ẏ − Cαf lf − Cαrlr

mẋ
ψ̇ +

Cαf

m
δ − ẋψ̇ (2)

ψ̈ = −Cαf lf − Cαrlr
Jzẋ

ẏ −
Cαf l

2
f + Cαrl

2
r

Jzẋ
ψ̇ +

Cαf lf
Jz

δ (3)

where the longitudinal dynamics of the body (1) has the
control input of motor current in Amperes, Im(t), and
the lateral dynamics (2) and heading dynamics (3) have
the control input of front tire steering angle δ(t). The
remaining variables and plant and actuator parameters in
(1)-(3) are defined in, respectively, Tables 1 and 2. We note
that (2) and (3) represent the commonly accepted bicycle
vehicle dynamics model as reported in (Rajamani, 2012).

CΣ and C∆ can be defined as follows

CΣ ≜ Cαf + Cαr (4)

C∆ ≜ Cαf − Cαr. (5)

and substituted into (2) and (3) for brevity. We note that
Cαf remains in our modified model as it acts as an actuator
parameter while CΣ and C∆ represent plant parameters

The center of mass for our vehicle is located in center of
the longitudinal axis of the vehicle frame such that

lf = lr = l. (6)

Our simplified vehicle equations of motion take the form

ẍ = Kt
Im
m

− Crrẋ

m
+ ẏψ̇ (7)

ÿ = −CΣ

mẋ
ẏ − C∆l

mẋ
ψ̇ +

Cαf

m
δ − ẋψ̇ (8)

ψ̈ = −C∆l

Jzẋ
ẏ − CΣl

2

Jzẋ
ψ̇ +

Cαf l

Jz
δ. (9)

Defining v as the velocity state vector as

v ≜

ẋ ẏ ψ̇

T
(10)

results in the final body-frame velocity dynamics

v̇ =


ẍ
ÿ
ψ̈


=




Kt
Im
m − Crrẋ

m + ẏψ̇

−CΣ

mẋ ẏ −
C∆l
mẋ ψ̇ +

Cαf

m δ − ẋψ̇

−C∆l
Jz ẋ

ẏ − CΣl2

Jz ẋ
ψ̇ +

Cαf l
Jz

δ


 . (11)

3.2 NSAID Algorithm

We define the parameter vector, θ ∈ R7×1, as

θ ≜ [m Jz Kt Crr Cαf CΣ C∆]
T
, (12)
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composed of the model’s plant and actuator parameters.
We define the positive definite inertia matrix, M , as

M(θ) =


m 0 0
0 m 0
0 0 Jz


. (13)

Factoring out M−1(θ) from (11) and taking the Jacobian
with respect to θ, results in an expression of the form

v̇(θ) = M−1(θ)Wv̇(v, ξ)θ (14)
where v̇ is a function of the parameters θ, and the matrix-
valued function Wv̇(v, ξ) collects the nonlinear terms due

to v and ξ ≜[Im δ]T , the vector of control inputs.

Rearranging all terms to the right hand side and using the
using Jacobian operator, Dθ, which is defined such that
p(θ) = Dθ[p(θ)]θ, we can factor out the regressor matrix-
valued function W(v̇, v, ξ) ∈ R3×7

0 = Dθ[M(θ)v̇(θ)−Wv̇(v, ξ)θ]θ (15)
0 = W(v̇, v, ξ)θ (16)

where W(v̇, v, ξ) takes the following form

W(v̇, v, ξ) =



ẍ− ψ̇ẏ 0 −Im ẋ 0 0 0
ÿ + ψ̇ẋ 0 0 0 −δ ẏ/ẋ lψ̇/ẋ

0 ψ̈ 0 0 −lδ l2ψ̇/ẋ lẏ/ẋ


 . (17)

Note that (16) shows that θ ∈ null(W(v̇, v, ξ)) and that
the ‘true’ θ that persistently satisfies (16) is not only one
single point in parameter space, but rather any element θ∗

of the set P (θ), where

P (θ) ≜ {θ∗ ∈ R7 : θ∗ ̸= 0 and

W (v̇, v, ξ)θ = 0 ⇐⇒ W (v̇, v, ξ)θ∗ = 0}. (18)
As an example, it is easy to see that any scalar multiple of
θ equivalently satisfies the nullspace relationship (16). We

define the parameter estimate θ̂, the identification plant v̂,
and the following error coordinates

∆θ ≜ θ̂ − θ (19)

∆v ≜ v̂ − v. (20)

We choose an adaptive identification plant of the form
˙̂v ≜ v̇(θ̂)−A∆v (21)

where A ∈ R3×3 is a positive definite symmetric gain

matrix and v̇(θ̂) is the resulting time-derivative of the
body velocity as a function of the estimated parameters

θ̂ instead of the true parameters θ (14), defined as

v̇(θ̂) ≜ M−1(θ̂)Wv̇(v, ξ)θ̂. (22)

The NSAID parameter update law is
˙̂
θ ≜ ΓW(v̇(θ̂), v, ξ)T∆v. (23)

where Γ ∈ R7×7 is a positive definite symmetric parameter

adaptation gain matrix and W(v̇(θ̂), v, ξ) is the regressor

matrix-valued function (17) with v̇(θ̂) (22) as its argument
instead of the true time-derivative of body velocity v̇(θ)
(14).

3.3 NSAID Lyapunov Stability Analysis

This Section presents an outline of the Lyapunov stability
proof for the NSAID algorithm.
After evaluation of our error systems, ∆v̇ and ∆θ̇, we
define a new error state vector for Lyapunov analysis, z ≜
[∆v ∆θ]T , whose dynamics are computed from (14,21,23),

ż =


∆v̇
∆θ̇


=


−A3×3 −M(θ)−1W(v̇(θ̂, v, ξ)3×7

ΓW(v̇(θ̂))T7×3 07×7


z

(24)

We separate (24) into block matrices

E = ET =


M−1

3×3(θ) 03×7

07×3 Γ7×7


, (25)

F = −FT =


03×3 −W(v̇(θ̂, v, ξ))3×7

W(v̇(θ̂, v, ξ)T7×3 07×7


, (26)

and

G = GT =


−A3×3 03×7
07×3 07×7


, (27)

where E is positive definite symmetric, F is skew-
symmetric, and G is negative semi-definite symmetric,
such that ż = (EF +G)z. Evaluating the following candi-
date Lyapunov function

V (z) =
1

2
zTE−1z > 0 (28)

which satisfies V (0) = 0 and V (z) > 0 ∀z ̸= 0, and taking
the derivative using properties of E, F , and G yields

V̇ (z) = zT (GE−1)z ≤ 0 (29)

where V̇ (0) = 0 and V̇ is negative definite in ∆v and
negative semi-definite overall in z. From this it can be
shown that all signals are bounded, that the system (24)
is locally uniformly stable about the origin, and that
limt→∞∆v(t) = 0. An additional persistence of excitation
(PE) condition reported in (Harris et al., 2023) further
guarantees asymptotic convergence of the parameter esti-

mate θ̂ to the true parameter set P (θ) (18).

4. NSAID SIMULATION EVALUATION

This Section reports an evaluation of the NSAID al-
gorithm (21,23) applied to a simulated model of a
ground vehicle with dynamics given by (11). The true
parameter vector employed in the simulation was θ =
[3.15, 0.02, 0.1, 0.2, 15, 60, −45]T . We selected and
simulated open loop throttle and steering inputs such that

(1) the resulting state velocities have similar magnitudes
to the ground vehicle used in the experimental eval-
uation, and

(2) the PE requirement is satisfied (Harris et al., 2023).

Table 3 lists the simulation open-loop control input signals.
The seven plant model parameter estimates were initial-

Table 3. Simulation Control Inputs

Im(t) = 2 + 4sin(0.91t)
δ(t) = 0.25sin(0.73t) + 0.05sin(0.11t)

ized to within ±10% of their true values. The gain values
used in (21) and (23) were

Γ = diag(0.3 0.002 0.003 0.003 0.3 21 21) (30)

A = diag(0.21 0.3 0.9). (31)

Figure 1 shows that the normalized estimated parameter
vector converges to the true parameter vector, confirming

that limt→∞ θ̂(t) ∈ P (θ).

Figure 2 shows that the identification plant velocity con-
verges to the plant velocity, i.e. limt→∞ ∆v(t) = 0.

Adjusting the Γ gains to higher values allows for faster
parameter convergence in simulation. However, large pa-
rameter gain values can lead to undesirable parameter
estimate oscillations. The gain values in this simulation
are comparable to those used in the experimental trials
and produce minimal oscillation as shown in Figure 1.
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Fig. 1. Parameter Convergence, Simulated Ground Ve-
hicle: Plot of normalized parameter estimates com-
pared to the normalized actual model parameters.
Each parameter estimate was initialized with an offset
between -10% to +10% of its ‘true’ value. During the
simulation, the normalized value of each parameter
converges to the normalized true parameter value.

Fig. 2. Velocity Convergence, Simulated Ground Vehicle:
Each component of ∆v during the simulation, showing
that the identification plant error converges to 0.

5. NSAID EXPERIMENTAL EVALUATION

This Section reports the equipment and processes used
to experimentally evaluate the NSAID algorithm perfor-
mance. Section 5.1 describes the experiment setup and
data collection methods, Section 5.2 reports of the exper-
imental evaluation of the NSAID algorithm. Section 5.3
reports the LS methodology performance comparison.

5.1 Ground Vehicle Experimental Setup

We used a brushless radio-controlled 1/10th scale model
car, pictured in Figure 3, for the experiments. The vehicle

mass was 3.15 kg and the length from the front to rear
axles was 0.28m. The center of gravity was measured to
be at the longitudinal center of the front and rear axles.

A Vedder’s Electronic Speed Controller (VESC Project,
Benjamin Vedder) received velocity commands from the
hand-controller and logged the current delivered to the
motor at 50 Hz, which was used as the Im(t) input. A
servo connected to the front wheels provided steering, and
the steering servo command was logged at 100 Hz and
mapped to a steering angle as the input δ(t).

A BNO055 (Bosch Sensortec, Reutlingen, Germany) abso-
lute orientation sensor was utilized to record the yaw rate,
ψ̇(t). The experiment took place inside of a laboratory out-
fitted with a Qualisys 7+ Series Motion Capture System
(Qualisys, Göteborg, Sweden) capable of recording 3D po-
sition and orientation at up to 300 frames-per-second. For
these experiments, the 3D position and orientation values
were captured, differentiated, and converted to body-frame
velocities at 33Hz to produce estimates for ẋ(t) and ẏ(t).
The car was manually driven with a hand controller for

Fig. 3. 1/10 Scale model ground vehicle

a 15-minute training drive (Training Drive Dataset) and
for a 5-minute validation drive (Validation Drive Dataset).
During these operations, the following priorities were con-
sidered:

(1) Staying within the confines of the room where motion
capture logging is available,

(2) Ensuring that the longitudinal velocity ẋ always
remained positive to avoid division-by-zero issues in
the bicycle model, (2) and (3).

(3) Providing frequent turns in both directions to create
a PE steering input, and

(4) Providing speed changes to create a PE current input.

While issuing frequently changing steering commands was
straightforward, the limited 9.7 m x 6.7 m operational area
constrained the feasible magnitudes of vehicle velocity, and
limited velocity changes. After the experimental drives
were completed, the velocity and control signals were
resampled by linear interpolation to 200Hz.

5.2 NSAID Experimental Performance Evaluation

Unlike in the simulation vehicle reported in Section 4, the
true parameters of our experimental vehicle are mostly
unknown. The vehicle and additional sensors have been
custom-assembled, and tire friction parameters are un-
known. The only model parameter that we could directly
measure was the mass of the vehicle. In order to evaluate
the performance of the NSAID algorithm, we performed
the following steps using the Training Drive Dataset:

(1) We ran the NSAID algorithm through the training
data until the normalized NSAID estimated parame-
ter vector converged to constant values.
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(2) We performed LS regression to generate a LS esti-
mated parameter vector as a comparison. Section 5.3
presents the LS parameter estimation methods.

(3) We used the resulting converged parameter estimates
to compute forward simulations of the model.

(4) We compared the NSAID and LS simulation velocities
to the experimentally collected velocity data.

Euler integration was used to apply the NSAID algorithm
at each 0.005 second time step of the training drive data.
Each parameter was initialized to the final estimate of the
previous iteration, and the algorithm was executed for 20
iterations over the full 15-minute training dataset.

The final parameter estimate values are shown in Table
4. Due to the non-uniqueness of true parameter values in
P (θ) as discussed in Section 3.2, a direct comparison to
the LS estimate is not meaningful without normalization.
Instead, we evaluate the performance of the two parameter
sets in predicting vehicle velocities during forward simula-
tion.

Table 4. Comparison of Estimated Parameters

Parameter NSAID
Initial

Estimate

NSAID
Converged
Estimate

LS Estimate Units

m 3.15 3.09 3.15 kg
Jz 0.1 0.0481 0.0335 kg ·m2

Kt 0.1 0.200 0.197 N/A
Crr 0.1 0.502 0.629 N · s/m
Caf 10 8.01 7.11 N/rad
CΣ 10 25.0 120.1 N/rad
C∆ -10 -41.6 -127.7 N/rad

To evaluate the NSAID identified parameter values, we
used ODE45 to run a forward simulation of the vehicle
model using the parameter values shown in Table 4 and
the control inputs recorded during the experiment. Figure
4 shows a comparison of the simulated bicycle model
velocities with both NSAID and LS estimated parame-
ters and the experimentally recorded velocities during a
50 second segment of the Training Drive Dataset. The
forward simulated lateral velocity, ẋ, performance is fair,
but we conjecture simulated ẋ tracking performance might
be improved with more accurate motor-current sensing
and a more dynamic variation in the motor control sig-
nal. However, the forward simulation of ẏ, and ψ̇ using
NSAID adaptively estimated parameters closely matches
the experimentally measured vehicle velocities.

For cross-validation, we performed a forward simulation on
the Validation Drive Dataset using parameters identified
with the Training Drive Dataset. Figure 5 compares the
velocities resulting from both the NSAID and LS esti-
mated model parameters to the experimentally-recorded
velocities from the Validation Drive Dataset. The NSAID
parameters in Table 4 provide a similar performance in
modeling both the training and validation driving data.

The NSAID parameter estimate’s rate of convergence im-
proves when the estimated parameters are initialized closer
to their ‘true’ values. Figure 6 shows the convergence of
all parameter values to their previous adaptively identified
values within 4000 seconds after Jz, Cαf , and CΣ were
initialized to 90%, 110% and 90% of their previously iden-
tified values, respectively.

5.3 LS Methods and Experimental Performance Evaluation

We used Least Squares (LS) to estimate both plant and
actuator parameters for our experimental ground vehicle
with signals collected during the 15-minute training drive.

Fig. 4. Ground Vehicle Velocity, Training Dataset: For-
ward simulation model velocities with NSAID and LS
estimated parameters compared to experimentally-
measured training dataset velocities

Fig. 5. Ground Vehicle Velocity, Validation Dataset: For-
ward simulation model velocities with NSAID and LS
estimated parameters compared to experimentally-
measured validation dataset velocities

For the LS parameter estimation we used the same input
signals, ξ ≜[Im(t) δ(t)]T , and velocity signals v(t) ≜[ẋ(t)

ẏ(t) ψ̇(t)]T described in Section 5.1. Additionally, we

used the acceleration signals v̇(t) = [ẍ(t) ÿ(t) ψ̈(t)] ,
where ẍ(t) and ÿ(t), were collected directly from the

Bosch BNO055 and ψ̈(t), was generated by differentiating
the yaw rate signal from the BNO055. All signals were
resampled with interpolation at 200Hz and accelerometer
bias was removed from ẍ(t) and ÿ(t) by subtracting the
mean of 300 samples of ẍ(t) and ÿ(t) while the vehicle was
motionless.

Following the approach of (Harris et al., 2018) we used
the regressor, W(v̇, v, ξ) from (17) to determine the LS
solution for θ by solving the following minimization

min
θ

{
||Wθ||2 : ||θ||2 = 1

}
. (32)

This solution to the minimization problem was then scaled
using the known value of mass (3.15 kg) and is shown in
Table 4. As the true values of most of our model param-
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Fig. 6. Ground Vehicle Experimental NSAID Parameter
Convergence: Plot of normalized estimate parameter
values vs time showing parameters converging to their
previously adaptively identified values.

eters are unknown, we compare the LS and NSAID esti-
mated parameter performance with forward simulations of
the training data and validation data in Figures 4 and 5.
The Mean Squared Error (MSE), of actual experimental
velocity data and forward simulation velocity using LS
and NSAID estimated parameters for the training drive
experiment is shown in Table 5.

5.4 Comparison of NSAID and LS Parameter Identification

While the longitudinal velocity, ẋ, performances are sim-
ilar, the NSAID estimated model parameters produce a
more accurate simulation of the ground vehicle’s experi-
mental ẏ and ψ̇ velocities. The larger MSE seen in the LS
estimated parameter forward simulation, particularly in
the lateral velocity state, ẏ, likely highlights one of the
methods’ main disadvantages: LS parameter estimation
requires linear acceleration data. With dynamic operation
in a 3D environment or even a vehicle operating on a
flat surface with sensitive shocks on each wheel, linear
acceleration signals may be distorted by gravity.

Table 5. Comparison of Forward Simulation
Mean Squared Error (MSE)

Dataset State NSAID MSE LS MSE Units
Training ẋ 1.98× 10−2 3.45× 10−2 (m/s)2

Training ẏ 6.96× 10−4 39.7× 10−4 (m/s)2

Training ψ̇ 4.76× 10−2 5.21× 10−2 (rad/s)2

Validation ẋ 3.40× 10−2 2.83× 10−2 (m/s)2

Validation ẏ 1.13× 10−3 2.71× 10−3 (m/s)2

Validation ψ̇ 6.97× 10−2 7.18× 10−2 (rad/s)2

6. CONCLUSIONS

This paper reports a novel Nullspace Adaptive Identifi-
cation (NSAID) algorithm to perform simultaneous plant

and actuator parameter estimation on an underactuated
3-DOF ground vehicle dynamics model with both simula-
tion and experimental evaluation. This NSAID approach
can be extended to full 6-DOF dynamical ground vehicle
models and, in contrast to well-known existing parame-
ter identification methods, NSAID can be utilized with-
out the need for acceleration measurements and without
exact prior knowledge of actuator parameters. NSAID
can be used with open-loop or closed-loop control and
provides analytical guarantees of asymptotic parameter
convergence if a persistence of excitation (PE) condition
is satisfied.

We reported simulation studies showing asymptotic con-
vergence of the parameter estimate to the true parameter
set P (θ), and an experimental evaluation of the perfor-
mance of NSAID of a ground vehicle, showing that a model
using adaptively estimated parameters can accurately pre-
dict experimentally observed vehicle velocities.

REFERENCES

Ali, S., Hanif, A., and Ahmed, Q. (2016). Review in thermal effects
on the performance of electric motors. In 2016 International
Conference on Intelligent Systems Engineering (ICISE), 83–88.
DOI:10.1109/INTELSE.2016.7475166.

Bevly, D.M., Ryu, J., and Gerdes, J.C. (2006). Integrating INS
sensors with GPS measurements for continuous estimation of
vehicle sideslip, roll, and tire cornering stiffness. IEEE Trans-
actions on Intelligent Transportation Systems, 7(4), 483–493.
DOI:10.1109/TITS.2006.883110.

Erdogan, G., Alexander, L., and Rajamani, R. (2011). Estima-
tion of tire-road friction coefficient using a novel wireless piezo-
electric tire sensor. IEEE Sensors Journal, 11(2), 267–279.
DOI:10.1109/JSEN.2010.2053198.

Harris, Z.J., Mao, A.M., Paine, T.M., and Whitcomb, L.L.
(2023). Stable nullspace adaptive parameter identification of
6 degree-of-freedom plant and actuator models for underactu-
ated vehicles: Theory and experimental evaluation. The In-
ternational Journal of Robotics Research, 42(12), 1070–1093.
DOI:10.1177/02783649231191184.

Harris, Z.J., Paine, T.M., and Whitcomb, L.L. (2018). Pre-
liminary evaluation of null-space dynamic process model iden-
tification with application to cooperative navigation of un-
derwater vehicles. In 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 3453–3459.
DOI:10.1109/IROS.2018.8594257.

Holzmann, F., Bellino, M., Spiegelberg, G., and Sulzmann, A.
(2006). Improvement of the driving safety using a pre-
dictive vehicle dynamical model. In 2006 IEEE Interna-
tional Conference on Vehicular Electronics and Safety, 289–294.
DOI:10.1109/ICVES.2006.371601.

Kiencke, U. and Nielsen, L. (2005). Automotive Control Systems:
For Engine, Driveline, and Vehicle. Springer Berlin, Heidelberg.
DOI:10.1007/b137654.

Mao, A.M. and Whitcomb, L.L. (2021). A novel quotient space
approach to model-based fault detection and isolation: Theory
and preliminary simulation evaluation. In 2021 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS),
7119–7126. DOI:10.1109/IROS51168.2021.9636026.

Rajamani, R. (2012). Vehicle Dynamics and Control. Springer US.
DOI:10.1007/978-1-4614-1433-9.

Reina, G., Paiano, M., and Blanco-Claraco, J.L. (2017). Ve-
hicle parameter estimation using a model-based estimator.
Mechanical Systems and Signal Processing, 87, 227–241.
DOI:10.1016/j.ymssp.2016.06.038.

Sen, S., Chakraborty, S., and Sutradhar, A. (2015). Estima-
tion of vehicle yaw rate and lateral motion for dynamic stabil-
ity control using Unscented Kalman Filtering (UKF) approach.
In Michael Faraday IET International Summit 2015, 24–29.
DOI:10.1049/cp.2015.1601.

Vahidi, A., Stefanopoulou, A., and Peng, H. (2005). Recursive least
squares with forgetting for online estimation of vehicle mass and
road grade: theory and experiments. Vehicle System Dynamics,
43(1), 31–55. DOI:10.1080/00423110412331290446.


