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ABSTRACT
Privacy label disclosure guideline, which specifies the data usage
practices of third-party libraries (TPL), is a valuable resource for
iOS app developers to accurately complete their iOS privacy labels.
This is particularly important given the mandatory requirement
for all apps on the App Store to disclose their data practices via
privacy labels. However, it is essential to ensure the accuracy and
compliance of these guidelines to ensure that accurate TPL data
usage has been provided to app developers. Despite the significance
of these guidelines, there is little understanding of how accurate
and compliant they are in reflecting the actual data practices of
third-party libraries used in iOS apps. To address this issue, our
study implements a tool called Colaine to automatically check the
compliance of privacy label disclosure guidelines, taking into ac-
count the configurable data practices in TPLs. Colaine analyzed
107 TPLs associated with 1,605 different configurations, shedding
light on the prevalence and seriousness of privacy label disclosure
guideline non-compliance issues.

CCS CONCEPTS
• Security and privacy → Software and application security;
Systems security.

KEYWORDS
Privacy Compliance Check; Mobile Supply Chain; User Privacy;
Third-party Libraries; Consistency Model; Dynamic Analysis
ACM Reference Format:
Yue Xiao, Chaoqi Zhang, Yue Qin, Fares Fahad S Alharbi, Luyi Xing, and Xi-
aojing Liao. 2024. Measuring Compliance Implications of Third-party Li-
braries’ Privacy Label Disclosure Guidelines. In Proceedings of the 2024 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’24),
October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3658644.3670371

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3670371

1 INTRODUCTION
Third-party libraries (TPL) or Software Development Kits (SDKs)
play a crucial role in the mobile supply chain, and it is essential
for them to provide comprehensive information about their data
collection practices. This ensures transparency and privacy for
downstream app developers who integrate these TPLs into their
mobile applications. However, previous research has highlighted
that data practices of TPLs often lack transparency for app develop-
ers, leading to challenges in fully disclosing data practices in their
apps and posing non-compliance risks [52, 58, 74, 76]. To address
this issue, many TPL vendors, such as Facebook, Google, and Flurry
Analytics, have released TPL privacy disclosure guidelines to ensure
TPL privacy transparency for downstream app developers. Unlike
app-level privacy disclosures (i.e., iOS Privacy Label [5], Google
Play Data Safety Section [19], mobile app privacy policies), TPL
privacy disclosure guidelines are designed to assist app developers
to understand the data usage of TPLs and make informed decisions,
regarding the integration of TPLs in their mobile apps, ultimately
ensuring better privacy compliance and accountability.

A prominent example of TPL privacy disclosure guideline is pri-
vacy label disclosure guideline (Figure 1), which specifies data usage
practices of a TPL to assist app developers in accurately completing
iOS privacy labels for their apps. Following Apple’s recent mandate
requiring all apps to disclose their privacy labels and data practices,
including those collected by TPLs, app developers are increasingly
relying on the TPLs’ privacy label disclosure guidelines to alignwith
Apple’s policy requirements. Our study (§ 3) reveals that among
305 leading TPLs, of which 99% of iOS apps in the Apple Store use
at least one [22], 107 (35%) have provided privacy label disclosure
guidelines. Meanwhile, prior work [76] involving 18 TPLs identi-
fied instances where incorrect privacy label disclosure guidelines
led to non-compliant iOS app privacy labels, posing privacy risks
for both app developers and end-users. Given these findings, it
becomes imperative to conduct a comprehensive investigation into
the compliance implications of privacy label disclosure guidelines
and their associated TPLs on a larger scale, aiming at deepening
our understanding of the privacy risks and accountability issues
associated with non-compliance in TPL data disclosure.

However, fully inspecting compliance of privacy label disclosure
guidelines provided by TPL vendors at scale poses challenges in
precisely defining inconsistencies within the diverse functionalities
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Data Item Operation Configuration

Production Interaction       collect by default but can
be disabled

You can disable tracking production interaction data
by Branch.setTrackDisabled(true).

Advertising data        not collect by default but
can be enabled

You can enable collect advertising data by
setting AppsFlyerAdRevenue.start().

User ID Yes -

Sensitive Info No -

Figure 1: An example of privacy label disclosure guideline.

and sophisticated data usage practices of TPLs, as well as automat-
ing their analysis. Specifically, configurable TPLs offer flexibility
for app developers to customize the behavior of the library based
on their specific requirements. The configuration process typically
involves using configurable APIs to set parameters that control how
the TPL handles user data. This ability to configure a TPL intro-
duces configurable data usage practices (e.g., disabling a by-default
data collection). However, the analysis of configurable data usage
practices requires the assessment of TPL’s configurable-data-flow
to privacy label disclosure guideline (flow-to-guideline) consistency
(§ 3), and a rigorous definition of flow-to-guideline inconsistencies
in the context of privacy label disclosure guideline (§ 3.4.1). Hence,
in this study, we aim to address two key research questions: (1)
How to formalize a consistency model that takes into account the
diverse and configurable data usage practices of TPLs? (2) How to
design an automatic TPL analysis method to uncover the actual
data collection practices under different privacy configurations?
Methodology. In this paper, we present an automatic methodology
called Colaine to verify the compliance of privacy label disclosure
guidelines for iOS TPLs on a large scale. Specifically, Colaine focuses
on checking the consistency between the disclosed data practices
in the privacy label disclosure guideline and the actual configurable
data flow within the TPL when integrated into iOS applications.

To address the first research question, we formalize a consistency
model, considering the configurable data usage practices (§ 3.4.1).
Such a model is able to measure to what extent a configurable data
practice executes a rule (e.g., a privacy statement indicating which
party collects what data) specified by the associated privacy label
disclosure guidelines. Accordingly, we define an operation-level in-
consistent disclosure based on whether a configurable data practice
is under-claimed by the disclosure guideline, and three types of
configuration-level inconsistent disclosure based on whether the
configurations applied to a certain data object are omitted, contrary,
or inadequate in the privacy label disclosure guideline.

Regarding the second research question, we employ a set of
techniques including configuration patch generation, natural lan-
guage processing (NLP), and iOS app dynamic analysis techniques
to analyze configurable data flow of TPLs (§ 3). More specifically,
to analyze TPL’s configurable-data-flow, we design a novel con-
figuration patch-based TPL wrapper app generation and testing
technique. It uses NLP techniques to identify configurations affect-
ing data usage practice from TPL API documentations, and then
automatically constructs machine-readable configuration patches
for those configurations. Such configuration patch specifies a set of
instructions that dictate, given a configuration, how a wrapper app
should be modified to achieve a desired configurable data usage

practice. Those patches further guide TPL’s wrapper app genera-
tion and dynamic analysis, considering all possible configurable
data usage practices. Our evaluation on the crafted groundtruth
dataset with 11 TPLs and their associated privacy label disclosure
guidelines shows that Colaine can detect privacy label disclosure
guideline non-compliance effectively and efficiently (§ 3.5).
Large-scale measurement and discoveries. Running Colaine
on 107 TPLs and their privacy label disclosure guidelines, which
consists of 1,605 different TPL configurations, Colaine identified
non-compliant privacy label disclosure guidelines in 47 distinct
TPLs spanning 8 different categories, including Advertising, Ana-
lytics, and Engagement. Among them, 37 incorrectly disclose data
collection operations, 8 have missing configuration information, 3
present invalid configuration settings, and 2 do not disclose com-
prehensive configuration information. The non-compliant TPLs
have been incorporated into 82.26% iOS apps. As an example, Clev-
erTap, a notable TPL, has been integrated with 71.7K iOS apps. In
addition, we observed over 1K apps integrated with more than one
non-compliant TPLs. It underscores the widespread issue of non-
compliance privacy label disclosure guidelines among iOS TPLs.

Additionally, we noted significant privacy implications stem-
ming from non-compliant privacy label disclosure guidelines. This
particularly leads to iOS app developers failing to disable data
collection in a TPL, which in turn results in inaccurate privacy
disclosures at the app level. As a prominent example, we conducted
a detailed analysis of nine privacy-conscious apps that attempted
to disable data collection in CleverTap. Our reverse-engineering
efforts revealed that eight out of these nine apps using CleverTap
had non-compliant privacy labels. They failed to disclose the collec-
tion of user data, such as Email, UserID, and Sensitive Information.
More specifically, according to CleverTap’s privacy label disclosure
guideline [2], app developers can disable user data collection of
“email” and “gender” from CleverTap by a configuration setting
[[CleverTap sharedInstance] setOptOut: YES]. However, our anal-
ysis found that this configuration does not stop user data collection.
Additionally, the privacy label disclosure guideline inaccurately
claims that the UserID is only collected when developers explicitly
configure NSDictionary *profile to send this data, while Clever-
Tap automatically generates and collects UserID for each user upon
initialization (§ 4). We observed that these nine privacy-conscious
app developers attempted to use the specified configuration to stop
CleverTap’s data collection, indicating in their privacy labels that
they did not collect data like email and gender. However, due to
the ineffective configuration settings, they inadvertently provided
incorrect privacy disclosures.
Responsible disclosure. We have communicated our findings to
all TPL vendors, except for 8 whose contact details were unobtain-
able. Of the 39 vendors contacted, 22 have responded to us. Among
these, 10 have initiated corrective measures on their privacy la-
bel guidance or API documentation, while the remaining 12 have
committed to further investigating the issues.
Contributions. We summarize the contributions as follows.

•We performed a systematic study on non-compliance issues of
iOS TPL privacy label disclosure guidelines, particularly focusing on
configurable data practices and their associated privacy statements.
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• We designed and implemented a novel compliance analysis
tool Colaine that can automatically assess the “configurable flow-
to-guideline” compliance. Colaine is based on our new, formally
defined consistency model for TPL’s configurable data practices.
We have released the source codes and datasets at [40].

• We explored new insights to enhance the design of privacy
label disclosure guideline, and discussed the design of a unified,
fine-grained privacy disclosure for TPLs PBOM, allowing efficient
adoption and smooth interoperability.

2 BACKGROUND
2.1 Configurable TPL
Configurable TPLs provide app developers with the flexibility to
tailor the library to their specific app functionality needs and/or
privacy requirements. As shown in § 4.2, 94 out of 107 widely-used
iOS TPLs are configurable TPLs.

The ability to configure a TPL typically involves the use of a
configurable API (e.g., setAnalyticsCollectionEnabled) that al-
lows developers to set specific parameters or values that dictate
the behavior of the library. These configurations can range from
simple on/off switches for specific features, to more complex rules
and policies for handling user data.
TPL privacy configuration. In our study, we categorize TPL con-
figuration settings into two types: privacy configurations, which
relate to the collection and usage of user data, and non-privacy con-
figurations, which affect other aspects of the TPL behaviors, such
as performance optimization and UI customization.

Examples of privacy configurations include the settings to en-
able or disable functionalities affecting its data usage practices,
such as analytics tracking, logging, or error reporting. Addition-
ally, via privacy configuration settings of a configurable TPL, app
developers will be able to assign user attributes, such as user IDs
or session IDs, which can help the library keep track of specific
users’ behavior and enable personalization of the app’s features.
Another important privacy configuration related to TPLs is to en-
able different privacy compliance settings. Configuration settings
related to privacy include compliance with different privacy laws
(e.g., GDPR (General Data Protection Regulation), COPPA (Chil-
dren’s Online Privacy Protection Act), CPRA (California Privacy
Rights Act), etc.), various restrictions on data access and usage (e.g.,
[VunglePrivacySettings setPublishIDFV: NO], [ALPrivacySettings
setDoNotSell: NO]). More examples of privacy configuration set-
tings and their purposes can be found in [40]. In our study, the term
“configuration” or “configuration settings” refers specifically to pri-
vacy configurations, as we focus on studying the configurations
affecting data usage practices of TPL.
Data practices in TPL privacy configuration. In our study, data
practices related to privacy configurations are represented as (𝑎,𝑋 ),
where 𝑎 and 𝑋 are the data operation and the associated configura-
tion settings. Typical data operations 𝑎 under the context of privacy
configuration include:

• Data is collected by default, while the app developer can
disable the configuration, named “disable” configuration. For in-
stance, the TPL Branch [1] automatically tracks user events (e.g.,

app_launch_time) and user attributes (e.g., UserID) when app de-
velopers initialize the TPL. However, such tracking data can be
disabled by setting Branch.setTrackingDisabled(true).

• Data is collected only when an app developer, that integrates a
configurable TPL, enables the configuration, named “enable” config-
uration. For example, the TPL Appsflyer [6] allows the app to collect
advertising data by configuring AppsFlyerAdRevenue.start(), with
the intention of delivering personalized and targeted ads, as well
as calculating advertising revenue.

2.2 TPL Privacy Disclosure Guideline
In recent years, many TPL vendors (e.g., Facebook, Google, Flurry
Analytics) have released their TPL privacy disclosure guidelines to
assist app developers in accurately and comprehensively specify-
ing privacy disclosures related to TPL data practices. Unlike app
privacy disclosures (i.e., iOS privacy Label [5], Google Play Data
safety section [19], mobile app privacy policies) that are designed
to provide transparency to end-users, TPL privacy disclosure guide-
lines are intended to guide app developers on how to disclose data
use of TPLs to their app users. By following these guidelines, app
developers can ensure that their users have a clear and transparent
understanding of the data collection and usage practices of the
libraries used within their apps. In our study, we focus on “iOS
privacy label disclosure guideline” provided by TPL vendors, which
aims to assist iOS app developers in generating iOS privacy label
that accurately reflect the data collection and usage behavior of
the TPL used within in their apps. Note that iOS app privacy com-
pliance issues of iOS privacy label have been extensively studied
in [76], which is outside the scope of this paper. More details about
the differences between the “iOS privacy label disclosure guideline”
and the “privacy label” can be found in [40].
Privacy label disclosure guideline. Privacy label disclosure guide-
line outlines a series of privacy statements (Figure 1) that specify
data usage practices of a TPL that app developers must know when
setting iOS privacy label for their apps. Here we denote a privacy
statement as (𝑑, 𝑎, 𝑋 ), where𝑑 is a privacy data item, 𝑎 and𝑋 are the
data operation and the associated configuration settings applied to
𝑑 , see detail in § 3.4.1. In general, privacy statements in the privacy
label disclosure guideline can be broadly classified into two types:
those that are associated with configurable data usage practices and
those that are not. The first type of privacy statement is typically
included when a TPL collects, processes, or shares data via privacy
configurations (see §2.1). Figure 1 shows an example of a privacy
label disclosure guideline specifying that the data item “Advertis-
ing data” is collected only when the app developer configures the
API “AppsFlyerAdRevenue.start()”, while “Production Interaction”
is collected by default if the app developer does not disable this prac-
tice.The second type of privacy statement will be included if the TPL
does not collect data, or always collect data, regardless of different
configurations. As examples in Figure 1, the privacy label disclosure
guideline clearly notified app developers that the “User ID” data is
always collected, while “sensitive info” is not collected at all.

Note that the taxonomy of the iOS privacy label defines 32 pri-
vacy data items [5]. Therefore, TPL vendors should align the data
items in the library with those pre-defined in the iOS privacy label.
This helps ensure that app developers can accurately disclose the
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Configuration Patch Generation
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Figure 2: Overview of Colaine

data collection and usage practices of the TPL to end-users in a
clear and standardized way.

2.3 Consistency model
In the field of privacy compliance analysis [43, 46, 70, 77, 85], a
consistency model refers to a formally-defined measure to assess
the extent to which the data usage practices (e.g., data collection
behaviors in TPL) adhere to the privacy statements (e.g., a privacy
statement indicating which party collects what data) specified by
the associated privacy disclosures (e.g., privacy label disclosure
guideline). More specifically, a disclosure can correctly and com-
pletely indicate critical information in a data usage practice if the
practice follows all privacy statements in the disclosure. Otherwise,
an inappropriate disclosure occurs, indicating that certain privacy
statements are violated by the data usage practice.
Commonly-used inconsistency detection logic. An inconsis-
tency detection logic captures the difference between a data flow
in a data usage practice and its associated privacy statements in
privacy disclosure. A privacy statement or a data flow can typically
be formalized as a triplet in the form of (𝑒, 𝑐, 𝑑), where 𝑒 is the sub-
ject, 𝑐 is the predicate and 𝑑 is the object. Here, the predicate can be
along with positive or negative sentiments. For example, PoliCheck
[43] defines the subject 𝑒 as platform entities (e.g., first-party or
third-party), the object 𝑑 as data objects (e.g., email address), and
the predicate 𝑐 as data collection action with positive (i.e., collect)
and negative (i.e., not collect) sentiments.

In our study, we develop a novel consistency model tailored to
the context of TPLs. Specifically, we focus on formalizing TPL’s
configurable data usage practices and the associated privacy state-
ments in privacy label disclosure guidelines. We elaborate on the
annotation and inconsistency analysis in § 3.4.1.

3 METHODOLOGY
In this section, we elaborate on the design, implementation, evalua-
tion of Colaine – a tool to automatically check the compliance of
privacy label disclosure guidelines with configurable TPLs.

3.1 Overview
Architecture. Figure 2 illustrates the architecture of Colaine, which
comprises two primary components: Configuration Patch Gener-
ator (CPG) and Configuration Patch-Enforced Dynamic Analysis &

Compliance Check (EDA). Specifically, in CPG, Colaine first collects
API documentation of configurable TPLs to extract configuration
descriptions and associated code snippets (➊). After that, Colaine
uses NLP techniques to identify those privacy-related configura-
tions that impact TPL data collection and usage behavior (➋). Given
each privacy-related configuration, Colaine parses its semantics and
generates various machine-readable configuration patches for dif-
ferent configuration settings (➌). In EDA, with the input of default
wrapper apps integrating each TPL (➍), those configuration patches
will be used to generate iOS apps, with each app enforcing a specific
configuration setting (➎). Colaine then takes those apps as input
for privacy compliance check: particularly, Colaine performs an
end-to-end execution (fully automated app UI execution, dynamic
instrumentation, and network monitoring) to investigate data us-
age practices, abstracted as tuples (𝑑, 𝑎, 𝑋 ) as defined in § 3.4.1 (➏).
Colaine finally reports non-compliance by comparing those tuples
with privacy statements in privacy label disclosure guideline of
the corresponding TPL, following the consistency model defined
in § 3.4.1 (➐).
Dataset summary. We summarize the dataset produced and con-
sumed by each stage of our pipeline as below. Table 1 shows the
datasets and corpora used in our study.

We began by utilizing a list of top TPLs, of which 99% of iOS apps
in the Apple Store use at least one [22], to identify 305 leading TPL
vendors across 14 categories. To collect their privacy label disclosure
guidelines, we searched the websites of these vendors using a pre-
defined list of privacy-related words (see details in [40]), and found
that 107 (35%) of them provided privacy label disclosure guidelines.
After that, we manually collected their API documentation. Next,
Colaine extracts 1,338 privacy configurations’ descriptions and code
snippets from API documentation, and generated 1,605 configura-
tion patches. In EDA, Colaine built up 107 default wrapper apps for
107 TPLs. After that, Colaine applied 1,605 configuration patches
on the default wrapper apps and successfully generated 1,458 con-
figured wrapper apps for dynamic analysis and compliance check.
Overall, our study reported 47 non-compliant TPLs associated with
181 privacy statements in their privacy label disclosure guidelines.

3.2 Privacy Configuration Patch Generation
The goal of CPG is to generate configuration patches from a TPL’s
API document. It consists of three sub-components: (1) extracting
configuration descriptions and code snippets from API documents;
(2) identifying privacy configurations from all configuration de-
scriptions; and (3) constructing machine-readable configuration
patches for each privacy configuration.

3.2.1 Configuration Information Extraction. API documentation
usually follows a standard format for presenting configuration set-
tings, which includes a paragraph description accompanied by a
block of code. However, the underlying DOM structure often differs
significantly across different TPL vendors, making it difficult to use
a single HTML parser for uniformly extracting relevant information.
Instead, Optical Character Recognition (OCR) techniques, which
recognize text and code within an image, provide a distinct advan-
tage when capturing configuration descriptions and code snippets
from diverse TPLs. In our study,Colaine uses Playwright library [62]
to automate the process of capturing full-page screenshots of API
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Table 1: Summary of datasets and corpora

Name Source Size Timestamp (yyyyMM) Usage
𝐷𝑔 Cocopods 107 TPL 202303 Detection
𝐶𝑔 107 TPL privacy label disclosure guidelines 2076 sentences 202303 Detection
𝐶𝑎𝑝𝑖 107 TPL API documentations 1338 privacy configurations 202304 Detection
𝐷𝑎 iOS Apps 5k+ 202206 Measurement

Configuration Patch

{
  "config": [
    {
      "action": "add",
      "locator": {
        "file_name": "ViewController.m",
        "anchor": "didBecomeActiveWithConversation",
        "offset": "in"
      },
      "value": "[Adjust trackSubessionStart]"
    }
  ]
}

To enable session tracking in your app, you need to add  trackSubessionStart  calls to
didBecomeActiveWithConversation in your app view controller . This will notify the
Adjust SDK when your app has entered and left the foreground.

Session tracking

add

didBecomeActiveWithConversation your app view controller

ViewController.m

- (void)viewDidLoad
...

-(void) 
 didBecomeActiveWithConversation:
  (MSConvesation *)conversation {
  ...
   
   [Adjust trackSubsessionStart]

}
...

Figure 3: Configuration patch generation and enforcement

documentation for each TPL. These screenshots are then fed into
an OCR model, which is used to extract configuration descriptions
and code snippets. To create an OCR model for configuration set-
ting recognition, we fine-tuned the base model from Butler [7] by
utilizing manually annotated configuration descriptions and code
snippets of 858 configurations across 10 TPLs.
Evaluation. We randomly sampled and manually checked 172
configurations from 97 TPLs (not including the 10 TPLs for model
training). Our approach achieves 95.34% accuracy.

3.2.2 Privacy Configuration Identification. As mentioned in § 2.1,
TPL typically provides a diverse range of configurations for various
aspects, including privacy configuration (e.g., [VunglePrivacySettings
setPublishIDFV: NO]) and non-privacy configuration (e.g., Instabug.
tintColor=UIColor.lightGrayColor;). In our study, we focus on the
configurations affecting data usage practices of TPL, namely pri-
vacy configuration. Below we elaborate on how we identify privacy
configurations from configurations extracted in the previous step.

Specifically, we build up a binary classification model that iden-
tifies privacy configurations and non-privacy configurations. In
our study, we compared the effectiveness of five models: BLSTM w.
attention, BLSTM w/o attention, BiGRU w. attention, BiGRU w/o
attention, Logistic Regression with TF-IDF, on this binary classi-
fication task, and BLSTM with attention outperforms other models
(see Appendix § 9.2). BLSTM is able to memorize longer sequences
of the input data and learn the context of sentences, while the atten-
tion mechanism focuses the model more on privacy configuration-
related words (e.g., user privacy data (email address), privacy laws
(GDPR), data usage (tracking/analytics), etc.). Note that to build and
evaluate the models, we manually labeled 1043 configurations (157
privacy configurations and 886 non-privacy configurations) from
13 distinct TPLs, for training, testing, and evaluation purposes.
Implementation. After recognizing configuration descriptions
and code snippets from screenshots of API documentations (See
§ 3.2.1), Colaine tokenizes them into words and concatenates each
word’s vector generated by BERT. The resulting word embeddings
are fed into a two-layer LSTM, with hyperparameter tuning for
optimal unit numbers. An attention layer is added to the LSTM to

highlight important features, and the output is globally averaged
and concatenated with the length input. The model uses a dense
softmax output layer for classification and is trained using cate-
gorical cross-entropy loss and the Adam optimizer. Evaluation is
performed using the F1 score.
Evaluation. Three annotators independently labeled privacy con-
figurations based on an annotation guide [40]. In total, 157 privacy
configurations and 886 non-privacy configurations from 13 TPLs
are labeled. Note that the imbalance between privacy and non-
privacy configurations reflects the real-world distribution of fewer
privacy configurations in TPLs. Our aim was to train our model
on a realistic dataset for effectiveness and practical applicability.
For model training, we used 858 configurations (119 privacy and
739 non-privacy) from 10 TPLs as the training set, and 185 con-
figurations (38 privacy and 147 non-privacy) from 3 TPLs as the
testing set to evaluate our approach. The results show that Colaine
achieves 92.5% precision and 92.11% recall in identifying privacy
configurations. False positives primarily arise when privacy data
mentioned in configuration descriptions originate from app devel-
opers rather than users (e.g., configuring secret API keys to grant
entitlement access). False negatives occur due to OCR’s inability to
extract complete descriptions and code snippets, leading to missed
privacy configurations.

3.2.3 Configuration Patch Construction. The Configuration patch
specifies a set of instructions that dictate, given a privacy configura-
tion, how the default wrapper app should be modified to achieve a
desired data usage practice. Specifically, it specifies the semantics of
a privacy configuration setting, including the operation to enforce
the configuration, the value of the configuration, the path to add the
configuration setting. In this subsection, we discuss how we design
the format of configuration patches and how to generate machine-
readable configuration patches from a configuration description in
a TPL API documentation, as shown in Figure 3.
Configuration Patch Format. In our study, we adopt the format
defined in JSON Patch [26], which outlines a method for describing
changes to JSON documents as specified in IETF’s RFC 6902 [4],
to design the format of Configuration patch. This format aims
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to facilitate partial updates for configuration options/settings in a
standard and machine-readable manner.

More specifically, each Configuration patch is represented in
a JSON format, expressing an array of patch objects to apply to a tar-
get wrapper app. Each patch object specifies a unique modification
to the default wrapper app’s configuration settings. Particularly,
each patch object encapsulates three crucial elements: (op, value,
path). These elements represent which modification operation (op)
performs on what configuration setting value (value) and enforces
at what target location (path), as elaborated below. Note that we
name these elements following the taxonomy of JSON Patch [26]
specified in IETF’s RFC 6902 [4].

• op field: The op value can be one of add, remove or replace;
The add action adds a target to the specified locator. The remove
action removes the target from the specified locator. The replace
action replaces the target at the specified locator with a new target.

• path field: For path field, its value is a three-tuples (file_name,
anchor, offset). The file_name shows which file to modify
(e.g., AppDelegate.m). The anchor and offset narrow down the
modification scope to the exact location where the operation is
performed. The anchor is a function call and the offset can be
one of “in”,“before”, “after” which indicates location restrictions.
For example, in a configuration description “The setUserId has to be
called before measureSession call in AppDelegate.m”, the file_name
is AppDelegate.m, the anchor is the function measureSession and
the offset is before.

• value field: The value field represents the value of a configu-
ration setting that needs to be operated. For instance, the configu-
ration patch enables UserID setting by calling the API setUserId,
and the corresponding value is specified as “value”: “Tune.SetUserId
(“userId”);”.
Configuration Patch Generator. To generate machine-readable
configuration patches (op, path, value), in our study, we im-
plement a series of Natural Language Processing (NLP) techniques
to retrieve semantic information of each privacy configuration in
the TPL’s API documentation

• Retrieving op. As mentioned earlier, the op field in the con-
figuration patch defines the modification operation (add, remove
or replace) to enable the privacy configuration. Meanwhile, the
VERB used in a configuration description dictates how the con-
figuration can be enabled. Therefore, in our study, we construct a
mapping between the VERB in a configuration description and the
value of the op field in the configuration patch. Specifically, we first
identify the VERB in a configuration description via Part-of-Speech
(POS) tagging techniques, which label a word in the text corpus as
corresponding to a particular part of speech as well as its context
(such as nouns and verbs). If a word is identified as a VERB (tagged
as “VB”), Colaine then uses a VERB-op mapper to determine its
corresponding operation. In our study, we manually construct a
VERB-op mapper by analyzing 119 privacy configurations from
10 TPLs, comprising 88%, 7.8%, and 4.2% configurations for the op
“add”, “remove”, and “replace”, respectively. Table 6 shows examples
of the mappings between VERB and op.

• Recovering value. TPLs typically provide ready-to-use code
snippets for privacy configuration settings (80.4% in our study).

These code snippets can be directly extracted from API documen-
tations by the OCR techniques (See § 3.2.1).

However, there may be situations where the TPL provides mul-
tiple parameter values for app developer to specify. For instance,
the configuration description “the age-restricted user flag can be
set to Yes or No” indicated that the TPL offers two parameter op-
tions for the function setIsAgeRestrictedUser. However, the
code snippet typically only shows one of these options. In such
cases, two configurations should be spawned by setting different
Boolean values. Things can get more complex when the param-
eter options are Enumeration Type with customized values. For
example, the configuration description “possible consent values are
CHBGDPRConsentBehavioral and CHBGDPRConsentNonBehavioral”
indicates that two customized values can be specified. To retrieve
the possible values in the enum_list, we first extract the parame-
ter value specified in the code snippet using regex expression \b
(?:[A-Z][a-z0-9]*|[a-z]+[A-Z][a-z0-9]*)\b. Then, we iden-
tify other parameter options that have a conjunction relationship
with CHBGDPRConsentBehavioral in the configuration descrip-
tion’s dependency tree.

• Retrieving path. As mentioned in § 3.2.3, the path in configu-
ration patch consists of three-tuples, including file_name, anchor,
and offset. Our system employs regular expressions to match
file_name and anchor, and conducts dependency analysis to deref-
erence offset by examining grammatical relationships. Specifi-
cally, file_name typically has a “.m” extension for implementation
files (source code) and a “.h” extension for header files in Objective-
C. Our system uses the regular expression ^[\w\s-]+(\.m|\.h)
\$ to match file names mentioned in configuration descriptions.
In cases where the API documentation does not mention the file
extension (“.m” or “.h”), we also use a keyword list of common
iOS classes and objects [12] to recognize file_name. The anchor
is typically represented as a function name or function call. Our
system utilizes the regular expression ^[a-z][a-zA-Z0-9]*\$ to
match function names and ^\\s*\\[[^\\[\\]]+\\s+[a-zA-Z0-9
_-]+(?:\\s*:[^:\\]]+)*\\]\\s*\$ to match function calls. To
identify the offset, we leverage a dependency parser SpaCy [37] to
locate the adposition of the anchor. Specifically, if the dependency
relationship between them is a prepositional modifier (e.g., before
measureSession) and the adposition is in the keywords list (e.g., in,
to, before, after), we regard it as the offset.
Evaluation. To evaluate CPG, we randomly sampled 130 privacy
configurations reported by Privacy-related Configuration Identifica-
tion (See § 3.2.2), which were manually confirmed, to inspect their
configuration patches generated by CPG. Colaine achieve 87.6%
precision and 91.5% recall to generate configuration patches. To
compare the effectiveness with LLMs, we have crafted prompts
to construct configuration patch, based on insights from related
works [79, 80, 83]. Our experiments showed that LLMs could cor-
rectly construct 9 out of 11 configuration patches, close to our
methodology’s 90% effectiveness. However, LLMs require substan-
tial amount of computing resources, with financial concerns es-
pecially for processing many APIs as in our research. Hence, our
preference for custom, light-weight NLP tools over LLMs priori-
tizes efficiency and practicality, despite LLMs’ potential for similar
accuracy.
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3.3 Configuration Patch-Enforced Dynamic
Analysis & Compliance Checker

In EDA, Colaine first sets up a default wrapper app integrating
the target TPL. It then enumerates each configuration patch to
generate multiple apps with different configuration settings. These
generated apps are then tested using a dynamic analysis pipeline to
understand data usage practices and present it as a set of (𝑑, 𝑎, 𝑋 ).
Finally, the compliance check module is used to detect any potential
inconsistencies between the actual data practices and TPL privacy
label disclosure guideline.

3.3.1 Build Default Wrapper App. The goal of this task is to con-
struct a clean default wrapper app for each target TPL before in-
troducing different configuration settings. However, the process of
setting up the default wrapper apps may vary for different TPLs.
Some TPLs provide ready-to-use wrapper apps, while others may
require dependent libraries or registering for TPL developer ac-
counts. A typical process is to create an empty app, integrate the
TPL, install dependencies, register for TPL developer accounts, ini-
tialize TPL, sign the app with an Apple Developer account, and
compile the app.

Specifically, we create an app wrapper using Xcode by integrat-
ing the TPL and specifying the version in the Podfile according
to the version number mentioned in its privacy label disclosure
guideline. Note that if the privacy label disclosure guideline does
not specify a version number, we test the latest one. We then em-
ploy the CocoaPods dependency manager [3] to install all required
dependencies, ensuring compatibility with iOS devices. In some
cases (67 out of 107), we manually register for TPL accounts to
embed unique API tokens for seamless integration and functional-
ity. To sign the wrapper app, the signature is usually provided by
the TPL vendor’s developer team account. To run the app on our
device, we replace the default signature with our Apple developer
account. Finally, we utilize the xcodebuild command-line tool [54]
to compile the demo app project into an executable binary.

3.3.2 Configuration Patch Enforcement. Here we deploy configu-
ration patches (see § 3.2.3) to the default wrapper app, generating a
wrapper app enforcing a specific configuration (named configured
wrapper apps). In the patch enforcement process, configuration
patches guide the generation of configured wrapper apps. Specif-
ically, the path assists in navigating to the modification location,
while op and value indicate the operation to be performed and the
value of the configuration, respectively. In our study, we employed
clang [10] to convert the Objective-C source code into an Abstract
Syntax Tree (AST) representation, enabling us to accurately iden-
tify code locations that require revision. By navigating the AST
structure, we can modify relevant code segments according to the
configuration patches, seamlessly adding, replacing, or deleting
code as necessary. For instance, in the configuration patch example
shown in Figure 3, the “locator” field aids in pinpointing the modifi-
cation site. The “file_name” indicates “ViewController.m” as the file
for modification, while the “anchor: didBecomeActiveWithConver-
sation” and “offset: in” identify the modification location within the
“didBecomeActiveWithConversation” function. Our tool traverses
the AST to locate the node for modification. Additionally, the “op:
add” and “value: [Adjust trackSubessionStart]” instruct our tool

to insert the sub-node “[Adjust trackSubessionStart]” within the
“didBecomeActiveWithConversation” function in the AST. After ap-
plying the changes to the AST, we convert it back into Objective-C
source code, resulting in an updated version incorporating the tar-
get configuration. The modified source code can then be compiled
to build the iOS app.
Evaluation. To evaluate the performance of Configuration Patch
Enforcement, we record the compilation status after applying each
configuration. In our study, we applied a total of 1,605 configuration
patches from 107 TPLs, with 90.84% successfully compiling into
executable binaries. The failures are attributed to two causes. Firstly,
OCR/NLP inaccuracies: 135 (8.41%) configuration patches were
inaccurately generated due to OCR/NLP errors, as discussed in § 3.2,
which affected correct compilation into wrapper-apps. Secondly,
iPhone/Device requirements: 12 (0.75%) patches required the newer
iOS-15.0.1, which was unavailable to us at the time of testing.

3.3.3 Dynamic Analysis. To investigate the data usage practices
of TPLs, we deployed an open-sourced dynamic analysis pipeline
Lalaine [76] on configured wrapper apps we generated in the previ-
ous step. Lalaine performs end-to-end execution (fully automated
app UI execution, dynamic instrumentation, and network moni-
toring) on an app to infer (data, purpose) from the call stack for
sensitive system APIs injected by Frida [18] and network traffic
recorded by Fiddler [33]. However, Lalaine operates on a jailbroken
iOS environment, as required by Frida, which may lead to crashes
when the TPL employs jailbreak detection techniques. To address
this limitation, our system embeds FridaGadget.dylib into the
app during the Building phases. This allows Frida to instrument the
app without the need for a jailbroken environment upon launch.

3.4 Consistency Model and Compliance
Checker

3.4.1 Consistency model. In this paper, we propose a novel con-
sistency model for configurable TPL’s privacy label disclosure
guideline, which includes an operation-level inconsistent disclosure
based on whether the operation is under-claimed by the disclosure
guideline and three types of configuration-level inconsistent dis-
closure based on whether the configurations applied to a certain
data object are omitted, contrary, or inadequate in the privacy label
disclosure guideline. Different from previous works [43, 46, 76]
which defined the operation in the consistency model as a binary
variable [43, 46] or a constant [76], our consistency model involves
4 types of operations along with the configurations applied to the
data objects. More details about these distinctions can be found
in [40]. Belowwe introduce the formal representation of the privacy
label disclosure guideline, data flows, and the semantic relationship
between data objects.
Problem Definition. In our definition, we let D represent the
data items (e.g, Device ID) defined in the privacy label disclosure
guideline; A = {𝑌, 𝐷, 𝐸, 𝑁 } denotes the operation with 4 values,
where 𝑌 is short for Yes representing a compulsive collection, i.e.,
collecting at any time,𝐷 is short for Disablable indicating that the
TPL collects the data by default, while the collection can be disabled
by certain configurations, 𝐸 is short for Enablable indicating the
TPL does not collect the data by default, while the collection can be
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enabled by certain configurations, and𝑁 is short for No representing
a compulsive no-collection, i.e., not collecting at any time.We define
the strict total order over 𝑌, 𝐷, 𝐸, 𝑁 as 𝑌 > 𝐷 > 𝐸 > 𝑁 according to
the privacy risk of each operation; C𝑋 represents the configurations
provided by privacy label disclosure guideline and C′

𝑋
represents

the configurations from the actual data flows.

Definition 1 (Disclosure Guideline Representation: 𝑆). A TPL’s
privacy label disclosure guideline is modeled as a set of tuples
𝑆 = {𝑠 |𝑠 : (𝑑𝑠 , 𝑎𝑠 , 𝑋𝑠 ), 𝑑𝑠 ∈ D, 𝑎𝑠 ∈ A, 𝑋𝑠 ⊆ 𝐶𝑋 }. Each tuple 𝑠
represents a privacy statement for a certain privacy-sensitive data
item𝑑𝑠 , which discloses one operation 𝑎𝑠 and a set of configurations
𝑋𝑠 applied to 𝑑𝑠 .

Definition 2 (Data Flow Representation: 𝑓 ). An individual data
flow 𝑓 in a TPL is represented as a tuple 𝑓 = (𝑑𝑓 , 𝑎𝑓 , 𝑋𝑓 ), where
𝑑𝑓 ∈ D is a privacy-sensitive data item, 𝑎𝑓 ∈ A and 𝑋𝑓 ⊆ C′

𝑋
are

the operation and the configurations applied to 𝑑𝑓 in flow 𝑓 .

Definition 3 (Semantic Relationship). Similar to prior work [43,
46, 76], we use an ontology of data items to capture the relationship
between data items (e.g., DeviceInfo is a hypernym of DeviceID).
Given an ontology 𝑜 and two terms 𝑢, 𝑣 , we denote 𝑢 ≡𝑜 𝑣 if 𝑢, 𝑣
are synonyms with the same semantic meaning. Otherwise, if 𝑢 is a
general term and 𝑣 is a specific term whose semantic meaning is
included in 𝑢, we denote 𝑣 ⊏𝑜 𝑢 or 𝑢 ⊐𝑜 𝑣 . In this case, 𝑢 is called a
hypernym of 𝑣 , and 𝑣 is called a hyponym of 𝑢. 𝑢 ⊑𝑜 𝑣 is equivalent
with 𝑢 ⊏𝑜 𝑣 ∨ 𝑢 ≡𝑜 𝑣 .

Definition 4 (Flow-relevant Disclosure: S𝑓 ). The privacy label
disclosure guideline 𝑠 = (𝑑𝑠 , 𝑎𝑠 , 𝑋𝑠 ) for data item 𝑑𝑠 is relevant to
the flow 𝑓 = (𝑑𝑓 , 𝑎𝑓 , 𝑋𝑓 ) (denoted as 𝑠 ≃ 𝑓 ) if and only if 𝑑𝑠 ⊑𝑜 𝑑𝑓
or 𝑑𝑠 ⊐𝑜 𝑑𝑓 . Let S𝑓 = {𝑠 |𝑠 ∈ 𝑆 ∧ 𝑠 ≃ 𝑓 } denote the set of flow-𝑓 -
relevant privacy disclosure in the guideline. Let C𝑆

𝑓
=
⋃
𝑋𝑠,𝑠∈S𝑓 de-

note all configurations in flow-𝑓 -relevant privacy disclosure guide-
line, which is also called the configuration portfolio of the privacy
disclosure guideline relevant to 𝑓 .

Given a flow 𝑓 , by comparing its operation 𝑎𝑓 , its configura-
tions 𝑋𝑓 , and the configuration portfolio 𝐶𝑆

𝑓
of its relevant privacy

label disclosure guideline, we reveal the operation-level flow-to-
label inconsistency as well as three types of configuration-level
inconsistencies.

Privacy compliance risk 1 ([⊭A ] Operation-Level Incorrect Dis-
closure). The privacy label disclosure guideline 𝑆 is an operation-
level incorrect disclosure with regard to a flow 𝑓 if there exists a
statement 𝑠 in flow-𝑓 -relevant disclosure S𝑓

∃𝑠 ∈ S𝑓 , 𝑎𝑓 > 𝑎𝑠 ⇒ 𝑆 ⊭A 𝑓 .

Privacy compliance risk 2 ([⊯C] Configuration-Level Omit Dis-
closure). The privacy label disclosure guideline 𝑆 is an configuration-
level omit disclosure with regard to a flow 𝑓 if the operation in the
flow and the flow-𝑓 -relevent disclosure are both Disablable while
the privacy label disclosure guideline fails to provide any configu-
ration that can disable the collection operation.

∃𝑠 ∈ S𝑓 , 𝑎𝑓 = 𝑎𝑠 = 𝐷 ∧ C𝑆
𝑓
= ∅ ⇒ 𝑆 ⊯C 𝑓 .

Privacy compliance risk 3 ([⊭C] Configuration-Level Contrary
Disclosure). The privacy label disclosure guideline 𝑆 is an configuration-
level incorrect disclosure with regard to a flow 𝑓 if the operation in
the flow and the flow-𝑓 -relevent disclosure are both Disablable
while there exists disablable configuration claimed by privacy label
disclosure guideline which fails to disable the collection operation
in the data flow.

∃𝑠 ∈ S𝑓 , 𝑎𝑓 = 𝑎𝑠 = 𝐷 ∧ ∃𝑥 ∈ 𝐶𝑆
𝑓
, 𝑥 ∉ 𝑋𝑓 ⇒ 𝑆 ⊭C 𝑓 .

Privacy compliance risk 4 ([⊬C] Configuration-Level Inade-
quate Disclosure). The privacy label disclosure guideline 𝑆 is an
configuration-level inadequate disclosure with regard to a flow 𝑓 if
the operation in the flow and the flow-𝑓 -relevant disclosure are both
Disablable while the privacy label disclosure guideline fails to
provide all configurations that can disable the collection operation.

∃𝑠 ∈ S𝑓 , 𝑎𝑓 = 𝑎𝑠 = 𝐷 ∧𝐶𝑆
𝑓
≠ ∅ ∧𝐶𝑆

𝑓
⫋ 𝑋𝑓 ⇒ 𝑆 ⊬C 𝑓 .

Discussion. Our consistency model is designed to identify and flag
data collection and configuration-level inconsistencies between
data usage practices and the stated data collection practices in
privacy label disclosure guidelines. However, it does not cover
purpose-level inconsistencies. This is because the majority of TPLs
(87.85%, 93 out of 107) did notmention data purposes in their privacy
label disclosure guidelines, making it infeasible for the compliance
check in purpose-level.

3.4.2 Compliance checker. To conduct the compliance check, we
first formalize dynamic analysis results into a data flow represen-
tation, and then transform privacy label disclosure guideline into
a disclosure representation. Specifically, we use a semi-automatic
method to formalize the privacy label disclosure guideline, em-
ploying an HTML parser for table-formatted disclosures and NLP
techniques for sentence-based disclosures [42, 43, 73], manually
validating the results. Subsequently, we adhere to the consistency
model to assess the presence of any inconsistencies in the compli-
ance analysis.

3.5 Evaluation of the Colaine System
Experiment settings. We ran Colaine on three iPhones (iOS ver-
sions 12.4.1, 13.7, 14.8.1), one Mac mini with an Apple M1 chip with
8-core CPUs, and two MacBook Pros with Apple M1 chip and Intel
CPU.
Evaluation results. To evaluate the overall effectiveness ofColaine,
we first craft the groundtruth set. We (three annotators, experienced
in privacy and iOS development) randomly selected 11 TPLs (10%
of total TPLs), and read through API documentation to identify pri-
vacy configurations. For each privacy configuration, we manually
patched it to the demo app and examined data collection behavior
by manually testing each patched app instance. In total, 118 privacy
configurations are identified, and 136 patched app instances are
created and fully tested. Further, we leverage domain experts to
manually inspect the identified privacy configurations, generated
network traffic, and stack traces to summarize the data and their
corresponding operations. As a result, 18 non-compliant cases are
identified, denoted as (𝑑, 𝑎, 𝑋 ), which are associated with 5 TPLs.
This process yields the Fleiss’ Kappa of 97.88%.
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On the ground-truth dataset, Colaine identified 125 privacy con-
figurations, generated 147 configuration patches, and successfully
patched 132 app instances. Colaine reported 14 non-compliant
(𝑑𝑎𝑡𝑎, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛) pairs (4 TPLs), showing a precision of 92.85%
and a recall of 72.22% (for non-compliant data/purposes pairs), or a
precision of 100% and a recall of 60% (for non-compliant TPLs). On
average, it took 330 seconds (300 seconds for executing an app and
30 seconds for inconsistency analysis) to investigate one app.
• Falsely detected inconsistency. The one false positive, i.e., Colaine
reported (𝑑, 𝑎, 𝑋 ) pairs, stems from the incorrect identification of
privacy configurations in Start.io [38]. Such failure can cause Co-
laine to believe the identifier data is collected forcefully by the code,
which in turn causes Colaine to report a false positive inconsistency.
Specifically, we observed that Start.io’s API documentation lacks
appropriate formatting, as it utilizes a horizontal scrollbar to display
program code that exceeds the available width. This formatting
issue leads the OCR module to misidentify the code, resulting in
the exclusion of specific privacy configurations during the patching
process. Start.io’s privacy label disclosure guideline indicates that
identifiers data is collected by default. However, due to the OCR’s
failure to extract the correct configuration that can disable such
data collection, Colaine detects that the identifier data is collected
compulsorily by the code, which in turn causes Colaine to report a
false positive inconsistency.
• False negatives.We identified two reasons for missed cases: (1) the
inherent limitations of dynamic analysis, which cannot ensure com-
plete code execution, leading to missed data collection detection;
(2) inactive functionalities in the demo app, where a subscription
is required to activate certain features. More specifically, Colaine
missed detecting five non-compliant (data, operation) pairs. Among
these cases, four were related to enabled data collection, while
one involved data collected by default. Notably, the operation of
“always-collected” data did not produce any false positives. This
can be attributed to the fact that such data is typically collected
immediately upon launching the TPL, ensuring that the correspond-
ing code is always reachable. Regarding four missing operations
of “enable-able collected” data, they occurred for operations where
the dynamic analysis did not trigger the necessary user-specific
actions or UI interactions. These operations were more hidden or
required specific user inputs to be activated. As a result, the dy-
namic analysis was unable to reach and capture these cases due to
limitations in the UI auto-execution tool. In the case of “collected
by default”, the dynamic analysis did reach the corresponding code.
However, due to customized encryption implemented before data
transfer, Colaine was unable to recognize the data in the network
traffic, leading to a false negative result.

4 MEASUREMENT
4.1 Landscape
Scope and magnitude. Our study reveals that non-compliant
TPLs are prevalent among popular TPLs with iOS privacy label
disclosure guidelines. Running Colaine on 107 popular TPLs and
their privacy label disclosure guidelines, Colaine reported 47 non-
compliant TPLs: 37 incorrectly disclose data collection operations
(O1-O6), 8 have missing configuration information (C1), 3 present

Table 2: Top-10 Non-compliant libraries (integrated in the
most apps)
Non-
compliant
library

# of apps Inconsistency
type

Non-compliant data

CleverTap 71.7k O2, C2 Email, Sensitive Info,
UserID

RevenueCat 53.8k O6 UserID
Chartboost 49.3k O1, O3, C2 Other Diagnostic Data,

Coarse Location, UserID
Flurry Analyt-
ics

35.8k C1, O3 Precise Location, Coarse
location

AdColony 31.4k O1,O4 Precise Location, Health,
Other Diagnostic Data

IronSource 22.4k O4, O3, O1
Sensitive Info,
Coarse Location,
Precise Location, UserID

LogRocket 13.5k O2, C2 Coarse Location
Mixpanel 8.9k C1, O5 Coarse Location, UserID,

User Content

Instabug 4.5k O4, O3, C1

Audio Data,
Customer Support,
Emails & Text Messages,
Name, Email Address

mParticle 4.2k C1 User Content

invalid configuration settings (C2), and 2 did not disclose compre-
hensive configuration information (C3) as shown in Table 4. We
detail the discussion of each type of non-compliance in § 4.3. Those
non-compliant TPLs covering 8 categories, including Advertising
(29.78%), Analytics (25.53%) and Engagement (17.02%).

Table 2 illustrates the top 10 non-compliant TPLs based on
the number of iOS apps integrating them. 70% of them contain
more than one type of non-compliance. We identified several non-
compliance issues with privacy label disclosure guideline of Clev-
erTap, a TPL integrated by 71.7k iOS apps. These issues include
presenting invalid configuration (C2) and inaccurately stating that
data is only collected under specific configurations but in fact it is
always collected (O2). Specifically, CleverTap’s privacy label dis-
closure guideline [2] informs app developers that they can disable
user data collection (i.e., email, gender) from CleverTap by setting
[[CleverTap sharedInstance] setOptOut: YES]. However, our anal-
ysis found that this configuration does not stop user data collection.
Also, CleverTap’s privacy label disclosure guideline inaccurately
states that the UserID is only collected if the developer explicitly
configures NSDictionary to send this data, while in reality, Clever-
Tap automatically generates and collects UserID for each user upon
initialization.
Impact of non-compliant TPLs. 47 non-compliant TPLs, reported
by Colaine, have been integrated into 82.26% iOS apps, covering 25
categories of the Apple App Store. Some apps with non-compliant
TPLs are of high ratings: Solitaire (882.8k ratings, #29 in Casino),
Slotomania (455.1k ratings, #37 in Casino), Pull the Pin (247.5k
ratings, #5 in Board). Also, we observed that 1,549 apps integrated
more than one non-compliant TPLs. For instance, the app Drop
The Number: Merge Puzzle, ranked 34 in the Game category with
a review score of 4.7 based on 71.6k ratings, integrated four non-
compliant TPLs (IronSource, Appsflyer, RevenueCat, and Applovin).

Moreover, in our study, we ask a research question: how many
iOS apps with a non-compliant TPL, which, per privacy label dis-
closure guideline, set the TPL to disable a by-default data collection
(but in fact, data is still collected), fail to disclose such behavior in
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Table 3: Impact of non-compliant TPLs
TPL Privacy Data # Apps with

“Disable” con-
figuration

# Apps
with non-
compliant
privacy labels

CleverTap Email, UserID 9 8
LogRocket Coarse Location 6 5
Chartboost UserID 8 5

their privacy labels? To answer this question, we collected 90 iOS
apps integrated non-compliant TPLs CleverTap, LogRocket, and
Chartboost, and reverse-engineered their binary codes using IDA
Pro to find those “disable” configurations. After that, we fetched
their privacy label in Apple App Store for a compliance check.
To this end, we found 9 privacy-conscious apps that disable data
collection of CleverTap, 6 for LogRocket, and 8 for Chartboost.

As shown in Table 3, we discovered that 8 out of 9 apps using
CleverTap have non-compliant privacy labels as they fail to disclose
the collection of user data (i.e., Email, UserID, and Sensitive info).
These eight apps have high ratings with an average score of 4.3
(out of 5) and demonstrate privacy-consciousness by configuring
setOptOut to YES in an attempt to stop CleverTap from collecting
user data. However, they are misled by the invalid configuration
(C2), which ultimately results in a violation of the Apple App Store’s
privacy requirements. Our study shows that non-compliant privacy
configurations in privacy label disclosure guideline may easily lead
to non-compliant privacy labels for iOS apps. This finding supple-
ments the recent study [76] on 18 TPLs discussing that iOS apps
with non-compliant privacy labels have been observed to integrate
TPLs with incorrect privacy label disclosure guidelines. Note that
[76] did not study privacy configurations in compliance analysis.

4.2 Privacy Label Disclosure Guideline
Configurable vs non-conf. data practices. Our study reveals
that among 107 real-world privacy label disclosure guidelines of
TPLs, 94 (87.85%) of them provide privacy configurations and allow
optional data usage in their API Documentation. However, only 50
(46.73%) of them TPLs disclose configurable data usage practices.
This lack of transparency makes it challenging for app developers
to understand the potential privacy implications of using these
privacy configurations of TPLs in their apps. The most common
TPL categories that provide configurable data disclosure are User
Engagement, followed by Analytics and Ads & Monetization. This
may be because TPLs in these categories typically involve collecting
and processing user data for monetization purposes.

As mentioned in § 2.1, the privacy statements in the privacy
label disclosure guideline of a TPL can be broadly classified into
two types: those that are related to configurable data usage prac-
tices and those that are not, while those configurable can be further
associated with “enable” configuration (E) and “disable” configu-
ration (D). Among 2076 privacy statements (19.4 per privacy label
disclosure guideline on average) extracted from privacy label disclo-
sure guidelines, 322 are associated with the configurable data usage
practices, and 1,754 are not. Among all 322 configurable practices,
273 are associated with “enable” configuration (E) and 49 “disable”
configuration (D). Out of the 1,754 data, 491 are always collected,
while 1,263 are never collected.

Table 4: Statistics of Non-compliant TPLs
Inconsistency
Type

Cate-
gories

Data # of Non-
compliant
TPLs

# of privacy
statements

Inconsistent
Operation
Disclosure

O1
Sensitive PII 2 4
PII 4 6
Non-PII 7 13

O2
Sensitive PII 1 2
PII 6 11
Non-PII 5 10

O3
Sensitive PII 3 8
PII 8 22
Non-PII 4 9

O4
Sensitive PII 3 7
PII 6 16
Non-PII 4 9

O5
Sensitive PII 0 0
PII 4 7
Non-PII 4 8

O6
Sensitive PII 1 1
PII 3 6
Non-PII 2 5

Invalid
Configuration
Setting
Disclosure

C1
Sensitive PII 1 2
PII 6 15
Non-PII 4 11

C2
Sensitive PII 1 3
PII 1 2
Non-PII 1 1

C3
Sensitive PII 1 1
PII 1 2
Non-PII 0 0

Updateability. The ability to update privacy label disclosure guide-
line is crucial for maintaining policy/regulation compliance and
transparency, especially given the rapid evolution of TPLs. Out-
dated guidelines can increase the risk of data breaches and non-
compliancewith laws and regulations. To investigate the updateabil-
ity of privacy label disclosure guideline, we obtain its last modified
date using various methods, such as checking the guideline itself, ex-
amining the HTTP header, or consulting theWaybackMachine [39]
(see details in § 9.4). Our findings reveal that a significant portion
of privacy label disclosure guidelines (37.37%) have not been up-
dated for more than one year and 13.08% do not update for more
than six months. However, some privacy-conscious TPLs (25.23%)
frequently update their privacy label disclosure guidelines. We also
examined the frequency of TPL updates since the last modified date
by manually counting the number of TPL releases in the changelog
after the last modified date. On average, TPLs release 18.88 versions
after the last modified date, indicating that TPL versions are actively
updated, while privacy disclosures lag behind in updates.

4.3 Non-compliant TPLs
4.3.1 Incorrect Operation Disclosure. As formally defined in § 3.4.1,
in the context of configurable TPL, we consider the following four
data collection operations {Y, D, E, N}, where “Y” represents
that data is collected compulsively without being affected by any
configurations. “D” indicates that data is collected by default but
can be disabled by specific configurations. “E” means that data is
only collected when certain configurations are enabled. “N” depicts
that data is not collected under any configurations.

An incorrect operation-level disclosure arises when the data
collection behavior (denoted as 𝑎𝑓 ) is actually manifested as being
collected, but in the privacy label disclosure guideline (denoted
as 𝑎𝑠 ) implying that data collection is not taking place at all or
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under specific configuration. These inconsistencies can typically
be attributed to the following six categories:
O1: 𝑎𝑓 = 𝑌, 𝑎𝑠 = 𝑁𝑎𝑓 = 𝑌, 𝑎𝑠 = 𝑁𝑎𝑓 = 𝑌, 𝑎𝑠 = 𝑁 . Colaine reports 8 TPLs in this category, where
data is mandatory collected at the code level, while the guideline er-
roneously states that data is not collected under any configurations.
For example, IronSource [23] mandatorily collects Precise Location
data and sends it to its own tracking service at k.isprog.com. How-
ever, IronSource’s privacy label disclosure guideline [24] incorrectly
states that Precise Location data is not collected. Such inconsistency
can result in considerable privacy risks. When app developers inte-
grate the TPL, data is automatically collected beyond their control,
while the guideline misleadingly states that it is not being collected.
O2: 𝑎𝑓 = 𝑌, 𝑎𝑠 = 𝐸𝑎𝑓 = 𝑌, 𝑎𝑠 = 𝐸𝑎𝑓 = 𝑌, 𝑎𝑠 = 𝐸. In this category, data is mandatory collected
by TPL, while the guideline inaccurately states that data is only
collected under specific configurations. Colaine reports 6 TPLs with
such violation, associated with 17 different privacy configurations
such as setUserEmail, trackPreciseLocation, logUserEvent.
For instance, CleverTap’s privacy label disclosure guideline [2] in-
correctly states that UserID will only be collected if the developer
configures NSDictionary *profile = @{@"UserID ": @"123456"} to
send this data. However, CleverTap [11] automatically generates
and collects UserID for each user upon initialization. This inconsis-
tency may lead app developers to mistakenly believe that their user
data is safe because they did not enforce configurations that collect
data. However, data is indeed collected compulsively, without being
under the control of the app developers.
O3: 𝑎𝑓 = 𝐷, 𝑎𝑠 = 𝑁𝑎𝑓 = 𝐷, 𝑎𝑠 = 𝑁𝑎𝑓 = 𝐷, 𝑎𝑠 = 𝑁 . Colaine reports 9 TPLs in this category, where
data is collected by default but can be disabled, while the guideline
inaccurately states that data is not collected at all. For example,
Chartboost [8] collects the user’s Coarse Location derived from the
device IP address by default upon initialization. This data collec-
tion can be disabled using Chartboost.addDataUseConsent(.CCPA(.o

ptOutSale)). However, Chartboost privacy label disclosure guide-
line [9] erroneously states that Coarse Location is not collected. This
inconsistency leads app developers to believe that data collection
will not occur. Consequently, they miss the opportunity to take mea-
sures to control data collection by disabling certain configurations.
However, data is indeed collected by default.
O4: 𝑎𝑓 = 𝐸, 𝑎𝑠 = 𝑁𝑎𝑓 = 𝐸, 𝑎𝑠 = 𝑁𝑎𝑓 = 𝐸, 𝑎𝑠 = 𝑁 . Here data is collected under specific configura-
tions at the code level, contrary to the guideline’s claim that no data
is collected under any configurations. For example, Instabug [20]
allows app developers to enable bug reporting functionality us-
ing IBGBugReporting.enabledAttachmentTypes = ScreenRecording.
When this feature is enabled, audio is recorded and collected. How-
ever, Instabug’s privacy label disclosure guideline [21] incorrectly
states that Audio Data is not collected. This inconsistency may
cause app developers to inadvertently enable certain configurations
that trigger data collection, as they trust the guidelines’ assurance
of no data collection under those configurations.
O5: 𝑎𝑓 = 𝑌, 𝑎𝑠 = 𝐷𝑎𝑓 = 𝑌, 𝑎𝑠 = 𝐷𝑎𝑓 = 𝑌, 𝑎𝑠 = 𝐷 . In this category, the data is collected compul-
sively at the code level, while the guideline discloses that the data
collection can be disabled by specific configurations. For example,
Mixpanel [29] mandatory collects user ID and event ID, which are al-
phanumerically generated in its code and used to track user events
and build user profiles. This data collection cannot be disabled
through any privacy configuration patch. However, Mixpanel’s

privacy label disclosure guideline [30] incorrectly states that this
data is only collected by default. This inconsistency may lead to
app developers mistakenly believing data collection can be disabled
under proper configurations, while the data collection at the code
level would not be affected by any configuration.
O6: 𝑎𝑓 = 𝐷, 𝑎𝑠 = 𝐸𝑎𝑓 = 𝐷, 𝑎𝑠 = 𝐸𝑎𝑓 = 𝐷, 𝑎𝑠 = 𝐸. In this category, the data is collected by default
at the code level, while the guideline discloses that the data is only
collected under specific configurations (not collected by default).
For example, RevenueCat [35] by default collects IDFV as User ID,
retrieved from the system API using - identifierForVendor.
However, RevenueCat’s privacy label disclosure guideline [36]
states that User ID is not collected by default, except when the
app developer configures it using Purchases.configure(withAPIKey:
<my_api_key>, appUserID: <my_app_user_id>). In such a scenario,
app developers, who did not enable certain configurations, will
believe data collection would not be triggered, while the data is
collected by default.

4.3.2 Invalid Configuration Setting Disclosure. Notably, even the
data collection operations {Y, D, E, N} have been accurately
disclosed in privacy label disclosure guideline, the associated con-
figuration settings (denoted as 𝑋𝑠 ) could be omitted (C1), incorrect
(C2) or inadequate (C3). Based on § 3.4.1, we consider the following
three configuration setting inconsistencies.
C1:𝑎𝑓 = 𝑎𝑠 = 𝐷,𝑋𝑠 = ∅𝑎𝑓 = 𝑎𝑠 = 𝐷,𝑋𝑠 = ∅𝑎𝑓 = 𝑎𝑠 = 𝐷,𝑋𝑠 = ∅. This category pertains to situations where
the privacy label disclosure guideline of a configurable TPL lacks
configuration settings, especially those that could disable data col-
lection behavior. This omission can pose challenges for app devel-
opers who aim to safeguard their user data from being collected
by third parties, as they may not know how to enforce the ap-
propriate data protection measures. For example, mParticle [31]
automatically logs custom events to collect user event data. How-
ever, the privacy label disclosure guideline [32] of mParticle does
not mention that this data collection can be disabled by setting
event.shouldUploadEvent = NO.
C2: 𝑎𝑓 = 𝑎𝑠 = 𝐷, ∃𝑥 ∈ 𝑋𝑠 , 𝑥 ∉ 𝑋𝑓𝑎𝑓 = 𝑎𝑠 = 𝐷, ∃𝑥 ∈ 𝑋𝑠 , 𝑥 ∉ 𝑋𝑓𝑎𝑓 = 𝑎𝑠 = 𝐷, ∃𝑥 ∈ 𝑋𝑠 , 𝑥 ∉ 𝑋𝑓 . This category highlights cases
that the configuration setting (𝑥 ) specified in the privacy label dis-
closure guideline is supposed to disable certain data collection,
but does not actually work. For example, LogRocket [27] manda-
tory collects Coarse Location data calculated from the device’s
IP address. It retrieves the device’s IP address by calling the iOS
system API getifaddrs at a high frequency (averaging 94 times
per configured app instance). However, LogRocket’s privacy la-
bel disclosure guideline [28] incorrectly informs app developers
that the location data is collected by default and can be disabled.
However, we have examined all the related privacy configurations
(e.g., networkCaptureEnabled = false, viewScanningEnabled: Bool

= false) and found that none of them can actually disable this data
collection. This inconsistency can potentially mislead app develop-
ers into believing that they have already disabled data collection
by setting the configurations mentioned in the guideline. However,
these configurations are invalid and do not prevent data collection.
C3: 𝑎𝑓 = 𝑎𝑠 = 𝐷,𝑋𝑠 ⊂ 𝑋𝑓𝑎𝑓 = 𝑎𝑠 = 𝐷,𝑋𝑠 ⊂ 𝑋𝑓𝑎𝑓 = 𝑎𝑠 = 𝐷,𝑋𝑠 ⊂ 𝑋𝑓 . Inadequate Configuration Setting Dis-
closure means the TPL vendor has already declared one or multiple
configuration settings but fails to disclose all of them. For example,
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Dynatrace’s privacy label disclosure guideline [17] discloses the con-
figuration DTXInstrumentGPSLocation = false to disable precise lo-
cation collection. However, we discovered an additional privacy con-
figuration from Dynatrace [16], i.e., privacyConfig.dataCollection
dataCollectionLevel = .off, that can also disable precise location
collection. Such inadequate disclosure can lead app developers to
miss alternative options for managing data collection, potentially
resulting in suboptimal privacy settings or non-compliance with
privacy regulations.

4.3.3 Severity of non-compliances. Table 4 show the breakdown of
all reported inconsistencies. To better characterize the severity of
each, we further categorize data type into three groups: Sensitive
PII, PII, and non-PII (based on the definitions in Handbook for Safe-
guarding Sensitive PII [15] and ). In our study, we found that the
violations of non-compliant TPLs associated with configurations
are much more prevalent (158 out of 322 privacy statements) than
those not associated with configurations (23 out of 1,754 privacy
statements). This indicates that privacy violations are more likely
to occur when it comes to configurable data usage practices. Fur-
thermore, we observed that the configuration-related violations
are associated with more sensitive data types (24 vs 4 in sensitive
PII, 81 vs 6 in PII), which could potentially lead to more severe pri-
vacy risks. Therefore, it is crucial for configurable TPLs to provide
clear and accurate privacy guideline in their API documentation to
help app developers understand the data usage practices and make
informed decisions when configuring the TPLs.

5 DISCUSSION
5.1 Generalizability and Scalability
Adaptability to Android TPLs. We test our prototype on Android
TPLs and their privacy label disclosure guidelines to further assess
its adaptability to Android platform.

In the implementation phase, to generate privacy configuration
patch, we utilize a small subset of Android API documentation to
fine-tune the OCR model (as detailed in Section 3.2.1), the Privacy
Configuration Classification Model (Section 3.2.2), and the Configu-
ration Patch Generator (Section 3.2.3). This approach was effective
due to the similarity in format and description between Android
and iOS API documentation. Additionally, the enforcement process
on Android parallels that on iOS, necessitating only the substitution
of Android-compatible tools. More specifically, we utilize Android
Studio to create a default app wrapper. This tool automatically con-
structs .apk files by merging .aar SDK files with a basic Android
application template. To enforce the privacy configuration patch
to this default app wrapper, we utilize javaparser [25]) to convert
the Java source code into an Abstract Syntax Tree (AST) repre-
sentation. Subsequently, we traverse the AST structure, modifying
code segments in accordance with the configuration patches. Fi-
nally, the AST is reconverted into Java source code, yielding a fully
configured wrapper application. Regarding the Dynamic Analysis
& Compliance Checker, their settings are platform-independent
and adhere to the design outlined in Section 3.3. Note that the
toolsets utilized by Colaine, such as Nosmoke (a cross-platform UI
automation tool) and Frida (an instrumentation tool), are inherently

cross-platform and can be adjusted to support Android functionali-
ties. We will leave the large-scale compliance analysis of Android
TPLs’ disclosure guidelines as our future work.
Scalability. Our compliance analysis system operates automati-
cally, though preparing inputs such as API documentation, demo
source apps, and privacy guidelines does require manual effort.
Scalability presents minimal challenges for SDK vendors and app
developers. SDK vendors, possessing all necessary inputs, can uti-
lize our tool for comprehensive compliance checks across their
SDK versions. App developers, typically dealing with a manageable
number of SDKs, find assembling these inputs reasonable.

5.2 Recommendation
PBOM: privacy disclosure language for TPLs. As mentioned
earlier, most of privacy label disclosure guidelines fail to ensure
privacy transparency for downstream developers. Particularly, we
observe that the divergent specifications of privacy label disclo-
sure guidelines across different TPLs, which include non-uniform
formats, disparate locations, and ambiguous wording, may lead
to app developers misinterpreting data collection practices. Note
that while Apple recently (Dec. 2023) release “privacy manifest”
requirement [34] for TPL vendors to specify their data practices,
this privacy manifest design fails to account for the nuances of con-
figurations, offering less granularity and not adequately reflecting
the diverse data practices that can arise from different TPL config-
urations. In addition, existing privacy label disclosure guidelines
have struggled to be adopted or lack a practical and scalable imple-
mentation, which hinders their effectiveness in ensuring privacy
accountability throughout the mobile software supply chain. To
this end, we believe the design and deployment of a unified and
fine-grained privacy-accountable disclosure for TPLs is essential. Its
potential benefits are multi-faceted: (1) TPL vendors can integrate
it into their CI/CD pipelines, ensuring the continuous generation
and release of such privacy disclosure for every TPL version, (2)
downstream customers, especially app developers, can utilize such
privacy disclosure to ensure better compliance, and (3) Apple can
audit such privacy disclosure to further achieve its privacy and
accountability objectives.

To fully realize the benefits of such privacy disclosure, a uni-
fied and compatible schema is essential. We propose this privacy
disclosure PBOM to be built upon the emerging software bill of
materials (SBOM) standard, such as CycloneDX [13], while intro-
ducing new schema elements and attributes specific to privacy
disclosures while maintaining backward compatibility with ex-
isting SBOM formats. In particular, the CycloneDX standard is
highly extensible, allowing for complex data to be represented in
the BOM [14]. It supports Properties, a name-value store used to
describe additional data about components, services, or the BOM
that is not native to the core specification. The current design
for data collection falls under the service:data:flow category. How-
ever, it only includes data classifications (e.g., PII, PIFI, public)1

1Data classification involves tagging data according to its type, sensitivity, and value
if altered, stolen, or destroyed.
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Listing 1: Example of privacy disclosure PBOM for Flurry
1 {
2 "bomFormat": "CycloneDX", "specVersion": "1.4",
3 "services": [{
4 "provider": {"name": "Flurry Org", "url": ["https://www.flurry.com/"]},
5 "name": "Flurry iOS SDK", "version": "12.2.0",
6 "data": [{
7 "classification": "Privacy Disclosure",
8 "flow": [{
9 "properties": [
10 {"name": "Direction", "value": "Inbound"},
11 {"name": "Data", "value": "Precise Location"},
12 {"name": "Purpose", "value": "Analytics"},
13 {"name": "Action_property", "value": "by default but disable-able"},
14 {"name": "Configuration", "value": "[Flurry trackPreciseLocation:NO];"

}]}
15 ]} ]} ]}
16 }

and the flow direction (e.g., “inbound”, “outbound”)2. These ele-
ments alone are insufficient to fully disclose data collection prac-
tices. We propose adding four properties to thoroughly express
data flow. These include (1) {name: "data", value: <data_items>},
which describes the data items transmitted in the flow; (2) {name:
"Purpose", value: <Purpose_list>}, which outlines data usage; (3)
{name: "Action_property", value: [compulsively, by default but

disable-able, enable-able, void]}, indicating whether the data
collection is configurable; and (4) {name: "Action_config", value:

<configuration>}, describing the configuration that can enable or
disable data collection behaviors. This representation of data flow
can be easily converted into tuple-based representation (e.g., (data,
(Action_property, Action_config), purpose)), which can be directly
input into consistency models for compliance checks. Additionally,
the name and version fields are required to facilitate fine-grained
privacy disclosure.
Example. Listing 1 presents an example of privacy disclosure
PBOM for Flurry, which extends the SBOM format specified by
CycloneDX 1.4. The “name” and “version” fields provide a fine-
grained privacy disclosure for the Flurry iOS SDK 12.2.0. The four
newly added properties indicate that the Precise Location data is
collected by default for the purpose of Analytics. However, this
data collection can be disabled by configuring the setting [Flurry

trackPreciseLocation:NO].

6 RELATED WORKS
Security and privacy analysis on TPLs. Literature extensively
studies security and privacy risks originating from TPLs in mo-
bile apps. To measure the integration/dependencies of TPLs in
mobile apps, various TPLs detection techniques [44, 48, 50, 56, 57,
60, 72, 82], and various isolation techniques [59, 68, 69] are pro-
posed. To measure the privacy leakage caused by the widespread
integration of TPLs, prior research has utilized both static [64] and
dynamic [49, 65, 66] program analysis, revealing that sensitive user
data collection is prevalent. Further, to resonate possible causes of
such privacy risk, researchers [50] have identified that outdated
library versions often contribute to privacy risks, and several auto-
update techniques of TPLs have been proposed to address this
issue [51, 53, 55]. In addition to issues with the out-of-date nature
2Direction is relative to the service. Inbound flow indicates that data enters the service.
Outbound flow signifies that data leaves the service. Bi-directional implies that data
flows both ways, and unknown suggests that the direction is not known

of TPLs themselves, researchers [41, 61, 67, 71, 81] have also discov-
ered that misconfigurations of TPLs by app developers can result
in the leakage of sensitive personal information. Unlike previous
studies, we systematically investigate privacy compliance issues of
configurable TPL’s privacy label disclosure guideline. Specifically,
we formally defined and examined to which extent privacy config-
urations that control data practices are missing (C1), invalid (C2),
or inadequate (C3), and the degree to which operations dependent
on these configurations are incorrectly disclosed (O2-O6).
Privacy compliance analysis on mobile apps. Privacy compli-
ance checks [42, 43, 45, 47, 63, 64, 70, 71, 75, 78, 84, 85] have evolved
from coarse-grained analysis to more complex, fine-grained anal-
ysis, transitioning from data-level consistency [70, 85] to entity-
sensitive consistency [43], and purpose-sensitive consistency [46,
76]. Unlike previous studies, our consistency model and compliance
analysis are tailored to configurable TPL’s privacy label disclosure
guideline, where data collection operation is configurable (i.e., Y,
D, E, N) through the enforcement of privacy configurations in
TPLs. To address this, Colaine extend the consistency model in lit-
erature to a configuration-aware consistency model, enabling new
formal definitions of inconsistencies and non-compliance issues.
More details about these distinctions can be found in [40].

Specifically, Colaine is designed for TPLs, unlike Lalaine [76],
PurPliance [46], and PoliCheck [43], which targeted app-level anal-
ysis. Colaine introduces a configuration-aware consistency model,
filling a gap overlooked by prior studies. Our model identified
six operation-level (O1-O6) and three configuration-level (C1-C3)
inconsistencies in TPL configurations, beyond the scope of prior
models [43, 46, 76] that discussed only O1. For 47 non-compliant
TPLs identified by Colaine, using prior models would only identify
8 (O1).

7 CONCLUSION
Our study proposes a new consistency model, and designs and im-
plements Colaine to automatically check the compliance of privacy
label disclosure guidelines, taking into account the configurable
data practices in TPLs. Running on 107 TPLs and their privacy label
disclosure guidelines, Colaine found 47 non-compliant TPLs asso-
ciated with 181 different privacy statements. Our research further
provided detailed measurement results for non-compliance issues
of privacy label disclosure guideline that complement recent under-
standings of privacy compliance issues. Our study brings new in-
sights into proper privacy label disclosure guideline design and im-
plementation, essential to improve privacy compliance assurance.
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9 APPENDIX
9.1 Finding privacy page URI keywords list
[‘privacy’, ‘privacy-labels’, ‘data-disclosure’, ‘app-store-connect-
requirements’, ‘data-collection’, ‘data-types’, ‘data-safety’, ‘privacy-
questionnaire’, ‘privacy-section’,‘ios14’, ‘prepare-for-ios14’].

9.2 Binary classifiers comparison

Table 5: Model Performance Comparison

Model Precision Recall F1-score
(BLSTM) w. attention 0.925 0.921 0.923
(BLSTM) w/o attention 0.878 0.895 0.886
BiGRU based encoder w. attention 0.905 0.868 0.886
BiGRU based encoder w/o attention 0.8889 0.842 0.865
Logistic Regression with TF-IDF 0.860 0.763 0.809

To determine the most effective model for identifying privacy con-
figurations, we conducted a comparative experiment using five
widely-used models. We trained the models on a dataset of 858 con-
figurations and tested them on a separate set of 183 configurations.
The comparison results are presented in Table 5.

9.3 Verb list associated with each op

Table 6: Verb list associated with each op.

Operation Verb list Example
Add add, set, pass, copy, specify, use, call, enable, run
Remove remove, dismiss, delete, drop, disable, comment out
Replace replace, reset, update, change, override, modify

Please see Table 6.

9.4 Retrieve last modified date
To investigate the updateability of privacy label disclosure guide-
line, we obtain its last modified date by using one of the following
methods, depending on availability: (1) 65.42% of the dates are
explicitly mentioned on the webpage; (2) 15.89% of the dates are
determined by examining the HTTP header “Last modified date”;
(3) 11.21% of the dates are retrieved from the last snapshot taken by
the Internet Archive Wayback Machine [39]. The remaining 7.48%
of dates are unknown and cannot be retrieved.

9.5 Other Materials
For additional content, including (1) Differences between iOS pri-
vacy labels and third-party libraries, (2) Comparison with prior
consistency models, and (3) Examples of privacy-related configura-
tions, please visit our website [40].
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