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Abstract
In this paper, we provide a comprehensive solution to the open problem regarding
the existence of a recurrence formula for computing fixed points of the Josephus
function precisely when the reduction constant is three. Incorporating this formula
into recursive algorithms significantly improves addressing the Josephus problem,
particularly for large inputs.

1. Introduction

The Josephus problem [12, 13, 17] presents a combinatorial challenge involving the
arrangement of n participants in a circular formation, followed by a subsequent
elimination process. Specifically, a starting point is chosen, a direction of rotation
is determined, and participants are enumerated around the circle until £ — 1 have
been counted. Here, k serves as the reduction constant. The k** participant is
then eliminated and removed from the circle. This procedure continues until only
one remains. The primary aim of this problem is to ascertain the initial position
of this survivor, denoted Ji(n). In this paper, we focus on the case where k = 3
and address an open question raised in [2] regarding the existence of a recurrence
formula for sequentially calculating fixed points of the Josephus function.

The Josephus problem is a classic example of a recurrence relation, which has
been extensively studied in the literature. One of the earliest formal methodologies
for solving the original problem, where k = 3 and n = 41, was presented by Ba-
chet [3]. Subsequently, Euler [8] studied a recursive relation on n for the general
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case, establishing a connection between the survivor’s position Ji(n) and its pre-
ceding position Ji(n — 1), marking a noteworthy advancement in the mathematical
approach for understanding the problem. The Josephus problem has captivated
mathematicians across diverse domains, triggering expansions in the examination
of permutations and contemporary applications in computer algorithms, data struc-
tures, and image encryption; see, for instance, [4, 14, 21, 19, 10, 11, 1]. When the
reduction constant is 2, the problem has been entirely solved by Knuth [9], who
deduced a closed-form expression for Jy(n). Additionally, Knuth formulated an
efficient algorithm for evaluating the general Josephus function Jj; and inspired a
series of results that unleashed the recursive nature intrinsic to the problem; for
specific examples, consult [15, 16, 17, 7, 20, 6, 18, 5] and the references therein.

A recent study [2] introduced a non-recursive strategy based on recurrence for-
mulas between extremal points, drawing upon the discrete piecewise linear structure
inherent to the Josephus function. This novel approach offered an efficient solution
to the Josephus problem and led to a conjecture about the potential to enhance the
proposed algorithm using only fixed points, which are special extremal points. This
paper seeks to address this open question from [2] by proposing an explicit recur-
rence formula for the fixed points of the classical Josephus function J3. Possessing
a recurrence formula for these fixed points is of significant importance as it paves
the way for improving recursive algorithms that solve the Josephus problem.

This paper is organized as follows. The remainder of this section will provide
the necessary background and notation. Section 2 presents the main results of this
paper, including the recurrence formula for the fixed points and a closed expression
to evaluate the Josephus function Js. These formulas can be used to improve the
extremal algorithm for solving the Josephus problem. Section 3 includes concluding
remarks of the paper where a brief discussion of the results and future research
directions are presented.

1.1. Notation and Definitions

The mathematical formulation of the classical Josephus problem can be presented as
follows. Let n people be arranged in a circle that closes up its ranks as individuals are
picked out. Starting anywhere (Person 1’s spot), go sequentially around clockwise,
picking out each third person (the reduction constant) until one person is left (the
survivor). The position of the survivor is denoted by J3(n), which belongs to the
natural numbers N. This procedure is called the elimination process, and it naturally
generates a discrete function J3 : N — N that we call the Josephus function. We
say that the Josephus problem has been solved once we have determined the value
of J3 at n.

We denote by [[¢, m]], the set {¢,...,m} for any two integers ¢ and m such that
¢ < m. Note further that Js(n) € [[1,n]] for every n.

The discrete piecewise linear structure of the Josephus function naturally leads
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to the following definition of extremal points of J3.

Definition 1 (Extremal and Fixed points). A high extremal point n. is defined
as a point that satisfies J3(n.) € {n. — 1,n.}. In particular, we say that a high
extremal point n, is a fized point of Js if J3(n,) = np. On the other hand, if for 7.
holds that J3(n.) € {1,2}, we refer to 7. as a low extremal point.

Note that a fixed point n, is also a high extremal point. However, there are high
extremal points that are not fixed points, which will be called pure high extremal
points. Moreover, for n > 3, a sequence of distinct high and low extremal points
exists, and the Josephus function exhibits a piecewise linear structure between these
extremal points; see Figure 1 for a better illustration of these features.
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Figure 1: Graph of the Josephus function J3 for n < 50.

Let {ng)}ieN denote the sequence of high extremal points for Js increasingly

distributed starting at ngl) = 1. We also introduce the fixed point indicator, f;, as

the binary sequence defined by f; := nt — Jg(ng)) for all . Note that f; describes

whether the high extremal point ng) is a fixed point or not, i.e., f; = 0 if and only if
(4) i

is a fixed point, or equivalently, f; = 1 if and only if nél) is a pure high extremal
point.
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2. Properties of High Extremal Points and Recurrence Formulas

Next we recall several relevant properties of the Josephus function. We start with
an important result involving high extremal points.

Theorem 1 (Four Cases of High Extremal Points). Let {ne )}ZeN be the sequence
of high extremal points for Js such that ng ) =1 and define f; := ne @ —J3(n (‘Z)) and
T = mod(nf2 ,2) for all i. Then, the following statements hold.

; 3n) 42
i) If fi=1 andrizOthenngH) et and f;+1 =0.
Yy +
i 3nd +1
(i) If fi=1 and r; = 1 then nitY) = % and fiz1 = 1.
0
3 3 e
iii) If f; =0 and r; =0 then n( +1) _ e and fiv1 =1.
2
(2)
; 30l 41
(iv) If fi =0 and r; =1 then n( D _ % and fiz1 =0.

Proof. To prove (i), note that if f; =1 and r; := mod(ngi),Q) =0 (or n even),
Equations (11), (12) and (13) in Corollary 7 of [2] can be used to show that ¢; =0

and hence,

€ 2 2
Note further that Equation (14) in Corollary 7 of [2] gives us

(z) (1) (%)
i 7 e 3 2
Ja(ni*D) =2~ f; +3 { +2f J o VQ J - 2+*,

using the fact that ng) is even in the last equality. So, fi+1 = nﬁ” ) Jg(ngiﬂ)) =0,
which completes the proof of item (i).
The proofs for the remaining cases (ii), (iii), and (iv) follow a similar method,

using Corollary 7 from [2]. O

Note that the above result glves us a clear picture of the behavior of the sequence
of high extremal points for J3, {np }ien. In particular, if ng Y is a fixed point, n((fﬂ)
is a fixed point if and only if nt) is odd. On the other hand, if nt is not a fixed
point, n( ) s a fixed point if and only if ne is even. This important observation
will be used below to understand how many pure high extremal points there are
between two consecutive fixed points, which is crucial to derive a recurrence formula
for computing consecutive fixed points.

Next, we will unify the four cases of the above theorem, which allows us to
establish simplified recurrence formulas between consecutive high extremal points,
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n((f), their fixed point indicators, f;, their parities, r;, and the expression for their

functional values, J3 (ng))

Lemma 1 (Recurrence Formulas for High Extremal Points). Let {ngi)}ieN be the
sequence of high extremal points for Js starting at nél) = 1 and define r; =
mod(ngi),Q), fi = nt) — Jg(’l’bg)), and s; := mod ((371?) +2— Ti)/2,2> for all
i. Then,

oy _ 3+ 1+ (- r)(2fi - 1)

Ne 2 ) (1)
(@)
. 2~ 3r,)(2f; — 1
Jy(ntit0) = 3t 27« )@= 1) (2)
fiv1=fi— (1 —m)2fi = 1), (3)
rivr =8 — (1=r)(1 = fi)(2si — 1). (4)
Proof. The formulas for R given in the items (i) to (iv) of Theorem 1 coincide
with (1) after noting that
G+ _ 3nl) 42
fi:17ri:O 2 (i+1)_3n£i +1
fi = 1,7%‘ =1 . 1 Ne - T 5
imply 14+(1—r;)(2f;i—1) = and then (ig
fi = O,TZ‘ = 0 0 n(H_l) _ 3716
fi=0m=1 1, © 2
(+1) _ 3ne” +1
nel =

In similar way, note that if

fi:]-a’ri:O 0
fi=Llri=1 1
then i 177‘1' 2271 = Ji =
oo fi=(U=r)@hi=1 = fin = 1|
Ji=0,r;=1 0,

which proves (3). On the other hand, the functional value expression of ngﬂ),

Jg(ngﬂ)), in (2) follows directly from the fact that J3(ng+1)) = nit — fit1s
which can be rewritten by using (1) and (3) as follows:

3t +1—2fiy + (1 —r)(2fi — 1)
2
3l 41— 2f 430 - ) (2fi — 1)
2
30l 4 (2 - 3r)(2f; — 1)
2

Js (n((ii+1)) —
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To prove (4), we recursively generate the sequence {r;};cn, starting at r; =
(2) o
3ne’ +2—r;

5 ,2 | for all 4, which is

mod(né”,?) = 1 and defining s; := mod(
3l +2 -1

5 is always an integer. Note that (1) implies that

well-defined because

3nl) 42—+ (1—r)2fi—2) 3l 42—
2 N 2

ni ) = = (L =r)(A = fi).
Hence, 741 = s8; — (1 — r;)(1 — f;)(2s; — 1). One may verify that the sequence
{ri}ien is generated by the following rule,

Ji=Lri=1,5=0
g JA=0m=La=00 (1—r)(1— fi)(2si — 1) 0
1 en S; — —T; — Ji S; — =7T; =V,
fi=1r;=0,5=0 i

Ji=0,r;=0,8 =1,
and

fizlvr’izoasizl
g QIO Tl =0y (1—r)(1— f) (25 — 1) 1
1 en S; — —T; — Ji S; — =T; = 1.
fi:]-vri:]-vsi:]- i

fi:()vri:]wsi:]-v

Thus, the recursive formula (4) holds.
O

We denote the high extremal point n. as n, whenever n. is a fixed point. Let us
now focus on investigating the sequence of fixed points {nj(f)}geN of the Josephus
function Js. It is crucial to remember that while every fixed point is automatically
a high extremal point, the converse is not always true. Additionally, we should keep
in mind that there is an infinite number of fixed points for Js, as stated in Theorem
9 of [2]. These fixed points form a sequence that starts at 1 and always increases.
The behavior of the sequence of fixed points is intriguing and complex as well as
the number of pure high extremal points between consecutive fixed points nl(,é) and
nz(,Hl), which will be denoted by 7y; see Table 1.

Figure 2 illustrates three consecutive fixed points n](f) = 3986218, nﬁ,“l) =
102162424, and n}(f”) = 229865455, and the pure high extremal points between
them. The pure high extremal points are represented by blue dots and the fixed
points by red dots.

Our goal is to find a procedure to compute consecutive fixed points skipping the
pure high extremal points in between. Next, we present a recurrence formula for
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Figure 2: Fixed points ng), nz(,Hl) and néHQ) (¢ = 17) and pure high extremal
points (h.e.p.) between them.
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P [ e | o [m]e] | e |
1 1 0 14 103690 | 5 || 27 29824201117 | O
2 2 3 15 1181101 | O || 28 44736301676 | 1
3 13 0 16 1771652 | 1 29 100656678772 | 1
4 20 1 17 3986218 | 7 || 30 226477527238 | 2
5 46 2 18 102162424 | 1 || 31 764361654430 | 2
6 157 | 0 19 229865455 | 0 || 32 | 2579720583703 | O
7 236 1 20 344798183 | 0 || 33 | 3869580875555 | 0O
8 932 1 21 017197275 | 0 || 34 | 5804371313333 | O
9 1198 2 22 775795913 | 0 || 35 | 8706556970000 | 1
10 4045 0 23 1163693870 | 2 || 36 | 19589753182501 | O
11 6068 1 24 3927466813 | 0 || 37 | 29384629773752 | 1
12 | 13654 | 2 25 5891200220 | 1 || 38 | 66115416990943 | 0
13 | 46 084 1 26 | 13255200496 | 1 || 39 | 99173125486415 | O

Table 1: Values of née) and T, for £ € {1,2,...,39}.

the fixed points of J3 that uses the number my, which is the main result of this
section.

Theorem 2 (Recurrence Formula for Fixed Points). Let {n,(f)}zEN be the sequence

of fized points for Js, initialized with ni(,l) = 1. Then, the number of pure high
(€) (e+1)

extremal points between ny’ and ny ', My, is given by the formula
My = max {m € Zy | 2™ divides 3n1(f) + 2} for each ¢, (5)

and the following recurrence formula holds for ¢ € N:

alern — 3™ (3ny” +2) — 2™ (6)
P g+l :
Proof. For simplicity, we set T instead of 7, for every fixed ¢ € N.

First, when max {m € Z4 | 2™ divides 371,(,@ + 2} =0, 3n§;€) + 2 is odd. This
implies that nx(f) is also odd. Then, according to Theorem 1(iv), the subsequent
high extremal point is a fixed point, which means that there are not pure high
extremal points in between, i.e., T = 0. Hence, (5) holds and the next fixed point

3l +1
is given by né“l) = %, which aligns with the expression in (6) for m = 0.
Next, if max {m € Z+ | 2™ divides 3n1(f) + 2} =1, 3n1(f) + 2 is divisible only by

2. Therefore, n}(f) is even. It follows from Theorem 1(iii) that the next high extremal

30
point is pure and satisfies ngl) = n?p. Since 3n§,€> + 2 is not divisible by 4, n.(fl)
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is even. Invoking Theorem 1(i), the next high extremal point is actually a fixed
point, which means that the number of pure high extremal points is 1 (2 = 1), and
therefore (5) holds. Moreover, the next fixed point is given by,

3 +2 330l 4+2) - 2!

41) o (G41) _
né )fngl ) = 3 52

This confirms the validity of (6) for ™ = 1.
Let m := max {m € Zy | 2™ divides Bny) + 2 7. Assume that m > 2. So, it is

possible to apply Theorem 1(iii) once and Theorem 1(ii) 7 — 1 times, to get that

there is an increasing sequence of pure high extremal points, {né‘i)};ﬁ;l, between

nl(,l) and nz(,Hl). The last pure extremal point, ngm), is computed by

371 (3ny) + 2)

(erh) —
Ne om

1. (7)
We claim now that nt"™ is even. A contrary assumption implies that 3”“’1(3711(,@) +
2)/2™ is divisible by 2. This in turn yields that 3n\” + 2 is divisible by a power
of 2 greater than 2™, which is a contradiction with the definition of rh. Applying
Theorem 1(i), the next high extremal point is actually a fixed point, which proves
that 7o = and (5) holds. Moreover, the next fixed point is given by

U
(ZW+1) _ 3”2 ) + 2

(e+1) _
n, =ng 5

(®)

However, examining our main recurrence formula, we deduce

373y +2)

37(3ny) +2) 2™ o 1
2m+1 B 2
m—1 (£)
2
3 (3(322;”—” _ 1) +9
- 2
B BngW) +2
- 2
— D),

where we use (7) in the third equality and (8) in the last equality. This completes
the proof of the theorem. O

Now we present a formula that allows us to solve the Josephus problem for a
given n using only fixed points.
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Theorem 3 (Expression for Evaluating the Josephus Function). Let n;(,z) and nI(,Hl)

be fized points of J3 and let n be an integer in the interval [[n,(f) +1, nz(,zﬂ)}]. Define

2n+1
m:= |log — - (9)
{ v <3n§f)+2ﬂ

me—m

J3(n)=3n+1-— (g) (an(f“) + 1), (10)

Then, we have

where Ty is defined in (5).

Proof. For clarity, let us use m instead of my for every fixed ¢ € N. We divide the
proof in two cases.

Case 1. If m = 0, there are no pure high extremal points between ny) and nl(fﬂ)
and formula (6) of Theorem 2 implies that n,(,eﬂ) = (3n1(,£) + 1)/2 which combined

with the fact that n;(f) + % <n< nl(fﬂ) yields the inequality

—1 0
3 :g< 2n+1 <1- 3 .
2 3 3n§;€> +2 2
Taking the logarithm base 3/2 on each side of the last inequality and using the
definition of m, we get that m = 0. Now using Equation (16) from Corollary 7 of
[2], we find J3(n) = 3n — 2n1(f+1), which coincides with (10) when 72 = m = 0. This

validates (10) for this case.
Case 2. Assume that m > 1. According to Theorem 2, there are exactly m pure

high extremal points denoted ngl), e ,ngW) between n](f) and ngfﬂ). Also, denote
I = [0 + 1,08, Ty = [0 +1,080]), and 1; = [0 4 1,089 for

Jj=2,...,m whenever m > 2. Additionally, Theorem 1(iii) implies
nlf) = SnI(f)/Z. (11)

Moreover, it is possible to apply Theorem 1(iii) once and Theorem 1(ii) T2 —1 times,
to get
;) 3j_1(3n§,@ +2)
ngt = ——————=
23

for j =2,...,m, and Theorem 2 for m yields

—1 (12)

37 (3nY) +2) — 2™
2ﬁ+1

R+ — (13)

Next, we analyze three subcases.
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Subcase 2a. n €1y := [[ny) +1, ngl)]]. Using a similar argument as Case 1, we

obtain the following inequality:

3\7' 2 2n+1 3\"
Ot )
2 3 3ny) +2 2
This inequality together with the definition of m imply that m = 0. It follows from
Equation (16) in Corollary 7 of [2] and the fact that n{") is a pure extremal point,
ie., Jg(ngl)) =ni" — 1, that
J3(n) = 3(n —n{™) + J5(n{")
=3n—2n{") —1

= 3n—3n1(f) -1

1 2%—&-1 (Z+1) QW
:3n—3<3< n”gm RIS I

2 m
=3n+1- (3) @2nlF 4+ 1),

where we have used (11) in the third equality and (13) in the fourth equality.

Therefore, the validity of (10) is proved.

Subcase 2b. nel; = [[ngj’l) + 1,ng€j)]] for some j = 2,...,m. In this case, we

use (12) and the same formula at j—1forany j—1=2,...,/m—1 (when j —1 =1,

we use (11)) together with the fact that nd) < o< i) for j = 2,...,m, to

prove that _ _
3\ 2n+1 3\
2) “o.,-\2) -
2 3ny’ + 2 2

Taking the logarithm base 3/2 of the last inequality and using the definition of m,
we get that m = j — 1. Using now Equation (16) in Corollary 7 of [2] and the fact
that ngéj )is a pure high extremal point, we obtain

Ts(n) = 3(n = 1) + Jy(n®)
=3n—2n%) —1

i=1(300 4 9
=3n—2<3(3;;)+)—1>—1

3 m
=3n+1- (2> (3nlP) +2)

where we have used (12) in the third equality and that m = j—1 in the last equality.
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Hence, using (13), we have

3 m [ om+l, (Z‘H oM
Ta(n) = 3n +1— 5 ( +
™72
e
2 —m
=3n+1-— (3) @2n{H 4 1),

Thus, (10) holds.
Subcase 2c. n € Iz = . In this subcase, we use (12) with
j =m to get nt'™ = (3m1(3n") +2))/27 — 1 and together with (6) from Theorem

2, one can check that
m—1 m
3 < 2n+1 < 3 .
2 3n () 4 9 2

Taking the logarithm base 3/2 on each side of the last inequality and using the
definition of m, we have that m = m. Equation (10) holds similarly to Case 1 since

(™ + 1,25

we again can use Equation (16) from Corollary 7 of [2] to write J3(n) = 3n72n§,€+1),
which coincides with (10) when m = 7. O

Note that the last two theorems are very powerful. Next, we present a direct
application of those results for evaluating the Josephus function at a large value
of n and a new expression for computing the number of pure high extremal points
between fixed points.

Remark 1 (Evaluating J3(50000000)). Given ng)”) = 3986218 taken from Table
1, we can effortlessly compute the next fixed point ng,lg) using the recurrence formula

(6),

m (17) m 7 7
3m17(3 2) —2™7  37(3(3986218) +2) — 2
n1®) — ( np ) _ 37 )+2) = 102162424,
9mi7+1 28

where 17 = 7. Moreover, we can evaluate Js by hand at n = 50000 000 as

mi7—m
J3(50 000 000) = 3(50 000 000) + 1 — <3> (2(102162424) + 1) = 13783435,

after observing that

|, o + 1 | 2(50 000 000) + 1
B B P G ©83/2 \ "3(3986218) + 2

[5 2377252342894725]

CD
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Remark 2 (A New Formula for Computing 7¢). We can use the formula for J3(n)
in terms of the fixed points of J3 provided in (10) of Theorem 3 to compute

9 me—m
Ja(ny ™) =30+ 1 - (3) (2ng ™ + 1) = nf,

(1 - <§)mem> @2niftH +1) = 0.

m log an()”l) 1
0= — |-
82 Sng) +2

2.1. A Fixed Point Algorithm for Solving the Josephus Problem

which implies

Hence, my = m and

To solve the Josephus problem, we propose the fized point algorithm. This strategy
computes recursively the fixed points n,(f) for £ = 1,2,...,q until néq) is greater
than or equal to n. This is detailed in Theorem 2. Subsequently, J3 is evaluated at
n as given by Theorem 3. The iteration starts with n](,l) =1and from ¢ =1,2,...

until nf(fﬂ) > n, we compute,

sy 3 (3ny) +2) — 2™
ny - ome+1 )

where Ty = max {m € Z4 | 2™ divides 3n1(,€) + 2}. Then, we evaluate

) me—m
Js(n) =3n+1— (3> @n{F 4+ 1),

2n+1
where m = | logs /5 o
3ny’ + 2

Comparing the fixed point algorithm with the extremal algorithm introduced in
[2], our collected data suggests that the former is approximately 50% more efficient
than the latter. Notably, for even fixed points, the number of pure high extremal
points, T, tends to 1 as n becomes sufficiently large. This indicates that the number
of extremal points is approximately the double of the number of fixed points. As
a result, the extremal algorithm requires roughly twice the number of iterations as
the fixed point algorithm. For example, to compute J3(50000000), the fixed point
algorithm requires the computation of the first 18 fixed points. On the other hand,
the extremal algorithm also needs to compute 221 My = 27 pure extremal points,
leading to a total of 45 high extremal points (including the fixed points). In this
scenario, the fixed point algorithm is approximately 52% faster than the extremal
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algorithm. However, as n increases, this percentage will approach 50%. Next, we

graph the function
q—1

r(g) =) (1 - (W‘iq)> x 100%,

=1
which represents the percent of gain of the fixed point algorithm over the extremal
algorithm for the values ¢ = 1,2,...,39 from Table 1 and ¢ = 1,2,...,200.

Percent of Gain Percent of Gain

wf — wh ]
S0l g a N S el |
| / Nod [

[\ A wl . t

1%, |

o /

o | o k
S ot N
|

= =
< o | = a0t
E

0

of ¢ ) ) )
0 10 20 30
qa

| L L n n
10 0 50 100 150 200
q

(a) Graph of r(q) the percentage gain for ¢ = (b) Graph of (q) the percentage gain for ¢ =
1,2,...,39. 1,2,...,200.

Figure 3: Graphs of r(g) showing the percentage gain of the fixed point algorithm.

3. Concluding Remarks

In this paper, we derived a recurrence formula for computing successive fixed points
of the Josephus function, specifically when the reduction constant is three. The pro-
posed recurrence relation not only partially solves the open question introduced in
[2] but also enhances the efficiency of the non-recursive algorithm previously pre-
sented in [2] for large inputs. Our results pave the way for further research in this
domain. An immediate direction is to generalize the recurrence formula for different
reduction constants. Finding a recurrence formula for the general case remains an
open problem, and its solution could provide a deeper understanding and broaden

the applications of this problem.
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