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Abstract

In this paper, we provide a comprehensive solution to the open problem regarding
the existence of a recurrence formula for computing fixed points of the Josephus
function precisely when the reduction constant is three. Incorporating this formula
into recursive algorithms significantly improves addressing the Josephus problem,
particularly for large inputs.

1. Introduction

The Josephus problem [12, 13, 17] presents a combinatorial challenge involving the

arrangement of n participants in a circular formation, followed by a subsequent

elimination process. Specifically, a starting point is chosen, a direction of rotation

is determined, and participants are enumerated around the circle until k − 1 have

been counted. Here, k serves as the reduction constant. The kth participant is

then eliminated and removed from the circle. This procedure continues until only

one remains. The primary aim of this problem is to ascertain the initial position

of this survivor, denoted Jk(n). In this paper, we focus on the case where k = 3

and address an open question raised in [2] regarding the existence of a recurrence

formula for sequentially calculating fixed points of the Josephus function.

The Josephus problem is a classic example of a recurrence relation, which has

been extensively studied in the literature. One of the earliest formal methodologies

for solving the original problem, where k = 3 and n = 41, was presented by Ba-

chet [3]. Subsequently, Euler [8] studied a recursive relation on n for the general
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case, establishing a connection between the survivor’s position Jk(n) and its pre-

ceding position Jk(n− 1), marking a noteworthy advancement in the mathematical

approach for understanding the problem. The Josephus problem has captivated

mathematicians across diverse domains, triggering expansions in the examination

of permutations and contemporary applications in computer algorithms, data struc-

tures, and image encryption; see, for instance, [4, 14, 21, 19, 10, 11, 1]. When the

reduction constant is 2, the problem has been entirely solved by Knuth [9], who

deduced a closed-form expression for J2(n). Additionally, Knuth formulated an

efficient algorithm for evaluating the general Josephus function Jk and inspired a

series of results that unleashed the recursive nature intrinsic to the problem; for

specific examples, consult [15, 16, 17, 7, 20, 6, 18, 5] and the references therein.

A recent study [2] introduced a non-recursive strategy based on recurrence for-

mulas between extremal points, drawing upon the discrete piecewise linear structure

inherent to the Josephus function. This novel approach offered an efficient solution

to the Josephus problem and led to a conjecture about the potential to enhance the

proposed algorithm using only fixed points, which are special extremal points. This

paper seeks to address this open question from [2] by proposing an explicit recur-

rence formula for the fixed points of the classical Josephus function J3. Possessing

a recurrence formula for these fixed points is of significant importance as it paves

the way for improving recursive algorithms that solve the Josephus problem.

This paper is organized as follows. The remainder of this section will provide

the necessary background and notation. Section 2 presents the main results of this

paper, including the recurrence formula for the fixed points and a closed expression

to evaluate the Josephus function J3. These formulas can be used to improve the

extremal algorithm for solving the Josephus problem. Section 3 includes concluding

remarks of the paper where a brief discussion of the results and future research

directions are presented.

1.1. Notation and Definitions

The mathematical formulation of the classical Josephus problem can be presented as

follows. Let n people be arranged in a circle that closes up its ranks as individuals are

picked out. Starting anywhere (Person 1’s spot), go sequentially around clockwise,

picking out each third person (the reduction constant) until one person is left (the

survivor). The position of the survivor is denoted by J3(n), which belongs to the

natural numbers N. This procedure is called the elimination process, and it naturally

generates a discrete function J3 : N → N that we call the Josephus function. We

say that the Josephus problem has been solved once we have determined the value

of J3 at n.

We denote by [[ℓ,m]], the set {ℓ, . . . ,m} for any two integers ℓ and m such that

ℓ f m. Note further that J3(n) ∈ [[1, n]] for every n.

The discrete piecewise linear structure of the Josephus function naturally leads
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to the following definition of extremal points of J3.

Definition 1 (Extremal and Fixed points). A high extremal point ne is defined

as a point that satisfies J3(ne) ∈ {ne − 1, ne}. In particular, we say that a high

extremal point np is a fixed point of J3 if J3(np) = np. On the other hand, if for ňe

holds that J3(ňe) ∈ {1, 2}, we refer to ňe as a low extremal point.

Note that a fixed point np is also a high extremal point. However, there are high

extremal points that are not fixed points, which will be called pure high extremal

points. Moreover, for n g 3, a sequence of distinct high and low extremal points

exists, and the Josephus function exhibits a piecewise linear structure between these

extremal points; see Figure 1 for a better illustration of these features.
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Figure 1: Graph of the Josephus function J3 for n f 50.

Let {n
(i)
e }i∈N denote the sequence of high extremal points for J3 increasingly

distributed starting at n
(1)
e = 1. We also introduce the fixed point indicator, fi, as

the binary sequence defined by fi := n
(i)
e − J3(n

(i)
e ) for all i. Note that fi describes

whether the high extremal point n
(i)
e is a fixed point or not, i.e., fi = 0 if and only if

n
(i)
e is a fixed point, or equivalently, fi = 1 if and only if n

(i)
e is a pure high extremal

point.
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2. Properties of High Extremal Points and Recurrence Formulas

Next we recall several relevant properties of the Josephus function. We start with

an important result involving high extremal points.

Theorem 1 (Four Cases of High Extremal Points). Let {n
(i)
e }i∈N be the sequence

of high extremal points for J3 such that n
(1)
e = 1 and define fi := n

(i)
e −J3(n

(i)
e ) and

ri := mod(n
(i)
e , 2) for all i. Then, the following statements hold.

(i) If fi = 1 and ri = 0 then n
(i+1)
e =

3n
(i)
e + 2

2
and fi+1 = 0.

(ii) If fi = 1 and ri = 1 then n
(i+1)
e =

3n
(i)
e + 1

2
and fi+1 = 1.

(iii) If fi = 0 and ri = 0 then n
(i+1)
e =

3n
(i)
e

2
and fi+1 = 1.

(iv) If fi = 0 and ri = 1 then n
(i+1)
e =

3n
(i)
e + 1

2
and fi+1 = 0.

Proof. To prove (i), note that if fi = 1 and ri := mod(n
(i)
e , 2) = 0 (or n

(i)
e even),

Equations (11), (12) and (13) in Corollary 7 of [2] can be used to show that ci = 0

and hence,

n(i+1)
e =

3(n
(i)
e + 1)− (0 + 1)

2
− 0 =

3n
(i)
e + 2

2
.

Note further that Equation (14) in Corollary 7 of [2] gives us

J3(n
(i+1)
e ) = 2− fi + 3

⌊

n
(i)
e + fi − 1

2

⌋

= 1 + 3

⌊

n
(i)
e

2

⌋

=
3n

(i)
e + 2

2
,

using the fact that n
(i)
e is even in the last equality. So, fi+1 = n

(i+1)
e −J3(n

(i+1)
e ) = 0,

which completes the proof of item (i).

The proofs for the remaining cases (ii), (iii), and (iv) follow a similar method,

using Corollary 7 from [2].

Note that the above result gives us a clear picture of the behavior of the sequence

of high extremal points for J3, {n
(i)
e }i∈N. In particular, if n

(i)
e is a fixed point, n

(i+1)
e

is a fixed point if and only if n
(i)
e is odd. On the other hand, if n

(i)
e is not a fixed

point, n
(i+1)
e is a fixed point if and only if n

(i)
e is even. This important observation

will be used below to understand how many pure high extremal points there are

between two consecutive fixed points, which is crucial to derive a recurrence formula

for computing consecutive fixed points.

Next, we will unify the four cases of the above theorem, which allows us to

establish simplified recurrence formulas between consecutive high extremal points,
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n
(i)
e , their fixed point indicators, fi, their parities, ri, and the expression for their

functional values, J3(n
(i)
e ).

Lemma 1 (Recurrence Formulas for High Extremal Points). Let {n
(i)
e }i∈N be the

sequence of high extremal points for J3 starting at n
(1)
e = 1 and define ri :=

mod(n
(i)
e , 2), fi := n

(i)
e − J3(n

(i)
e ), and si := mod

(

(3n
(i)
e + 2− ri)/2, 2

)

for all

i. Then,

n(i+1)
e =

3n
(i)
e + 1 + (1− ri)(2fi − 1)

2
, (1)

J3(n
(i+1)
e ) =

3n
(i)
e + (2− 3ri)(2fi − 1)

2
, (2)

fi+1 = fi − (1− ri)(2fi − 1), (3)

ri+1 = si − (1− ri)(1− fi)(2si − 1). (4)

Proof. The formulas for n
(i+1)
e given in the items (i) to (iv) of Theorem 1 coincide

with (1) after noting that



















fi = 1, ri = 0

fi = 1, ri = 1

fi = 0, ri = 0

fi = 0, ri = 1

imply 1+(1−ri)(2fi−1) =



















2

1

0

1,

and then















































n
(i+1)
e =

3n
(i)
e + 2

2

n
(i+1)
e =

3n
(i)
e + 1

2

n
(i+1)
e =

3n
(i)
e

2

n
(i+1)
e =

3n
(i)
e + 1

2
.

In similar way, note that if


















fi = 1, ri = 0

fi = 1, ri = 1

fi = 0, ri = 0

fi = 0, ri = 1

then fi − (1− ri)(2fi − 1) = fi+1 =



















0

1

1

0,

which proves (3). On the other hand, the functional value expression of n
(i+1)
e ,

J3(n
(i+1)
e ), in (2) follows directly from the fact that J3(n

(i+1)
e ) = n

(i+1)
e − fi+1,

which can be rewritten by using (1) and (3) as follows:

J3(n
(i+1)
e ) =

3n
(i)
e + 1− 2fi+1 + (1− ri)(2fi − 1)

2

=
3n

(i)
e + 1− 2fi + 3(1− ri)(2fi − 1)

2

=
3n

(i)
e + (2− 3ri)(2fi − 1)

2
.
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To prove (4), we recursively generate the sequence {ri}i∈N, starting at r1 =

mod(n
(1)
e , 2) = 1 and defining si := mod

(

3n
(i)
e + 2− ri

2
, 2

)

for all i, which is

well-defined because
3n

(i)
e + 2− ri

2
is always an integer. Note that (1) implies that

n(i+1)
e =

3n
(i)
e + 2− ri + (1− ri)(2fi − 2)

2
=

3n
(i)
e + 2− ri

2
− (1− ri)(1− fi).

Hence, ri+1 = si − (1 − ri)(1 − fi)(2si − 1). One may verify that the sequence

{ri}i∈N is generated by the following rule,

if























fi = 1, ri = 1, si = 0

fi = 0, ri = 1, si = 0

fi = 1, ri = 0, si = 0

fi = 0, ri = 0, si = 1,

then si − (1− ri)(1− fi)(2si − 1) = ri+1 = 0,

and

if























fi = 1, ri = 0, si = 1

fi = 0, ri = 0, si = 0

fi = 1, ri = 1, si = 1

fi = 0, ri = 1, si = 1,

then si − (1− ri)(1− fi)(2si − 1) = ri+1 = 1.

Thus, the recursive formula (4) holds.

We denote the high extremal point ne as np whenever ne is a fixed point. Let us

now focus on investigating the sequence of fixed points {n
(ℓ)
p }ℓ∈N of the Josephus

function J3. It is crucial to remember that while every fixed point is automatically

a high extremal point, the converse is not always true. Additionally, we should keep

in mind that there is an infinite number of fixed points for J3, as stated in Theorem

9 of [2]. These fixed points form a sequence that starts at 1 and always increases.

The behavior of the sequence of fixed points is intriguing and complex as well as

the number of pure high extremal points between consecutive fixed points n
(ℓ)
p and

n
(ℓ+1)
p , which will be denoted by mℓ; see Table 1.

Figure 2 illustrates three consecutive fixed points n
(ℓ)
p = 3986 218, n

(ℓ+1)
p =

102 162 424, and n
(ℓ+2)
p = 229 865 455, and the pure high extremal points between

them. The pure high extremal points are represented by blue dots and the fixed

points by red dots.

Our goal is to find a procedure to compute consecutive fixed points skipping the

pure high extremal points in between. Next, we present a recurrence formula for
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Fixed points n
(ℓ)
p , n

(ℓ+1)
p , and n

(ℓ+2)
p

{n
(ℓi)
e }7i=1 h.e.p. between n

(ℓ)
p and n

(ℓ+1)
p

n
((ℓ+1)1)
e h.e.p. between n

(ℓ+1)
p and n

(ℓ+2)
p

1
—

20
—

40
—

60
—

80
—

100
—

120
—

140
—

160
—

180
—

200
—

220
—

(×106)
n1 –

20–

40–

60–

80–

100–

120–

140–

160–

180–

200–

220–

(×106)

J3(n) J3(n) = n

Figure 2: Fixed points n
(ℓ)
p , n

(ℓ+1)
p and n

(ℓ+2)
p (ℓ = 17) and pure high extremal

points (h.e.p.) between them.
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ℓ n
(ℓ)
p mℓ ℓ n

(ℓ)
p mℓ ℓ n

(ℓ)
p mℓ

1 1 0 14 103 690 5 27 29 824 201 117 0
2 2 3 15 1 181 101 0 28 44 736 301 676 1
3 13 0 16 1 771 652 1 29 100 656 678 772 1
4 20 1 17 3 986 218 7 30 226 477 527 238 2
5 46 2 18 102 162 424 1 31 764 361 654 430 2
6 157 0 19 229 865 455 0 32 2 579 720 583 703 0
7 236 1 20 344 798 183 0 33 3 869 580 875 555 0
8 532 1 21 517 197 275 0 34 5 804 371 313 333 0
9 1198 2 22 775 795 913 0 35 8 706 556 970 000 1
10 4045 0 23 1 163 693 870 2 36 19 589 753 182 501 0
11 6068 1 24 3 927 466 813 0 37 29 384 629 773 752 1
12 13 654 2 25 5 891 200 220 1 38 66 115 416 990 943 0
13 46 084 1 26 13 255 200 496 1 39 99 173 125 486 415 0

Table 1: Values of n
(ℓ)
p and mℓ for ℓ ∈ {1, 2, . . . , 39}.

the fixed points of J3 that uses the number mℓ, which is the main result of this

section.

Theorem 2 (Recurrence Formula for Fixed Points). Let {n
(ℓ)
p }ℓ∈N be the sequence

of fixed points for J3, initialized with n
(1)
p = 1. Then, the number of pure high

extremal points between n
(ℓ)
p and n

(ℓ+1)
p , mℓ, is given by the formula

mℓ = max
{

m ∈ Z+ | 2m divides 3n(ℓ)
p + 2

}

for each ℓ, (5)

and the following recurrence formula holds for ℓ ∈ N:

n(ℓ+1)
p =

3mℓ(3n
(ℓ)
p + 2)− 2mℓ

2mℓ+1
. (6)

Proof. For simplicity, we set m instead of mℓ for every fixed ℓ ∈ N.

First, when max
{

m ∈ Z+ | 2m divides 3n
(ℓ)
p + 2

}

= 0, 3n
(ℓ)
p + 2 is odd. This

implies that n
(ℓ)
p is also odd. Then, according to Theorem 1(iv), the subsequent

high extremal point is a fixed point, which means that there are not pure high

extremal points in between, i.e., m = 0. Hence, (5) holds and the next fixed point

is given by n
(ℓ+1)
p =

3n
(ℓ)
p + 1

2
, which aligns with the expression in (6) for m = 0.

Next, if max
{

m ∈ Z+ | 2m divides 3n
(ℓ)
p + 2

}

= 1, 3n
(ℓ)
p + 2 is divisible only by

2. Therefore, n
(ℓ)
p is even. It follows from Theorem 1(iii) that the next high extremal

point is pure and satisfies n
(ℓ1)
e =

3n
(ℓ)
p

2
. Since 3n

(ℓ)
p + 2 is not divisible by 4, n

(ℓ1)
e
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is even. Invoking Theorem 1(i), the next high extremal point is actually a fixed

point, which means that the number of pure high extremal points is 1 (m = 1), and

therefore (5) holds. Moreover, the next fixed point is given by,

n(ℓ+1)
p = n(ℓ1+1)

e =
3n

(ℓ1)
e + 2

2
=

31(3n
(ℓ)
p + 2)− 21

22
.

This confirms the validity of (6) for m = 1.

Let m̌ := max
{

m ∈ Z+ | 2m divides 3n
(ℓ)
p + 2

}

. Assume that m̌ g 2. So, it is

possible to apply Theorem 1(iii) once and Theorem 1(ii) m̌ − 1 times, to get that

there is an increasing sequence of pure high extremal points, {n
(ℓi)
e }m̌i=1, between

n
(ℓ)
p and n

(ℓ+1)
p . The last pure extremal point, n

(ℓm̌)
e , is computed by

n(ℓm̌)
e =

3m̌−1(3n
(ℓ)
p + 2)

2m̌
− 1. (7)

We claim now that n
(ℓm̌)
e is even. A contrary assumption implies that 3m̌−1(3n

(ℓ)
p +

2)/2m̌ is divisible by 2. This in turn yields that 3n
(ℓ)
p + 2 is divisible by a power

of 2 greater than 2m̌, which is a contradiction with the definition of m̌. Applying

Theorem 1(i), the next high extremal point is actually a fixed point, which proves

that m̌ = m and (5) holds. Moreover, the next fixed point is given by

n(ℓ+1)
p = n(ℓm+1)

e =
3n

(ℓm)
e + 2

2
. (8)

However, examining our main recurrence formula, we deduce

3m(3n
(ℓ)
p + 2)− 2m

2m+1
=

3m(3n
(ℓ)
p + 2)

2m
− 1

2

=

3

(

3m−1(3n
(ℓ)
p + 2)

2m
− 1

)

+ 2

2

=
3n

(ℓm)
e + 2

2

= n(ℓ+1)
p ,

where we use (7) in the third equality and (8) in the last equality. This completes

the proof of the theorem.

Now we present a formula that allows us to solve the Josephus problem for a

given n using only fixed points.
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Theorem 3 (Expression for Evaluating the Josephus Function). Let n
(ℓ)
p and n

(ℓ+1)
p

be fixed points of J3 and let n be an integer in the interval [[n
(ℓ)
p +1, n

(ℓ+1)
p ]]. Define

m :=

⌈

log3/2

(

2n+ 1

3n
(ℓ)
p + 2

)⌉

. (9)

Then, we have

J3(n) = 3n+ 1−

(

2

3

)mℓ−m

(2n(ℓ+1)
p + 1), (10)

where mℓ is defined in (5).

Proof. For clarity, let us use m instead of mℓ for every fixed ℓ ∈ N. We divide the

proof in two cases.

Case 1. If m = 0, there are no pure high extremal points between n
(ℓ)
p and n

(ℓ+1)
p

and formula (6) of Theorem 2 implies that n
(ℓ+1)
p = (3n

(ℓ)
p + 1)/2 which combined

with the fact that n
(ℓ)
p + 1

6 < n f n
(ℓ+1)
p yields the inequality

(

3

2

)−1

=
2

3
<

2n+ 1

3n
(ℓ)
p + 2

f 1 =

(

3

2

)0

.

Taking the logarithm base 3/2 on each side of the last inequality and using the

definition of m, we get that m = 0. Now using Equation (16) from Corollary 7 of

[2], we find J3(n) = 3n− 2n
(ℓ+1)
p , which coincides with (10) when m = m = 0. This

validates (10) for this case.

Case 2. Assume that m g 1. According to Theorem 2, there are exactly m pure

high extremal points denoted n
(ℓ1)
e , . . . , n

(ℓm)
e between n

(ℓ)
p and n

(ℓ+1)
p . Also, denote

I1 := [[n
(ℓ)
p +1, n

(ℓ1)
e ]], Im+1 := [[n

(ℓm)
e +1, n

(ℓ+1)
p ]], and Ij := [[n

(ℓj−1)
e +1, n

(ℓj)
e ]] for

j = 2, . . . ,m whenever m g 2. Additionally, Theorem 1(iii) implies

n(ℓ1)
e = 3n(ℓ)

p /2. (11)

Moreover, it is possible to apply Theorem 1(iii) once and Theorem 1(ii) m−1 times,

to get

n(ℓj)
e =

3j−1(3n
(ℓ)
p + 2)

2j
− 1 (12)

for j = 2, . . . ,m, and Theorem 2 for m yields

n(ℓ+1)
p =

3m(3n
(ℓ)
p + 2)− 2m

2m+1
. (13)

Next, we analyze three subcases.
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Subcase 2a. n ∈ I1 := [[n
(ℓ)
p + 1, n

(ℓ1)
e ]]. Using a similar argument as Case 1, we

obtain the following inequality:

(

3

2

)−1

=
2

3
<

2n+ 1

3n
(ℓ)
p + 2

f 1 =

(

3

2

)0

.

This inequality together with the definition of m imply that m = 0. It follows from

Equation (16) in Corollary 7 of [2] and the fact that n
(ℓ1)
e is a pure extremal point,

i.e., J3(n
(ℓ1)
e ) = n

(ℓ1)
e − 1, that

J3(n) = 3(n− n(ℓ1)
e ) + J3(n

(ℓ1)
e )

= 3n− 2n(ℓ1)
e − 1

= 3n− 3n(ℓ)
p − 1

= 3n− 3

(

1

3

(

2m+1n
(ℓ+1)
p + 2m

3m
− 2

))

− 1

= 3n+ 1−

(

2

3

)m

(2n(ℓ+1)
p + 1),

where we have used (11) in the third equality and (13) in the fourth equality.

Therefore, the validity of (10) is proved.

Subcase 2b. n ∈ Ij = [[n
(ℓj−1)
e + 1, n

(ℓj)
e ]] for some j = 2, . . . ,m. In this case, we

use (12) and the same formula at j−1 for any j−1 = 2, . . . ,m−1 (when j−1 = 1,

we use (11)) together with the fact that n
(ℓj−1)
e < n f n

(ℓj)
e for j = 2, . . . ,m, to

prove that
(

3

2

)j−2

<
2n+ 1

3n
(ℓ)
p + 2

f

(

3

2

)j−1

.

Taking the logarithm base 3/2 of the last inequality and using the definition of m,

we get that m = j − 1. Using now Equation (16) in Corollary 7 of [2] and the fact

that n
(ℓj)
e is a pure high extremal point, we obtain

J3(n) = 3(n− n(ℓj)
e ) + J3(n

(ℓj)
e )

= 3n− 2n(ℓj)
e − 1

= 3n− 2

(

3j−1(3n
(ℓ)
p + 2)

2j
− 1

)

− 1

= 3n+ 1−

(

3

2

)

m

(3n(ℓ)
p + 2)

where we have used (12) in the third equality and that m = j−1 in the last equality.
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Hence, using (13), we have

J3(n) = 3n+ 1−

(

3

2

)

m

(

2m+1n
(ℓ+1)
p + 2m

3m

)

= 3n+ 1−

(

3

2

)

m
(

2

3

)m

(2n(ℓ+1)
p + 1)

= 3n+ 1−

(

2

3

)m−m

(2n(ℓ+1)
p + 1).

Thus, (10) holds.

Subcase 2c. n ∈ Im+1 := [[n
(ℓm)
e + 1, n

(ℓ+1)
p ]]. In this subcase, we use (12) with

j = m to get n
(ℓm)
e = (3m−1(3n

(ℓ)
p +2))/2m−1 and together with (6) from Theorem

2, one can check that

(

3

2

)m−1

<
2n+ 1

3n
(ℓ)
p + 2

f

(

3

2

)m

.

Taking the logarithm base 3/2 on each side of the last inequality and using the

definition of m, we have that m = m. Equation (10) holds similarly to Case 1 since

we again can use Equation (16) from Corollary 7 of [2] to write J3(n) = 3n−2n
(ℓ+1)
p ,

which coincides with (10) when m = m.

Note that the last two theorems are very powerful. Next, we present a direct

application of those results for evaluating the Josephus function at a large value

of n and a new expression for computing the number of pure high extremal points

between fixed points.

Remark 1 (Evaluating J3(50 000 000)). Given n
(17)
p = 3986 218 taken from Table

1, we can effortlessly compute the next fixed point n
(18)
p using the recurrence formula

(6),

n(18)
p =

3m17(3n
(17)
p + 2)− 2m17

2m17+1
=

37(3(3 986 218) + 2)− 27

28
= 102 162 424,

where m17 = 7. Moreover, we can evaluate J3 by hand at n = 50 000 000 as

J3(50 000 000) = 3(50 000 000) + 1−

(

2

3

)m17−m

(2(102 162 424) + 1) = 13 783 435,

after observing that

m =

⌈

log3/2

(

2n+ 1

3n
(17)
p + 2

)⌉

=

⌈

log3/2

(

2(50 000 000) + 1

3(3 986 218) + 2

)⌉

= +5.2377252342894725,
= 6.
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Remark 2 (A New Formula for Computing mℓ). We can use the formula for J3(n)

in terms of the fixed points of J3 provided in (10) of Theorem 3 to compute

J3(n
(ℓ+1)
p ) = 3n(ℓ+1)

p + 1−

(

2

3

)mℓ−m

(2n(ℓ+1)
p + 1) = n(ℓ+1)

p ,

which implies
(

1−

(

2

3

)mℓ−m

)

(2n(ℓ+1)
p + 1) = 0.

Hence, mℓ = m and

mℓ =

⌈

log3/2

(

2n
(ℓ+1)
p + 1

3n
(ℓ)
p + 2

)⌉

.

2.1. A Fixed Point Algorithm for Solving the Josephus Problem

To solve the Josephus problem, we propose the fixed point algorithm. This strategy

computes recursively the fixed points n
(ℓ)
p for ℓ = 1, 2, . . . , q until n

(q)
p is greater

than or equal to n. This is detailed in Theorem 2. Subsequently, J3 is evaluated at

n as given by Theorem 3. The iteration starts with n
(1)
p = 1 and from ℓ = 1, 2, . . .

until n
(ℓ+1)
e g n, we compute,

n(ℓ+1)
p =

3mℓ(3n
(ℓ)
p + 2)− 2mℓ

2mℓ+1
,

where mℓ = max
{

m ∈ Z+ | 2m divides 3n
(ℓ)
p + 2

}

. Then, we evaluate

J3(n) = 3n+ 1−

(

2

3

)mℓ−m

(2n(ℓ+1)
p + 1),

where m =

⌈

log3/2

(

2n+ 1

3n
(ℓ)
p + 2

)⌉

.

Comparing the fixed point algorithm with the extremal algorithm introduced in

[2], our collected data suggests that the former is approximately 50% more efficient

than the latter. Notably, for even fixed points, the number of pure high extremal

points,mℓ, tends to 1 as n becomes sufficiently large. This indicates that the number

of extremal points is approximately the double of the number of fixed points. As

a result, the extremal algorithm requires roughly twice the number of iterations as

the fixed point algorithm. For example, to compute J3(50 000 000), the fixed point

algorithm requires the computation of the first 18 fixed points. On the other hand,

the extremal algorithm also needs to compute
∑17

ℓ=1 mℓ = 27 pure extremal points,

leading to a total of 45 high extremal points (including the fixed points). In this

scenario, the fixed point algorithm is approximately 52% faster than the extremal
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algorithm. However, as n increases, this percentage will approach 50%. Next, we

graph the function

r(q) =

q−1
∑

ℓ=1

(

1−
q

(mℓ + q)

)

× 100%,

which represents the percent of gain of the fixed point algorithm over the extremal

algorithm for the values q = 1, 2, . . . , 39 from Table 1 and q = 1, 2, . . . , 200.

0 10 20 30 40

0

10

20

30

40

50

60

q

r(
q)

Percent of Gain

(a) Graph of r(q) the percentage gain for q =
1, 2, . . . , 39.
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20

40

60

80

q

r(
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(b) Graph of r(q) the percentage gain for q =
1, 2, . . . , 200.

Figure 3: Graphs of r(q) showing the percentage gain of the fixed point algorithm.

3. Concluding Remarks

In this paper, we derived a recurrence formula for computing successive fixed points

of the Josephus function, specifically when the reduction constant is three. The pro-

posed recurrence relation not only partially solves the open question introduced in

[2] but also enhances the efficiency of the non-recursive algorithm previously pre-

sented in [2] for large inputs. Our results pave the way for further research in this

domain. An immediate direction is to generalize the recurrence formula for different

reduction constants. Finding a recurrence formula for the general case remains an

open problem, and its solution could provide a deeper understanding and broaden

the applications of this problem.
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