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ABSTRACT: An approach for designing thermoset shape
memory polymers (TSMPs) with improved shape memory
properties through the integration of molecular dynamics (MD)
simulation, machine learning (ML), and chemical intuition is
presented. We identified key molecular features correlated with
desired shape memory properties, and used MD simulations to
create an initial data set of TSMPs consisting of commercially
available and manually designed monomers. Our prediction set
was prepared by employing four different approaches for
modifying existing monomers based on chemical intuition and
insights gleaned from the literature. We trained our ML model on
the initial data set, used it to identify the most promising candidates, evaluated their properties, and added them to our initial data
set. To further speed up the process, we identified the most promising candidate after a few cycles and modified its structure to
obtain a variant with better properties. Our approach, which capitalizes on the synergy between computational methodologies and
human expertise to enable efficient exploration of vast chemical space, resulted in the design of a monomer exhibiting more than
60% increase in the desired recovery stress compared to the highest experimentally validated one.

1. INTRODUCTION
Shape memory polymers (SMPs) are materials that can return
to their original shapes after being plastically deformed. This
unique property is due to the energy stored in the cross-linked
polymer structure. When exposed to an external stimulus like
temperature changes,1−3 light exposure4 or Joule heating, the
stored energy in the cross-linked structure releases and drives
the recovery of the original shape. Current applications of
shape memory polymers include biomedical devices,5

actuators,6 smart textiles,7 and actuators in the aerospace
industry.8,9 Moreover, SMPs can be integrated with other
advanced materials to create novel products with exceptional
functionalities, exemplified by using SMP coatings to enhance
stent devices.10 SMPs are also being considered in drug
delivery11,12 and tissue engineering.13,14 SMPs have several
advantages over traditional materials, such as reduced weight
and corrosion resistance, making them desirable in industries
requiring lightweight and long-lasting materials.15

SMPs can be manufactured from both thermoplastics16 and
thermosets.15 Different plastics affect the material’s properties,
such as thermal behavior, recovery stress, recovery ratio, and
cycle life. Varying chemical composition, molecular weight,
and cross-linking density can also affect the properties of shape
memory polymers.15 Further improvements to SMPs will come
through identifying and realizing superior monomer chemistry
and network structure.17,18 Simulation and machine learning

(ML) offer the potential to accelerate this development
process rapidly.
Computationally modeling and screening compounds have

resulted in the development of novel polymers,19−21 as well as
photovoltaic,22 piezoelectric,23 and CO2 capture materials.24

Recently, ML has been used to propose new and improved
shape memory polymers. In one study by Yan et al., a
Convolutional Neural Network (CNN) was used to accurately
predict new shape memory polymers with improved proper-
ties, thus significantly reducing the trial-and-error development
of new SMPs.25 Another study by the same authors predicted
SMPs with the consideration of molar ratio of compounds
based on a limited training data set.26 The authors concluded
that more fingerprints or descriptors must be identified to
predict SMPs accurately. Similarly, ML has been used to
predict the thermomechanical behavior of SMPs.27

Such approaches require feature engineering or “molecular
fingerprinting” that uses atomic-level features or properties
such as bond stiffness or bond angle to identify unique
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molecular characteristics of a substance.28 These fingerprints
can be used as inputs to ML algorithms,28 allowing for the
prediction of polymer properties, such as mechanical strength
and thermal behavior, based on their molecular structure.
Molecular fingerprinting can also be used for polymer
classification, discovering relationships between different
polymers, and identifying structural features associated with
specific properties that may be overlooked without computer-
assisted screening or ML.28

In our previous study,29 we calculated twenty-one atomistic
fingerprints for systems consisting of 9 epoxies and 22
hardeners, and examined their correlations with epoxies and
amine hardeners pairs and shape memory properties (recovery
stress and recovery ratio).
This work aims to identify amine-hardened, diglycidyl-ether-

based epoxy systems with higher recovery stress by using an
optimization scheme that combines a data-driven approach
with chemical intuition. Here, we expand the data set from our
previous work with a series of new epoxies and hardeners.
Newly designed molecules inspired by other literature and our
chemical intuition were simulated, and their shape memory
properties were obtained. This expanded data set serves as a
better foundation for ML algorithms that need wide sampling
to accurately predict new structures. A small number of models
for predicting the recovery stress of new epoxies and hardeners
were tested on the initial data set, and the best model was
identified. We then created new epoxies and hardeners using
four different approaches inspired by chemical intuition and
insights gleaned from previous analyses. The ML algorithm
was then used to identify the best epoxies and hardeners,
which were subsequently simulated, and the ML algorithm was
retrained. This was repeated three times. Finally, the
optimization process was pushed even further by manually
tweaking the structure of the best molecules, which were then
tested. Several new thermoset shape memory polymer
(TSMP) candidates with a calculated recovery stress much
higher than previously found were ultimately identified.

2. MODELS AND METHODS
2.1. Molecular Dynamics Simulations. The protocol used for

calculating recovery stress is identical to that used in our previous
work.29 We used LAMMPS30 to run molecular dynamics simulations
of the thermomechanical cycle of the cross-linked epoxy-hardener
system. This cycle for a heat-activated TSMP typically involves three
steps: loading, relaxation, and shape recovery. All epoxies and

hardeners investigated had two glycidyl ether and two amine groups,
respectively. The monomers were modeled using the LigParGen31−33

software with the optimized potential for liquid simulations (OPLS)
forcefield.34−36 The monomers were then cross-linked and equili-
brated to create five independent systems as described in detail in our
previous work.29 To ensure an equal number of diglycidyl ethers
(DGE) and amine hydrogens, a simulation box was generated for each
system containing two epoxies and one hardener, and their structures
were relaxed through conjugate gradient energy minimization.
Following this, the systems were replicated six times in the X, Y,
and Z directions. The cross-linking process was conducted at 398 K to
create a network with a cross-linking percentage of 70% as described
in our previous work,37 which took 600 cross-linking steps to
complete.

Once the five independent networks were formed, molecular
dynamics simulations were used to calculate their glass transition
temperatures (Tg) and recovery stress. For the calculation of Tg, we
initially subjected the systems to a heating process, raising the
temperature to 598 K, and allowing them to reach equilibrium during
a 500 ps period. Subsequently, a gradual cooling procedure spanning
2.5 ns was carried out, lowering the temperature from 598 to 198 K
while monitoring density changes. For each of the five independent
systems, simulations at multiple temperatures were carried out,
ranging from 250 to 550 K in increments of 0.8 K. We conducted two
linear regression analyses in each temperature trial: one to find the
best-fit straight line for density versus temperature for all temperatures
40 K above the trial temperature and another for temperatures 40 K
below it. The intersection point of these two straight lines was
identified as the Tg value. We selected the trial that minimized the
error between these straight lines and the density/temperature curve
to determine the Tg value for each independent system.

To calculate the recovery stress, the systems were first brought to
equilibrium using the NPT ensemble at 1 atm pressure, 30 K above
their Tg values. They were then programmed by slowly compressing
them by 50% for 4 ns in one direction, after which the systems were
relaxed for 4 ns. The box directions orthogonal to the programmed
directions were allowed to fluctuate according to the NPT pressure
controller. They were then cooled to 298 K over 2 ns and given an
additional 2 ns to further equilibrate. After fixing the direction of the
initial deformation, the system was heated over 2 ns to 30 K over
respective Tg values. The recovery stress was then determined by
running a further 2 ns simulation at 30 K above the Tg. While the
short timescales compared to experiment are known to result in an
overpredicted recovery stress compared to experiment, this over-
prediction should be consistent across various systems as long as the
relaxation time for each is comparable.29

2.2. Fingerprinting. In this study, we used atomistic fingerprints
to describe the epoxy-hardener systems. The atomistic fingerprints
describe the atomic level features and thus can be calculated for a
single set of epoxy and hardener molecules before replication and

Table 1. List of Atomistic Fingerprints

fingerprint description

epoxy length The number of bonds that separate the shortest distance between the reacted DGE carbons.
hardener length The number of bonds that separate the shortest distance of reacted amine nitrogens.
nbackbone The average number of backbone heavy atoms following complete cross-linking, divided by the initial number of monomers. Please note that this

calculation counts all atoms within a ring structure.
bbratio The ratio of backbone heavy atoms to the overall count of heavy atoms.
stretch The stiffness of the bond stretching interaction among heavy atoms.
angle The stiffness of the angular interaction between heavy atoms.
dihedral Dihedral energy strength between heavy atoms.
vdW size and
strength

The van der Waals (vdW) size and strength are characterized by their mean σ and ε values in the heavy atom Lennard-Jones potential, employed
to describe vdW interactions.

polarity The polarity of each atom is determined by the mean squared electron charge (qi2) per atom.
Rg The radius of gyration for the epoxy monomer and the hardener monomer.
max SC The maximum length of sidechains for heavy atoms. For a particular heavy atom within a side chain, its side chain length is characterized by the

number of bonds between itself and the nearest backbone atom.
nring The number of aromatic and nonaromatic backbone rings.
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cross-linking. This allows for fingerprinting of a single system in about
one minute. The equations for calculating atomistic fingerprints are
described in detail in our previous paper29 and are summarized in
Table 1.
2.3. Training Set Creation. The initial data set, taken from our

previous work,29 only included epoxies and hardeners that are
available commercially. As mentioned in the introduction, this study
aims to increase the search space of epoxy-hardener systems. To
achieve these goals, epoxies and hardeners were modified systemati-
cally using insights offered by our previous work. These additions to
the training set provided a convenient way of testing hypotheses,
which are discussed with each set.

The first modification examined the impact of changing the
backbone and side chains of Bisphenol A Diglycidyl Ether (DGEBA),
which was shown to have the highest recovery stress of the epoxies we
studied previously.29 The specific modifications can be seen in Figure
1. The sidechains differed in polarity and length, and in the case of
DGEBA1, they were removed completely. Each of these was tested
with Isophorone diamine (IPD) as a hardener. The modified epoxies
showed similar recovery stresses to DGEBA (50 MPa29). Introducing
more atoms along the backbone and lengthening it was detrimental to
the recovery stress, as seen by looking at DGEBA3 and DGEBA4. In
the case of DGEBA1, removing the central carbons led to an increase
in recovery stress. Similar results were also observed by adding more
carbon atoms (DGEBA5) or an ether group (DGEBA4) to the side
chain coming off the molecule’s center.

We then investigated the effect of the position of glycidyl groups
around the epoxy monomer core. Resorcinol diglycidyl ether (DGER)
and 1,7-dihydroxyl naphthalene diglycidyl ether (DGEDHN) were
modified as shown in Figure 2. The simulation results, using IPD as a

hardener, show that when the glycidyl ether groups are directly
opposite (as in para position along a six-membered ring), the recovery
stress is the highest and decreases as the glycidyl ether groups move
nearer to one another. The difference in behavior between the para-
like and ortho-like positions in a monomer arises due to the structural
constraints imposed by the aromatic ring. When glycidyl ether groups
are positioned ortho to the ring, the stiff ring itself is not as significant
of a part of the backbone ring as in the para-like position.
Consequently, the monomer exhibits greater flexibility within the
network when the glycidyl ether groups occupy the ortho-like
position. When the glycidyl ether groups fall between the para and
ortho positions, as in unmodified DGER and DGEDHN (see Figure
S1), the recovery stress is between the two variants − the ring

Figure 1. Epoxies modified from DGEBA. σrec values are all shown with IPD as a hardener.

Figure 2. Modifications of DGER and DGEDHN. The shown
recovery stresses are those with IPD as a hardener.
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contributes to the backbone, but some is bypassed and so the
recovery stress is not as high as when in the para position.

To further expand the training data set, biobased epoxies were
examined.38 These include Methyl-2,4-dihydroxybenzoate diglycidyl
ether (MDHB), Vanillyl Alcohol Diglycidyl Ether (DGEVA), Furan
Diglycidyl Ether (DGEF), and Bisfuran Diglycidyl Ether (DGEBF), as
shown in Figure S2. MDHB and DGEVA are similar to DGER and
pDGER but have different sidechains. As with DGER vs pDGER,
MDHB exhibited lower recovery stress because of the position of the
glycidyl ether groups. In both cases, the recovery stress was lowered
by adding sidechains.

In addition to expanding the training set of epoxies, more
hardeners were examined as well. New hardeners were taken from
PubChem’s “Find Similar Structures” feature,39 where IPD was used
as the seed molecule. These hardeners were 6,7-dimethyl-5,6,7,8-
tetrahydronaphthalene-2,3-diamine (DTHDA), 4,5-dimethylbenzene-
1,2-diamine (DBDA), 3-(3-aminobenzoyl) aniline (ABA), 4-(4-
aminophenyl) aniline (APA), 3,5-diaminobenzoic acid (DABA), 3-
(2-aminophenoxy) aniline (APOA). The recovery stresses of these
hardeners with DGEBA were calculated and are shown in Figure S3.
Of note, and shown in Figure 3, are APA and DABA. APA had the

highest recovery stress among the hardeners examined due to its stiff
structure. DABA also yielded a high recovery stress (67 MPa), even
though it has a very similar structure to m-Phenylene Diamine MPDA
(σrec = 42 MPa), but a carboxylic acid group bonded to its ring.
2.4. Selection of Prediction Algorithm.With the initial training

data set expanded, we used the scikit-learn40 library to perform all of
our model training and predictions. For this study, we chose five
regression models from the linear model sublibrary of scikit-learn. The
models are multiple linear regression, ridge regression, Bayesian ridge
regression, Theil Sen regression, and Poisson regression. The initial
data set containing 67 data points was split into a training set and a
validation set, with 80% of the data points in the training set and the
rest in the validation set. The parameters used to train each model are
given in Table S2. The fingerprints were used as inputs, and the
recovery stress was the output. The trained models were then used to
predict the recovery stress of validation set. The mean squared error
( M S E ) o f e a c h p r e d i c t i o n i s d e fi n e d a s

( )y yMSE
n i

n
i i

1
1

2{ }= { = }
{ } , where n is the number of measure-

ments, y is the vector of observed values and ŷ is the vector of
predicted values. The MSE was calculated for each model and is
reported in Figure 4, while the R2 values and residual plots are shown
in Figure S9. Multiple linear regression resulted in the lowest MSE,
and highest R2 and so it is used for the rest of this work. Further
optimization of the training process and creation of a larger data set
would likely result in more complex methods that perform better, but
multiple linear regression was sufficient for identifying shape memory
polymers with enhanced recovery stress.

2.5. Prediction Set Creation. To identify systems with enhanced
recovery stress a large number of new systems were created, and the
trained model was used to predict their recovery stress. We created
two types of epoxy monomers, those that were symmetric and those
that were asymmetric, for which the recovery stress was predicted
after pairing them with hardeners. Both methods were constructed
from large and small fragments that were bonded together to create
the entire epoxy. A total of 861 symmetric epoxies and 660
asymmetric epoxies were created and fingerprinted. The full details
of the creation method along with figures of the various fragments
that were used to build up the epoxies can be found in the SI.

Several hardeners were also created, and the trained model was
used to predict their recovery stress with various epoxy monomers. A
two-method approach similar to that used for the epoxies was
employed to create the hardener test systems. In one method, we
moved the sidechains around a base hardener, and in the other, we
moved the location of the amines around the hardener. A total of
4615 hardeners were created by moving sidechains around base
hardeners and a total of 769 hardeners were generated by moving the
amines around the base hardener. The full details can be found in the
SI, as well as figures of the base hardeners and sidechains attached to
them.

3. RESULTS
3.1. Automated Prediction of Better TSMPs. A linear

regression model was trained on the initial 67 training data
points. The target variable was recovery stress, and the features
were the fingerprints described above. The coefficients for the
features are listed in the Supporting Information. Afterward,
the model was used to make predictions for our prediction set.
Separate predictions were made for each prediction set
category: (1) Symmetric epoxies, (2) Asymmetric epoxies,
(3) Hardeners with different side chain locations, and (4)
Hardeners with different amine locations. The two systems
with the highest recovery stress from each set for a total of 8
systems (see Table 2) were then selected and simulated with
MD. A comparison of the predicted and calculated recovery
stress for the first set of predictions is presented in Table 2.
The SMILES strings of the epoxies and hardeners are also in
the SI.
The systems with the modified epoxies had a much higher

predicted recovery stresses than with the modified hardeners.
However, the calculated values, while an improvement over the

Figure 3. Structures of APA and DABA (recovery stresses are with
DGEBA as an epoxy resin).

Figure 4. Average mean squared error for different models.
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original DGEBA-IPD system with a recovery stress of 50 MPa,
were much lower than the ML predicted values. This is
especially true of the two newly created asymmetric epoxies,
which had unreasonably high predicted recovery stresses of
over 190 MPa. This is likely because these new epoxies were
much different from the original training data set (i.e., located
much further from other systems in the search space) for the
model to accurately capture the effect of the specific
combinations considered. For example, some of these new
epoxies have a backbone length greater than the highest
backbone length found in the initial data set. We remedied this
by adding these new structures from Table 2 to the training set
and making new predictions. Again, the two systems with the
highest recovery stress from each set for a total of 8 systems
were then selected and simulated with MD. The results from
the second predictions are shown in Table 3.
The newly predicted recovery stresses are much more

reasonable and better match the calculated recovery stresses,
especially for the asymmetric epoxies (autoEpoxy2_590 and
autoEpoxy2_592). Furthermore, the highest calculated recov-
ery stress has improved to 71 MPa. A third set of predictions
were then made including the systems from Table 3 in the
training data set. This third training data set then had 83 data
points and a final data set of predictions were made. The
results from the third prediction are summarized in Table 4.
The newly predicted epoxies continue to have higher

calculated recovery stress, while the hardeners did not show
any improvement this time. As can be seen in Figure 5, the

accuracy of predictions increased with each ML iteration.
Points are drawn as outliers if they are greater than the third
quartile plus 1.5 times the inner quartile range, or less than the
first quartile minus the interquartile range. The third prediction
set has an outlier with a hardener that performed unexpectedly
poorly, but the average error was near zero percent.

Table 2. Predicted and Calculated Recovery Stress (σrec) of the First Set of Predictions

epoxy hardener prediction set predicted σrec (MPa) calculated σrec (MPa)

autoEpoxy2348 IPD symmetric epoxy 81.39 53
autoEpoxy2256 IPD symmetric epoxy 80.67 63
autoEpoxy2_409 APA asymmetric epoxy 195.42 69
autoEpoxy2_545 APA asymmetric epoxy 194.34 56
DGEBA autohardener96 hardener with moved side chain 67.61 59
DGEBA autohardener70 hardener with moved side chain 66.34 55
DGEBA MPDA_Base4 hardener with moved amine 56.44 60
DGEBA dMPDA_Base117 hardener with moved amine 56.18 61

Table 3. Predicted and Calculated Recovery Stress (σrec) of the Second Set of Predictions

epoxy hardener prediction set predicted σrec (MPa) calculated σrec (MPa)

autoEpoxy3084 IPD symmetric epoxy 61 57
autoEpoxy4694 IPD symmetric epoxy 61 71
autoEpoxy2_590 APA asymmetric epoxy 70 68
autoEpoxy2_592 APA asymmetric epoxy 69 59
DGEBA autohardener40 hardener with moved side chain 66 50
DGEBA autohardener142 hardener with moved side chain 66 54
DGEBA dDAP_Base134 hardener with moved amine 57 39
DGEBA dMPDA_Base227 hardener with moved amine 56 53

Table 4. Predicted and Calculated Recovery Stress (σrec) of the Third Set of Predictions

epoxy hardener prediction set predicted recovery stress (MPa) calculated recovery stress (MPa)

autoEpoxy3038 IPD symmetric epoxy 60 75
autoEpoxy4510 IPD symmetric epoxy 60 69
autoEpoxy2_400 APA asymmetric epoxy 69 67
autoEpoxy2_598 APA asymmetric epoxy 63 59
DGEBA autohardener421 hardener with moved side chain 63 51
DGEBA autohardener539 hardener with moved side chain 63 20
DGEBA dMPDA_Base213 hardener with moved amine 56 45
DGEBA MPDA_Base16 hardener with moved amine 55 58

Figure 5. Boxplot of percentage prediction error (defined as
rec
predicted

rec
calcualted

rec
calculated ) for each ML iteration. The red cross indicates an

outlier.
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Through this approach, we achieved a recovery stress of 75
MPa. This optimization process can be repeated to gradually
move in the feature space toward the theoretical best-
performing system. However, while the calculation of finger-
prints and prediction of new systems is relatively fast, the
calculation of recovery stress takes about a week for each new
system. Therefore, we pivot toward leveraging chemical
intuition and insights gleaned from our analysis to fine-tune
the molecular structure of the best systems found so far for a
final improvement.
3.2. Structural Optimization Based on Chemical

Intuition. The highest recovery stress systems found with
the automated procedure are autoEpoxy3038 w/IPD (75
MPa) and autoEpoxy 4694 w/IPD (71 MPa). AutoEpoxy3038
and autoEpoxy4694 are shown in Figure 6. They are notably
very similar in structure, with the only difference being the
location and length of the sidechains: autoEpoxy3038 has an
ethyl group closer to the glycidyl group, and one carbon closer
than autoEpoxy4694. We hypothesize that putting side chains
near the two glycidyl groups would increase recovery stress,
possibly related to additional steric hindrance. To test this, we
selected the epoxy that resulted in the highest recovery stress
(autoEpoxy3038 with a recovery stress of 75 MPa) and created
3 variants of it by changing the number of its sidechains. The
resulting new epoxies are autoEpoxy3038_0, autoE-
poxy3038_1, and autoEpoxy3038_2, all of which are found
in Figure 6 AutoEpoxy3038_0 has no sidechains. AutoE-
poxy3038_1 has four ethyl groups, two of which are bonded to
the carbons next to glycidyl ether groups and two bonded to
the carbons next to the middle carbonyl group. AutoE-
poxy3038_2 has four more sidechains than autoEpoxy3038_1;
four ethyl groups are bonded to the carbons next to the
glycidyl ether groups, and the other four are bonded to the

carbons next to the carbonyl group. We then simulated these 3
epoxies variants w/ IPD and calculated their recovery stress
(see Table 5).

The system made with autoEpoxy3038_0 has a higher
recovery stress (77 MPa) compared to the one made with
autoEpoxy3038. However, as mentioned earlier, autoE-
poxy3038_0 has no side chains. It appears that in contrast to
our hypothesis, the addition of extra sidechains reduced the
recovery stress instead of increasing it. Moreover, autoE-
poxy3038_2 has a higher recovery stress than autoE-
poxy3038_1 despite having the highest number of sidechains.
Therefore, it seems that more parameters than simply the
number and location of sidechains are at play when it comes to
the overall recovery stress of the network.
Another modification that can be implemented would be to

change the hardener. We noticed that systems with APA as the
hardener generally have a higher recovery stress compared to
those with IPD. Thus, we calculated the recovery stress of
systems with autoEpoxy4694 and autoEpoxy3038 as the epoxy
and APA as the hardener (Table 6).
Had the autoEpoxy4694 (see Figure 6) been discarded in

the previous step and focused on different systems with

Figure 6. Structures of the best epoxies found from ML (autoEpoxy4694 and autoEpoxy3038) and the side chain modified variants of
autoEpoxy3038.

Table 5. Calculated Recovery Stress (σrec) of
autoEpoxy3038 and Its Variants

epoxy hardener
predicted σrec

(MPa)
calculated σrec

(MPa)

autoEpoxy3038 IPD 60 75
autoEpoxy3038_0 IPD 55 77
autoEpoxy3038_1 IPD 69 56
autoEpoxy3038_2 IPD 63 63
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autoEpoxy3038 and its variants, we could not have identified
the system with more than 80 MPa of recovery stress. Given
that APA and IPD are both commercially available hardeners,
the design optimization of just the epoxy has led us to a system
with more than 60% increased recovery stress compared to the
best commercially available and experimentally validated
system (i.e., DGEBA-IPD).

4. DISCUSSION
4.1. Improvement through the Process. Figure 7

summarizes the performance of our monomer design

optimization campaign by showcasing the gradual improve-
ment of the target variable (recovery stress) throughout the
process. Our goal was to design monomers that would result in
a TSMP with a better recovery stress than that of DGEBA-
IPD, the best previously available and experimentally validated
TSMP,41 with a recovery stress of 50 MPa.37 To that end, we
evaluated commercially available monomers as well as other
identified yet commercially unavailable monomers. We found a
set with a recovery stress of 57 MPa among commercially
available ones, and another with a recovery stress of 70 MPa
among commercially unavailable ones. We then created a
prediction set via modifying existing monomers, trained a ML
algorithm on the data set consisting of commercially available
and unavailable monomers, and used it to predict the recovery
stress of monomers in the prediction set. At each iteration, we
evaluated the properties of candidates with the highest
predicted recovery stress and added them to the training
data set. The first ML iteration did not offer any improvement
over the initial data set and suffered from relatively higher
prediction inaccuracies. However, incorporation of the best

candidates identified in each iteration into the training data set
allowed for the data set to encompass more of the search space
in each iteration, resulting in an improvement in the accuracy
of prediction after each iteration (Figure 5). Following the first
ML iteration, all the subsequent steps resulted in continuous
improvement in the recovery stress.
Only 3 ML iterations coupled with manual tweaking of the

best identified epoxies resulted in a set with a recovery stress of
77 MPa. Finally, pairing one of the best epoxies identified with
a hardener shown to have high recovery stress with DGEBA
resulted in the identification of autoEpoxy4694-APA system
with a recovery stress of 81.5 MPa (more than 60% greater
than that of DGEBA-IPD). It is worth noting that our initial
data set had only 67 data points, and throughout the ML study,
we only added 24 more data points to the set. Our approach
serves as a proof of concept that data-driven approaches to
optimization, when coupled with human intuition, can perform
reasonably well even with limited data sets. Our approach can
be implemented to further optimize the design of the hardener
molecule as well as to achieve even better recovery stress,
which we intend to do in future studies.

4.2. Fingerprint Importance. The SHapley Additive
exPlanations (SHAP)42−44 method was used to quantify the
importance of each of the fingerprints used in the predictive
model. SHAP is based on Shapley values from cooperative
game theory, which provides a way to attribute the
contribution of each fingerprint to the model’s predictions.
The SHAP value was calculated using a random 80-20 train-set
data split 100 times using the default linear regressor in sklearn.
Figure S10 shows the average SHAP values for each
fingerprint. A higher SHAP indicates a fingerprint is more
important when distinguishing between the candidate
chemistries. In this case, the number of backbone atoms and
the length of the epoxy monomer are the most important
fingerprints. It is not obvious that this alone is the most
important factor in creating a high recovery stress material, but
other factors coinciding with that fingerprint could explain
their importance. For example, as already mentioned the para
position gave a much higher recovery stress than the ortho,
because much stiffer aromatic ring mattered in carrying stress
along the backbone. This feature difference would result in a
high number of backbone atoms. Furthermore, it was
commonly found that the napthalene-like structure found in
Figures S4b and S6b often resulted in high recovery stress.
Adding more of these to the epoxy also raises nbackbone and
the length of the epoxy monomer. Other important features
include the size of the heavy atoms in the backbone, the bond
stretching spring constant, and the polarity of side chain atoms.
Sidechain polarity and backbone atom size are ways to measure
atomic composition and differentiate kinds of atoms of the
same type (i.e., aromatic vs alkane carbons). A high
importance on the polarity of side chain atoms suggests that
the functionality of the said sidechains may be especially
important, while the importance of Van der Waals size may
suggest that the specific functional groups are important, since
those different functional groups will have different atoms
types or carbon types which are reflected in the Van der Waals
size. A high bond stretch coefficient in the backbone would
naturally result in a stronger push back upon compression, that
is, a higher recovery stress. This analysis provides a hypothesis
which could be tested in future works.

4.3. Potential Future Improvements. While we have
demonstrated the effectiveness of the fingerprinting model, the

Table 6. autoEpoxy4694 and autoEpoxy3038 with APA

epoxy hardener predicted σrec (MPa) calculated σrec (MPa)

autoEpoxy4694 APA 66 81.5
autoEpoxy3038 APA 65 77

Figure 7. Representation of the best-design-so-far for identification
and design of new monomers.
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generations of new potential chemistries, and identified new
and promising shape memory polymers, improvements to the
prediction method could result in a more efficient traversal of
the design space. Increasingly complex approaches have the
potential to create a more efficient process by reducing the
number of additional simulations required to optimize the
material. While our initial tests concluded that multiple linear
regression resulted in the lowest MSE and so was chosen,
improved hyper-parameter choices could result in more
accurate predictions for other methods, as could an increased
data set size. A more in-depth k-fold validation could also be
done in case model performance is dependent on specific
train/test splits. Beyond improving the regression model,
Bayesian optimization,45,46 which uses Bayesian regression
models and then uses decision theory to suggest the next best
sample, could be used. This approach would use regression
models like Gaussian process regression47 (though the large
number of fingerprints and small data set may limit its
efficiency), which shares similarities with kernel ridge
regression (KRR) and regression with radial basis functions,
and ensemble learning models,48 which consider the
predictions of a number of underlying models, to create the
predictive model and more efficiently traverse the composi-
tional space.45,46 Given the large number of inputs and limited
observations, the Randomized Conditional Independence Test
(RCIT) in causal discovery could also be a useful method for
identifying potential fingerprinting models.49

This method of creating new potential chemistries will do a
very good job of sampling a specific phase space and
generating valid structures with the correct cross-linking
sites. However, this approach has limitations. For example,
the core of the hardener molecules is limited by the bases
selected. Generating these in a manner similar to that done for
the epoxies would widen the set of potential chemistries.
Similarly, specific common groups were chosen to build the
epoxies from. A wider array of potential structures would also
widen the phase space, though doing so would potentially
require filtering out many structures that are impossible,
unstable, or synthetically very challenging.

5. CONCLUSIONS
We created an optimization strategy based on MD simulation
and ML to identify monomers that maximized the recovery
stress of TSMPs made from diglycidyl ether epoxies and
diamine hardeners. The best experimentally tested system is
DGEBA-IPD with a computationally measured recovery stress
of 50 MPa. We expanded our data set using our chemical
intuition and insights obtained from our previous work to
modify existing epoxies, as well as using hardeners found via
PubChem’s ‘Find Similar Structures’ feature.
Twenty-one atomistic fingerprints were used as features to

predict recovery stresses. Using 80% of the data set to train ML
models and the rest to test those models, it was found that a
multiple linear regression model was suitable for predicting
TSMPs with high recovery stress within a prediction set. The
best results from each prediction were incorporated into the
previous data set to expand the search space further and train
the model, which yielded better results than the previous
iteration.
The modifications made to obtain the molecules in the

prediction were limited, given the fact the only a few fragments
and base molecules were considered for the modification of
epoxies and hardeners, respectively. Nonetheless, from our

predicted set, we managed to identify two epoxies that had
very high recovery stresses with IPD hardeners of 75 and 71
MPa, respectively, an almost 50% increase from DGEBA-IPD.
This was further improved by using APA as a hardener, which
was found to yield high recovery stress with DGEBA, yielding a
recovery stress of 81.5 MPa.
In summary, we demonstrated that an optimization

approach that combines smart feature engineering, machine
learning, and human intuition can effectively be used to
identify and/or design new molecules for creating novel
polymers with superior properties.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.macromol.4c01598.

Structures and calculated recovery stresses of monomers
added to training set, details of prediction set creation,
regression model parameters, residual plots and R2

values of tested models, and SHAP plot and details
(PDF)
Complete list of the initial training set monomers, their
calculated recovery stresses, glass transition temper-
atures, and their fingerprints (XLSX)
Complete list of symmetric epoxies generated and their
fingerprints (XLSX)
Complete list of asymmetric epoxies generated and their
fingerprints (XLSX)
Complete list of hardeners generated by moving amines
and their fingerprints (XLSX)
Complete list of hardeners generated by moving
sidechains and their fingerprints (XLSX)

■ AUTHOR INFORMATION
Corresponding Author

Andrew J. Peters − College of Engineering & Science,
Louisiana Tech University, Ruston, Louisiana 71270, United
States; orcid.org/0000-0001-5031-2828; Phone: (318)
257-511; Email: apeters@latech.edu

Authors
Anwar Shafe − College of Engineering & Science, Louisiana
Tech University, Ruston, Louisiana 71270, United States

Pouria Nourian − College of Engineering & Science, Louisiana
Tech University, Ruston, Louisiana 71270, United States

Xiyuan Liu − College of Engineering & Science, Louisiana
Tech University, Ruston, Louisiana 71270, United States

Guoqiang Li − Mechanical & Industrial Engineering Dept.,
Louisiana State University, Baton Rouge, Louisiana 70803,
United States; orcid.org/0000-0002-7004-6659

Collin D. Wick − College of Engineering & Science, Louisiana
Tech University, Ruston, Louisiana 71270, United States;
orcid.org/0000-0002-0261-0780

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.macromol.4c01598

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the US National Science
Foundation under grant number OIA-1946231 and the

Macromolecules pubs.acs.org/Macromolecules Article

https://doi.org/10.1021/acs.macromol.4c01598
Macromolecules XXXX, XXX, XXX−XXX

H

https://pubs.acs.org/doi/10.1021/acs.macromol.4c01598?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.4c01598/suppl_file/ma4c01598_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.4c01598/suppl_file/ma4c01598_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.4c01598/suppl_file/ma4c01598_si_003.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.4c01598/suppl_file/ma4c01598_si_004.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.4c01598/suppl_file/ma4c01598_si_005.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.4c01598/suppl_file/ma4c01598_si_006.xlsx
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrew+J.+Peters"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-5031-2828
mailto:apeters@latech.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anwar+Shafe"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pouria+Nourian"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiyuan+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Guoqiang+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-7004-6659
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Collin+D.+Wick"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-0261-0780
https://orcid.org/0000-0002-0261-0780
https://pubs.acs.org/doi/10.1021/acs.macromol.4c01598?ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://doi.org/10.1021/acs.macromol.4c01598?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Louisiana Board of Regents for the Louisiana Materials Design
Alliance (LAMDA). The high-performance computing resour-
ces provided by the Louisiana Optical Network Infrastructure
(https://loni.org) were used for this work.

■ REFERENCES
(1) Hager, M. D.; Bode, S.; Weber, C.; Schubert, U. S. Shape
Memory Polymers: Past, Present and Future Developments. Prog.
Polym. Sci. 2015, 49−50, 3−33.
(2) Zhao, Q.; Qi, H. J.; Xie, T. Recent Progress in Shape Memory
Polymer: New Behavior, Enabling Materials, and Mechanistic
Understanding. Prog. Polym. Sci. 2015, 49−50, 79−120.
(3) Berg, G. J.; McBride, M. K.; Wang, C.; Bowman, C. N. New
Directions in the Chemistry of Shape Memory Polymers. Polymer
2014, 55 (23), 5849−5872.
(4) Lee, K. M.; Koerner, H.; Vaia, R. A.; Bunning, T. J.; White, T. J.
Light-Activated Shape Memory of Glassy, Azobenzene Liquid
Crystalline Polymer Networks. Soft Matter 2011, 7 (9), 4318.
(5) Rokaya, D.; Skallevold, H. E.; Srimaneepong, V.; Marya, A.;
Shah, P. K.; Khurshid, Z.; Zafar, M. S.; Sapkota, J. Shape Memory
Polymeric Materials for Biomedical Applications: An Update. J.
Compos. Sci. 2023, 7 (1), 24.
(6) Chen, L.; Wei, X.; Wang, F.; Jian, S.; Yang, W.; Ma, C.; Duan,
G.; Jiang, S. In-Situ Polymerization for Mechanical Strong Composite
Actuators Based on Anisotropic Wood and Thermoresponsive
Polymer. Chin. Chem. Lett. 2022, 33 (5), 2635−2638.
(7) Gu, J. F.; Gorgutsa, S.; Skorobogatiy, M. Soft Capacitor Fibers
Using Conductive Polymers for Electronic Textiles. Smart Mater.
Struct. 2010, 19 (11), No. 115006.
(8) Liu, Y.; Du, H.; Liu, L.; Leng, J. Shape Memory Polymers and
Their Composites in Aerospace Applications: A Review. Smart Mater.
Struct. 2014, 23 (2), No. 023001.
(9) Li, F.; Liu, Y.; Leng, J. Progress of Shape Memory Polymers and
Their Composites in Aerospace Applications. Smart Mater. Struct.
2019, 28 (10), 103003.
(10) Govindarajan, T.; Shandas, R. A Survey of Surface Modification
Techniques for Next-Generation Shape Memory Polymer Stent
Devices. Polymers (Basel). 2014, 6 (9), 2309−2331.
(11) Zainal, M. A.; Ahmad, A.; Mohamed Ali, M. S. Frequency-
Controlled Wireless Shape Memory Polymer Microactuator for Drug
Delivery Application. Biomed. Microdevices 2017, 19 (1), 8.
(12) Wischke, C.; Neffe, A. T.; Steuer, S.; Lendlein, A. Evaluation of
a Degradable Shape-Memory Polymer Network as Matrix for
Controlled Drug Release. J. Controlled Release 2009, 138 (3), 243−
250.
(13) Pfau, M. R.; Grunlan, M. A. Smart Scaffolds: Shape Memory
Polymers (SMPs) in Tissue Engineering. J. Mater. Chem. B 2021, 9
(21), 4287−4297.
(14) Xie, M.; Wang, L.; Ge, J.; Guo, B.; Ma, P. X. Strong
Electroactive Biodegradable Shape Memory Polymer Networks Based
on Star-Shaped Polylactide and Aniline Trimer for Bone Tissue
Engineering. ACS Appl. Mater. &amp; Interfaces 2015, 7 (12), 6772−
6781.
(15) Leng, J.; Lu, H.; Liu, Y.; Huang, W. M.; Du, S. Shape-Memory
Polymers�A Class of Novel Smart Materials. MRS Bull. 2009, 34
(11), 848−855.
(16) Imran Khan, M.; Zagho, M. M.; Shakoor, R. A. A Brief
Overview of Shape Memory Effect in Thermoplastic Polymers. In
Springer Series on Polymer and Composite Materials; Springer
International Publishing: 2017; pp 281−301.
(17) Nourian, P.; Wick, C. D.; Li, G.; Peters, A. J. Correlation
between Cyclic Topology and Shape Memory Properties of an
Amine-Based Thermoset Shape Memory Polymer: A Coarse-Grained
Molecular Dynamics Study. Smart Mater. Struct. 2022, 31 (10),
105014.
(18) Nourian, P.; Wick, C. D.; Peters, A. J. Effect of Crosslinking
Fraction, Hardener Functionality and Topological Quality on Stress
Recovery of Thermoset Shape Memory Polymers: A Coarse-Grained

Molecular Dynamics Study. Smart Mater. Struct. 2023, 32 (11),
115001.
(19) Mannodi-Kanakkithodi, A.; Chandrasekaran, A.; Kim, C.;
Huan, T. D.; Pilania, G.; Botu, V.; Ramprasad, R. Scoping the
Polymer Genome: A Roadmap for Rational Polymer Dielectrics
Design and Beyond. Mater. Today 2018, 21 (7), 785−796.
(20) Mannodi-Kanakkithodi, A.; Huan, T. D.; Ramprasad, R. Mining
Materials Design Rules from Data: The Example of Polymer
Dielectrics. Chem. Mater. 2017, 29 (21), 9001−9010.
(21) Mannodi-Kanakkithodi, A.; Pilania, G.; Huan, T. D.; Lookman,
T.; Ramprasad, R. Machine Learning Strategy for Accelerated Design
of Polymer Dielectrics. Sci. Rep. 2016, 6 (1), 20952.
(22) Yu, L.; Zunger, A. Identification of Potential Photovoltaic
Absorbers Based on First-Principles Spectroscopic Screening of
Materials. Phys. Rev. Lett. 2012, 108 (6), No. 068701.
(23) Armiento, R.; Kozinsky, B.; Fornari, M.; Ceder, G. Screening
for High-Performance Piezoelectrics Using High-Throughput Density
Functional Theory. Phys. Rev. B 2011, 84 (1), No. 014103.
(24) Lin, L.-C.; Berger, A. H.; Martin, R. L.; Kim, J.; Swisher, J. A.;
Jariwala, K.; Rycroft, C. H.; Bhown, A. S.; Deem, M. W.; Haranczyk,
M.; et al. In Silico Screening of Carbon-Capture Materials. Nat. Mater.
2012, 11 (7), 633−641.
(25) Yan, C.; Feng, X.; Wick, C.; Peters, A.; Li, G. Machine Learning
Assisted Discovery of New Thermoset Shape Memory Polymers
Based on a Small Training Dataset. Polymer 2021, 241, No. 123351.
(26) Yan, C.; Feng, X.; Li, G. From Drug Molecules to Thermoset
Shape Memory Polymers: A Machine Learning Approach. ACS Appl.
Mater. &amp; Interfaces 2021, 13 (50), 60508−60521.
(27) Segura Ibarra, D.; Mathews, J.; Li, F.; Lu, H.; Li, G.; Chen, J.
Deep Learning for Predicting the Thermomechanical Behavior of
Shape Memory Polymers. Polymer 2022, 261, No. 125395.
(28) Kim, C.; Chandrasekaran, A.; Huan, T. D.; Das, D.; Ramprasad,
R. Polymer Genome: A Data-Powered Polymer Informatics Platform
for Property Predictions. J. Phys. Chem. C 2018, 122 (31), 17575−
17585.
(29) Shafe, A.; Wick, C. D.; Peters, A. J.; Liu, X.; Li, G. Effect of
Atomistic Fingerprints on Thermomechanical Properties of Epoxy-
Diamine Thermoset Shape Memory Polymers. Polymer 2022, 242,
No. 124577.
(30) Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D.
S.; Brown, W. M.; Crozier, P. S.; in ’t Veld, P. J.; Kohlmeyer, A.;
Moore, S. G.; Nguyen, T. D.; et al. LAMMPS - a Flexible Simulation
Tool for Particle-Based Materials Modeling at the Atomic, Meso, and
Continuum Scales. Comput. Phys. Commun. 2022, 271, No. 108171.
(31) Jorgensen, W. L.; Tirado-Rives, J. Potential Energy Functions
for Atomic-Level Simulations of Water and Organic and Biomolecular
Systems. Proc. Natl. Acad. Sci. 2005, 102 (19), 6665−6670.
(32) Dodda, L. S.; Vilseck, J. Z.; Tirado-Rives, J.; Jorgensen, W. L.
1.14* CM1A-LBCC: Localized Bond-Charge Corrected CM1A
Charges for Condensed-Phase Simulations. J. Phys. Chem. B 2017,
121 (15), 3864−3870.
(33) Dodda, L. S.; De Vaca, I. C.; Tirado-Rives, J.; Jorgensen, W. L.
LigParGen Web Server: An Automatic OPLS-AA Parameter
Generator for Organic Ligands. Nucleic Acids Res. 2017, 45 (W1),
W331−W336.
(34) Jorgensen, W. L.; Maxwell, D. S.; Tirado-rives, J.; Haven, N.
Development and Testing of the OPLS All-Atom Force Field on
Conformational Energetics and Properties of Organic Liquids. J. Am.
Chem. Soc. 1996, 118 (45), 11225−11236.
(35) Jorgensen, W. L.; Madura, J. D.; Swenson, C. J. Optimized
Intermolecular Potential Functions for Liquid Hydrocarbons. J. Am.
Chem. Soc. 1984, 106 (22), 6638−6646.
(36) Jorgensen, W. L.; Tirado-Rives, J. The OPLS [Optimized
Potentials for Liquid Simulations] Potential Functions for Proteins,
Energy Minimizations for Crystals of Cyclic Peptides and Crambin. J.
Am. Chem. Soc. 1988, 110 (6), 1657−1666.
(37) Wick, C. D.; Peters, A. J.; Li, G. Quantifying the Contributions
of Energy Storage in a Thermoset Shape Memory Polymer with High

Macromolecules pubs.acs.org/Macromolecules Article

https://doi.org/10.1021/acs.macromol.4c01598
Macromolecules XXXX, XXX, XXX−XXX

I

https://loni.org
https://doi.org/10.1016/j.progpolymsci.2015.04.002
https://doi.org/10.1016/j.progpolymsci.2015.04.002
https://doi.org/10.1016/j.progpolymsci.2015.04.001
https://doi.org/10.1016/j.progpolymsci.2015.04.001
https://doi.org/10.1016/j.progpolymsci.2015.04.001
https://doi.org/10.1016/j.polymer.2014.07.052
https://doi.org/10.1016/j.polymer.2014.07.052
https://doi.org/10.1039/c1sm00004g
https://doi.org/10.1039/c1sm00004g
https://doi.org/10.3390/jcs7010024
https://doi.org/10.3390/jcs7010024
https://doi.org/10.1016/j.cclet.2021.09.075
https://doi.org/10.1016/j.cclet.2021.09.075
https://doi.org/10.1016/j.cclet.2021.09.075
https://doi.org/10.1088/0964-1726/19/11/115006
https://doi.org/10.1088/0964-1726/19/11/115006
https://doi.org/10.1088/0964-1726/23/2/023001
https://doi.org/10.1088/0964-1726/23/2/023001
https://doi.org/10.1088/1361-665X/ab3d5f
https://doi.org/10.1088/1361-665X/ab3d5f
https://doi.org/10.3390/polym6092309
https://doi.org/10.3390/polym6092309
https://doi.org/10.3390/polym6092309
https://doi.org/10.1007/s10544-017-0148-5
https://doi.org/10.1007/s10544-017-0148-5
https://doi.org/10.1007/s10544-017-0148-5
https://doi.org/10.1016/j.jconrel.2009.05.027
https://doi.org/10.1016/j.jconrel.2009.05.027
https://doi.org/10.1016/j.jconrel.2009.05.027
https://doi.org/10.1039/D1TB00607J
https://doi.org/10.1039/D1TB00607J
https://doi.org/10.1021/acsami.5b00191?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.5b00191?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.5b00191?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.5b00191?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1557/mrs2009.235
https://doi.org/10.1557/mrs2009.235
https://doi.org/10.1088/1361-665X/ac8bb5
https://doi.org/10.1088/1361-665X/ac8bb5
https://doi.org/10.1088/1361-665X/ac8bb5
https://doi.org/10.1088/1361-665X/ac8bb5
https://doi.org/10.1088/1361-665X/acfa7d
https://doi.org/10.1088/1361-665X/acfa7d
https://doi.org/10.1088/1361-665X/acfa7d
https://doi.org/10.1088/1361-665X/acfa7d
https://doi.org/10.1016/j.mattod.2017.11.021
https://doi.org/10.1016/j.mattod.2017.11.021
https://doi.org/10.1016/j.mattod.2017.11.021
https://doi.org/10.1021/acs.chemmater.7b02027?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.7b02027?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.7b02027?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/srep20952
https://doi.org/10.1038/srep20952
https://doi.org/10.1103/PhysRevLett.108.068701
https://doi.org/10.1103/PhysRevLett.108.068701
https://doi.org/10.1103/PhysRevLett.108.068701
https://doi.org/10.1103/PhysRevB.84.014103
https://doi.org/10.1103/PhysRevB.84.014103
https://doi.org/10.1103/PhysRevB.84.014103
https://doi.org/10.1038/nmat3336
https://doi.org/10.1016/j.polymer.2020.123351
https://doi.org/10.1016/j.polymer.2020.123351
https://doi.org/10.1016/j.polymer.2020.123351
https://doi.org/10.1021/acsami.1c20947?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.1c20947?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.polymer.2022.125395
https://doi.org/10.1016/j.polymer.2022.125395
https://doi.org/10.1021/acs.jpcc.8b02913?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.8b02913?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.polymer.2022.124577
https://doi.org/10.1016/j.polymer.2022.124577
https://doi.org/10.1016/j.polymer.2022.124577
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1073/pnas.0408037102
https://doi.org/10.1073/pnas.0408037102
https://doi.org/10.1073/pnas.0408037102
https://doi.org/10.1021/acs.jpcb.7b00272?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.7b00272?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/nar/gkx312
https://doi.org/10.1093/nar/gkx312
https://doi.org/10.1021/ja9621760?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja9621760?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00334a030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00334a030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00214a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00214a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00214a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.polymer.2020.123319
https://doi.org/10.1016/j.polymer.2020.123319
pubs.acs.org/Macromolecules?ref=pdf
https://doi.org/10.1021/acs.macromol.4c01598?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Stress Recovery: A Molecular Dynamics Study. Polymer 2021, 213,
No. 123319.
(38) Ng, F.; Couture, G.; Philippe, C.; Boutevin, B.; Caillol, S. Bio-
Based Aromatic Epoxy Monomers for Thermoset Materials. Molecules
2017, 22 (1), 149.
(39) PubChem Structure Search. https://pubchem.ncbi.nlm.nih.gov/
search/search.cgi.
(40) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach.
Learn. Res. 2011, 12 (85), 2825−2830.
(41) Fan, J.; Li, G. High Enthalpy Storage Thermoset Network with
Giant Stress and Energy Output in Rubbery State. Nat. Commun.
2018, 9 (1), 642.
(42) Lundberg, S. M.; Lee, S.-I. A Unified Approach to Interpreting
Model Predictions. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17; Curran Associates
Inc.: Red Hook, NY, USA, 2017; pp 4768−4777.
(43) Shapley, L. S.; Arrow, K. J.; Barankin, E. W.; Blackwell, D.; Bott,
R.; Dalkey, N.; Dresher, M.; Gale, D.; Gillies, D. B.; Glicksberg,
I.;et al.A Value for N-Person Games. In Contributions to the Theory of
Games (AM-28), Volume II; Princeton University Press: 1953; pp
307−318.
(44) Shapley, L. S.; Arrow, K. J.; Barankin, E. W.; Blackwell, D.; Bott,
R.; Dalkey, N.; Dresher, M.; Gale, D.; Gillies, D. B.; Glicksberg,
I.;et al.Quota Solutions of N-Person Games. In Contributions to the
Theory of Games (AM-28), Volume II; Princeton University Press:
1953; pp 343−360.
(45) Frazier, P. I.; Wang, J. Bayesian Optimization for Materials
Design BT - Information Science for Materials Discovery and Design;
Lookman, T.; Alexander, F. J.; Rajan, K., Eds.; Springer International
Publishing: Cham, 2016; pp 45−75.
(46) Packwood, D. Overview of Bayesian Optimization in Materials
Science BT - Bayesian Optimization for Materials Science; Packwood, D.,
Ed.; Springer Singapore: Singapore, 2017; pp 1−10.
(47) Deringer, V. L.; Bartók, A. P.; Bernstein, N.; Wilkins, D. M.;
Ceriotti, M.; Csányi, G. Gaussian Process Regression for Materials
and Molecules. Chem. Rev. 2021, 121 (16), 10073−10141.
(48) Polikar, R. Ensemble Learning BT - Ensemble Machine Learning:
Methods and Applications; Zhang, C.; Ma, Y., Eds.; Springer New
York: New York, NY, 2012; pp 1−34.
(49) Strobl, E. V.; Zhang, K.; Visweswaran, S. Approximate Kernel-
Based Conditional Independence Tests for Fast Non-Parametric
Causal Discovery. J. Causal Infer. 2019, 7 (1), 20180017.

Macromolecules pubs.acs.org/Macromolecules Article

https://doi.org/10.1021/acs.macromol.4c01598
Macromolecules XXXX, XXX, XXX−XXX

J

https://doi.org/10.1016/j.polymer.2020.123319
https://doi.org/10.3390/molecules22010149
https://doi.org/10.3390/molecules22010149
https://pubchem.ncbi.nlm.nih.gov/search/search.cgi
https://pubchem.ncbi.nlm.nih.gov/search/search.cgi
https://doi.org/10.1038/s41467-018-03094-2
https://doi.org/10.1038/s41467-018-03094-2
https://doi.org/10.1021/acs.chemrev.1c00022?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.1c00022?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1515/jci-2018-0017
https://doi.org/10.1515/jci-2018-0017
https://doi.org/10.1515/jci-2018-0017
pubs.acs.org/Macromolecules?ref=pdf
https://doi.org/10.1021/acs.macromol.4c01598?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

