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Abstract.

In this paper, we present a variant of the circumcenter method for the Convex Feasibility Problem (CFP),
ensuring őnite convergence under a Slater assumption. The method replaces exact projections onto the convex
sets with projections onto separating halfspaces, perturbed by positive exogenous parameters that decrease to zero
along the iterations. If the perturbation parameters decrease slowly enough, such as the terms of a diverging series,
őnite convergence is achieved. To the best of our knowledge, this is the őrst circumcenter method for CFP that
guarantees őnite convergence.
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1. Introduction. The convex feasibility problem (CFP) aims at őnding a point in the in-
tersection of m closed and convex sets Ci ⊂ R

n, i = 1, . . . ,m, i.e.,

(1.1) őnd x⋆ ∈ C :=

m⋂

i=1

Ci.

Convex feasibility represents a modeling paradigm for solving numerous engineering and physics
problems, such as image recovery [31], wireless sensor networks localization [42], gene regulatory
network inference [60], and many others.

Projection-reŕection based methods are widely recognized and effective schemes for solving
a diverse range of feasibility problems, including (1.1). This sort of methods continues to gain
popularity due to their ability to strike a balance between high performance and simplicity, as
evidenced by their extensive utilization (see, e.g., [11]). Among these methods, two particularly
renowned and widely adopted methods are the classical Douglas-Rachford method (DRM) and
its modiőcations (see, e.g., [2, 8, 39]), and the famous method of alternating projections (MAP)
(see, e.g., [9,10]). The elementary Euclidean concept of circumcenter has recently been employed
to improve the convergence of those classical projection-reŕection methods for solving the CFP
(1.1).

The circumcentered-reŕection method (CRM) was őrst presented in [22] as an acceleration
technique for DRM for the two set affine CFP. Since then, CRM has been shown as a valid and
powerful new tool for solving (non)convex structured feasibility problems because of its ability
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to minimize the inherent zigzag behavior of projection-reŕection based methods, in particular.
In [24], for instance, CRM was connected to the classical MAP. Moreover, CRM obviates the
spiraling behavior for the classical DRM [36,37,50]. There are already a plethora of works where
circumtencered-based schemes were studied; see for instance [3ś7,13ś17,19ś21,23,24,26,52ś56].

The circumcenter of three points x, y, z ∈ R
n, denoted as circ(x, y, z), is the point in R

n that
lies in the affine manifold spanned by x, y and z and is equidistant to these three points. Given
two closed convex sets A,B ⊂ R

n, the CRM iterates by means of the operator CA,B : Rn → R
n

deőned as

(1.2) CA,B(x) := circ(x,RA(x), RB(RA(x)),

where PA : R
n → A,PB : R

n → B are the orthogonal projections onto A,B respectively,
RA = 2PA − Id, RB = 2PB − Id (i.e., RA, RB are the reŕections onto A, B, respectively), and Id
is the identity operator in R

n. Hence, the sequence generated by CRM is deőned as

(1.3) xk+1 = CA,B(x
k).

If xk ∈ A ∩ B, then the sequence stops at iteration k, in which case, we say that the algorithm
has őnite convergence.

One limitation of CRM is that its convergence theory requires one of the sets to be an affine
manifold. In [22], it was pointed out that the iteration deőned in (1.3) may fail to be well-deőned
or to approach A∩B, if such an assumption is not met. Subsequently, a speciőc counterexample
was presented in [1] where CRM does not converge for two general convex sets. However, CRM
can be used to solve the general CFP with m general arbitrary closed convex sets by employing
Pierra’s product space reformulation, as presented in [57]. The product space reformulation relies
on the Cartesian product C := C1×· · ·×Cm ⊂ R

nm and on D := {(x, x, . . . , x) ∈ R
nm | x ∈ R

n}.
D is said to be the diagonal subspace in R

nm. One can easily see that

(1.4) x⋆ ∈ C ⇔ z⋆ := (x⋆, x⋆, . . . , x⋆) ∈ C ∩D,

where C =
⋂m

i=1 Ci. Due to (1.4), solving (1.1) corresponds to solving

őnd z⋆ ∈ C ∩D.

Since D is an affine manifold, CRM can be applied to őnding a point in C ∩ D in the product
space R

nm.
In [6], it was proved that the Circumcenter Reŕected Method (CRM) with Pierra’s product

space reformulation achieves a superior convergence rate compared to MAP. The iteration operator
of MAP is simply the composition of two orthogonal projections PA and PB , that is, PAPB .
Furthermore, in the same paper, it was shown that for certain special cases, circumcenter schemes
such as CRM attain a superlinear rate of convergence [6, 19], and even linear convergence in the
absence of an error bound. Notably, no other known method utilizing individual projections
achieves such convergence rate even for these particular cases.

More recently, an extension of CRM, called cCRM (acronym for centralized circumcentered-
reŕection method), was introduced in [20] to overcome the drawback of CRM, namely the re-
quirement that one of the sets be an affine manifold. The cCRM can solve the CFP for any
pair of closed and convex sets and converges linearly under an error-bound condition (similar to
a transversality hypothesis), and superlinearly if the boundaries of the convex sets are smooth.
Yet, for solving the CFP with m sets, it is necessary to go through the Pierra reformulation in
the product space.

For solving the CFP with m sets more efficiently, a successive extension of cCRM, called
ScCRM, was developed in [19]. ScCRM avoids the product space reformulation and inherits
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from cCRM the linear and superlinear convergence rates under the error-bound and smoothness
hypothesis, respectively.

All the aforementioned methods require several exact orthogonal projections onto some convex
sets in each iteration. However, determining the exact orthogonal projection is computationally
expensive in practice, except in some very special cases. This limitation was overcome in [4],
where an approximate version of CRM, called CARM, is proposed. CARM replaces the exact
projections onto the original sets with projections onto sets containing them (e.g., halfspaces or
Cartesian products of halfspaces), which are easily computable.

In this paper, we improve upon the aforementioned methods by introducing an algorithm
in the product space that uses projections onto perturbed halfspaces, referred to as Perturbed

Approximate Circumcenter Algorithm (PACA). PACA’s iteration reads as follows

(1.5) xk+1 = CSk,D(xk) = circ(xk, RSk(xk), RD(RSk(xk))),

where Sk is a suitable perturbed separating set for xk. For any x0 ∈ D, we will be able to obtain
a circumcenter sequence in D generated by means of (1.5) converging in őnitely many steps to a
point in C∩D, if the Slater condition holds, meaning that the intersection of the convex sets has
nonempty interior. This is possible by strategically building the perturbed separating set Sk (see
(3.1) and (4.2)). These perturbed separating sets resemble the surrogate halfspaces used by [45]
in the context of CFP, and by [33,46] in a more general framework.

Finite convergence results for projection-based methods with perturbations applied to CFP,
under the Slater condition, have been obtained before [18, 29, 34, 35, 43, 47, 48, 58]; we point out
the readers to [48, Tab. 1], a summary where many of these results are compared. We mention
that in [12], it is proved that even the Douglas-Rachford method applied to the two-set setting
can converge in őnitely many steps under several assumptions regarding the underlying sets.
Moreover, a generalized version of MAP is proposed and analyzed in [40, 41], and the algorithm
can achieve őnite convergence under the assumption of some regularity of the underlying convex
sets at a solution [41, Thm. 6.1].

The paper is organized as follows: In section 2, we present some deőnitions and preliminary
material. In section 3, we state our algorithm, PACA, section 4, shows the development of the
convergence analysis. Finally, section 5 shows the linear convergence rate of the sequence gener-
ated by our algorithm. Finite convergence is proved in section 6 under additional assumptions
on the perturbation parameters. Finally, section 7 presents numerical experiments for solving
ellipsoids intersection problems, comparing PACA with CARM (in the product space), the Si-
multaneous (Cimmino [30]) subgradient projection method (SSPM) by [43], and the Modiőed
Cyclic (Kaczmarz [44]) subgradient projection method (CSPM) from [35].

2. Preliminary results. In this paper, we consider the CFP as in (1.1), assuming that the
sets Ci are given as:

(2.1) Ci = {x ∈ R
n | fi(x) ≤ 0},

where fi : R
n → R is a convex function for i = 1, . . . ,m.

This formulation does not impose any limitations in principle, as we can always choose fi(x) =
∥PCi

(x)− x∥. However, this choice is not consistent with the later imposition of the Slater
hypothesis. Nevertheless, in most instances of the CFP, it is possible to formulate them as in
(2.1) using suitable functions fi.

A basic assumption for our őnite convergence result is the Slater condition, deőned as follows:

Definition 2.1 (Slater condition). There exists x̂ ∈ R
n such that

fi(x̂) < 0,

for all i = 1, . . . ,m.
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We continue by recalling the explicit formula of the orthogonal projection onto a halfspace.

Proposition 2.2. If H = {y ∈ R
n | a⊤y ≤ α}, with a ∈ R

n, α ∈ R, then the orthogonal

projection onto H is given by

PH(x) = x−
max{0, α− a⊤x}

∥a∥2
a.

Proof. The result follows from the deőnition of orthogonal projection after an elementary
calculation.

The following proposition is a key result concerning the circumcenter operator CA,B , as deőned
in (1.2). It represents the only result pertaining to circumcenter steps that will be used in our
convergence analysis.

Proposition 2.3. Let A and B be closed convex subsets of Rn with nonempty intersection.

Consider the circumcenter operator CA,B deőned in (1.2). Suppose that B is an affine manifold.

Then, for all x ∈ B there exists a closed and convex set H(x) ⊂ R
n such that,

(i) A ⊂ H(x);
(ii) CA,B(x) = PH(x)∩B(x);

(iii) ∥CA,B(x)− s∥2 ≤ ∥x− s∥2 − ∥CA,B(x)− x∥2 for all s ∈ A.

Proof. The result follows from Lemma 3 in [22]; cf. also Lemma 3.3 and Proposition 3.4
in [4]. In fact H(x) is a halfspace containing A, with an explicit formula, which ensures that item
(i) holds, but this is irrelevant for our purposes. We also mention that item (ii) is the essential
result, while item (iii) follows immediately from it.

A useful concept for analyzing the convergence of projection-based algorithms is the notion
of Fejér monotonicity. A sequence {yk} ⊂ R

n is said to be Fejér monotone with respect to a set
M ⊂ R

n if ∥yk+1 − y∥ ≤ ∥yk − y∥ for all y ∈ M and all k ∈ N. It is known that if {yk} is Fejér
monotone with respect to M , then {yk} is bounded, and if it has a cluster point y⋆ ∈ M , then the
entire sequence {yk} converges to y⋆ [11, Thm. 2.16]. In our analysis, we require a slightly weaker
notion and also need to handle cases where M is open, and the cluster points of {yk} belong to
the boundary of M .

We now introduce the appropriate tools to address this situation.

Definition 2.4 (Fejér* monotonicity). Let M ⊂ R
n and consider a sequence {yk} ⊂ R

n.

We say that {yk} is Fejér* monotone with respect to M if for any point y ∈ M , there exists

N(y) ∈ N such that

(2.2)
∥
∥yk+1 − y

∥
∥ ≤

∥
∥yk − y

∥
∥ ,

for all k ≥ N(y).

The main difference with the usual Fejér monotonicity notion lies in the fact that now the
decreasing distance property holds for the tail of the sequence, starting at some index which
depends on the considered point y ∈ M . We present next some useful properties of Fejér*
monotonicity.

Proposition 2.5 (Characterization of Fejér* monotonicity). Let
{
yk
}
⊂ R

n be a Fejér*

monotone w.r.t. a nonempty set M in R
n. Then,

(i)
{
yk
}

is bounded;

(ii) for every y ∈ M , the scalar sequence
{∥
∥yk − y

∥
∥
}

converges;

(iii)
{
yk
}

is Fejér* monotone w.r.t. conv(M);

(iv) for every ȳ ∈ cl (conv(M)), the closure of conv(M), the scalar sequence
{∥
∥yk − ȳ

∥
∥
}

con-

verges.
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Proof. For proving (i), take any point y ∈ M . From the deőnition of Fejér* monotonicity,
we conclude that yk belongs to the ball with center at y and radius

∥
∥yN(y) − y

∥
∥ for all k ≥ N(y).

Consequently, {yk} is bounded.
Item (ii) is a direct consequence of (2.2), since the N(y)-tail of sequence

{∥
∥yk − y

∥
∥
}

is
monotone and bounded, so the sequence converges.

For item (iii), take any y ∈ conv(M). Thus, y can be written as y =
∑p

i=1 λiyi, where yi ∈ M ,
λi ∈ [0, 1] for all i = 1, 2, . . . , p,

∑p
i=1 λi = 1 and p ∈ N. Taking into account that {yk} is Fejér*

monotone w.r.t. M , for each i = 1, 2, . . . , p, there exists N(yi) such that
∥
∥yk+1 − yi

∥
∥ ≤

∥
∥yk − yi

∥
∥

for all k ≥ N(yi). Squaring both sides of the last inequality and rearranging the terms, we get

0 ≤
∥
∥yk
∥
∥
2
−
∥
∥yk+1

∥
∥
2
− 2

(
yk − yk+1

)⊤
yi.(2.3)

The above inequality also holds for all k ≥ K := max{N(y1), N(y2), . . . , N(yp)}. Multiplying
(2.3), for each i = 1, 2, . . . , p, by the respective λi and adding up, we obtain

0 ≤
∥
∥yk
∥
∥
2
−
∥
∥yk+1

∥
∥
2
− 2

(
yk − yk+1

)⊤
(

p
∑

i=1

λiyi

)

=
∥
∥yk
∥
∥
2
−
∥
∥yk+1

∥
∥
2
− 2

(
yk − yk+1

)⊤
y,

and therefore,
∥
∥yk+1 − y

∥
∥ ≤

∥
∥yk − y

∥
∥, for all k ≥ K. So {yk} is Fejér* monotone w.r.t. conv(M).

Regarding item (iv), for any w ∈ conv(M), since item (iii) implies that {yk} is Fejér mono-
tone w.r.t. conv(M), item (ii) yields that the scalar sequence {∥yk − w∥} converges. Take now
ȳ ∈ cl (conv(M)), and a sequence

{
wℓ
}
⊂ conv(M) such that wℓ → ȳ.

Using the triangle inequality, we have, for all ℓ ∈ N,

−
∥
∥wℓ − ȳ

∥
∥ ≤

∥
∥yk − ȳ

∥
∥−

∥
∥yk − wℓ

∥
∥ ≤

∥
∥wℓ − ȳ

∥
∥ .

Taking lim inf and lim sup with respect to k in the above inequalities, we obtain

−
∥
∥wℓ − ȳ

∥
∥ ≤ lim inf

k

∥
∥yk − ȳ

∥
∥− lim

k

∥
∥yk − wℓ

∥
∥

≤ lim sup
k

∥
∥yk − ȳ

∥
∥− lim

k
∥yk − wℓ∥ ≤

∥
∥wℓ − ȳ

∥
∥ ,

because, as aforementioned, item (ii) says that, for every ℓ ∈ N, limk

∥
∥wℓ − yk

∥
∥ exists. Now, as

ℓ goes to inőnity, we have
∥
∥wℓ − ȳ

∥
∥→ 0, and we conclude that

lim inf
k

∥
∥yk − ȳ

∥
∥ = lim sup

k

∥
∥yk − ȳ

∥
∥ = lim

k

∥
∥yk − ȳ

∥
∥ ,

so that we have the desired result.

Now, we show the extension of the Fejér monotonicity results needed for our analysis. We
recall őrst the notions of R-linear and Q-linear convergence. A sequence {yk} ⊂ R

n converges
Q-linearly to y⋆ ∈ R

n if

lim sup
k→∞

∥
∥yk+1 − y⋆

∥
∥

∥yk − y⋆∥
= η < 1,

and R-linearly if

lim sup
k→∞

∥
∥yk − y⋆

∥
∥
1/k

= η < 1.

The value η is said to be the asymptotic constant. It is well known that Q-linear convergence
implies R-linear convergence with the same asymptotic constant [51].
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Theorem 2.6 (Fejér* monotonicity and closed convex sets). Suppose that C ⊂ R
n is a

closed convex set with nonempty interior, that is, int(C) ̸= ∅. Assume that {yk} ⊂ R
n is Fejér*

monotone with respect to int(C). Then,

(i) if there exists a cluster point ȳ of {yk} which belongs to C, then the whole sequence {yk}
converges to ȳ;

(ii) if {yk} converges to y⋆ ∈ C and {dist(yk, C)} converges Q- or R-linearly to 0 with asymptotic

constant η, then {yk} converges R-linearly to y⋆ with the same asymptotic constant.

Proof. Item (i) is a direct consequence of Proposition 2.5(iv), with int(C) playing the role
of M . Indeed, let ȳ ∈ C be a cluster point of the bounded (due to Proposition 2.5(i)) sequence
{yk} and say {yℓk} is a subsequence of {yk} converging to ȳ, that is,

∥
∥yℓk − ȳ

∥
∥ → 0. Note that

C = cl (conv(int(C))), and in view of Proposition 2.5(iv), the sequence
{∥
∥yk − ȳ

∥
∥
}

converges.
Therefore,

lim
k→∞

∥
∥yk − ȳ

∥
∥ = lim

ℓk→∞

∥
∥yℓk − ȳ

∥
∥ = 0,

so, the whole sequence {yk} converges to ȳ.
For proving (ii) note that Fejér* monotonicity of {yk} implies that for each ŷ ∈ int(C) there

exists N(ŷ) such that
∥
∥yk+m − ŷ

∥
∥ ≤

∥
∥yk − ŷ

∥
∥ for all k ≥ N(ŷ) and all m ∈ N. Hence,

(2.4) ∥yk+m − yk∥ ≤ ∥yk+m − ŷ∥+ ∥yk − ŷ∥ ≤ 2∥yk − ŷ∥,

for all ŷ ∈ int(C), all k ≥ N(ŷ) and all m ∈ N. Suppose yk → y⋆. Taking limits in (2.4) with
m → ∞, we get

(2.5)
∥
∥yk − y⋆

∥
∥ ≤ 2

∥
∥yk − ŷ

∥
∥ ,

for all ŷ ∈ int(C) and k ≥ N(ŷ). Let zk = PC(y
k), so that zk ∈ C. Convexity of C ensures the

existence of ŷ ∈ int(C) such that
∥
∥ŷ − zk

∥
∥ ≤

∥
∥yk − zk

∥
∥. Hence, in view of (2.5),

∥
∥yk − y⋆

∥
∥ ≤ 2

∥
∥yk − ŷ

∥
∥ ≤ 2

∥
∥yk − ŷ

∥
∥

≤ 2
∥
∥yk − zk

∥
∥+ 2

∥
∥ŷ − zk

∥
∥

≤ 2
∥
∥yk − zk

∥
∥+ 2

∥
∥yk − zk

∥
∥

= 4
∥
∥yk − zk

∥
∥ = 4 dist(yk, C).

Taking k-th roots in both sides of the last inequality, we get

∥
∥yk − y⋆

∥
∥
1/k

≤ 41/k dist(yk, C)1/k.

In view of the relation between Q-linear and R-linear convergence,

lim sup
k→∞

∥
∥yk − y⋆

∥
∥
1/k

≤ lim sup
k→∞

dist(yk, C)1/k = η < 1,

and we are done.

3. Statement of the algorithm. We are now ready to introduce the Perturbed Approxi-
mate Circumcenter Algorithm (PACA) for the CFP deőned in (2.1). Let us assume that the sets
Ci, i = 1, . . . ,m in the CFP (1.1) take the form described in (2.1). Given an arbitrary initial
point x0 ∈ R

n and a decreasing sequence of perturbation parameters {ϵk} which converges to 0,
the PACA scheme for solving CFP is deőned in Algorithm 3.1.

Next, we provide a somewhat informal explanation of several properties of the sequence {xk}
generated by PACA. By examining (3.3) with ϵk = 0, and considering Proposition 2.2, it becomes
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evident that xk − vki represents the orthogonal projection of xk onto a halfspace containing Ci,
while xk − wk is a convex combination of such projections. With the presence of perturbation
parameters ϵk, x

k − vki corresponds to the projection of xk onto the perturbed set Sk
i , deőned as:

(3.1) Sk
i =

{

Ck
i , if xk ∈ Ck

i ,

{z ∈ R
n | (ui)

⊤(z − xk) + fi(x
k) + ϵk ≤ 0}, otherwise,

which contains the perturbed convex set

(3.2) Ck
i := {x ∈ R

n | fi(x) + ϵk ≤ 0},

as we will prove in Proposition 4.1.

Algorithm 3.1 Perturbed Approximate Circumcenter Algorithm (PACA)

1) Initialization.
Take x0 ∈ R

n.
2) Iterative step.

Given xk, take uk
i ∈ ∂fi(x

k), the subdifferential of fi at xk (so, uk
i is a subgradient of fi at

xk), and deőne:

(3.3) vki :=

[

max{0, fi(x
k) + ϵk}

∥
∥uk

i

∥
∥
2

]

uk
i ,

(3.4) wk :=
1

m

m∑

i=1

vki .

If wk = 0, then take xk+1 = xk and proceed to the (k + 1)-th iteration. Otherwise, deőne

(3.5) αk :=
1
m

∑m
i=1

∥
∥vki
∥
∥
2

∥wk∥
2 ,

(3.6) xk+1 := xk − αkw
k.

3) Stopping criterion.
If xk ∈ C :=

⋂m
i=1 Ci, then stop (in this case, we say that PACA has őnite convergence).

We mention that, depending on the value of ϵk, the set Ck
i may be empty. On the other hand,

Sk
i is always nonempty, so that the sequence {xk} is always well-deőned, independently of the

value of ϵk. However, the set Sk :=
⋂m

i=1 S
k
i may still be empty, in which case the sequence {xk}

may exhibit an erratic behavior. It could even happen that wk = 0, in which case, as stated in
the Iterative Step, we get xk+1 = xk. This only occurs if, by chance, xk minimizes the function
∑m

i=1 ∥x − PSk

i

(x)∥2. In this case the sequence does not stop: it proceeds to the next iteration,

with perturbation parameter ϵk+1 < ϵk. For large enough k, however, the set Sk will become
nonempty; this is ensured to happen when the Slater point x̂ gets inside Sk (more precisely, when
k is large enough so that ϵk < min1≤i≤m{|fi(x̂)|}). At that point, the sequence starts moving
toward Sk, and a fortiori toward Ck :=

⋂m
i=1 C

k
i ⊂ Sk, so that eventually it converges to a point

in C. We also observe that xk−wk is a convex combination, with equal weights, of the projections
onto the perturbed sets Sk

i .
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Note that, when ϵk = 0, the set Sk is related to the surrogate halfspaces studied and used
in the algorithms proposed in [33, 45, 46]. In particular, the original algorithm proposed in [45]
used a relaxed projection onto the surrogate (and unperturbed) block Sk, with only a part of the
Sk
i used at each iteration. Moreover, in the case of PACA, the surrogate sets Sk

i are perturbed,
and the next iteration is computed using the circumcenter scheme. Indeed, the factor αk in the
deőnition of xk+1 (i.e., in (3.6)) encapsulates the contribution of the circumcentered-reŕection
approach, as we will discuss in the next section. It is easy to verify that if ϵk = 0 for all k, then
the PACA sequence coincides with the CARM sequence in [4], using the separating operator given
in [4, Ex. 2.7]. If we remove the factor αk in (3.6), PACA reduces to Algorithm 4 in [43] with
relaxation parameters equal to 1. In this case, xk+1 is simply a convex combination of perturbed
approximate projections of xk onto the sets Ci. We mention that the algorithm in [43] also enjoys
őnite convergence, under the same assumptions as in Theorem 6.2 in this paper. It is worth
mention that, analogous algorithms to ours and the one in [43] were considered in [47, Ex. 3.2]
and in [48, Ex. 4.9].

Proposition 3.1. Consider the PACA sequence deőned by Algorithm 3.1. Then, αk ≥ 1 for

all k.

Proof. The result follows directly from (3.4) and (3.5), and the convexity of the function

∥·∥2.

Proposition 3.1 indicates that the PACA sequence can be seen as an overrelaxed version of
the sequence given by xk+1 = xk − wk, studied in [43]. We comment that the particular value of
αk determined in (3.5), related to the circumcenter approach, has special consequences in terms
of the performance of the method. Moreover, the relaxation αk can be equivalently interpreted
as the extrapolation parameter for the simultaneous projection 1

m

∑m
i=1 PSk

i

, where the Sk
i ’s are

perturbed versions of the original sublevel sets; see (3.1). Indeed, we have vki = xk − PSk

i

(
xk
)
.

Consequently,

wk =
1

m

m∑

i=1

vki =
1

m

m∑

i=1

(

xk − PSk

i

(
xk
))

,

and

αk =
1
m

∑m
i=1

∥
∥vki
∥
∥
2

∥wk∥
2 =

1
m

∑m
i=1

∥
∥
∥xk − PSk

i

(
xk
)
∥
∥
∥

2

∥
∥
∥

1
m

∑m
i=1

(

xk − PSk

i

(xk)
)∥
∥
∥

2 .

An analogous expression appears in the extrapolated method of parallel projections; see [32,
eq. (1.9)]. A comprehensive study of extrapolation techniques for iterative methods can be found
in [28, sects. 4.9 and 5.10].

4. Convergence Analysis. For the convergence analysis, it is necessary to establish a
connection between PACA and the CRM method applied to a CFP in the product space R

nm.
This allows us to utilize Pierra’s formulation, which transforms a CFP with m sets in R

n into a
CFP with only two sets in R

nm, with one of them being a linear subspace.
Consider Ck

i as deőned in (3.2) (once again, we recall that Ck
i may be empty for some values

of ϵk) and Sk
i , as deőned in (3.1). Using Proposition 2.2, the projection of xk onto Sk

i is given by:

(4.1) PSk

i

(xk) = xk −
max{0, fi(x

k) + ϵk}

∥uk
i ∥

2
uk
i ,

with uk
i ∈ ∂fi(x

k). i.e., uk
i is a subgradient of fi at xk. We remark that (4.1) also works when

xk belongs to Ck
i , in which case Sk

i is not a halfspace, but just the set Ck
i , and PSk

i

(xk) = xk.
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Now we introduce the appropriate sets in R
nm for using Pierra’s formulation. Deőne:

(4.2) Sk = Sk
1 × · · · × Sk

m,

and

(4.3) Ck = Ck
1 × · · · × Ck

m.

We need an elementary result on the relation between Ck and Sk.

Proposition 4.1. Take Sk,Ck ⊂ R
nm as deőned in (4.2) and (4.3), respectively. Then,

Ck ⊂ Sk.

Proof. The result holds trivially if Ck is empty (i.e., if Ck
i = ∅ for some i). Otherwise, it

suffices that Ck
i ⊂ Sk

i for all i. Take any point z ∈ Ck
i , so that fi(z) + ϵk ≤ 0. If xk ∈ Ck

i , then
the result is satisőed by the deőnition of Sk

i . If xk /∈ Sk
i , since the fi’s are convex, then we have

(4.4) (uk
i )

⊤(z − xk) + fi(x
k) + ϵk ≤ fi(z) + ϵk ≤ 0,

for all z ∈ R
n, using (3.2) and the deőnition of subgradient. The result follows from (4.4) and

the deőnition of Sk
i (i.e., (3.1)), since z ∈ Sk

i for all i.

Recall that D ⊂ R
nm is the diagonal subspace in R

nm. In the next lemma, we will prove that
the sequence {xk} ⊂ R

nm generated by CRM with the sets Sk and D is related to the sequence
{xk} ⊂ R

n generated by PACA with the sets Ck
i . In fact, we will get that xk = (xk, xk, . . . , xk)

for all k.

Lemma 4.2. Assume that, for i = 1, . . . ,m, Ci ⊂ R
n is in the form of (2.1) with each

fi : R
n → R convex. Consider the set Sk, as deőned in (4.2), the diagonal set D, and the

sequence {xk} ⊂ R
nm generated by CRM given in (1.2) and starting from a point x0 ∈ D, i.e.,

(4.5) xk+1 := CSk,D(xk) = circ(xk, RSk(xk), RD(RSk(xk))),

where RSk := 2PSk − Id, RD := 2PD − Id. Let {xk} ⊂ R
n be generated by PACA as in (3.6)

starting from x0 ∈ R
n. If x0 = (x0, . . . , x0), then xk = (xk, . . . , xk) for all k ≥ 1. Also, PACA

stops at iteration k if and only if CRM does so.

Proof. Since x0 ∈ D, which is an affine subspace, and Sk is a closed convex set, we get
(inductively) that, for all k ≥ 0, not only xk is computable (therefore, sequence {xk} is well-
deőned) but also xk ∈ D; see Proposition 2.3(ii).

Suppose now that xk := (yk, . . . , yk) with yk ∈ R
n. Since x0 := (x0, . . . , x0), we assume

inductively that yk = xk, and we must prove that xk+1 = (xk+1, . . . , xk+1). We proceed to
compute the arguments of the right-hand side of (4.5) in order to get CSk,D(xk). By (4.2), we get

(4.6) PSk(xk) =
(

PSk

1

(xk), . . . , PSk
m
(xk)

)

.

Moreover, (4.1) and (3.3) yields

(4.7) PSk

i

(xk) = xk −
max{0, fi(x

k) + ϵk}
∥
∥uk

i

∥
∥
2 uk

i = xk − vki ,

with uk
i ∈ ∂fi(x

k). It follows from (4.6) and (4.7) that

(4.8) PSk(xk) =
(
xk − vk1 , . . . , x

k − vkm
)
.
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In view of (4.8) and of the deőnition of the reŕection operator, we have

(4.9) RSk(xk) =
(
xk − 2vk1 , . . . , x

k − 2vkm
)
.

It follows from the deőnition of the diagonal subspace D that PD(x1, . . . , xm) = (z, . . . , z) with
z = (1/m)

∑m
i=1 x

i. Hence, in view of (3.4),

(4.10) PD(xk) = (xk − 2wk, . . . , xk − 2wk).

Finally, in view of (4.10),

(4.11) RD

(
RSk(xk)

)
= (xk − 4wk, . . . , xk − 4wk).

Now, by the deőnition of circumcenters, CSk,D(xk) must be equidistant to x,y and z, with
y := RSk(x) as in (4.9) and z := RD

(
RSk(xk)

)
as in (4.11). An elementary but somewhat lengthy

calculation using (4.9) and (4.11) shows that any vector of the form e(α) = (xk − αwk, . . . , xk −
αwk) with α ∈ R is equidistant from y and z.

Note that the equation ∥e(α)− x∥2 = ∥e(α)− z∥2, leads, after some elementary calculations,
to a linear equation in α, whose solution is α = αk, with αk as in (3.5). Hence, taking into
account (3.6), we get

xk+1 = CSk,D(xk) = (xk − αkw
k, . . . , xk − αkw

k) = (xk+1, . . . , xk+1),

completing the inductive step. The equivalence between the stopping criteria of both algorithms
is immediate.

Another useful result is the quasi-nonexpansiveness of the CRM operator CSk,D, with respect
to Ck.

Lemma 4.3 (Quasi-nonexpansiveness of CSk,D). Let Sk,Ck ⊂ R
nm be deőned as in (4.2)

and (4.3), respectively. Consider the operator CSk,D as deőned in (1.3) and assume that Ck ̸= ∅.
Then,

∥
∥CSk,D(x)− s

∥
∥
2
≤ ∥x− s∥2 −

∥
∥CSk,D(x)− x

∥
∥
2
,

for all x ∈ R
nm and all s ∈ Ck.

Proof. Since Sk
i is closed and convex by deőnition, then Sk is also closed and convex. The

result follows immediately from Proposition 2.3(iii) and Proposition 4.1, with Sk playing the role
of A and D, the role of B.

Next, we prove that the sequence generated by PACA is Fejér* monotone with respect to
int(C).

Lemma 4.4. Consider the CFP with the Ci’s of the form (2.1). Suppose that {xk} ⊂ R
n is

the sequence generated by PACA starting at x0 ∈ R
n. If the sequence {xk} is inőnite, then,

(i) {xk} is Fejér* monotone with respect to int(C);
(ii) limk→∞

∥
∥xk+1 − xk

∥
∥ = 0;

(iii) The sequence {xk} is bounded.

Proof. For item (i), let {xk} ⊂ R
nm be the sequence generated by CRM as in (4.5) starting

at x0 = (x0, . . . , x0). By deőnition of x0, it belongs to D ⊂ R
nm. By Proposition 2.3(ii) and

(4.5), xk ∈ D for all k. Deőne

(4.12) Ck :=

m⋂

i=1

Ck
i .
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From Lemma 4.3 and (4.5), we get

(4.13)
∥
∥xk+1 − s

∥
∥
2
≤
∥
∥xk − s

∥
∥
2
−
∥
∥xk+1 − xk

∥
∥
2
,

for all s ∈ Ck∩D. Since {xk} ⊂ D and s ∈ D, we have, in view of Lemma 4.2, xk = (xk, . . . , xk),
xk+1 = (xk+1, . . . , xk+1) and s = (s, . . . , s) with s ∈ Ck ⊂ R

n as deőned in (4.12), so that
∥
∥xk+1 − s

∥
∥
2
= m

∥
∥xk+1 − s

∥
∥
2
,
∥
∥xk − s

∥
∥
2
= m

∥
∥xk − s

∥
∥
2

and
∥
∥xk+1 − xk

∥
∥
2
= m

∥
∥xk+1 − xk

∥
∥
2
.

Hence, it follows from (4.13) that

(4.14)
∥
∥xk+1 − s

∥
∥
2
≤
∥
∥xk − s

∥
∥
2
−
∥
∥xk+1 − xk

∥
∥
2
,

for all s ∈ Ck as deőned in (4.12). The Slater condition implies that int(C) ̸= ∅. Take any
s ∈ int(C), so that fi(s) < 0 for all i. Since {ϵk} converges to 0, there exists N(s) ∈ N, such that
ϵk < min1≤i≤m |fi(s)| for all k ≥ N(s). Therefore, we have s ∈ Ck for all k ≥ N(s). Hence, in
view of (4.14)

∥
∥xk+1 − s

∥
∥
2
≤
∥
∥xk − s

∥
∥
2
,

for all s ∈ int(C) and all k ≥ N(s). In view of the deőnition of Fejér* monotonicity, {xk} is Fejér*
monotone with respect to int(C).

For (ii), note that (4.14) implies that
{∥
∥xk − s

∥
∥
}

is decreasing and non-negative. Hence,
{∥
∥xk − s

∥
∥
}

is convergent, and also

∥
∥xk+1 − xk

∥
∥
2
≤
∥
∥xk − s

∥
∥
2
−
∥
∥xk+1 − s

∥
∥
2
,

which immediately implies the result.
For item (iii), notice that the Slater condition implies that int(C) ̸= ∅. Then the result

follows from item (i) and Proposition 2.5(i).

Next we prove that the cluster points of the sequence generated by PACA solve the CFP
(1.1).

Proposition 4.5. Let {xk} be the sequence generated by PACA. If {xk} is inőnite and x̄ is

a cluster point of {xk}, then x̄ ∈ C.

Proof. First, note that the existence of cluster points of {xk} follows from Lemma 4.4. Let
x̂ be a Slater point for the CFP. Since all the fi’s are convex and fi(x̂) < 0 for all i, we get from
the deőnition of subgradient that

(uk
i )

⊤(x̂− xk) ≤ fi(x̂)− fi(x
k) ≤ −fi(x

k),

Let {xℓk} be a subsequence of {xk} which converges to the cluster point x̄. By (3.6),

xk − xk+1 = αkw
k.

By Proposition 3.1, we know that αk ≥ 1, so

(4.15)
∥
∥xk − xk+1

∥
∥
2
= α2

k

∥
∥wk

∥
∥
2
= αk

(

1

m

m∑

i=1

∥
∥vki
∥
∥
2

)

≥
1

m

m∑

i=1

(

max
{
0, fi

(
xk
)
+ ϵk

}

∥
∥uk

i

∥
∥
2

)2

.

Since {xk} is bounded by Theorem 2.6(i) and the subdifferential is locally bounded (see,
e.g., [59, Thm. 24.7]), we reőne the subsequence {xℓk}, if needed, in order to ensure that for each
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i, {uℓk
i } converges, say to ūi. Let I := {i ∈ {1, . . . ,m} | fi(x̄) ≥ 0}. We take limits with k → ∞

on both sides of (4.15) along the reőned subsequence {xℓk}, getting

(4.16) 0 ≥
1

m

∑

i∈I

(

fi(x̄)

∥ūi∥
2

)2

,

because limk→∞ ϵk = 0, and limk→∞(xk+1 − xk) = 0 by Lemma 4.4(ii). It follows from (4.16)
that fi(x̄) = 0 for all i ∈ I. Since, by the deőnition of I, fi(x̄) < 0 for all i /∈ I, we get that
fi(x̄) ≤ 0 for i = 1, . . . ,m. Therefore, we conclude that x̄ ∈ C.

We close this section by establishing convergence of the full sequence generated by PACA to
a solution of the CFP (1.1).

Theorem 4.6. Let {xk} be the sequence generated by PACA starting from an arbitrary point

x0 ∈ R
n. If {xk} is inőnite, then it converges to some x⋆ ∈ C.

Proof. By Lemma 4.4(iii), {xk} is bounded, so that it has cluster points. Proposition 4.5
yields that its cluster points belong to C. Finally, Theorem 2.6(i) implies that {xk} converges to
some x⋆ ∈ C.

5. Linear convergence rate. In this section we will prove that if the sequence generated
by PACA is inőnite, then under the Slater condition it enjoys a linear convergence rate. It
is worth mentioning that in other papers addressing circumcentered-reŕection methods, such
as [4, 6, 19, 23], a linear rate of the generated sequence was proved under an error bound (or
transversality) assumption [25,49]. This assumption is somewhat weaker than our Slater condition
(see Proposition 3.2, Theorem 3.3 and the last paragraph of Subsection 3.1 in [19]) but under the
Slater condition we can achieve a better result, namely őnite convergence. In the above-mentioned
references the asymptotic constant related to the linear convergence depends on some constants
linked to the error bound assumption; as it could be expected, our asymptotic constant is given
in terms of the Slater point.

Proposition 5.1. Let {xk} be the sequence generated by PACA. If {xk} is inőnite, then there

exist N ∈ N such that

dist2(xk+1, Ck) ≤ dist2(xk, Ck)−
∥
∥xk+1 − xk

∥
∥
2
,

for all k ≥ N .

Proof. We have proved in (4.14) that

(5.1)
∥
∥xk+1 − s

∥
∥
2
≤
∥
∥xk − s

∥
∥
2
−
∥
∥xk+1 − xk

∥
∥
2
,

for all k ≥ N and all s ∈ Ck. The result follows by taking minimum with s ∈ Ck in both sides of
(5.1).

Proposition 5.2. Let {xk} be the sequence generated by PACA. If {xk} is inőnite, then there

exist N ∈ N and β ∈ R such that

dist(xk, Ck) ≤ β(f(xk) + ϵk),

for all k ≥ N , where f(x) := max1≤i≤m fi(x).

Proof. It follows from the deőnition of f that Ck = {x ∈ R
n | f(x) + ϵk ≤ 0}. Since {ϵk} is

decreasing, there exists N ∈ N such that Ck ̸= ∅, for all k ≥ N . Moreover, knowing that
{
xk
}

is

inőnite, we must have f
(
xk
)
> 0. Consequently, thanks to [47, Lem. 2.1], we get

dist
(
xk, Ck

)

f (xk) + ϵk
≤

dist
(
xk, CN

)

f (xk) + ϵN
.
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The inclusion CN ⊂ Ck, when combined with (4.14), leads to
∥
∥xk − s

∥
∥ ≤

∥
∥xN − s

∥
∥ for all k ≥ N

and for all s ∈ CN . In particular, we get dist
(
xk, CN

)
≤ dist

(
xN , CN

)
.

On the other hand, f
(
xk
)
+ ϵN > ϵN . Consequently, we arrive at

dist
(
xk, Ck

)
≤

dist
(
xN , CN

)

ϵN
︸ ︷︷ ︸

β

(
f
(
xk
)
+ ϵk

)
.

Proposition 5.3. Let {xk} be the sequence generated by PACA, starting from x0 ∈ R
n. If

{xk} is inőnite, then there exists N ∈ N and σ > 0 such that

dist2(xk, Ck) ≤ m(βσ)2
∥
∥xk+1 − xk

∥
∥
2
,

for all k ≥ N .

Proof. Since {xk} is bounded, and the subdifferential of a convex function deőned on the
whole R

n is locally bounded (again, by [59, Thm. 24.7]), we can take σ ∈ R such that

(5.2)
∥
∥uk

i

∥
∥ ≤ σ,

for all k and all i. If needed, we also take σ large enough so that m(βσ)2 > 1.
Let {xk} ⊂ R

nm be the sequence generated by CRM as in (4.5) starting at x0 = (x0, . . . , x0).
Then,

2
∥
∥xk − PSk(xk)

∥
∥ =

∥
∥xk −RSk(xk)

∥
∥ ≤

∥
∥xk − xk+1

∥
∥+

∥
∥xk+1 −RSk(xk)

∥
∥

= 2
∥
∥xk+1 − xk

∥
∥ ,(5.3)

using the deőnition of reŕection in the őrst equality, and the deőnition of circumcenter, together
with (1.2) and (1.3), in the second one. It follows from (5.3) that

(5.4)
∥
∥xk+1 − xk

∥
∥
2
≥
∥
∥xk − PSk(xk)

∥
∥
2
.

Now, deőne

(5.5) Ik := {i ∈ {1, . . . ,m} | fi(x
k) + ϵk > 0}.

In view of Lemma 4.2, we pass from R
nm to R

n in (5.4), obtaining

m
∥
∥xk+1 − xk

∥
∥
2
≥

m∑

i=1

∥
∥
∥xk − PSk

i

(xk)
∥
∥
∥

2

=

m∑

i=1

∥
∥
∥
∥

max{0, fi(x
k) + ϵk}

∥uk
i ∥

2
uk
i

∥
∥
∥
∥

2

=

m∑

i=1

[

max{0, fi(x
k) + ϵk}

∥
∥uk

i

∥
∥

]2

=
∑

i∈Ik

[

fi(x
k) + ϵk
∥
∥uk

i

∥
∥

]2

≥

[
f(xk) + ϵk

σ

]2

,(5.6)

where f(x) := max1≤i≤m fi(x). The őrst equality in (5.6) holds by (4.1), the third equality by
(5.5), and the last inequality follows from the deőnition of f and (5.2).

Take N as in Proposition 5.2. Combining (5.6) with Proposition 5.2, we obtain

dist2(xk, Ck) ≤ β2(f(xk) + ϵk)
2 ≤ m(βσ)2

∥
∥xk+1 − xk

∥
∥
2
,

for all k ≥ N , completing the proof.
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Proposition 5.4. Let {xk} be the sequence generated by PACA. If {xk} is inőnite, then the

sequence {dist(xk, Ck)} converges Q-linearly to 0.

Proof. By Proposition 5.1, there exists N ∈ N such that

(5.7) dist2(xk+1, Ck) ≤ dist2(xk, Ck)−
∥
∥xk+1 − xk

∥
∥
2
,

for all k ≥ N . Since {ϵk} is monotonically decreasing, we have Ck ⊂ Ck+1, so that we get from
(5.7),

(5.8) dist2(xk+1, Ck+1) ≤ dist2(xk, Ck)−
∥
∥xk+1 − xk

∥
∥
2
.

Using Proposition 5.3 and (5.8), we get

(5.9) dist(xk+1, Ck+1) ≤

√

1−
1

m(βσ)2
dist(xk, Ck),

completing the proof.

Next we prove that the sequence {dist(xk, C)} converges R-linearly to 0.

Proposition 5.5. Let {xk} be the sequence generated by PACA. If {xk} is inőnite, then the

sequence {dist(xk, C)} converges R-linearly to 0.

Proof. Let

(5.10) λ :=

√

1−
1

m(βσ)2
,

with β, σ as in Proposition 5.4. By Proposition 5.4, there exists N ∈ N such that, for k ≥ N ,

(5.11) dist(xk, Ck) ≤ λk+1−N dist(xN−1, CN−1).

Since Ck ⊂ C for all k, we get from (5.11),

(5.12) dist(xk, C) ≤ dist(xk, Ck) ≤ λk+1−N dist(xN−1, CN−1),

for all k ≥ N . Taking k-th roots in (5.12) and then limits with k → ∞, we get

lim
k→∞

[dist(xk, C)]1/k = lim
k→∞

λ1−(N+1)/k[dist(xN , CN )]1/k = λ.

Since λ < 1 by (5.10), we conclude that {dist(xk, C)} converges R-linearly to 0.

Theorem 5.6. Let {xk} be the sequence generated by PACA starting from an arbitrary point

x0 ∈ R
n. If {xk} is inőnite, then {xk} converges R-linearly to some point x⋆ ∈ C.

Proof. The result is a direct consequence of Proposition 5.5 and Theorem 2.6(ii).

6. Finite Convergence. In this section we will prove that under an additional assumption
on the sequence of perturbation parameters {ϵk}, PACA enjoys őnite convergence, i.e., xk solves
the CFP for some value of k.

Our next result is somewhat remarkable, because it states that if the sequence {xk} is inőnite
then the sequence {ϵk} of perturbation parameters must be summable. Now, the sequence {ϵk}
is an exogenous one, which can be freely chosen as long as it decreases to 0. If we select it so
that it is not summable, then it turns out that the sequence {xk} cannot be inőnite, and hence,
in view of the stopping criterion, there exists some k ∈ N such that xk solves CFP.
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We give now an informal argument which explains this phenomenon. We have proved that
xk approaches the perturbed set Ck at a certain speed (say, linearly), independently of how fast
ϵk decreases to zero. On the other hand, the perturbed sets Ck keep increasing, approaching the
target set C from the inside, with a speed determined by the ϵk’s. If ϵk goes to 0 slowly (say,
sublinearly), then, at a certain point, xk will get very close to Ck, while Ck is still well inside C.
At this point, xk gets trapped in C, so that it solves CFP, the algorithm suddenly stops, and we
get őnite convergence. Figure 1 depicts such behavior.

Fig. 1. Sketch of PACA őnite convergence.

We mention that, as far as we know, this is the őrst circumcenter-based method which is
proved to be őnitely convergent. The methods introduced in [19, 20] achieve superlinear conver-
gence assuming that the convex sets have smooth boundaries; our convergence analysis requires
no smoothness hypothesis.

Lemma 6.1. Let {xk} be the sequence generated by PACA. Under the Slater condition given

in Deőnition 2.1, if the sequence {xk} is inőnite, then
∑∞

k=0 ϵk < ∞.

Proof. Let δk := dist(xk, Ck). By (5.9) in Proposition 5.4 and (5.10), we have

(6.1) δk+1 ≤ λδk ≤ · · · ≤ λk+1−NδN ,

for all k ≥ N . Let zk be the closest point to xk in Ck, so that δk =
∥
∥xk − zk

∥
∥. Since {xk}

is inőnite, for all k there exists j(k) ∈ {1, . . . ,m} such that fj(k)(x
k) > 0. On the other hand,

fj(k)(z
k) + ϵk ≤ 0, because zk ∈ Ck. Using the subgradient inequality, we have

(6.2) fj(k)(z
k) ≥ fj(k)(x

k) +
(

uk
j(k)

)⊤
(zk − xk).

Adding ϵk on both sides of (6.2), we obtain

(6.3) 0 ≥ fj(k)(z
k) + ϵk ≥ fj(k)(x

k) + ϵk +
(

uk
j(k)

)⊤
(zk − xk),



16 BEHLING, BELLO-CRUZ, IUSEM, LIU AND SANTOS

Since fj(k)(x
k) > 0, we get from (6.3)

− ϵk ≥
(

uk
j(k)

)⊤
(zk − xk).

In view of the above inequality, it holds that

(6.4) ϵk ≤

∣
∣
∣
∣

(

uk
j(k)

)⊤
(zk − xk)

∣
∣
∣
∣
≤
∥
∥
∥uk

j(k)

∥
∥
∥

∥
∥zk − xk

∥
∥ =

∥
∥
∥uk

j(k)

∥
∥
∥ δk.

From (6.4) and (5.2), we have

(6.5) δk ≥
ϵk

∥
∥
∥uk

j(k)

∥
∥
∥

≥
ϵk
σ
.

Now (6.1) and (6.5) imply

(6.6) ϵk ≤ σδNλk+1−N ,

for all k ≥ N . Let ζ =
∑N−2

k=0 ϵk. From (6.6), we obtain

∞∑

k=0

ϵk = ζ +

∞∑

k=N−1

ϵk ≤ ζ + σδN

∞∑

k=N−1

λk+1−N = ζ +
σδN
1− λ

< ∞,

establishing the result.

Theorem 6.2. Let {xk} be the sequence generated by PACA. Under the Slater condition given

in Deőnition 2.1, if the sequence {ϵk} decreases to 0 and
∑∞

k=0 ϵk = ∞, then PACA has őnite

termination, i.e., there exists some index k such that xk solves CFP.

Proof. Immediate from Lemma 6.1.

We observe that there are many choices for the sequence {ϵk} which satisfy the assumptions
of Theorem 6.2, for instance, ϵk = νk−r, for any ν > 0 and any r ∈ (0, 1].

7. Numerical experiments. In order to investigate the behavior of PACA, we compare
our proposed algorithm with two other approximate projections based algorithms: CRM on the
Pierra’s reformulation with approximate projection (denoted as CARMprod) (see [4]), the Simul-
taneous subgredient projection method (SSPM) of [43], and the Modiőed Cyclic subgradient
projection (MCSP) by [35].

Taking into account Theorem 6.2, we set the perturbation parameter for PACA deőning
ϵk := ϵ̂(k) = 1

k (algorithm PACA1) and ϵk := ϵ̄(k) = 1√
k

(algorithm PACA2). Therefore, we ensure

that PACA1 and PACA2 have őnite termination.
We comment that SSPM is somehow similar to PACA: the difference relies on the way one

set αk, instead of the one PACA uses. For PACA, αk is given in (3.5), which arises from a
circumcenter (see Lemma 4.2). For SSPM, we set αk = 1 and for MCSP, αk = 1

k . Meanwhile,
MCSP just computes its iterates visiting all sets by means of perturbed subgradients computed
as in (3.3).

Likewise to PACA, SSPM and MCSP also enforce a perturbation parameter, and thus SSPM1
and MCSP1 employ ϵk := ϵ̂(k), while SSPM2 and MCSP2 use ϵk := ϵ̄(k).

These methods are applied to the problem of őnding a point in the intersection of m ellipsoids,
i.e, in (1.1), each Ci := ξi is regarded as an ellipsoid given by

ξi := {x ∈ R
n | fi(x) ≤ 0, for i = 1, 2, . . . ,m} ,
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with fi : R
n → R deőned as fi(x) := x⊤Aix + 2x⊤bi − ci. For each i = 1, . . . ,m, we have that

Ai ∈ R
n×n is symmetric positive deőnite, bi is a vector, and ci is a positive scalar.

The ellipsoids are generated in accordance to [19, sect. 5], so that the sets have not only
nonempty intersection, but also a Slater point. Moreover, the subdifferential of each fi is a
singleton given by ∂fi(x) = 2(Aix+ bi), since each fi is differentiable.

The computational experiments were performed on an Intel Xeon W-2133 3.60GHz with
32GB of RAM running Ubuntu 20.04 using Julia v1.9 [27], and are fully available at https:
//github.com/lrsantos11/CRM-CFP.

Figure 2 and Tables 1 and 2 summarize the results for different number of ellpsoids (m) and
dimensions (n). Figure 2 is performance proőle from Dolan and Moré [38], a well known tool for
comparing multiple algorithms on problem sets based on a performance metric and offers result
visualization for benchmark experiments. The best algorighm is the one with higher percentage
of problems solved within a given factor of the best time. In our case, we use wall-clock time (in
seconds) as the performance measure. Table 1 shows the average wall-clock time per dimension
and number of ellipsoids. Table 2 shows the statistics of all the experiments with Ellipsoids
intersection considering wall-clock time. Our numerical results indicate the PACA framework as
the winner, with PACA2 being the fastest algorithm.

Note that the numerical experiments also portray the őnite convergence inherent to PACA,
MCSP and SSPM, as the solutions found by all the algorithms PACA1, PACA2, MCSP1, MCSP2,
SSPM1 and SSPM2 are interior.
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Fig. 2. Performance proőle of experiments with Ellipsoids intersection considering wall-clock time (s).

8. Concluding remarks. In this work, we introduced a novel algorithm called Perturbed
Approximate Circumcenter Algorithm (PACA) to address the Convex Feasibility Problem (CFP).
The proposed algorithm ensures őnite convergence under a Slater condition, making it unique
in the landscape of circumcenter schemes for CFP. In addition to yieding őnite convergence,
this method leverages projections onto perturbed halfspaces, which are explicitly computed in
contrast to obtaining general orthogonal projections onto convex set. Numerical experiments
further showcase PACA’s efficiency compared to existing methods.
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Table 1

The average of wall-clock time (×10
−4

s) per dimension (n) and number of Ellipsoids (m).

n m PACA1 PACA2 CSPM1 CSPM2 CARMprod SSPM1 SSPM2

20 5 1.75 1.31 2.30 2.85 10.04 6.57 8.02
20 10 1.49 1.17 2.49 1.83 17.21 11.45 17.33
20 20 4.52 3.29 7.44 5.18 61.85 49.65 78.60
50 5 1.78 1.81 2.54 2.77 7.92 7.39 9.29
50 10 3.58 3.05 5.62 4.68 21.04 23.67 34.54
50 20 10.50 7.17 13.78 9.84 90.27 106.14 161.45

100 5 20.67 20.21 26.94 21.72 55.49 86.51 94.81
100 10 46.47 37.32 45.07 35.62 228.22 245.30 316.85
100 20 339.67 278.73 283.40 363.67 8813.35 3443.71 3758.55

Table 2

Statistics of all the experiments with Ellipsoids intersection considering wall-clock time (×10
−4

s).

mean median min max

PACA1 47.83 3.80 0.23 5447.21
PACA2 39.34 2.94 0.30 4340.08
MCSPM1 43.29 6.12 0.51 4096.26
MCSPM2 49.79 4.05 0.41 5589.35
CARMprod 1033.93 21.95 2.12 160 615.00
MSSPM1 442.27 30.42 1.06 53 225.90
MSSPM2 497.72 41.24 1.57 54 165.50

Acknowledgments. The authors are grateful to the anonymous referees and the handling
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