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Orbital frustration and topological flat bands
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We expand the concept of frustration in Mott insulators and quantum spin liquids to metals with flat bands.
We show that when interorbital hopping t2 dominates over intraorbital hopping t1, in a multiband system with
strong spin-orbit coupling λ, electronic states with a narrow bandwidth � ∼ (t2)2/λ are formed compared to a
bandwidth of order t1 for intraorbital hopping dominated models. We demonstrate the evolution of the electronic
structure, Berry phase distributions for time-reversal and inversion breaking cases, and their imprint on the
optical absorption in a tight-binding model of d-orbital hopping on a honeycomb lattice. Going beyond quantum
Hall effects and twisted bilayer graphene, we provide an alternative mechanism and a richer materials’ platform
for achieving flat bands poised at the brink of instabilities toward novel correlated and fractionalized metallic
phases.
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I. INTRODUCTION

Symmetry and topology have played a fundamental role in
characterizing emergent phases in quantum matter. From the
well-understood emergence of long-range order in crystals,
magnets, and superconductors, research has moved to the
frontiers of a new type of truly exotic order, namely topolog-
ical order, in which the quantum numbers of the excitations
are fractionalized. A key ingredient to obtain fractionalization
is frustration of the motion of the electron that leads to a
small kinetic energy and hence to flat bands in the electronic
spectrum. Our main goal is to provide a design principle for
creating materials in which the interorbital hopping t2 domi-
nates over intraorbital hopping t1, in a multiband system with
strong spin-orbit coupling λ, that generates electronic states
with a narrow bandwidth � ∼ (t2)2/λ compared to a band-
width of order t1 for intraorbital dominated hopping models.
We expect these designer flat-band materials to provide a link
between frustrated metals and frustrated magnetic insulators,
paving the way for the search and discovery of topologically
ordered states.

Emergent phases in quantum matter are understood today
under two paradigms: the Landau paradigm, which has been
the pillar for phases arising from the spontaneous breaking of
symmetry, and the topological paradigm, in which phases are
characterized by topological invariants leading to quantized
response functions. Within the topological paradigm, there
are broadly two classes: phases where interactions are less
important, such as the integer quantum Hall effect, topological
insulators [1,2], Weyl semimetals [3,4], and topological super-
conductors [5,6]; and the more exotic class, where interactions
dominate along with topology, yielding a new type of order,
dubbed topological order [7–9]. These include two candidates
so far: (i) the fractional quantum Hall effect (FQHE) [10–13]
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in a two-dimensional electron gas subjected to a large mag-
netic field in which charge is fractionalized, and (ii) quantum
spin liquids in Mott insulators in which spin is fractional-
ized [14–16].

Fractionalization in the FQHE arises because the kinetic
energy is quenched and the bands become completely flat in
a high magnetic field upon projecting to the lowest Landau
level [see Fig. 1(a)], and consequently, the relatively strong
electron-electron Coulomb interactions open a bulk gap in the
metallic regime with edge states that carry the signature of
fractional charge in quantized Hall and quantized thermal Hall
transport. Further, quantum spin liquids emerge in Mott insu-
lators due to magnetic frustration [17–27]. In the celebrated
Kitaev magnets with bond-dependent frustrating interactions,
for example, spins are fractionalized intoMajorana modes that
have recently been shown to produce a quantized thermal Hall
conductance in a candidate material α-RuCl3 [16,28–31].

Recently, the community has seen feverish activity in
twisted bilayer graphene in which flat bands emerge when the
angle of mismatch is a very specific magic angle of around
1◦ yielding a large-scale moiré pattern with lattice constant
aM much larger than that of a graphene sheet aG [32,33] [see
Fig. 1(b)]. For the most ideal magic angles, the flat bands are
separated from other dispersing bands by an energy gap δ ∼
10 meV leading to a flatness ratio of F = �/δ � 0.5 [34,35].
The flat bands have resulted in the observation of strongly cor-
related superconducting and Mott insulating phases [36–42];
however, so far fractionalized metallic states have not been
observed.

In this paper, we demonstrate a mechanism for achieving
flat bands in metallic systems with strong spin-orbit coupling
λ. The basic mechanism involves frustrating the motion of an
electron by suppressing intraorbital hopping t1 compared to
hopping between different orbitals t2. We dub this mechanism,
which leads to small bandwidths of order (t2)2/λ and small
flatness ratios F ∼ (t2/λ)2, spin-orbit assisted interorbital
frustration [see Fig. 1(c)]. Importantly, these flatbands have
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FIG. 1. Three mechanisms for generating flat bands: (a) by localizing electrons in a large magnetic field B in two dimensions in quantum
Hall systems; (b) from a periodic interlayer moiré potential VM (r) in “magic-angle” twisted bilayer graphene with period aM � aG, the
graphene lattice constant, yielding a flatness ratio of F � 0.5. (c) Our proposal of achieving flat bands via spin-orbit interaction λ assisted
interorbital frustration whereby dominant interorbital hopping t2 in an effective j = 1/2 multiplet on the honeycomb lattice leads to a flatness
ratio F ∼ (t2/λ)2. The strong interacting limit of dominant intraorbital t1 or dominant interorbital t2 hopping leads to Heisenberg or an Kitaev
Hamiltonian, respectively (see Sec. III).

nontrivial momentum space Berry phase distributions that
encode the mixing of the orbital degrees of freedom on the
lattice and that influence the anomalous Hall conductivity and
the dynamical conductivity.

We choose the parameters of our tight-binding Hamilto-
nian to ensure that with on-site Hubbard interactions, in the
strong-coupling limit, we obtain the Kitaev model with bond-
dependent interactions, and we contrast it with the parameters
that generate the isotropic Heisenberg model. We show that
in the metallic itinerant phase, the presence of strong spin-
orbit interactions, λ, can lead to frustration whereby the
kinetic energy of a multiplet of bands is suppressed in sys-
tems where intersite interorbital hopping, t2, dominates over
intersite intraorbital hopping t1. We calculate the electrical
conductivity in two regimes: systems dominated by t2 and
systems dominated by t1, for which we show the crossover
and consequences of the momentum space Berry phase distri-
butions in the frustrated flat band phase.

II. MODEL

We consider a honeycomb lattice of transition-metal ions
surrounded by the octahedral cages formed by the ligands.
The ions’ d-orbitals split into a threefold t2g sector and a

twofold degenerate eg sector separated by the crystal field δCF
energy. In the low-energy t2g sector, the general tight-binding
Hamiltonian on a honeycomb lattice can be written as

Ĥ =
∑

〈i j〉,αβ,σ

tαβ
i j d̂

†
ασ (ri )d̂βσ (r j ) +

∑
i,αβ,σσ ′

λ
αβ

σσ ′ d̂†
ασ (ri )d̂βσ ′ (ri ),

(1)

where d̂†
ασ (ri ) and d̂ασ (ri ) are the fermionic annihilation and

creation operators at site ri for orbital α and spin σ .
The honeycomb lattice can be described by a primitive

triangular lattice with two sites A and B per unit cell.
Each A and B site has three nearest-neighboring sites.
We orient the honeycomb such that the primitive lattice
vectors can be chosen to be R1 = a

√
3/2x̂ + a/2ŷ and

R2 = a
√
3/2x̂ − a/2ŷ, where a is the lattice constant.

We denote the three vectors connecting an A site to its
nearest-neighboring B sites as vx = −a/2

√
3x̂ + a/2ŷ,

vy = −a/2
√
3x̂ − a/2ŷ, and vz = a/

√
3x̂. and we also define

a set of bond axes γ̂x = −1/
√
6x̂ + 1/

√
2ŷ + 1/

√
3ẑ, γ̂y =

−1/
√
6x̂ − 1/

√
2ŷ + 1/

√
3ẑ, and γ̂ z = √

2/3x̂ + 1/
√
3ẑ

whose projection onto the plane of the honeycomb is in the
direction of nearest-neighbor bond vectors vs [see Fig. 2(d)].
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FIG. 2. Band structures with spin-orbit coupling λ0 on a honeycomb lattice: (a) Bands ε(k), in units of λ0, for dominant interorbital hopping
t2 = 0.1λ0 and intraorbital hopping t1 = t3 = 0. The bandwidth of the upper j = 1/2 multiplet �inter

1/2 ∼ t2/λ0 ∼ 0.01λ0. (b) Inset highlighting
the flat bands in the upper j = 1/2 manifold of (a). (c) Bands of intraorbital dominated hopping t1 = t3 = 0.1λ0 and t2 = 0. The bandwidth of
the upper j = 1/2 multiplet is �intra

1/2 ∼ t1 ∼ 0.1λ0. (d) Honeycomb lattice in the [001] plane showing orthogonal Cartesian axes (x̂, ŷ, ẑ), bond
axes (γ̂x, γ̂y, γ̂ z ), and orbital axes (êx, êy, êz ), and intersite intraorbital and intersite interorbital processes.

The tight-binding model in Eq. (1) is the sum of two
terms: a kinetic part describing the overlap between nearest-
neighboring d-orbitals on the honeycomb lattice, and a
spin-orbit part describing the on-site interaction between
the spin and orbital degrees of freedom of the t2g sector.
It is easiest to write these couplings in a maximally sym-
metric coordinate system whereby the d-orbitals |dα (ri )〉
and spin are defined with respect to the orthogonal or-
bital unit vectors êx = −1/

√
2x̂ − 1/

√
6ŷ + 1/

√
3ẑ, êy =

1/
√
2x̂ − 1/

√
6ŷ + 1/

√
3ẑ, and êz = √

2/3ŷ + 1/
√
3ẑ, which

are related to the bond axes by a π/2 counterclockwise rota-
tion. In this basis, the nearest-neighbor kinetic interactions can
be written in terms of matrices Tγ (ri,r j ), where γ (ri, r j ) takes
three values γ (ri, r j ) = x, y, z corresponding to the vector vs

that connects nearest-neighbor sites ri and r j . We write the
symmetry-allowed components of these matrices

tαβ
i j δσσ ′ = T αβ

γ (ri,r j )
δσσ ′ = 〈dασ (ri )| t̂ |dβσ ′ (r j )〉 (2)

in the basis of orbitals {|dyz(ri )〉 , |dzx(ri )〉 , |dxy(ri )〉} defined
with respect to the axes êi as

Tx =

⎡
⎢⎣
t3 0 0

0 t1 t2

0 t2 t1

⎤
⎥⎦, Ty =

⎡
⎢⎣
t1 0 t2

0 t3 0

t2 0 t1

⎤
⎥⎦,

Tz =

⎡
⎢⎣
t1 t2 0

t2 t1 0

0 0 t3

⎤
⎥⎦. (3)

Symmetry constrains the nearest-neighbor hopping matrices
to have three independent parameters t1, t2, and t3. The in-
tersite interorbital coupling is described by t2, while t1 and t3
describe the intersite intraorbital couplings.

The second term in Eq. (1) describes the on-site spin-
orbit interaction λ

αβ

σσ ′δi j = 〈dασ (ri )| λ̂ |dβσ ′ (r j )〉 between the

d-orbitals in the t2g sector: λ̂ = 2λ0

h̄2
∑

i L̂êi ⊗ Ŝêi . Here Ŝêi =
(h̄/2)σ̂êi , and σ̂êi is the Pauli matrix in the êi direc-
tion. The angular momentum operators can be expressed
in terms of matrices Lei whose components Lαβ

ei δσσ ′δrir j =
〈dασ (ri )| L̂êi |dβσ ′ (r j )〉 in the orbital basis are

Lex =

⎡
⎢⎣
0 0 0

0 0 −i

0 i 0

⎤
⎥⎦, Ley =

⎡
⎢⎣

0 0 i

0 0 0

−i 0 0

⎤
⎥⎦,

Lez =

⎡
⎢⎣
0 −i 0

i 0 0

0 0 0

⎤
⎥⎦. (4)
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In the absence of t̂ , the spin-orbit interactions split the t2g
sector into states of total angular momentum j = 1/2 and 3/2
separated by an energy 3/2λ0.

III. STRONG-COUPLING EXPANSION

Upon adding a strong on-site multiorbital Hubbard interac-
tion to Eq. (1) of the form

ĤU =
∑
i

(
U − 3JH

2
(n̂i − 1)2 − 2JH Ŝi · Ŝi − JH

2
L̂i · L̂i

)
,

(5)

where n̂(ri ), Ŝ(ri ), and L̂(ri ) are the density, spin, and orbital
angular momentum operator at site ri, in the limit of strong
spin-orbit coupling λ � t and strong Hubbard interactions
an expansion in powers of t leads to an effective J -K-�
Hamiltonian for a system where half of the j = 1/2 multiplet
is filled, given by

Ĥeff =
∑
〈i, j〉

(
J Ĵ(ri ) · Ĵ(r j ) + KĴêγ

(ri )Ĵêγ
(r j )

+
∑
αβ

�(Ĵêα
(ri )Ĵêβ

(r j ) + Ĵêβ
(ri )Ĵêα

(r j ))

)
. (6)

Here γ → γ (ri, r j ) is an implicit function of the lattice sites,
ri and r j , and Ĵi is the total angular momentum operator
projected onto the j = 1/2 state space,

Ĵ =
∑

m=±1/2

|1/2,mj〉 〈1/2,mj | (Ŝ + L̂) |1/2,mj〉 〈1/2,mj | .

(7)

The coupling strengths J , K , and � in the limit ti <<

λ << U are given by [43,44]

J = 4

27

(
6t1(t1 + 2t3)

U − 3JH
+ 2(t1 − t3)2

U − JH
+ (2t1 + t3)2

U + 2JH

)
,

K = 8JH
9

(
(t1 − t3)2 − 3t22

(U − 3JH )(U − JH )

)
,

� = 16JH
9

(
t2(t1 − t3)

(U − 3JH )(U − JH )

)
· (8)

We see that in the limit of purely intraorbital hopping (t2 = 0)
and t1 = t3 but nonzero, the effective Hamiltonian is that of a
Heisenberg magnet (K = � = 0), while in the limit of purely
interorbital hopping (t2 �= 0) and t1 = t3 = 0 the effective
Hamiltonian is purely Kitaev type with J = � = 0. In this
model, the interorbital coupling t2 acts as an effective spin-
orbit interaction where the orbital degrees of freedom take the
role of an effective spin. In the limit t1 = t3 = 0, this effective
interaction gives rise to a pseudospin frustration that leads to
the effective Kitaev-type interaction in Eq. (6). The alternative
limit ti � U � λ is less studied and may be a promising
avenue to engineer other types of spin-liquid phases. Here we
focus on the itinerant metallic phase where in the absence of
interactions and for ti � λ flat bands emerge in the presence
of dominant intersite interorbital hopping.

IV. FLAT BANDS

By using the discrete translation symmetry of the system,
the Hamiltonian in Eq. (1) yields a 12 × 12 matrix [(2 j +
1) × 2 atoms], the Bloch Hamiltonian, Ĥ (k), whose compo-
nents can be written as Hχγ (k) = ∑

� Hχγ (�, δ)e−i�·ke−iδ·k

with Hχξ (Ri − R j, τ i − τ j ) = 〈dχ (Ri + τ i )| Ĥ |dξ (R j + τ j〉.
Here χ and ξ index the spin, orbital, and sublattice degrees
of freedom of the localized atomic states on the lattice. In this
basis, the Bloch Hamiltonian can be written as

Ĥ (k) =
∑
μ,α

tμα (k)(�μ ⊗ Dα ⊗ 1) +
∑
i

λ0(1 ⊗ Lêi ⊗ Sêi ),

(9)

where �μ are the two-dimensional Pauli matrices de-
scribing the A/B sublattice degrees of freedom, 1 is the
two-dimensional identity matrix, and tμα (k) is the three-
dimensional matrices Dα that satisfy

∑
α

txα (k)Dα = Re

(∑
i

eik·vi Ti

)
,

∑
α

tyα (k)Dα = Im

(∑
i

eik·vi Ti

)
,

tzα (k) = 0, (10)

where vi are the three vectors defined above that connect an A
site to its neighboring B sites.

We now investigate the eigenvalues of the Bloch Hamil-
tonian in the purely intraorbital (t2 = 0, t1 = t3 �= 0) and
interorbital (t2 �= 0, t1 = t3 = 0) kinetic limits. For general
orbital hopping, our model satisfies time-reversal symme-
try (T̂ = iσêyK) and inversion symmetry (Î = �x) endowed
by the honeycomb lattice structure ([T̂ , Ĥ ] = [Î, Ĥ ] = 0).
These symmetries result in a Kramers degeneracy throughout
the Brillouin zone such that bands must be at least twofold-
degenerate for all crystal momenta k independent of the value
of the kinetic hopping parameters t1, t2, and t3. In the ab-
sence of ti, the coupling between neighboring sites on the
lattice vanishes and the Hamiltonian consists of completely
local interactions that describe flat bands separated into two
manifolds: a manifold with total angular momentum j = 1/2
containing four bands, and a manifold with total angular
momentum j = 3/2 containing eight bands. This multiplet
structure (4 + 8) remains for λ � t , though j is no longer a
good quantum number.

Figures 2(a) and 2(c) show the band structure along
high-symmetry directions in the Brillouin zone for hopping
parameters in the extreme intraorbital and interorbital kinetic
limits. In the intraorbital dominated limit, the absence of
interorbital hopping (t2 = 0) results in an additional interor-
bital symmetry such that each band in the j = 3/2 sector
is fourfold-degenerate throughout the Brillouin zone, while
the j = 1/2 sector contains two twofold-degenerate bands
protected by time-reversal and inversion symmetry. Band
touching points occur at the K = (2π/

√
3a, 2π/3a) and K ′ =

(2π/
√
3a,−2π/3a) points in the Brillouin zone. This results

in an eightfold-degenerate double Dirac point for the j = 3/2
sector and fourfold-degenerate Dirac points for the j = 1/2
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TABLE I. Eigenvalues of W 3/2
αβ (k) at high-symmetry points in the Brillouin zone in the intraorbital and interorbital dominated kinetic

limits. Eigenvalues are given in units of the nonzero kinetic coupling t . Each eigenvalue is twofold-degenerate due to time-reversal and
inversion symmetry.

Intraorbital Dominated Interactions Eigenvalues [t1]

� 9/2 3/2 −3/2 −9/2
K/K ′ 0 0 0 0
M 3/2 1/2 −1/2 −3/2
Interorbital Dominated Interactions Eigenvalues [t2]

�
√
1 + √

7/16
√
1 − √

7/16 −
√
1 − √

7/16 −
√
1 + √

7/16
K/K ′ √

2 − √
15/16 0 0 −

√
2 − √

15/16
M

√
1 + √

7/16
√
1 − √

7/16 −
√
1 − √

7/16 −
√
1 + √

7/16

sector. Note that neither of these topological degeneracies is
protected by crystalline symmetries. They can be converted to
manifolds containing just twofold-degenerate bands through
the introduction of other symmetry-allowed interorbital inter-
actions, and they are simply an artifact of the finely tuned
nature of the purely intraorbital coupling limit.

In the limit of extreme interorbital kinetics, intraorbital
interactions are turned off (t1 = t3 = 0) and the orbital in-
teractions are dominated by the interorbital coupling t2.
The j = 3/2 multiplet is split into four twofold-degenerate
bands, while the j = 1/2 multiplet consists of two twofold-
degenerate bands with almost no dispersion. The intraband
kinetic energy is quenched due to an interorbital-spin-orbit
frustration caused by the large on-site spin-orbit interaction
λ0 and nonzero t2 that leads to the appearance of flat bands.

To understand how these flat bands emerge in the presence
of nonzero t̂ , we use degenerate perturbation theory to calcu-
late the energy splitting of the spin-orbit split bands in orders
of the kinetic hopping coefficients t1, t2, and t3. Remarkably
for purely interorbital hopping, the first-order correction to the

energy bands of the j = 1/2 manifold vanishes. This is due to
the orbital character of the j = 1/2 manifold and the orbital
character of the purely interorbital hopping matrices. The
action of these matrices on the j = 1/2 manifold transforms a
j = 1/2 state into a mixture of j = 3/2 states. These states are
all orthogonal to the j = 1/2 manifold as they have different
eigenvalues with respect to λ̂. To find the band splitting, we
must then go to second-order perturbation theory leading to
an effective bandwidth in the purely interorbital hopping limit
�inter

1/2 ∼ (t2)2/λ. This is in contrast to the band splitting of the
j = 3/2 manifold of states and of either multiplet in the purely
intraorbital hopping limit where the first-order correction to
the spin-orbit split flat bands is nonzero. In these cases, the
action of the kinetic hopping, t̂ , transforms a state with eigen-
value j = 1/2 or 3/2 into a linear combination of j = 1/2 and
3/2 states, leading to a bandwidth � ∼ t .

These results are most easily determined by writing the
Bloch Hamiltonian in the basis of total angular momentum
eigenstates j = 1/2, 3/2. In this basis, the Hamiltonian takes
the form

Ĥ (k) =
⎛
⎝λ014×4 + M1/2

k (t1, t3) Gk (t1, t2, t3)

G†
k (t1, t2, t3) −λ0

2
18×8 + M3/2

k (t1, t2, t3)

⎞
⎠, (11)

where M1/2
k (t1, t3) is a 4 × 4 matrix, M3/2

k (t1, t2, t3) is an
8 × 8 matrix, and Gk (t1, t2, t3) is a 4 × 8 matrix that are
all linear functions of the kinetic couplings ti. We see that
M1/2

k (t1, t3) is independent of the interorbital kinetic cou-
pling t2 and thus vanishes in the purely interorbital hopping
limit t1 = t3 = 0, while the other matrices remain nonzero.
This forces the linear-in-t perturbations to the eigenvalues
of the j = 1/2 manifold in the upper-left 4 × 4 block of
Ĥ (k) to vanish, while in this limit the lower-right 8 × 8
blockM3/2(t1, t2, t3) is nonvanishing and leads to the order-t
perturbation to the eigenvalues of the j = 3/2 sector being
nonzero. In contrast for the purely intraorbital hopping limit,
the matrices M1/2

k (t1, t3), M3/2
k (t1, t2, t3), and Gk (t1, t2, t3)

are all nonzero, leading to nonzero first-order perturbations
to the spin-orbit split flat bands.

In the absence of t̂ , the Hamiltonian in Eq. (1) consists
of a band structure of flat band multiplets of total angular

momentum j = 1/2 and 3/2. To calculate the energy splitting
of the degenerate j = 1/2 and 3/2 multiplets to linear order
in t̂ , we use degenerate perturbation theory and first calculate
the components of the matrix

W j
αβ (k) = 〈

ψ j
α

∣∣ ∑
μ,γ

tμγ (k)(�μ ⊗ Dγ ⊗ 1)
∣∣ψ j

β

〉
, (12)

where |ψ j
α〉 are the eigenstates of λ̂ with total angular momen-

tum j. The eigenvalues of the matrixW j
αβ (k) are the first-order

corrections to the eigenvalues of λ̂ [45].
For the j = 3/2 manifold, the eigenvalues of W 3/2

αβ (k) are
nonzero and complicated functions of k. Table I lists eigen-
values of W 3/2

αβ (k) at some high-symmetry momenta in the
Brillouin zone for the intraorbital and interorbital dominated
kinetic limits. Each eigenvalue is doubly degenerate because
of Kramers theorem and the presence of time-reversal and
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inversion symmetries. We also note the vanishing of the
first-order correction to the band energies at the K and K ′

momenta in the intraorbital dominated coupling limit. This
is reflected in the full band structure by the presence of the
eightfold-degenerate double Dirac point contained in the j =
3/2 manifold as plotted in Fig. 2(c). To maintain this multifold
degeneracy, higher-order corrections to the band dispersion at
these points must vanish. Lastly, we note that the first-order

correction to the band energies predicts a bandwidth �3/2 of
the j = 3/2 manifold that is of order the hopping strength
(� ∼ t) for both the intraorbital and interorbital dominated
kinetic limits.

This is in striking contrast to the j = 1/2 manifold of states
where W 1/2

αβ (k) is nonzero in the intraorbital dominated cou-
pling limit, but vanishes in the interorbital dominated limit.
For general kinetic hopping t , its eigenvalues are

δE (1)
± (k) = ±2t1 + t3

3

√
3 + 4 cos

(√
3

2
kxa

)
cos

(
1

2
kya

)
+ 2 cos

(
kya

)
, (13)

where each eigenvalue δE±(k) is again twofold-degenerate
because of Kramers’ theorem. In both the intraorbital and
interorbital dominated coupling limit, δE±(K ) = δE±(K ′) =
0. In the intraorbital dominated limit (t2 = 0), this results in
the presence of Dirac cones at the K and K ′ points in the
Brillouin zone [see Fig. 2(c)] as further higher-order correc-
tions to the band structure also vanish at these high-symmetry
points. Remarkably in the interorbital dominated kinetic limit,
t1 = t3 = 0, W 1/2

αβ = 0. This is due to the orbital character of
the j = 1/2 manifold and the orbital character of the purely
interorbital hopping matrices. The action of these matrices
on the j = 1/2 manifold transforms a j = 1/2 state into a
mixture of j = 3/2 states. These states are all orthogonal to
the j = 1/2 manifold as they have different eigenvalues with
respect to λ̂ forcingW 1/2

αβ (k) to vanish. This demonstrates that
the first-order correction to the energy eigenvalues vanishes in
the j = 1/2 manifold and for the extreme interorbital domi-
nated limit.

To calculate any nonzero dispersion in this limit and in the
j = 1/2 manifold, we must proceed to second-order degener-
ate perturbation theory. However, the calculation is simplified
in the interorbital dominated limit due to W 1/2

αβ (k) = 0. The
second-order correction to the j = 1/2 manifold of bands is
given by

δE (2)
α (k) =

∑
β

〈
ψ1/2

α

∣∣ t̂ (k) ∣∣ψ3/2
β

〉 〈
ψ

3/2
β

∣∣ t̂ (k) ∣∣ψ1/2
α

〉
E (0)
1/2 − E (0)

3/2

, (14)

where E (0)
1/2 and E (0)

3/2 are eigenvalues of λ̂ for the j = 1/2 and
3/2 manifold, and where

t̂ (k) =
∑
μ,α

tμα (k)(�μ ⊗ Dα ⊗ 1). (15)

The difference E (0)
1/2 − E (0)

3/2 = 3/2λ0 is of order the spin-orbit
coupling λ0, while the numerator will be of order t2 squared.
We see that this leads to a bandwidth in the j = 1/2 manifold
and in the interorbital dominated limit of �inter

1/2 ∼ (t2)2/λ0,
whereas the bandwidths in the purely intraorbital hopping
limit �intra

1/2 and the bandwidth of the j = 3/2 manifold in
either limit are all of order t .

In the presence of nonzero intraorbital hopping, the first-
order kinetic correction to the spin-orbit split bands is of order
t1 and t3. In the limit t1, t3 � (t2)2/λ0, the dispersion of the
eigenenergies of the full Bloch Hamiltonian is proportional
to the interorbital hopping t2 and inversely proportional to

the on-site spin-orbit scale λ0, and it leads to bandwidths
in the J = 1/2 multiplet of states �1/2 ∼ (t2)2/λ0 similar
to the completely frustrated limit (t1 = t3 = 0), while in the
limit (t2)2/λ0 � t1, t3 the dominant intraorbital dynamics di-
minishes orbital frustration and leads to bandwidths in the
J = 1/2 multiplet �1/2 ∼ t1, t3.

Thus the ingredients for achieving spin-orbit assisted in-
terorbital frustration that leads to flat bands in the j = 1/2
manifold in the interorbital dominated limit are the vanishing
of the first-order perturbative correction to the band energies
deriving from the orbital character of the j = 1/2 manifold
of states and the orbital character of a purely interorbital
coupling between sites, and the presence of a large spin-orbit
interaction for which the j = 1/2 and 3/2 manifolds are sep-
arated by a large energy gap and for which t2/λ0 is small.

V. QUANTUM BAND GEOMETRY AND SYMMETRY
BREAKING

The quantum geometry of a band structure is determined
by a band’s Berry potential An(k) = i 〈un(k)| ∇k |un(k)〉 and
curvature �n(k) = ∇k × An(k), whose integral across the 2D
Brillouin zone dictates the winding of the phase of the Bloch
wave function: an integer topological invariant called the
Chern number. In the purely atomic limit, whereby the hop-
ping of electrons across lattice sites is strictly forbidden, the
Berry curvature is trivially zero. Here we show that in the pres-
ence of strong intersite interorbital interactions, t2, the orbital
structure of Bloch eigenstates becomes strongly mixed across
the Brillouin zone leading to unique Berry curvature density
in the presence of time-reversal and inversion breaking pertur-
bations.

The Berry curvature is a pseudovector such that for
inversion symmetric systems �k

n(−k) = �k
n(k), and for time-

reversal symmetric systems �k
n(−k) = −�k

n(k). In the mod-
els described above, time-reversal and inversion symmetry
constrain the Berry curvature to vanish in every band n and
at all crystal momentum k, so �n(k) = 0 ∀k,∀n.

To observe nonzero Berry curvature, we perturb our model
system with a time-reversal breaking perturbation that couples
directly to the electronic spin or with an inversion breaking
on-site sublattice potential,

Ĥ ′
T =

∑
i,σσ ′,α

μBB0 · σσσ ′ d̂†
ασ (ri )d̂ασ ′ (ri ), (16)
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FIG. 3. Berry curvature distribution (in units of a2) for [panels (a)] time-reversal broken Hamiltonian (μB|B0| = 0.05λ0) and [panels (b)]
for inversion broken Hamiltonian (|m0| = 0.05λ0): (1) Berry curvature of 10th band; (2) band structure of 9th to 12th bands in the purely
interorbital hopping limit (t2 = 0.1λ0, t1 = t3 = 0); (3) Berry curvature of 10th band; (4) band structure of 9th to 12th bands for purely
intraorbital limit (t1 = t3 = 0.1λ0, t2 = 0). The regions outlined in green in panel (b), parts (1) and (3), show the fractionalization of the Berry
curvature distribution around the K and K ′ points in the Brillouin zone as one interpolates between the purely intraorbital and purely interorbital
hopping limits.

Ĥ ′
I =

∑
i,σ,α

m0(ri )d̂†
ασ (ri )d̂ασ (ri ), (17)

where m0(ri ) = +1 (−1) if site ri is in the A (B) sublattice.
Figure 3 shows the band structure and Berry curvature for the
second lowest band in the j = 1/2 multiplet in the intraorbital
and interorbital hopping dominated limits.

When time reversal is broken, bands in the j = 1/2 man-
ifold are split in both the purely intraorbital and purely
interorbital hopping limits. In the intraorbital limit, internal
orbital symmetry allows bands to cross near the K and K ′

points in the Brillouin zone. In this case, the Berry curva-
ture vanishes everywhere except at the points where bands
cross and the curvature becomes ill-defined. In the interorbital
dominated limit, peaks in the Berry curvature occur near the
M points in the Brillouin zone where the band gap between
the lowest and second lowest bands of the j = 1/2 multiplet
becomes narrow.

When inversion symmetry is broken, in the intraorbital
limit, internal orbital symmetry allows bands in the j = 1/2
manifold to remain twofold-degenerate at every point in the
Brillouin zone. The single-band Berry curvature is ill-defined
in the presence of degenerate bands, and thus for these in-
version broken systems we plot the Berry phase density for a
state with chemical potential filling half the j = 1/2 multiplet.
We first partition the Brillouin zone into small plaquettes and
compute the Berry flux through each plaquette,

φ(k) = −Im(Ln( det(U ))), (18)

where Unm = 〈un(kN )|um(k0)〉, with n and m taking values
over all bands up to the half-filled j = 1/2 multiplet, and
where the state |un(kN )〉 is calculated by parallel transport
of the state |un(k0)〉 from k0 around a plaquette centered at

k [46]. The Berry curvature is then found by dividing φ(k) by
the area of the plaquette. We find that the Berry curvature is
localized at the K and K ′ points where the band gap between
the lower and upper bands of the j = 1/2 multiplet narrows.
In the inversion broken interorbital hopping dominated limit,
the narrow bands in the j = 1/2 multiplet are split everywhere
except at the � and M points, where the bands come to-
gether and form two twofold-degenerate points and the Berry
curvature is ill-defined. Away from these points, the Berry
curvature disperses in a threefold symmetric pattern with its
saddle points along high-symmetry lines connecting the � and
M points in the Brillouin zone.

VI. OPTICAL SIGNATURES

The topological and geometric character of the band
structures of the purely intraorbital hopping and interorbital
hopping limits can be distinguished in the system’s response
to a frequency-dependent electric field. To understand the op-
tical response of our model to external frequency-dependent
electric field perturbations, we calculate the optical conduc-
tivity tensor. The conductivity tensor σi j (t, t ′) ∈ R such that
σi j (−ω) = σ ∗

i j (ω). Furthermore, time-reversal symmetry con-
strains the antisymmetric part of the conductivity to vanish,
σi j (ω) = σ ji(ω) [47,48]. Crystalline threefold rotational sym-
metry about a lattice point constrains the diagonal parts of
the conductivity to be equal [σ (ω) = σxx(ω) = σyy(ω)] while
in-plane twofold rotational symmetry constrains σxy(ω) =
σyx(ω) = 0 [49].

The optical conductivity has two contributions. The in-
traband contribution, σF (ω), derives from electromagnetic
induced transitions on the Fermi surface. Here we focus on
systems where there are 10 electrons per unit cell such that
the j = 3/2 multiplet is completely filled and the j = 1/2
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FIG. 4. (a) Re(σ (ω)) for system in the purely interorbital (orange) t2 = 0.1λ0; t1 = t3 = 0 and purely intraorbital (purple) t1, t3 =
0.1λ0; t2 = 0 hopping limits, with the chemical potential [shown in green in (b)] set in the middle of the j = 1/2 multiplet (with h̄ω in
units of λ0). Selection rules for the purely intraorbital hopping limit, and (c) for the purely interorbital hopping limit. Allowed transitions are
depicted by colored arrows, whose contribution to the conductivity are shown in (a).

multiplet is half-filled. In the intraorbital dominated coupling
limit, the system is a semimetal whose Fermi surface con-
tains just two crystal momenta at the K and K ′ points in
the Brillouin zone. At these points in the band structure, the
energy states of the j = 1/2 multiplet come together resulting
in two fourfold-degenerate points whose low-energy effective
theory resembles that of two half-filled Dirac cones. In the
interorbital dominated limit, the system is insulating and the
band-gap minimum has moved away from the K and K ′ points
to the � and M points. In both cases, the Fermi surface is of
vanishing measure, leading to a negligible intraband contribu-
tion to the conductivity at zero temperature.

The second contribution to the conductivity, σI (ω), de-
rives from optically induced interband transitions between
occupied and unoccupied Bloch states with the same crystal
momentum k. Here we focus on calculating the real symmet-
ric part of the interband optical conductivity, Re(σI (ω)), that
couples to real optical transitions between Bloch states whose
energy differs by ω [50,51].

The absorption, the real symmetric part of the interband
conductivity, can be written as

Re(σI (ω)) = e2π h̄

V

∑
nmk

f Tn (k, μ) − f Tm (k, μ)

εn(k) − εm(k)

× Re(vx
nm(k)v

x
mn(k))δ(εn(k) − εm(k) + h̄ω).

(19)

Here V is the volume of the system, e is the electric charge,
f Tn (k, μ) are the Fermi occupation functions at temperature T
and chemical potential μ, and vi

nm(k) are the interband matrix
elements of the velocity operator in the î-direction,

vi
nm(k) = 1

h̄
〈un(k)| ∂Ĥ (k)

∂ki
|um(k)〉 , (20)

where we have chosen the phase on the periodic part of
the Bloch functions |un(k)〉 such that the full Bloch func-
tions |�n(k)〉 = eik·r̂ |un(k)〉 are periodic in the Brillouin zone
|�n(k)〉 = |�n(k + G)〉.

Figure 4 shows the absorption in the extreme intraorbital
and interorbital dominated limits for the chemical potential in
the center of the j = 1/2 multiplet. We consider the case of
10 electrons per unit cell such that the j = 3/2 multiplet is
completely filled and the j = 1/2 multiplet is half-filled.

In the intraorbital dominated hopping regime, optical tran-
sitions between the lower and upper bands of the j = 1/2

multiplet near Bloch momenta surrounding the Dirac cones at
the K and K ′ points in the Brillouin zone dominate. This fea-
ture saturates at h̄ω ∼ 3t1 = �intra

1/2 where transitions between
Bloch electrons at the band minima and maxima occur. The
absorption vanishes for �intra

1/2 < h̄ω < λ0 − �intra
3/2 /2 due to

the large on-site spin-orbit coupling that splits the j = 1/2 and
3/2 multiplet by a large energy gap. For h̄ω > λ0 − �intra

3/2 /2,
the conductivity vanishes due to a fine-tuned extra orbital
symmetry inherited from the absence of interorbital hopping
elements in the extreme intraorbital dominated coupling limit.
The extra symmetry constrains the interband matrix elements
of the velocity operator v̂(k) to vanish between states in dif-
ferent multiplet sectors, forcing the conductivity to vanish at
high frequencies.

In the interorbital dominated limit, the low-frequency ab-
sorption Re(σ (ω)) occurs in a narrow frequency range where
light can excite particle-hole pairs within the flat bands of
the j = 1/2 multiplet, while at higher frequencies h̄ω > λ0 −
�inter

3/2 /2 the conductivity is finite across a large range of
frequencies arising from the joint density of states and the
interband matrix elements of the velocity operator between
the j = 1/2 and 3/2 multiplet.

VII. CONCLUSION

We show that for a tight-binding model of d-orbital hop-
ping on a honeycomb lattice, orbital frustration brought about
by large on-site spin-orbit coupling and dominant intersite
interorbital coupling gives rise to flat bands with bandwidths
that scale as W ∼ (t2)2/λ. Density functional theory calcu-
lations on 4d and 5d transition-metal compounds suggest
that parameter regimes where t2 dominates over t1 are indeed
viable [52]. Materials based on 5d transition-metal ions with
larger λ and smaller U compared to the 4d transition-metal
ions should be a particularly attractive design platform for flat
band metals.

In general, spin-orbit assisted interorbital frustration pro-
vides a scheme for achieving flat bands in materials with a
wide variety of different multiorbital structures on lattices in
any dimension. In addition to quantum materials, cold atom
systems have the ability to pattern intersite lattice interactions
in the form of synthetic gauge potentials between multior-
bital unit cells that provide a synthetic dimension providing a
platform for engineering orbitally frustrated systems with flat
bands in systems with a variety of lattice and multiplet on-site
structures [53–57].
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To achieve orbital frustration, the degrees of freedom
on the lattice must be highly mixed, leading to flat bands
with unique quantum geometric and topological structure de-
scribed by the Berry curvature upon breaking inversion or
time-reversal symmetries. Controlling orbital frustration on a
lattice can lead to material design and discovery of systems
on the edge of an instability toward unique correlated and
topological many-body phases where the orbital structure of
the ground sate plays an important role in the electronic cor-
relations of the system. Rich phenomenology for the proposed
flatband metals to show fractionalization of the electronic
spectral function, nonobeyance of the Luttinger volume (Lut-
tinger breaking), and quantized anomalous and topological
Hall effects needs to be further explored.

These novel properties may then manifest in new orbital
transport and orbital susceptibilities probed in the response of

these systems to perturbing fields that couple to the charge
and orbital degrees of freedom in the system. We hope that
these material design protocols may lead to the observations
and discovery of new flat band systems and new strongly
correlated phases of matter defined by novel correlations in
the systems’ orbital degrees of freedoms.
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