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Abstract— The relationships between persistence of excita-
tion (PE) conditions and asymptotically stable convergence of
parameter estimates are well-known for adaptive systems where
stability and convergence are derived with respect to the origin
of a combined state error and parameter estimation error
system. We address a class of second-order mechanical systems
in which the true parameters are, rather than one single point
in parameter space, members of a nullspace defined by feasible
evolutions of a regressor matrix. Differences within the set of
true parameters are unobservable, requiring a new characteri-
zation of PE and parameter convergence. We report an adaptive
identification (AID) approach for this class of systems and show
local stability and parameter estimate convergence to the true
parameter set under a subspace PE condition. This approach is
applicable to many second-order mechanical systems, including
robot arms and undersea, land, aerial, and space vehicles, and
enables a more complete parameterization of uncertainty in the
dynamics, e.g. enabling simultaneous AID of plant and actuator
parameters for mechanical systems.

I. INTRODUCTION

Adaptive systems enable compensation for model uncer-
tainty via online parameter learning alongside tasks such
as system identification and control. It is well-known that,
although it is relatively simple to design adaptive systems
wherein a state error, e.g. of an identification plant or
trajectory-tracking, converges to zero, additional conditions
are required for parameter convergence. Many authors in
the 1960s and 1970s connected notions of persistence of
excitation (PE) to parameter convergence, including [13], [3],
[29], [30], [2], and [20]. In their seminal paper [20], Morgan
and Narendra derive necessary and sufficient PE conditions
for the uniform asymptotic stability (UAS) of a class of linear
time-varying (LTV) adaptive systems of the form[

∆v̇(t)

∆θ̇(t)

]
=

[
A(t) −B(t)
B(t)> 0

] [
∆v(t)
∆θ(t)

]
(1)

where ∆v ∈ Rn is a state error, ∆θ ∈ Rp is a parameter
estimation error, A(t) ∈ Rn×n and B(t) ∈ Rn×p are
bounded piecewise continuous, and A(t) is a stable matrix.
A PE condition on the regressor B(t) is stated as follows: ∃
ε0, δ0 > 0 such that for any t ≥ t0 and unit vector w ∈ Rp,∥∥∥ ∫ t+δ0

t

B(τ)wdτ
∥∥∥ ≥ ε0, (2)
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i.e. if B(t) is PE then it has no persistent nullspace.
PE conditions similar to (2) on the regressor matrix

B(t) or on exogenous signals have become well-established
properties to determine stability and convergence properties
of adaptive systems [4], [22], [26]. Studies such as [23], [21],
[25], [14] extended the results of [20] to certain nonlinear
systems. [12] summarizes many results on the relationship
between PE conditions imposed on exogenous input signals
(which are more useful from the perspective of control de-
sign) to PE of the regressor matrix and the convergence guar-
antees that can be obtained. Although stronger guarantees of
uniform exponential stability are desirable for robustness and
equivalent with UAS for LTV systems, they can be difficult
to show for nonlinear systems [12]. Recent studies have also
addressed the case of time-varying parameters [9].

Herein we consider a new class of nonlinear adaptive sys-
tems with skew-symmetric structure similar to (1), in which
the regressor B(t) has a time-varying persistent nullspace
defined by the parameter estimate, and the true parame-
ters are formulated as members of a persistent nullspace
capturing all feasible evolutions of the true system. This
dynamics formulation is applicable to a broad class of
second-order mechanical systems including robot arms [5],
[28] and space [1], aerial [6], terrestrial [27], and underwater
[8] vehicles and has the advantage of providing a more
complete parameterization of their dynamics. To the best
of our knowledge, such nullspace parameterizations were
first studied for model identification on underwater vehicles
[10], [24], [11] and ground vehicles [7], as well as for
adaptive trajectory-tracking control on underwater vehicles in
[15], where this approach enabled simultaneous estimation
of plant parameters and actuator parameters, of which the
latter are typically assumed exactly known in previously
reported model identification methods, e.g. [17], [19] and
model-based control methods, e.g. [18].

However, as discussed in Section II, this nullspace param-
eterization results in analytical challenges which previously
reported proofs of asymptotic stability and corresponding PE
conditions, e.g. in [20]-[23], do not address. In particular,
parameter convergence for this class of nullspace systems
must be shown with respect to a true parameter set which
is contained in a subspace of the parameter space instead of
a single equilibrium point, the origin of (1). Although [21],
[22] show cases of static and time-varying transformations of
non-PE signals to achieve PE, e.g. PE in a lower-dimensional
subspace, the reported results are not applicable to the class
of systems addressed herein. To the best of our knowledge,
[11] reported the first proof of asymptotic parameter conver-
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gence for nullspace adaptive identification (NS-AID), which
was applied to an underwater vehicle model. This present
paper generalizes the approach of [11] to a broader class of
second-order systems. It is organized as follows: Section II
defines the general class of dynamical systems with nullspace
parameterization and discusses their properties, Section III
reports the derivation of a NS-AID algorithm for such
systems and discusses the difficulty in applying existing PE
approaches to show parameter convergence, and Section IV
reports proofs of local stability and parameter convergence
for the NS-AID algorithm using a subspace PE condition.

II. NULLSPACE PARAMETERIZATION OF GENERAL
SECOND-ORDER MECHANICAL SYSTEMS

A. A General Class of Second-Order Mechanical Systems

We consider a broad class of second-order mechanical
systems whose kinematics are given by

q̇ = J(q)v, (3)
with the position q(t) ∈ Rm, velocity v(t) ∈ Rn, combined
state x(t) = [q(t)>v(t)>]> ∈ Rm+n, and the Jacobian matrix
J(q) ∈ Rm → Rm×n, and whose dynamics are linear in
unknown constant parameters θ ∈ Rp, with the general form

M(x, θ)v̇ + C(x, θ)v = F (t, x)θ, (4)
where M,C ∈ Rm+n × Rp → Rn×n are matrix-valued
functions (MVFs) parameterized by the parameter vector θ,
M is positive definite symmetric (PDS), C has the property
that Ṁ −2C is skew-symmetric, and F (t, x) : R×Rm+n →
Rn×p is uniformly continuous in t and x.

B. Example Robot Systems with Nullspace Parameterization

Examples of systems which take this form (3,4) include
robot arms [5], [28], and marine [8], aerial [6], ground
[27] vehicles. The term F (t, x)θ specializes the general
dynamical model to different plants and actuators.

The dynamics of rigid-body robot arms take the form
M(q, θ)v̇ + C(x, θ) = −g(q, θ) + τ(u, θ), (5)

with joint position q(t) ∈ Rn, and joint velocity v(t) ∈
Rn, with kinematics (3), often with J(q) = I , where
g is the gravitational force/moment vector, τ is the joint
force/moment vector arising from control input u, and θ
contains mass/inertia, link, and actuator parameters, e.g.
motor constants.

The dynamics of marine and aerial vehicles are similar
and take the form
M(θ)v̇ + C(x, θ)v = −D(v, θ)v − g(q, θ) + τ(u, θ), (6)

with world-frame position and orientation q(t) ∈ Rm, and
body-frame velocty v(t) ∈ Rn, with kinematics (3), where
D captures aero- or hydrodynamic lift and drag, g is a
gravity term for aerial vehicles and a gravity/buoyancy term
for marine vehicles, and τ arises from actuators such as
thrusters and control surfaces, with control inputs u such as
thruster motor speed or articulated control surface deflection
angle. The parameters θ include plant parameters such as
aero-/hydrodynamic mass, hydrodynamic added mass, aero-
/hydrodynamic drag coefficients, center of mass, and center

of buoyancy, and actuator parameters such as thrust coeffi-
cients and control-surface lift and drag coefficients.

The dynamics of ground vehicles take the form
M(q, θ)v̇ + C(x, θ)v = −D(v, θ)v − h(x, θ) + τ(u, θ), (7)
with world-frame position and orientation q(t) ∈ Rm, and
body-frame velocty v(t) ∈ Rn, with kinematics (3), where,
in addition to the plant mass/inertia terms, θ parameterizes
an aerodynamic lift and drag term D, a force/moment vector
h due to wheel-ground interaction such as rolling resistance
and wheel slip, and the control force/moment vector τ arising
from steering and wheel actuators with control input u.

More complex articulated-body mobile robots or systems
with attached robot arms can also be modeled using the
general kinematics and dynamics equations (3,4), where the
state is augmented to include additional dimensions of shape-
variables representing the articulated joint positions and joint
velocities, and a state-dependence is included in the inertia
matrix M(x, θ).

C. Nullspace Parameter Structure
Since the parameters θ enter linearly on the LHS of (4)

through the matrices M and C, each term on the LHS may
be factored into the product of a regressor matrix and θ

M(x, θ)v̇ = WM (x, v̇)θ (8)
C(x, θ)v = WC(x, v)θ. (9)

Defining the combined regressor W : R×Rm+n×Rn×Rn →
Rn×p,

W (t, x, v, v̇) ,WM (x, v̇) +WC(x, v)− F (t, x), (10)
we can rearrange (4) to obtain a nullspace relationship

WM (x, v̇)θ +WC(x, v)θ = F (t, x)θ (11)
[WM (x, v̇) +WC(x, v)− F (t, x)]θ = 0 (12)

W (t, x, v, v̇)θ = 0. (13)
This nullspace structure reveals that the true parameter vector
satisfying the equations of motion (4) for this class of
systems is not unique. For example, ∀ α ∈ R, from (13)

W (t, x, v, v̇)θ = 0 =⇒ W (t, x, v, v̇)(αθ) = 0. (14)
Indeed, given θ and all possible resulting bounded evolutions
of t, x(t), v(t), v̇(t) from (4), there is a true parameter set
consisting of all nonzero vectors θ∗ that equivalently satisfy
(13) and thus (4) for the same evolutions of t, x(t), v(t), v̇(t).
We term this set P (θ) the “persistent nullspace” of the
regressor matrix W (t, x, v, v̇), which is defined as
P (θ) , {θ∗ ∈ Rp : θ∗ 6= 0 and

W (t, x, v, v̇)θ = 0 ⇐⇒ W (t, x, v, v̇)θ∗ = 0}. (15)
The set P (θ) is embedded in an at least one-dimensional
subspace of Rp, but the subspace can be of higher-dimension
when the dynamics are fully or partially decoupled.

The primary benefit of this nullspace structure is the
simultaneous parameterization — thus enabling simultaneous
parameter estimation — of all terms in the equation of
motion (4). This differs from most conventional parameteri-
zation approaches, which represent the true parameters as a
single, unique point in parameter space. In the case of the
marine vehicle model (6), parameter identification methods,
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e.g. in [17], [19], commonly assume that τ(u(t)) is a known
signal and estimate parameters in the plant terms M , C, D,
and g only, thus requiring exact knowledge of the control-
actuator parameters. In contrast, the nullspace approaches
parameterizes the LHS and entire RHS of (6), and more
generally (4), thus more fully capturing uncertainty in the
dynamics. The nullspace AID approach reported in [24], [11]
for parameter identification on a 6-degree-of-freedom (DOF)
underwater vehicle model estimates the aforementioned plant
parameters as well as unknown actuator parameters for a
thrust and control-surface lift and drag model.

D. Nullspace Parameterization is Not Overparameterization

A natural question is whether the choice to represent the
true parameters as members of the set P (θ) (15) is an
overparameterization – i.e. if true parameter vectors are not
unique, is there a redundancy in the parameter space?

For systems with very simple plant dynamics and actuator
dynamics, it is possible in some cases to reduce the true
parameter set to a unique point in a reduced-dimension
parameter space via normalization. For example, in the case
of 1-DOF underwater vehicle dynamics, the general 6-DOF
dynamical equation (6) reduces to

mv̇(t) = −dv(t)|v(t)| − g + au(t), (16)
which is linear in the plant and actuator parameters θ =
[m, d, g, a]> ∈ R4. In this special case (16), a reduced-
dimension parameter vector can be obtained via normaliza-
tion by (for example) m, so that 16 can be rewritten as

v̇(t) = − d

m
v(t)|v(t)| − g

m
+
a

m
u(t), (17)

which is not linear in θ, but is linear in the new reduced-
dimension parameter vector θn = [ dm ,

g
m ,

a
m ]> ∈ R3, which

is comprised of elements corresponding to members of the
Cartesian (set) product of m-1 and the original parameter
vector θ. For general 6-DOF dynamics, however, normalizing
the dynamics (6) by M(θ) results in

v̇ +M(θ)
-1
C(x, θ)v (18)

= M(θ)
-1

[−D(v, θ)v − g(q, θ) + τ(u(t), θ)], (19)
which is not linear in θ, but is linear in a parameter vector
(of potentially very large dimension) comprised of elements
corresponding to members of the Cartesian (set) product of
the entries of M -1 and the original parameter vector θ.

In this new parameterization of the model terms M -1C,
M -1D, M -1g, and M -1τ arising in (19), the individual plant
parameter terms of mass, inertia, lift, drag, and buoyancy,
and the individual actuator parameter terms are no longer
distinct, and may not be individually observable. Moreover,
the new parameterization may be of larger dimension than
the nullspace parameterization θ in (4) and (6).

Another normalization approach is to restrict parameter
vectors to a given magnitude, e.g. unit magnitude. When
the persistent nullspace P (θ) is one-dimensional, this has
the effect of normalizing the true parameter set to a single
unique point in P (θ), but this approach may not generalize
when P (θ) is multi-dimensional.

We note that the nullspace approach to dynamical model

parameterization is relatively new, having first been studied
in [10], [24], [11] for underwater vehicle model identification
and in [15] for underwater vehicle model-based control, and
that its implications have yet to be fully explored. It is
apparent, however, that the nullspace approach enables a use-
ful parameterization of uncertainty in the whole dynamical
model, including but distinguishing both plant and actuator
components, which is not simply an overparameterization.
Simultaneously estimating physically meaningful parameters
for both plant and actuator models may also support other
model-based tasks, e.g. fault detection and isolation based
on parameter changes in subsets of parameter space [16].

E. Properties of Nullspace Parameterization

This Section introduces several properties of systems of
the form (4,13) with nullspace parameterization.

1) Invariance of Dynamics Under Equivalent Parameters:
As a consequence of the definition of P (θ), all parameter
vectors in P (θ) produce identical dynamics v̇, so that dif-
ferences between parameter vectors in the set P (θ) are not
observable. Solving (4) for v̇ as a function of time t, the
state x, the velocity v, and the parameters θ, we define
v̇ = v̇(t, x, v, θ) ,M(x, θ)

-1
[−WC(x, v) + F (t, x)]θ. (20)

Given another parameter vector θ∗ ∈ P (θ), since ∀ t, x, v, v̇
that satisfy (13) it is also true by definition of P (θ) (15) that

W (t, x, v, v̇)θ∗ = 0, (21)
[WM (x, v̇) +WC(x, v)− F (t, x)]θ∗ = 0 (22)

then from (8,22) there is an equivalent expression for v̇ (20)
WM (x, v̇)θ∗ = [−WC(x, v) + F (t, x)]θ∗ (23)
M(x, θ∗)v̇ = [−WC(x, v) + F (t, x)]θ∗ (24)

v̇ = M(x, θ∗)
-1

[−WC(x, v) + F (t, x)]θ∗. (25)
Similarly writing (25) as a function of the arguments
t, v, x, θ∗, we have from (20,25) that ∀θ∗ ∈ P (θ),
v̇(t, v, x, θ∗) ,M(x, θ∗)

-1
[−WC(x, v) + F (t, x)]θ∗ (26)

= v̇ (27)
= v̇(t, v, x, θ) (28)

2) Nullspace of the Regresssor: The nullspace of the
regressor W (t, x, v, v̇) can be characterized by the arguments
of v̇. It can easily be verified by (8,10) that, given v̇(t, x, ṽ, θ̃)

v̇(t, x, ṽ,θ̃) ,M(x, θ̃)
-1

[−WC(x, ṽ) + F (t, x)]θ̃, (29)

then θ̃ is an element of the persistent nullspace of
W (t, x, ṽ, v̇(t, x, ṽ, θ̃)), i.e.

span{θ̃} ⊂ null
(
W (t, x, ṽ, v̇(t, x, ṽ, θ̃))

)
. (30)

For convenience, we employ the notation
W (t, x, ṽ, θ̃) ,W (t, x(t), ṽ(t), v̇(t, x(t), ṽ(t), θ̃)). (31)

3) Coordinate Transformations: We note that the set P (θ)
does not contain the origin, and that the set Ps(θ),

Ps(θ) , P (θ) ∪ {0} (32)
is a linear vector subspace of Rp with orthogonal comple-
ment P⊥(θ). We define r = dim(Ps(θ)) and an orthornomal
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basis {p1, ..., pr} for Ps(θ), as well as the matrix P̄ ∈ Rp×r,
P̄ ,

[
p1 ... pr

]
, (33)

which, since the columns of P̄ are by definition basis vectors
of the persistent nullspace of W (t, x, v, θ), has the property

W (t, x, v, θ)P̄ = 0n×r. (34)
Similarly, we define an orthonormal basis {q1, ..., qp−r} for
P⊥(θ) and the matrix P̄⊥ ∈ Rp×(p−r),

P̄⊥ ,
[
q1 ... qp−r

]
. (35)

Then the orthogonal matrix Q ∈ Rp×p

Q ,
[
P̄ P̄⊥

]
(36)

defines a change of basis, so that any parameter vector may
be decomposed into the component belonging to P (θ) and
to its orthogonal complement P⊥(θ).

III. NULLSPACE ADAPTIVE IDENTIFICATION

The nullspace adaptive identifier (NS-AID) consists of an
identification plant with velocity v̂(t) ∈ Rn and a parameter
estimate θ̂(t) ∈ Rp. The task is to estimate the parameters
θ ∈ Rp for systems of the form (4,13) using the signals
x(t), F (t, x). and the known structure of the regressor (10).

A. Error Coordinates

We define the identification plant error ∆v as
∆v(t) , v̂(t)− v(t), (37)

and the absolute parameter estimate error ∆θ as the differ-
ence between the parameter estimate θ̂ and any constant true
parameter vector θ ∈ P (θ) (15),

∆θ(t) , θ̂(t)− θ. (38)

To characterize parameter error with respect to P (θ), we
use the change of basis matrix Q (36) to decompose the
estimate θ̂ as the sum of two orthogonal components,

θ̂ = Qθ̄ (39)
= P̄⊥θ̄P⊥ + P̄ θ̄P , (40)

where θ̄P⊥ ∈ Rp−r and θ̄P ∈ Rr are the coordinates of θ̂ in
P⊥(θ) and Ps(θ) (32), respectively.

B. Problem Statement

The NS-AID task is to design an identification plant update
law ˙̂v(t) and a parameter estimate update law ˙̂

θ(t) to achieve
the following goals with all signals remaining bounded:

lim
t→∞

∆v(t) = 0, (41)

lim
t→∞

θ̂(t) ∈ P (θ). (42)

Due to the non-uniqueness of the true parameter vector, the
goal is not to show convergence of the absolute error ∆θ to
0, but rather convergence of θ̂ to the larger true parameter
set P (θ) (15). An equivalent statement of the goal (42) is

lim
t→∞

θ̄P⊥(t) = 0. (43)

C. Update Laws

We choose the identification plant dynamics to be
˙̂v = v̇(t, x, v̂, θ̂)−K∆v (44)

where v̇(t, x, v̂, θ̂) uses the function notation (29) to denote
the time-derivative of v that would arise from the identifica-
tion plant velocity v̂ and parameter estimate θ̂ in place of the
true v and θ, and where K ∈ Rn×n is a PDS gain matrix.

The parameter estimate update law, using v̇(t, x, v̂, θ̂) and
the notation (31), is

˙̂
θ = ΓW (t, x, v̂, θ̂)>∆v, (45)

where Γ ∈ Rp×p is a PDS adaptation gain matrix.

D. Assumptions

We make the following assumptions.
• W (t, x, v, θ) (10) is uniformly continuous in t, x, v, θ.
• To assure boundedness and invertibility of M(x, θ̂)

-1
in

(44,45), we assume that ∆v(t0) = 0 and ∃ ε > 0 s.t.√
λmax(Γ)∆θ(t0)>Γ-1∆θ(t0) + ε ≤ λmin(M(x, θ)) (46)

In practice, reasonable initial estimates are often avail-
able from prior experiments or empirical measurement.

E. Error Dynamics

From the identification plant update law (44) and the sys-
tem dynamics (20), the time-derivative of the identification
plant error ∆v̇ is

∆v̇ = ˙̂v − v̇ (47)

=−K∆v + v̇(t, x, v̂, θ̂)− v̇(t, x, v, θ) (48)

=−K∆v + v̇(t, x, v̂, θ̂)

−M(x, θ)
-1

[−WC(x, v) + F (t, x)]θ. (49)

Factoring M(x, θ)
-1 from the last two terms of (48) yields

∆v̇ = −K∆v+M(x, θ)
-1
[
M(x, θ)v̇(t, x, v̂, θ̂)

+ [WC(x, v)− F (t, x)]θ
]
. (50)

Then using WM (x, v̇(t, x, v̂, θ̂)) (8) to rearrange the second
term and the relationship v = v̂−∆v (37) to write the third
term according to the definition of WC (9), we can substitute
the full regressor W (t, x, v̂, θ̂) (10,31),

∆v̇ = −K∆v +M(x, θ)
-1
[
WM (x, v̇(t, x, v̂, θ̂))θ

+ [WC(x, v̂)− F (t, x)]θ −WC(x,∆v)θ
]

(51)

= −K∆v +M(x, θ)
-1

[W (t, x, v̂, θ̂)θ − C(x, θ)∆v]. (52)

Since θ̂ ∈ null(W (t, x, v̂, θ̂)) (30), we may substitute θ̂ (38)
into (52) to obtain error dynamics of the form
∆v̇ =−K∆v

−M(x, θ)
-1

[W (t, x, v̂, θ̂)(θ̂ − θ) + C(x, θ)∆v] (53)

=− (K +M(x, θ)
-1
C(x, θ))∆v

−M(x, θ)
-1
W (t, x, v̂, θ̂)∆θ. (54)

From (38), we have that ∆θ̇ =
˙̂
θ. Thus from (45, 54), we

can construct the nonlinear error system[
∆v̇

∆θ̇

]
=

[
−K −M -1C −M -1W (t, x, v̂, θ̂)

ΓW (t, x, v̂, θ̂)> 0

] [
∆v
∆θ

]
(55)

where M = M(x, θ), C = C(x, θ) for brevity, which is
similar in form to the classical LTV system (1) studied in
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[20], as well as the nonlinear extension studied in [23], which
were shown to be asymptotically stable about the origin given
a PE condition of the form (2) on the upper-right block.

For the class of systems of the form (4,13) addressed
herein, however, for which any non-unique true parameter
in P (θ) vector gives rise to identical dynamics (as discussed
in Section II-E), a difference between parameter vectors
in P (θ) is unobservable. Consequently, no identification
approach (e.g. least squares, recursive least squares, adaptive,
etc) can guarantee convergence of ∆θ to 0. Moreover, the
following lemma shows that a PE condition of the form (2)
contradicts parameter convergence to any vector in the set
P (θ), including convergence to ∆θ = 0 (38).

Proposition 1. Given the system (55), if limt→∞ θ̂ ∈ P (θ)
then M(x, θ)

-1
W (t, x, v̂, θ̂) is not PE in the sense of (2).

Proof. Examining the structure of W (t, x, v̂, θ̂), we ob-
serve from (30) that ∀ t there is at least the non-trivial time-
varying nullspace span{θ̂} ⊂ null{W (t, x, v̂, θ̂)}, and that if
limt→∞ θ̂ = θ∗ ∈ P (θ) in addition to limt→∞∆v = 0, then
from the equivalence of v̇ arising from any θ∗ ∈ P (θ) (28)

lim
t→∞

W (t, x, v̂, θ̂)θ = lim
t→∞

W (t, x, v, θ∗)θ (56)

= lim
t→∞

W (t, x, v, θ)θ (57)

= 0. (58)

Thus parameter convergence implies that W (t, x, v̂, θ̂) has
the persistent nullspace P (θ) in the limit, resulting in failure
of the PE condition (2) for any w ∈ P (θ). �

In summary, since the error dynamics (55) and canonical
PE condition (2) are not suitable to show parameter con-
vergence for this class of systems, we formulate alternative
error dynamics and a modified PE condition. Instead of at-
tempting to show that limt→∞∆θ = 0, we employ the error
coordinates θ̄P⊥ (40) as a more meaningful characterization
of the convergence of θ̂ to the true parameter set P (θ).

F. Nullspace Error Dynamics

Revisiting (48), there is an equivalent derivation for the
error dynamics ∆v̇ obtained by substituting v̇(t, x, v̂, θ̂) (29)
and factoring out M(x, θ̂)

-1
instead of M(x, θ)

-1, yielding

∆v̇ =−K∆v +M(x, θ̂)
-1

[−WC(x, v̂) + F (t, x)]θ̂

− v̇(t, x, v,θ) (59)

=−K∆v −M(x, θ̂)
-1[

[WC(x, v̂)− F (t, x)]θ̂

+M(x, θ̂)v̇(t, x, v, θ)
]
. (60)

Again using the function WM (8) to rearrange the last term,
decomposing the second term with the function WC (9), and
substituting W (t, x, v, θ) (10), we have

∆v̇ = −K∆v −M(x, θ̂)−1
[
WM (v̇(t, x, v, θ))θ̂

+ [WC(x, v)− F (t, x)]θ̂−WC(x,∆v)θ̂
]

(61)

= −K∆v −M(x, θ̂)−1[W (t, x, v, θ)θ̂ − C(x, θ̂)∆v]. (62)

Decomposing θ̂ using the projection matrix Q (36,40) into
the component belonging to P (θ) (15) and the component
belonging to its orthogonal complement P⊥(θ) and using the

property (34) results in

∆v̇ =− (K −M(x, θ̂)
-1
C(x, θ̂))∆v

−M(x, θ̂)−1W (t, x, v, θ)(P̄⊥θ̄P⊥ + P̄ θ̄P ) (63)

=− (K −M(x, θ̂)
-1
C(x, θ̂))∆v

−M(x, θ̂)−1W (t, x, v, θ)P̄⊥θ̄P⊥ . (64)

The error system, where z , [∆v> θ̄>P⊥
θ̄>P ]> ∈ Rn+p is

ż =

 −K+M̂ -1Ĉ −M̂ -1W (t, x, v, θ)P̄⊥ 0

P̄>⊥ ΓW (t, x, v̂, θ̂)> 0 0

P̄>ΓW (t, x, v̂, θ̂)> 0 0

 z, (65)

where M̂ = M(x, θ̂), Ĉ = C(x, θ̂) for brevity. Com-
paring (64,65) to the equivalent expressions (54,55), we
see that the upper-right block now contains of the product
of W (t, x, v, θ) and P̄⊥. The following Section contains
a theorem of parameter convergence based on PE of the
term W (t, x, v, θ)P̄⊥, showing that, under a modified PE
condition, the system converges to {∆v = 0, θ̄P⊥ = 0}.

IV. THEOREMS OF STABILITY AND PARAMETER
CONVERGENCE

Theorem 1 in this Section gives a standard result guaran-
teeing uniform stability about the origin of (55), boundedness
of all signals, and convergence to zero of the identification
plant error ∆v(t). We then present Lemma 1, followed by
Theorem 2, a proof of parameter convergence for this class
of NS-AID methods with respect to the set P (θ), using the
alternative error dynamics (65), the new error term θ̄P⊥(t)
(40), and a subspace PE condition.

Theorem 1. Under the assumptions in Section III-D,
the system (55) is locally uniformly stable about the
origin (∆v,∆θ) = 0, all signals remain bounded, and
limt→∞∆v(t) = 0

Proof. Consider the Lyapunov function candidate

V (∆v,∆θ) =
1

2
∆v>M(x, θ)∆v +

1

2
∆θ>Γ-1∆θ, (66)

which is C1, positive-definite, radially unbounded in ∆v,∆θ,
and equal to zero if and only if (∆v,∆θ) = 0. From the error
dynamics (55), the time-derivative of V (∆v,∆θ) is

V̇ =
1

2
∆v>Ṁ∆v + ∆v>M∆v̇ + ∆θ>Γ-1∆θ̇ (67)

=
1

2
∆v>(Ṁ − 2C)∆v −∆v>MK∆v (68)

= −∆v>MK∆v. (69)

Thus V̇ is negative-definite in ∆v and negative semi-definite
in {∆v, ∆θ}, satisfying the requirements on a Lyapunov
function to show that the system (55) is uniformly stable
about the origin and that ∆v and ∆θ are bounded. From
(66,69) and the assumption (46), which limits this proof
to local stability, it is easy to show that all other signals
v̂, θ̂,M(x, θ̂)−1, ẋ, ˙̂v,∆v̇,

˙̂
θ are bounded, and additionally

that ∆v(t) ∈ L2∩L∞ (Definition 2.11, [22]). By Barbalat’s
Lemma (Corollary 2.9, [22]), this together with bounded ∆v̇
this implies that

lim
t→∞

∆v(t) = 0. (70)
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However, concerning the parameter estimates, from (45,70)
and bounded W (t, x, v̂, θ̂) we can only conclude that
limt→∞

˙̂
θ(t) = 0. �

Lemma 1. Given the system (55) and its equivalent
expression (65), then limt→∞W (t, x, v, θ)P̄⊥θ̄P⊥(t) = 0

Proof. From Theorem 1, limt→∞∆v(t) = 0. Again by
Barbalat’s Lemma (Lemma 2.12, [22]), if limt→∞∆v(t) is
finite and ∆v̇(t) is uniformly continuous in time, then

lim
t→∞

∆v̇(t) = 0. (71)

The boundedness results of Theorem 1 guarantee the
uniform continuity (UC) of ∆v̇(t) in t through the UC of
its component signals (62), as well as the the existence and
boundedness of M(x, θ̂)

-1
. Thus from (65,70,71), we have

lim
t→∞

-(K − M̂ -1Ĉ)∆v − M̂ -1W (t, x, v, θ)P̄⊥θ̄P⊥ = 0 (72)

lim
t→∞

M̂ -1W (t, x, v, θ)P̄⊥θ̄P⊥ = 0 (73)

lim
t→∞

W (t, x, v, θ)P̄⊥θ̄P⊥ = 0, (74)

thus concluding the proof. �

Examining the product W (t, x, v, θ)P̄⊥ in (74), we ob-
serve that the nullspace of W (t, x, v, θ) by definition always
contains P (θ) (15), but that P̄⊥ (35) is a projection matrix
of basis vectors orthogonal to P (θ) and thus eliminates P (θ)
from the persistent nullspace of W (t, x, v, θ)P̄⊥. Intuitively,
if W (t, x, v, θ)P̄⊥ has no persistent nullspace, then to satisfy
(74) it must be true that θ̄P⊥(t) converges to 0.

Theorem 2. Given the system (55,65), if there exist
ε0, δ0 > 0 such that for any t ≥ t0 and any unit w ∈ Rp,∥∥∥∫ t+δ0

t

W (τ, x(τ), v(τ), θ)P̄⊥wdτ
∥∥∥ ≥ ε0, (75)

i.e. if the regressor W (t, x, v, θ) is PE in the subspace
orthogonal to the set P (θ) (15), then limt→∞ θ̂ ∈ P (θ).

Proof.

1) Let all assumptions of Theorem 1 be satisfied such
that limt→∞∆v(t) = 0, let Lemma 1 hold such
that limt→∞W (t, x, v, θ)P̄⊥θ̄P⊥(t) = 0, let the PE
condition (75) hold, and let the bounds bθ, bθ̂ satisfy

∀ t ≥ t0, bθ ≥ ‖W (t, x, v, θ)P̄⊥‖ (76)

∀ t ≥ t0, bθ̂ ≥ ‖W (t, x, v̂, θ̂)‖. (77)
2) Let us suppose that limt→∞ θ̄P⊥(t) 6= 0. Then there

exists an ε > 0 and an unbounded sequence of times
{ti}i=1,...,∞ such that ‖θ̄P⊥(ti)‖≥ ε.

3) We make use of the property that, given T ′, φ > 0, ∃
ε′ > 0 such that if ‖∆v(t)‖≤ ε′ ∀t ∈ [ti, ti +T ′], then
‖θ̄P⊥(t)− θ̄P⊥(ti)‖≤ φ ∀t ∈ [ti, ti + T ′], (78)

i.e. “when ∆v is small, θ̄P⊥ is flat” [20].
This property can be verified for given T ′ and φ by
choosing ε′ = φ/T ′λmax(Γ)bθ̂ and observing that, ∀ t ∈
[ti, ti + T ′], using the expression for ˙̄θP⊥(t) in (65),
the bound bθ̂ (77), the orthogonality of P̄⊥ (i.e. that
‖P̄⊥‖= 1), and the assumption on ‖∆v(t)‖ over the

time interval, we have

‖θ̄P⊥(t)− θ̄P⊥(ti)‖=
∥∥∥ ∫ t

ti

˙̄θP⊥(τ)dτ
∥∥∥ (79)

≤
∫ t

ti

‖P̄>⊥ ‖‖Γ‖‖W (τ, x, v̂, θ̂)‖‖∆v(τ)‖dτ (80)

≤ φ. (81)
4) Since limt→∞∆v(t) = 0, for any ε′ > 0 we can

always find a t′ ≥ t0 such that ‖∆v(t)‖≤ ε′ ∀ t ≥ t′.
Thus using ε0, δ0 from the PE condition (75), ε from
the assumption on ‖θ̄P⊥(t)‖ made in Part 2 of this
proof, and the bound bθ (76), we can choose

φ =
ε0ε

2δ0bθ
(82)

T ′ = δ0 (83)
and find a t′ ≥ t0 such that the flatness property (78)
holds for each interval [ti, ti + δ0], where ti ≥ t′.
We will now show that for each ti ≥ t′, there is a
tj ∈ [ti, ti+δ0] where ‖W (tj , x, v, θ)P̄⊥θ̄P⊥(tj)‖> 0.
For each ti ≥ t′, we use the reverse triangle inequality
and the flatness property (78) to show∥∥∥∫ ti+δ0

ti

W (τ, x, v, θ)P̄⊥θ̄P⊥(ti)dτ
∥∥∥

−
∥∥∥∫ ti+δ0

ti

W (τ, x, v, θ)P̄⊥θ̄P⊥(τ)dτ
∥∥∥ (84)

≤
∥∥∥∫ ti+δ0

ti

W (τ, x, v, θ)P̄⊥[θ̄P⊥(ti)− θ̄P⊥(τ)]dτ
∥∥∥

(85)

≤
∫ ti+δ0

ti

‖W (τ, x, v, θ)P̄⊥‖‖[θ̄P⊥(ti)− θ̄P⊥(τ)]‖dτ

(86)
≤ δ0bθφ. (87)

Rearranging (87) and choosing the unit vector in the
PE condition (75) to be w , θ̄P⊥ (ti)/‖θ̄P⊥ (ti)‖, we have∥∥∥∫ ti+δ0

ti

W (τ, x, v, θ)P̄⊥θ̄P⊥(τ)dτ
∥∥∥

≥
∥∥∥∫ ti+δ0

ti

W (τ, x, v, θ)P̄⊥θ̄P⊥(ti)dτ
∥∥∥− δ0bθφ

(88)

≥ ‖θ̄P⊥(ti)‖
∥∥∥∫ ti+δ0

ti

W (τ, x, v, θ)P̄⊥wdτ
∥∥∥− δ0bθφ.

(89)
We invoke the PE condition (75), substitute our choice
of φ (82), and recall the assumption made in Part 2
that ‖θ̄P⊥(ti)‖≥ ε. This yields∥∥∥∫ ti+δ0

ti

W (τ, x, v, θ)P̄⊥θ̄P⊥(τ)dτ
∥∥∥

≥ ‖θ̄P⊥(ti)‖ε0 − δ0bθφ (90)

≥ ε0ε

2
. (91)
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Furthermore, we have∫ ti+δ0

ti

‖W (τ, x, v, θ)P̄⊥θ̄P⊥(τ)‖dτ

≥
∥∥∥ ∫ ti+δ0

ti

W (τ, x, v, θ)P̄⊥θ̄P⊥(τ)dτ
∥∥∥ (92)

≥ ε0ε

2
. (93)

By the mean value theorem for integrals, there must
be a tj ∈ [ti, ti + δ0] such that∫ ti+δ0

ti

‖W (τ, x, v, θ)P̄⊥θ̄P⊥(τ)‖dτ

= ‖W (tj , x, v, θ)P̄⊥θ̄P⊥(tj)‖δ0 (94)
and therefore from (93,94)

‖W (tj , x, v, θ)P̄⊥θ̄P⊥(tj)‖ ≥
ε0ε

2δ0
(95)

> 0. (96)
Thus we have found an unbounded sequence of times
{tj}j=1,..,∞ where ‖W (tj , x, v, θ)P̄⊥θ̄P⊥(tj)‖ > 0,
which contradicts Lemma 1 and implies that the as-
sumption limt→∞ θ̄P⊥(t) 6= 0 must be false. Therefore
limt→∞ θ̄P⊥(t) = 0 and, equivalently, limt→∞ θ̂(t) ∈
P (θ), achieving parameter convergence (42) under the
sufficient persistence of excitation condition (75). �

V. CONCLUSION

This paper addresses a broad class of second-order me-
chanical systems with nullspace parameter structure, which
enables a more complete parameterization of uncertainty
in the dynamics. We report an adaptive identifier for this
class of systems with proofs of local stability and a new
characterization of asymptotic parameter convergence with
respect to the true nullspace parameter set under a subspace
PE condition on the regressor matrix. Future work includes
simulation and experimental evaluation, stronger stability and
convergence guarantees with less restrictive assumptions, the
relationship of subspace PE to exogenous signals, and other
adaptive tasks such as trajectory-tracking control.
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