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Abstract

The Ginzburg-Landau (GL) theory is very successful in describing the pairing symme-
try, a fundamental characterization of the broken symmetries in a paired superfluid or
superconductor. However, GL theory does not describe fermionic excitations such as
Bogoliubov quasiparticles or Andreev bound states that are directly related to topologi-
cal properties of the superconductor. In this work, we show that the symmetries of the
fermionic excitations are captured by a Projective Symmetry Group (PSG), which is a
group extension of the bosonic symmetry group in the superconducting state. We further
establish a correspondence between the pairing symmetry and the fermion PSG. When
the normal and superconducting states share the same spin rotational symmetry, there
is a simpler correspondence between the pairing symmetry and the fermion PSG, which
we enumerate for all 32 crystalline point groups. We also discuss the general frame-
work for computing PSGs when the spin rotational symmetry is spontaneously broken
in the superconducting state. This PSG formalism leads to experimental consequences,
and as an example, we show how a given pairing symmetry dictates the classification of
topological superconductivity.
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1 Introduction

One of the most fundamental characterizations of a superconductor or a paired superfluid is
the symmetry of its pair wavefunction. The standard way of describing pairing symmetry is
in terms of the irreducible representations (irreps) of the normal state symmetry group G0
which constrains the form of the Ginzburg-Landau (GL) free energy functional [1–4]. G0 can
be written as

G0 = G0 × U(1) =

¨

X0 × SO(3)spin × U(1) , Weak SOC,

X0 × U(1) , Strong SOC,
(1)

where X0 is the crystalline point group, and SOC denotes spin-orbit coupling. At a second or-
der phase transition, the superconductor spontaneously breaks global charge U(1) symmetry
as the system condenses into a particular irrep of the normal state symmetry group. In gen-
eral, the group of unbroken symmetries in the superconducting phase, G ⊆ G0. For example,
G = X × SO(3)spin for a singlet superconductor with weak SOC, where X ⊆ X0 is the point
group symmetry preserved in the superconductor. In the presence of a strong SOC we have
G = X with X ⊆ X0 being the unbroken point group of the superconductor.

Essentially all of the phonon-mediated superconductors (SCs) exhibit singlet “s-wave” pair-
ing, where the superconducting (SC) state transforms according to the trivial representation of
X0. But superfluid 3He [5] and many quantum materials, including the heavy fermion SCs [6],
the high Tc cuprates [7], and Sr2RuO4 [8], condense into nontrivial irreps.

In this paper, we wish to focus on the relation between pairing symmetry and the symmetry
of the Hamiltonian describing the fermionic excitations in the superconducting state. At the mean
field level, one focuses on the Bogoliubov-de Gennes (BdG) Hamiltonian, but the fermionic
symmetry analysis applies equally beyond the BdG framework where one needs to take into
account interactions between quasiparticles. The approach we develop here will allow us to
gain new insights that go beyond the (bosonic) GL theory.

Examples of questions which this formalism would shed light on include: (a) the rela-
tion between pairing symmetry and topology, as the K-theory classification [9–11] of non-
interacting topological SCs is based on the BdG Hamiltonians, (b) how interactions between
quasiparticles for various pairing symmetries impact the classification of interacting topolog-
ical SC phases [11–14], (c) the relation between pairing symmetry and excitations in topo-
logical defects such as Majorana zero modes trapped in vortices [15–19], and (d) whether
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new probes of electronic excitations can provide insight into the pairing symmetry [20]. We
discussed question (a) in section 4.4 of the manuscript. We will return to other questions in
subsequent papers.

Here, we first show how starting with the pairing symmetry, together with the crystalline
symmetries that dictate the normal state electronic structure, we can derive the projective
symmetry group (PSG) [21] for the fermionic excitations in the SC state. We first focus on
the cases where the superconductor shares the same spin rotational symmetry as the normal
state. We present an exhaustive classification of the SC state PSG corresponding to every al-
lowable pairing symmetry for the 32 crystalline point groups with and without SOC. When
confronted with a new superconductor, we would like to use these results in the “reverse” di-
rection, namely, how can we deduce the possible pairing symmetry, given fermionic properties
in the SC state? Mathematically, the map from the pairing symmetry to the SC state PSG is,
in general, neither injective nor surjective, and thus it cannot be inverted. Nevertheless, we
show below that the SC state PSG does constrain to a considerable extent the possible pairing
symmetries. We also present numerous examples that serve to illustrate our general results.

To describe the symmetries of the fermionic Hamiltonian we need (i) to focus on the super-
conducting state symmetry group G as distinct from the normal state G0 relevant for GL theory,
and (ii) to take into account fermion parity (−1)F̂ , where F̂ is the total number of fermions in
the system. Let us discuss each of these points in turn.

On general grounds, the SC state symmetry group G is a subgroup of the normal state
G0. If the irrep into which the GL theory condenses is one-dimensional, then in fact G = G0.
While this is obvious for the trivial A1 representation, an example may be useful to illustrate
why this is true quite generally. Consider the dx2−y2 pairing state in the cuprates that trans-
forms according to the B1g irrep of the tetragonal symmetry group D4h. The pair wavefunction
changes sign under a π/2 rotation, and one might naively think that this breaks C4 down to
C2. However, one can compensate for this minus sign by having the fermion operators pick up
an e iπ/2 phase under C4 and thus have the electronic Hamiltonian retain the full symmetry of
the normal state. We will see a generalization of this at play in the analysis later in section 2.

On the other hand, if the irrep has a dimension > 1, then one needs to solve the GL
equations to find the SC state that minimizes the free energy. Then the SC state state symmetry
is lower than that in the the normal state, and G is a proper subgroup of G0. For example,
3He is a p-wave, triplet superfluid, corresponding to the L = 1, S = 1 irrep of the normal state
symmetry group G0 = SO(3)orbital × SO(3)spin. Depending on external parameters various
superfluid states are stabilized, and in the B-phase of 3He, for instance, G0 is broken down to
G = SO(3)L+S [22]. We will discuss a general framework to understand the PSG of fermion
excitations in any superconductor in Section 5, where the superconductor can spontaneously
break the normal-state spin rotational symmetry.

The second point above related to fermion parity may seem trivial: it enforces that a Hamil-
tonian can only have terms with an even number of fermion operators. It leads, however, to
the important mathematical structure of a projective symmetry group (PSG) G f acting on the
many-body Hilbert space. In Section 2, we discuss in detail how G f is built as a central exten-
sion of G by the fermion parity group ZF

2 .
The rest of the paper is organized as follows. In Section 3 we show how the fermion PSG

G f can constrain the pairing symmetry of the SC state, applying the framework to all 32 point
groups (see Table 7) and demonstrating it by a few examples in section 4. We further discuss
how the PSG determines topological properties of the SC in section 4.4. While sections 2-3
focus on the cases where the normal state and the SC state shares the same spin rotational
symmetries, in section 5.1 we describe a generic theory framework that applies to all supercon-
ductors, and further demonstrate its power in the examples of A- and B-phases of superfluid
3He in section 5.2. Finally we conclude in section 6 with a discussion on how the fermion PSG
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in SCs discussed here differs from the PSG first introduced in quantum spin liquids [21, 23],
and an outlook to future studies.

2 Characterization of broken symmetries in a superconductor

2.1 Projective symmetry group and projective representation

Any Hamiltonian must conserve fermion parity (−1)F̂ even if it does not conserve particle
number F̂ , as, for instance, in the presence of pairing. The fermion symmetry group G f acting
on the many-body Hilbert space of fermions is a projective symmetry group (PSG). Mathemat-
ically, G f is a central extension of the bosonic symmetry group G in the SC state by the fermion

parity group ZF
2 =

¦

(±1)F̂
©

. This may be written as a short exact sequence

1 → ZF
2 → G f → G → 1 , (2)

where ZF
2 is in the center of G f . Thus fermion parity commutes with all elements of G f and

the quotient group G f /ZF
2 = G.

Let us denote by ĝ the operator corresponding to the group element g ∈ G that acts on
Hilbert space. In general it could be unitary or anti-unitary. The group G f is then the set
¦

(±1)F̂ ĝ | g ∈ G
©

with the product rule between (η1)F̂ ĝ and (η2)F̂ ĥ (with ηi = ±1) given
by

�

(η1)
F̂ ĝ

��

(η2)
F̂ ĥ

�

= [η1 η2 ω(g, h)]F̂ Óg h , (3)

ω called the 2-cocycle is a function ω : G × G → {+1,−1} that satisfies1

ω(g, h)ω(gh, k) =ω(g, hk) gω(h, k) , (4)

so that the multiplication is associative, andω(eG , eG) = 1, so that the identity element is well
defined. Each inequivalent cocycle furnishes a distinct projective symmetry group. Thus PSGs
are characterized by classes of inequivalent cocycles [ω] which form the second cohomology
group H2(G,Z2).

As an example, consider time reversal symmetry where G = ZT
2 = {1, T}. In this case,

H2(Z2,Z2) = Z2 and there are two PSGs characterized by the two inequivalent cocycles: (1)
ω(T, T ) = 1 in which case T̂2 = 1, and (2) ω(T, T ) = −1 where T̂2 = (−1)F̂ . In the first case
G f = Z2 × Z2 while in the second G f = Z4. Physically, the action of the different PSGs on
the even particle number subspace is the same as that of the bosonic group G. The distinction
appears in how G f acts on the odd particle number subspace, in particular, the single particle
subspace.

In general, one could have both unitary and anti-unitary symmetries but in this paper
we will focus on unitary operators ĝ ∈ G f , under which the fermion annihilation operator
transforms as

ĝ ĉkα ĝ−1 = [U g(k)]†
αβ

ĉgk β , (5)

where k is the (crystal) momentum, and the α labels spin, orbital/sublattice/band degrees of
freedom (d.o.f.). Using (−1)F̂ ĉkα (−1)F̂ = −ĉkα and eq. (3), we find that

U g(hk) Uh(k) =ω(g, h) U gh(k) . (6)

The U g ’s thus form a projective representation of G with coefficients in {±1}. Equivalently,
one can regard {±U g | g ∈ G} as a linear representation of G f with (−1)F̂ represented by −1.

1Here we define gω(h, k) = ĝω(h, k) ĝ−1, which is ω(h, k) if g is a unitary or ω∗(h, k) if g is an anti-unitary
symmetry.
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2.2 Pairing symmetry and projective representations

To be concrete, let us focus on the BdG Hamiltonian

Ĥ = Ĥ0 + (Ĥpair + h.c.) , (7)

where
Ĥ0 =

∑

αβ ;k

ĉ†
kαhαβ(k)ĉkβ , (8)

is the kinetic energy that describes the normal state electronic dispersion, and

Ĥpair =
∑

αβ ;k

ĉ†
kα∆αβ(k)ĉ

†
−kβ , (9)

describes the pairing. Fermi statistics dictates that ∆αβ(k) = −∆βα(−k).
Initially, we restrict ourselves for simplicity to situations where SO(3)spin is not broken

spontaneously in the SC state. In this case, the SC state symmetry group G is of the form

G =

¨

X × SO(3)spin , Weak SOC,

X , Strong SOC,
(10)

where X is the point group of crystalline symmetries. In either case the pairing order parameter
∆(k) forms a 1d linear representation of crystalline point group X . Moreover the relevant
fermionic PSGs are of the form G f ≃ (X f × SU(2))/Z2 and G f ≃ X f for the weak and strong
SOC cases respectively where X f is itself a central extension of X with respect to fermion parity.
In the first case, we get an SU(2) as a Z2 central extension of SO(3)spin and a quotient by Z2
is required to take into account the “double- counting” of ZF

2 . It is thus sufficient to look at
the central extensions of X . Later, in Section 5, we shall present a more general treatment and
discuss the case of 3He where spin rotation is spontaneously broken in the SC state. In such
cases, the fermion symmetry group might have a more complicated form and it is no longer
sufficient to look at central extensions of the spatial part alone.

We now discuss three different projective representations of X and explore how these are
related. First, we begin with X 0

f =
¦

(±1)F̂ ĝ0 | g ∈ X
©

the PSG of X that preserves the kinetic

part of the BdG hamiltonian i.e., ĝ0 Ĥ0 ĝ−1
0 = Ĥ0. The fermion operators then transform

according to the corresponding projective representation U g
0 (k), defined by

ĝ0 ckα ĝ−1
0 = [U g

0 (k)]
†
αβ

ĉgkβ , (11)

which preserves the normal state band structure

U g
0 (k)h(k) [U

g
0 (k)]

† = h(gk) . (12)

We shall call X 0
f the normal state PSG and denote the corresponding 2-cocycle by ω0. For

systems with weak SOC, crystalline symmetries do not act on the spin degrees of freedom and
the PSG is trivial in this case ω0(g, h) = 1 for any elements g, h ∈ X . In the presence of
strong SOC the projective representation is non-trivial with operations like two fold rotations
and mirror reflections now squaring to fermion parity, ω0(C2, C2) = ω0(M , M) = −1. This
becomes evident by looking at the forms of the projective representations in the two cases.

U g
0 (k) =

(

ug
orbital(k)⊗ 1spin , weak SOC,

ug
orbital(k)⊗ ei

θg
2 n̂g .σ⃗ , strong SOC,

(13)
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where n̂g and θg are the rotation axis and angle associated with crystalline symmetry operation
g ∈ X .

Next, we note that the normal state PSG preserves the pairing term only up to a phase,
namely

ĝ0 Ĥpair ĝ−1
0 = eiΦg Ĥpair . (14)

The phases
�

eiΦg | g ∈ X
	

form a 1D linear representation of X , which we call the pairing
symmetry Rpair. The phases Φg ’s satisfy the equation

Φg +Φh = Φgh + 2nπ (n ∈ Z) . (15)

The pairing matrix ∆(k) satisfies

U g
0 (k)∆(k)

�

U g
0 (−k)

�T
= eiΦg ∆(gk) . (16)

We see from eq. (14) that the PSG X 0
f that leaves Ĥ0 invariant, fails to preserve the pairing

term. However the situation can be fixed as follows. We modify the transformation of the
fermions ĝ ′ ckα ĝ ′−1 = [Ũ(k)]†

αβ
ĉkβ with

Ũ g(k) = e−iΦg/2U g
0 (k) . (17)

The kinetic part Ĥ0, which is invariant under U(1) phase rotations, is preserved by the modified
transformations as can be seen from (12). The new transformations are also symmetries of
the pairing term Ĥpair as Ũg(k)’s lead to eq. (16) without the phase factor eiΦg appearing on
the right-hand side.

We thus define SC state PSG X̃ f that preserves the full BdG Hamiltonian by

X̃ f =
¦

(±1)F̂ ĝ ′ = (±1)F̂ e−i(Φg/2)F̂ ĝ | g ∈ X
©

. (18)

This PSG is characterized by the 2-cocycle ω̃.
The last step here is to look at the relation between the normal and the superconducting

state PSGs, or equivalently, between their cocycles ω0 and ω̃. The phases
�

e−iΦg/2 | g ∈ X
	

form a 1D projective representation of X , which we call RΦ. This follows from (15) by ob-
serving that e−iΦg/2e−iΦh/2 = (−1)n e−iΦgh/2. From eqn.(17) one concludes that the cocycle ωΦ
associated with RΦ satisfies

ω̃(g, h) =ωΦ(g, h)ω0(g, h) . (19)

To summarize, we encountered the following projective representations and their associ-
ated cocycles which define the corresponding PSG’s:

Normal state: U g
0 (hk) Uh

0 (k) =ω0(g, h) U gh
0 (k) , (20a)

RΦ : e−iΦg/2e−iΦh/2 =ωΦ(g, h) e−iΦgh/2 , (20b)

SC state: Ũ g(hk) Ũh(k) = ω̃(g, h) Ũ gh(k) . (20c)

Eq. (17) relates the three projective representations and eq. (19) relates their cocycles.
Given the normal state PSG and the pairing symmetry of the SC state, one can use the for-

malism described above to determine the SC state PSG. This is achieved in the following steps.
Pairing symmetry being a 1D linear representation, Rpair can be read off from the character
table of X . Taking the square roots of the characters one obtains the 1D projective representa-
tion RΦ and its cocycle ωΦ. With the normal state PSG known eq. (19) gives the SC state PSG
while eq. (17) gives the SC state projective representation explicitly. Thus knowing the pairing
symmetry enables us to find the SC state PSG that preserves the BdG Hamiltonian. In the next
Section we turn to the inverse problem of constraining the pairing symmetry, knowing the SC
state PSG.
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3 Constraints on the pairing symmetry by the PSG

One longstanding experimental challenge in the field of superconductivity is how to unambigu-
ously determine the pairing symmetry of a superconductor material, based on experimental
measurements. Since all fermionic excitations in the superconductor form a linear represen-
tation of the SC state PSG X̃ f , the low-temperature physical properties of the superconductor
completely depend on the PSG. For example, as will be discussed in section 4.4, the topological
properties of the SC phase are determined by the PSG. As a result, it seems plausible to detect
the SC state PSG X̃ f using various experimental probes, which we will clarify in future publi-
cations. This observation motivates us to answer the following question: given a SC state PSG
X̃ f , what are the pairing symmetries compatible with X̃ f ? In other words, how does a given
PSG constrain the possible pairing symmetry in a superconductor? The answer to this question
will allow us to constrain or even determine the pairing symmetry of a SC, by experimentally
detecting its PSG.

Based on the discussions in section 2.2, we can readily derive the constraints on the pairing
symmetry by the PSG from relations (17) and (19). Specifically, given a SC state PSG X̃ f and
its associated 2-cocycle ω̃, we can follow the steps listed below to obtain the possible pairing
symmetries Rpair in (14)-(16):

(1) Given the crystalline point group X , determine the normal state PSG X 0
f and associated

2-cocycle {ω0} of the normal-state symmetry transformations {U g
0 |g ∈ X }. This only depends

on the strength of SOCs in the system.
(2) Compute the 2-cocycle {ωΦ} from {ω0} and {ω̃} from relation (19).
(3) Obtain all one-dimensional (1d) projective representations {RΦ(g)|g ∈ X } of the crys-

talline symmetry group X compatible with 2-cocyle {ωΦ} obtained in step (2), satisfying

RΦ(g)RΦ(h) =ωΦ(g, h)RΦ(gh) . (21)

(5) For each 1d projective representation RΦ(g) obtained in step (3), compute the 1d
linear representation,

Rpair(g) =
�

RΦ(g)
�−2

, (22)

of the pairing order parameter. The collection of all results {Rpair} correspond to all the
possible pairing symmetries compatible with the PSG X̃ f .

We have applied our general computational scheme to the case of 32 crystalline point
groups for both strong SOCs and neglible (weak) SOCs. Our analysis focuses on SC order
parameters that are spatially uniform, where the Cooper pairs condense in a state with zero
center of mass momentum. Lattice translations then act trivially on the SC state and leave
the BdG Hamiltonian invariant, and it is sufficient for us to focus on point group symmetry
alone. Most experimentally relevant systems exhibit spatially uniform pairing (in the absence
of strong disorder). It is only in exceptional circumstances – under very limited range of ex-
ternal parameters in a few systems – that that one expects the SC order parameter to sponta-
neously break translational symmetry, e.g., in FFLO or pair density wave state. In such cases,
we would need to investigate space group symmetries which we leave for future investiga-
tion. Group cohomology and projective representation calculations are performed using the
GAP computer algebra program [24]. The correspondence between fermion PSGs G f and the
representations Rpair of the superconducting order parameter is established for all 32 point
groups, and the results are summarized in Table. 7 in Appendix B.
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4 Examples

We now demonstrate the above formalism for different point groups. In section 4.1 we con-
sider systems with tetragonal symmetry. Cuprates and ruthenates which belong to this cate-
gory have point group D4h. But for instance in cuprates, only the Cu-O plane is relevant for
superconductivity and it suffices to consider the point group C4v for the purpose of illustration.
In section 4.2 we treat systems with hexagonal symmetry. A discussion of superconductivity
on a honeycomb lattice is followed by a remark on how our formalism can be applied to the
case of magic angle twisted bilayer graphene. In section 4.3 we discuss superconductivity in
transition metal dichalcogenides with trigonal point group C3v .

The purpose of these examples is two-fold. First, we present a detailed account of how
the table in appendix B is constructed and what information can be extracted from it. Sec-
ond, we make a direct connection with real physical systems by producing examples of order
parameters ∆αβ(k) for each 1D irrep (pairing symmetry) of the relevant point group.

As mentioned earlier we shall restrict ourselves to cases where there is no additional break-
ing of spin rotation symmetry when going from the normal to the SC phase. Examples which
do not fit in this category, like superfluid He3, are discussed in the section 5.2.

4.1 Tetragonal symmetry

To be concrete, consider a two dimensional square lattice in the x y plane. The relevant crys-
talline point group is X = C4v . The group is generated by a rotation by π/2 about the z-axis,
C4 and reflection about a vertical mirror in the yz plane, σv . The action of these operations
can be summarized as

(x , y, z)
C4−→ (−y, x , z) , (23a)

(x , y, z)
σv−→ (−x , y, z) . (23b)

The group law is captured by the relations C4
4 = e, σ2

v = e and C3
4σv = σvC4. Equivalently

the group is generated by the vertical mirror σv and the diagonal mirror σd = σvC4. Since
σ2

v = σ
2
d = e, these could have either +1 or −1 characters in a 1D irrep. Consequently there

are four 1D irreps for this group, each labeled uniquely by a tuple of σv and σd characters,
�

eiΦσv , eiΦσd
�

taking values (±1,±1). The characters for the other group elements can then be
obtained using the group laws. In particular, it follows from C2 = (σdσv)2 that the character
for the two-fold rotation in the four 1D irreps is +1.

Let us now turn our attention to the possible fermion PSGs for this group. From the
group cohomology calculation we have H(2)(C4v ,Z2) = Z3

2, corresponding to eight inequiv-
alent classes of 2-cocycles for this group characterized by the 3-tuple

(ω(C2, C2),ω(σv ,σv),ω(σd ,σd)) = (±1,±1,±1) . (24)

The eight PSGs are thus distinguished on the basis of whether the two fold rotation, C2 and
the two mirrors σv and σd square to ±1.

We are now in a position to explore the connection between the pairing symmetries and
fermion PSGs for this group. First consider the case when because of weak spin-orbit coupling
there is spin rotation invariance in the normal state. The symmetry operations that preserve
the kinetic energy act only on the momentum label, keeping the spin label unaltered. Denoted
by superscript 0 these are

Ĉ0
2 ĉkα (Ĉ

0
2 )

−1 = ĉC2kα , (25a)

σ̂0
v ĉkα (σ̂

0
v)

−1 = ĉσvkα , (25b)

σ̂0
d ĉkα (σ̂

0
d)

−1 = ĉσdkα . (25c)
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Consequently, the normal state PSG is trivial and

(ω0(C2, C2),ω0(σv ,σv),ω0(σd ,σd)) = (+1,+1,+1) . (26)

Given the assumption that pairing does not break spin rotation invariance in the superconduct-
ing phase, condensation takes place in the singlet channel. This enforces the pair wavefunction
to be of the form

∆αβ(k) = Ψ(k)(iσy)αβ , (27)

where α, β are spin labels and Pauli exclusion constrains the orbital part of the pair wavefunc-
tion to obey Ψ(−k) = Ψ(k). As has been discussed in detail in previous sections, the phases
�

eiΦg
	

acquired by the pairing term in (9), when acted upon by the operations in (25), consti-
tute a 1D linear irrep of C4v which we refer to as pairing symmetry Rpair. We also learnt that
(25) must be modified by compensating phase rotations so as to make the new transformations
symmetries of the BdG hamiltonian.

Different pairing symmetries modify the normal state transformations in (25) differently.
When the pairing symmetry is A1, which is the case when say Ψ(k) is a constant Ψ0 indepen-
dent of k, the normal state transformations already preserve the pairing term and no modifi-
cation is necessary. The normal and the SC state PSGs are the same in this case. If however
Ψ(k) = Ψ0(k2

x − k2
y), σv keeps the pairing term unchanged whereas under σd (or equivalently

under C4) it acquires a negative sign. The pairing symmetry in this case is B1, labeled by
(eiΦσv , eiΦσd ) = (+1,−1). Eqn. (25c) now has to be modified by a factor of i appearing on the
right hand side, i.e, the modified σd must take ĉkα to i ĉσdkα.

For a generic irrep, when the orbital part transforms as

Ψ(k) = eiΦgΨ(gk) , (28)

the compensating phases are the square roots of the characters of the relevant irrep. Denoted
with primes, the transformations that preserve the BdG hamiltonian are then

Ĉ ′
2 ĉkα (Ĉ

′
2)

−1 = eiΦC2
/2 ĉC2kα , (29a)

σ̂′
v ĉkα (σ̂

′
v)

−1 = eiΦσv /2 ĉσvkα , (29b)

σ̂′
d ĉkα (σ̂

′
d)

−1 = eiΦσd
/2 ĉσdkα . (29c)

For instance, for A1 and B1 pairing symmetries,
�

eiΦC2
/2, eiΦσv /2, eiΦσd

/2
�

can be chosen to be
(1,1, 1) and (1,1, i) respectively.

The resulting SC state PSGs are different across pairing symmetries. For the A1 irrep, the
SC state PSG is trivial. With the diagonal mirror now squaring to fermion parity, the SC state
PSG for B1 becomes

(ω̃(C2, C2), ω̃(σv ,σv), ω̃(σd ,σd)) = (+1,+1,−1) . (30)

As elaborated in previous sections, the reason for this is best understood once we recognize
that the compensating phases,

�

e−iΦg/2 | g ∈ X
	

form a 1D projective representation, RΦ of X .
The corresponding cocycle given byωΦ could be different for the different pairing symmetries.
For example,

(ωΦ(C2, C2),ωΦ(σv ,σv),ωΦ(σd ,σd)) = (1
2, 12, 12) , and (12, 12, i2 = −1) , (31)

for the A1 and B1 irreps respectively. Pairing symmetry thus dictatesωΦ which through (19) in
turn decides the SC state PSG. Table 1 summarizes the results of the above analysis for C4v with
weak SOC. For each irrep, we give an example of Ψ(k), show the 1D projective representation
of the compensating phases RΦ, the cocycle ωΦ and finally the SC state PSG ω̃.

9

https://scipost.org
https://scipost.org/SciPostPhys.17.6.161


SciPost Phys. 17, 161 (2024)

Table 1: Tetragonal Symmetry (X = C4v) with weak SOC. Here Rpair ≡ (eiΦσv , eiΦσd )
and RΦ ≡ (e−iΦC2

/2, e−iΦσv /2, e−iΦσd
/2) .

Rpair Ψ(k) RΦ ωΦ ω̃

A1 : (+1,+1) 1 (±1,±1,±1) (+1,+1,+1) (+1,+1,+1)

A2 : (−1,−1) kx ky(k2
x − k2

y) (±1,±i,±i) (+1,−1,−1) (+1,−1,−1)

B1 : (+1,−1) k2
x − k2

y (±1,±1,±i) (+1,+1,−1) (+1,+1,−1)

B2 : (−1,+1) kx ky (±1,±i,±1) (+1,−1,+1) (+1,−1,+1)

In the presence of strong spin orbit coupling, the transformations that preserve the kinetic
energy are combined spatial and spin rotation. A rotation by angle θ about n̂ transforms
the spinor by e−i θ2 (n̂·σ) while inversion leaves it unaffected. A mirror could be viewed as a
combination of inversion and a two fold rotation about an axis perpendicular to the mirror
plane. For instance, reflection about the yz mirror plane is then effectively a two-fold rotation
about the x axis and would be implemented by −iσx in the spinor basis. The transformations
that preserve kinetic energy are

Ĉ0
2 ĉkα (Ĉ

0
2 )

−1 = [−iσz]αβ ĉC2kβ , (32a)

σ̂0
v ĉkα (σ̂

0
v)

−1 = [−iσx]αβ ĉσvkβ , (32b)

σ̂0
d ĉkα (σ̂

0
d)

−1 =
�

−in̂′ ·σ
�

αβ
ĉσdkβ . (32c)

Where n̂′ = (x̂ − ŷ)/
p

2 and the Einstein summation convention is implied. With two fold
rotations and hence mirrors now squaring to fermion parity, the normal state PSG is

(ω0(C2, C2),ω0(σv ,σv),ω0(σd ,σd)) = (−1,−1,−1) . (33)

In the absence of spin rotation invariance in the normal state, the pair wavefunction is an
admixture of singlet and triplet parts and takes the form

∆αβ(k) = Ψ(k)
�

iσy

�

αβ
+ d(k) ·

�

σ⃗(iσy)
�

αβ
, (34)

where Pauli exclusion now requires the three component complex vector d to obey
d(k) = −d(−k). Since the C2 character in all the one dimensional irreps is +1, we must
have

(iσz)∆(k)(iσz)
T =∆(C2k) =∆(−k) , (35)

where the last equality follows from the fact that we are in two spatial dimensions. It is
immediately seen that this implies dz(k) = dz(−k) and the only way this could be consistent
with the constraint imposed by Pauli exclusion is when dz(k) = 0. Similarly, by effecting
transformations for σv and σd on the pairing term we conclude that to tranform as a 1D irrep
labeled by the characters (eiΦσv , eiΦσd ), the non-zero components of the d vector, must satisfy

�

+dx(k), −dy(k)
�

= eiΦσv
�

dx(σvk), dy(σvk)
�

, (36a)
�

−dy(k), −dx(k)
�

= eiΦσd
�

dx(σdk), dy(σdk)
�

, (36b)

and Ψ(k), like in the case for weak SOC, satisfies (28). Table 2 provides examples of the d(k)
vector for each pairing symmetry. All of these examples belong to a (p + ip) ↑ +(p − ip) ↓
type SC. As before, square roots of the characters of the 1D irrep form the compensating
phases which modify the transformations in (32) and different SC state PSGs are obtained
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Table 2: Tetragonal Symmetry(X = C4v) with strong SOC. Here Rpair ≡ (eiΦσv , eiΦσd )
and RΦ ≡ (e−iΦC2

/2, e−iΦσv /2, e−iΦσd
/2) .

Rpair d(k) RΦ ωΦ ω̃

A1 : (+1,+1) ky x̂− kx ŷ (±1,±1,±1) (+1,+1,+1) (−1,−1,−1)

A2 : (−1,−1) kx x̂+ ky ŷ (±1,±i,±i) (+1,−1,−1) (−1,+1,+1)

B1 : (+1,−1) ky x̂+ kx ŷ (±1,±1,±i) (+1,+1,−1) (−1,−1,+1)

B2 : (−1,+1) kx x̂− ky ŷ (±1,±i,±1) (+1,−1,+1) (−1,+1,−1)

for the four pairing symmetries as outlined in table 2. A few comments are in order. First,
comparing the two tables we observe that since the 1D projective representation RΦ formed
by the compensating phases and the corresponding cocycle ωΦ depend solely on the pairing
symmetry, the correspondence between Rpair and ωΦ is identical irrespective of the strength
of SOC. The difference in the normal state PSG ω0 accounts for the difference in the SC state
PSG ω̃ between the corresponding rows of tables 1 and 2.

Second, a question arises as to why only four of the eight PSGs appear in each of the
two tables. The answer is apparent once we observe that the ωΦ column only contains
the four PSGs with ωΦ(C2, C2) = +1. This is easily seen as follows. Group law tells
us that σvσd = C2σdσv . Then for any 1D projective representation φ, we must have
φ(σv)φ(σd) = ±φ(C2)φ(σd)φ(σv). Since φ’s are all non-zero complex numbers, dividing
both sides by φ(σv)φ(σd) gives φ(C2) = ±1 and hence ωφ(C2, C2) = +1. In other words
PSGs with ω(C2, C2) = −1 cannot have a 1D representation.

Finally, both tables show a one-one correspondence between the four pairing symmetries
and four out of the eight possible PSGs. Knowledge of the SC state PSG (from topological or
spectroscopic properties) thus uniquely determines the pairing symmetry.

4.2 Hexagonal symmetry

Consider a two dimensional honeycomb lattice in the x y plane with a plaquette center chosen
as the origin and the x-axis passing through a bond center. A six fold rotation about the z-axis,
C6 and a reflection about a vertical mirror σv in the yz plane then transform the coordinates
as

(x , y)
C6−→

�

1
2

x −
p

3
2

y,
1
2

y +
p

3
2

x

�

, (37a)

(x , y)
σv−→ (−x , y) , (37b)

C6 and σv generate the point group C6v . It comprises of six rotations and six mirror reflections
and the group law is captured by the relations C6

6 = e, σ2
v = e and C6σvC6 = σv . From these

relations it is evident that the C6 and σv characters in a 1D linear irrep of C6v could only be
±1. Indeed, there are four 1D irreps for this group labeled by (eiΦC6 , eiΦσv ) = (±1,±1). Here
we note that not only is the group D6 isomorphic to C6v , but has indistinguishable action in
two spatial dimensions. In D6, the two-fold rotation about the in-plane y-axis, C2y assumes
the role of σv in C6v . Thus, when we are strictly in two spatial dimensions, C6v and D6 can be
used interchangeably.

Since H(2)(C6v ,Z2) = Z3
2, there are eight possible PSGs distinguished on the basis of

whether C2 and σv square to +1 or −1 and whether they commute or anti-commute.
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The classes of 2-cocycles are labeled by
�

ω(C2, C2),ω(σv ,σv),
ω(C2,σv)
ω(σv , C2)

�

= (±1,±1,±1) . (38)

We discuss the case when the normal and the SC states have spin rotation invariance.
Denoted by the superscript 0, the transformations that preserve the kinetic energy are

Ĉ0
6 ĉkα s(Ĉ

0
6 )

−1 = (τx)αβ ĉC6kβ s , (39a)

σ̂0
v ĉkα s(σ̂

0
v)

−1 = ĉσvkα s . (39b)

Where α,β are sub-lattice labels, s labels spin and τ⃗ denotes Pauli matrices in the sub-lattice
space. The momentum k is measured from the Γ point of the Brilloin zone. The normal state
PSG is trivial with

�

ω0(C2, C2),ω0(σv ,σv),
ω0(C2,σv)
ω0(σv , C2)

�

= (+1,+1,+1) . (40)

Here we consider a generic situation where both the bands participate in pairing and we
express the pair wavefunction in the sub-lattice basis. If however we have a weak coupling
scenario in which only a single band takes part in pairing, it is more convenient to express
the pair wavefunction in the active band basis. For the present case, consistent with Pauli
exclusion, the spin singlet wave function has the form

[∆(k)]α s β s′ = Ψαβ (k)(iσy)ss′ , (41)

where Ψαβ(k) = Ψβα(−k). For the pairing term to transform as the irrep (eiΦC6 , eiΦσv ) under
(39), Ψαβ(k) satisfies

(τx)αγΨγδ(k) (τx)βδ = eiΦC6 Ψαβ(C6k) , (42a)

Ψαβ(k) = eiΦσv Ψαβ(σvk) . (42b)

In table 3 we provide examples of Ψαβ(k) satisfying (42) for each pairing symmetry. The

compensating phases (e−iΦC6
/2, e−iΦσv /2) forming the 1D projective representation RΦ and the

corresponding 2-cocycle ωΦ are also tabulated. A product of ωΦ and ω0 then gives the SC
state PSG ω̃. The four pairing symmetries correspond to four distinct ω̃ s. The SC state
PSG thus uniquely determines the pairing symmetry for this point group. Like in the pre-
vious case, only four out of the eight possible PSGs appear in table 3. Inspecting the ωΦ
column we observe that it only has entries with ωΦ(C2,σv)/ωΦ(σv , C2) = +1. Since complex
numbers always commute, it is impossible to get a 1D projective representation of C6v where
ωΦ(C2,σv)/ωΦ(σv , C2) = −1.

We end this subsection discussing superconductivity in magic angle twisted bilayer
graphene (MATBG) where the pairing symmetry is still not known although there has been
some theoretical proposals [25]. The experimental observation of nematicity in the SC state
[26], shows that the normal state D6 symmetry, is spontaneously broken in the SC state. Thus
condensation must take place either in the E1 or the E2 irrep of D6. As pointed out in the
introduction, if it were any of the 1D irreps, the pair wavefunction would be invariant under
D6 up-to a phase rotation, and the SC state would not show the observed nematicity. This
corresponds to the orbital part being a p-wave for the E1 irrep or a d-wave for the E2 irrep in
the pair wavefunction proposed in [25]. The residual symmetry in the SC state is the two-fold
rotation about z-axis, X = C2z . Since the E1 irrep (p-wave) has a C2 character −1 and the E2
irrep (d-wave) has a C2 character +1, these correspond to the two 1D irreps of X . There is a
one to one correspondence between Rpair and PSGs for X as shown in table B and thus the
two possible pairing symmetries would give two distinct SC state PSGs.
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Table 3: Hexagonal symmetry (X = C6v) with weak SOC. Here Rpair = (e
iΦC6 , eiΦσv ),

RΦ = (e−iΦC6
/2, e−iΦσv /2). Also, f (k) = kx ky(k2

x − 3k2
y)(k

2
y − 3k2

x) and

g(k) = kx(3k2
y − k2

x) .

Rpair ΨAA(k) ΨBB(k) ΨAB(k) RΦ ωΦ ω̃

A1 = (+1,+1) ∆0 ∆0 ∆′
0 (±1,±1) (+1,+1,+1) (+1,+1,+1)

A2 = (+1,−1) ∆0 f (k) ∆0 f (k) ∆′
0 g(k) (±1,±i) (+1,−1,+1) (+1,−1,+1)

B1 = (−1,+1) ∆0 −∆0 0 (±i,±1) (−1,+1,+1) (−1,+1,+1)

B2 = (−1,−1) ∆0 f (k) −∆0 f (k) 0 (±i,±i) (−1,−1,+1) (−1,−1,+1)

4.3 Trigonal symmetry

Like in the previous subsection, we consider the honeycomb lattice in the x y plane except
now two different species occupy the A and B sub-lattices. Such is the case, for example, in a
mono-layer transition metal dichalcogenide (TMD). The resulting point group C3v is generated
by a three-fold rotation about the z-axis (C3) and reflection about a vertical mirror in the yz
plane (σv) which act on the coordinates as

(x , y)
C3−→

�

−
1
2

x −
p

3
2

y, −
1
2

y +
p

3
2

x

�

, (43a)

(x , y)
σv−→ (−x , y) . (43b)

The relations C3
3 = σ

2
v = e and C3σvC3 = σv capture the group law. There are two 1D irreps

for this group with eiΦσv = ±1 and two PSGs with σv squaring to unity in one and to the
fermion parity in the other, ω(σv ,σv) = ±1.

In TMDs, the presence of strong Ising SOC breaks spin rotation invariance [27]. Hole
doping away from charge neutrality creates small Fermi surface pockets at the K and K ′ valleys.
Denoted by superscript 0, the symmetry operations that preserve the kinetic energy act on the
fermion operator ĉkν s for the active band as

Ĉ0
3 ĉkν s (Ĉ

0
3 )

−1 =
�

e−i π3σz
�

ss′
ĉC3kν s′ , (44a)

σ̂0
v ĉkν s (σ̂

0
v)

−1 = [τx]νν′ [iσx]ss′ ĉσvkν′ s′ , (44b)

where ν is the valley and s is the spin label and momentum k is measured from the K or K ′

point. Pauli matrices σ⃗ and τ⃗ act on spin and valley spaces respectively. The normal state PSG
is thus described by the cocycle ω0(σv ,σv) = −1.

To ensure the Cooper pair has a zero center of mass momentum, pairing must be inter-
valley. Because of time reversal invariance, the Fermi surface pockets at opposite valleys have
oppositely polarized spins. If the spin polarization is σz = +1 in the K valley (τz = +1),
then it is along σz = −1 in the K ′ valley (τz = −1). Therefore, in addition to Pauli ex-
clusion, the order parameter matrix ∆(k) in the spin-valley space must satisfy the constraint
PT∆(k) = ∆(k)P = ∆(k) where P = 1

2(1+σzτz) projects onto the σzτz = +1 space. Con-
sistent with these requirements, ∆(k) takes the form

∆(k) =

�

Ψ(k)τ+ −Ψ(−k)τ−

�

(ẑ · σ⃗)(iσy) +

�

Ψ(k)τ+ +Ψ(−k)τ−

�

(iσy) . (45)
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Table 4: Trigonal symmetry (X = C3v) with strong SOC.

Rpair ≡ eiΦσv Ψ(k) RΦ ≡ e−iΦσv /2 ωΦ ω̃

A1 = +1 ∆0 ±1 +1 −1

A2 = −1 ∆0ky(3k2
x − k2

y) ±i −1 +1

As expected, the absence of spin rotation invariance in the normal state results in a pair
wavefunction which is a superposition of singlet and triplet parts. For the pairing term to
transform as a 1D irrep of C3v under (44), Ψ(k) must satisfy

Ψ(k) = Ψ(C3k) , (46a)

Ψ(−k) = eiΦσvΨ(σvk) . (46b)

Table 4 shows that the two 1D irreps are in a one-one correspondence with the two SC state
PSGs. It also gives an example of Ψ(k) for each pairing symmetry.

4.4 Physical consequences of the PSG

The projective symmetry group G f of the BdG Hamiltonian has effects on all fermionic ex-
citations of the superconductor, since the Bogoliubov quasipaticles as excitations of the BdG
Hamiltonian form a linear representation of the PSG G f . In particular, the topological prop-
erties of the superconductor is determined by the PSG, as different PSGs give rise to different
classifications of fermion topological superconductors (TSCs) [11,14,28]. This is a well-known
fact in the classification of gapped fermion topological phases, both in the 10-fold way [29]
classification of non-interacting topological superconductors [11, 30], and in the interacting
classification of fermion symmetry protected topological phases [14,31]. For example, in the
case of time reversal symmetry T , it is well known that two- and three-dimensional topolog-
ical insulators only exist for spinful electrons with T̂ 2 = (−1)F̂ and G f = U(1) ⋊ ZT

4 , which
is a different symmetry class (class AII in the 10-fold way [29]) than spinless case (class AI in
the 10-fold way [29]), with T̂ 2 = 1 and G f = U(1)⋊ ZT

2 . In addition to topological classifi-
cations, these two distinct symmetry classes have many other different properties, such as the
presence vs. absence of Kramers degeneracy of fermion excitations. Below we illustrate how
different PSGs, and hence different pairing symmetries, give rise to different classifications of
TSCs, in the case of crystalline symmetries [28, 32–37]. Our classification scheme applies to
gapped topological SCs. Thus, weak pairing unconventional SC with gap nodes are not part
of the classification. However, there are fully gapped unconventional SCs, like the (p + ip)
state in 2D and the B-phase of He3, which are topologically non-trivial. Our analysis focus
on understanding how, in the presence of additional crystalline symmetries, pairing symmetry
through the PSG affects the classification of such states. We use 3d SCs with mirror reflection
symmetry Mx , and 2d SCs with 2-fold rotational symmetry C2z as two known examples to
demonstrate this fact.

4.4.1 3d SCs with mirror reflection symmetry Mx

Our first example is the classification of TSCs in three dimension (3d) in the presence of only
mirror reflection symmetry Mx which reverses the x coordinate. From the group cohomol-
ogy H(2)(ZMx

2 ,Z2) = Z2, we find two possible fermion PSGs in the presence of strong SOCs:

G f =Z
M̂x
2 ×ZF

2 with M̂2
x = +1, and G f =Z

M̂x
4 with M̂2

x = (−1)F̂ . Similarly, in the presence of

weak SOCs and spin rotational symmetry, the two possible PSGs are given by G f = SU(2)×ZM̂x
2

with M̂2
x = +1, and G f = SU(2)× Z M̂x

4 /Z2 with M̂2
x = (−1)F̂ .
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Table 5: Classification of class D topological superconductor in 3d with mirror reflec-
tion Mx . The fermion projective symmetry groups G f are listed for superconductors
with weak/strong SOCs and A′/A′′ pairing symmetries. Note that the topological
classification is solely determined by G f .

SOC strength pairing symmetry G f K-theory classification [38,39]

Weak
A′ SU(2)×Z

M̂x
2 Z

A′′ SU(2)×Z
M̂x
4 /Z2 Z2

Strong
A′ Z

M̂x
4 0

A′′ Z
M̂x
2 ×ZF

2 Z

Table 6: Classification of class D topological superconductor in 2d with C2z rotation
perpendicular to the 2d x-y plane. The fermion PSGs G f are listed for superconduc-
tors with weak/strong SOC and A/B pairing symmetries. Note that the topological
classification is solely determined by G f .

SOC strength pairing symmetry G f K-theory classification [40,41]

Weak
A SU(2)×Z

C̃2z
2 Z

B SU(2)×Z
C̃2z
4 /Z2 Z2

Strong
A Z

C̃2z
4 Z2

B Z
C̃2z
2 ×ZF

2 Z

For weakly interacting systems, K-theory [10,11,30,38,39] can be used to classify distinct
TSCs described by BdG Hamiltonians. In the presence of strong SOCs, it gives rise to a Z
classification of TSCs for the case of M̂2

x = +1, and a trivial classification for the case of

M̂2
x = (−1)F̂ [38, 39]. In the presence of a weak SOC and SU(2) spin rotational symmetry,

there is a Z classification of TSCs for the case of M̂2
x = +1, and a Z2 classification for the case

of M̂2
x = (−1)F̂ [38, 39]. With this result we can now readily bridge the gap between pairing

symmetry and the K-theory classification of TSC via the projective symmetry group G f .
A mirror symmetry satisfying M̂2

x = +1 is preserved either in a singlet superconductor
with pairing symmetry A′ in the presence of a weak SOC, or in a superconductor with pairing
symmetry A′′ in the presence of a strong SOC. The classifications of weakly-interacting TSCs
in these two cases are both Z.

To compare, a mirror symmetry satisfying M̂2
x = (−1)F̂ corresponds to either a singlet su-

perconductor with pairing symmetry A′′ in the presence of a weak SOC, or a pairing symmetry
A′ in the presence of a strong SOC. For these two cases the classifications of TSCs are Z2 and
trivial, respectively. The results are summarized in Table 5.

4.4.2 2d SCs with 2-fold rotational symmetry C2z

Our second example is the classification of TSCs in two dimensions (2d) with a C2z rotation
perpendicular to the 2d plane. In this case H(2)(C2z ,Z2) = Z2, which yields two different
fermion PSGs in the presence of a strong (weak) SOC: one with Ĉ2

2z = +1 and the other with

Ĉ2
2z = (−1)F̂ , as shown in Table 6. Accordingly, the K-theory classification of C2z symmetric

TSCs [40] are given by Z for Ĉ2
2z = +1 and Z2 for Ĉ2

2z = (−1)F̂ .
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From the relationship between pairing symmetry and projective symmetry group, we find
that the Ĉ2

2z = +1 case corresponds to either a singlet SC with pairing symmetry A or a SC
with a strong SOC and pairing symmetry B. Then for these two cases the classifications of
topological superconductors are both Z.

The Ĉ2
2z = (−1)F̂ case corresponds to either a singlet superconductor with pairing symme-

try B or a superconductor with a strong SOC and pairing symmetry A. For these two cases the
classifications of TSCs are both Z2. The results are summarized in Table 6.

From these two examples, we see that BdG Hamiltonians with different PSGs generally
give rise to different topological classifications. Based on the correspondence between the
fermion PSG and the pairing symmetry discussed in sections 2-3, the classification of TSCs is
therefore directly related to the pairing symmetry, as demonstrated in Table 5-6. For TSCs of
all the possible pairing symmetries associated with a magnetic point group symmetry, Ref. [28]
summarizes a full list of K-theory classification for both the cases of spinless (weak SOC) and
spinful (strong SOC) electrons.

5 General framework

So far we have only focused on cases where the normal and the SC states have the same spin
rotational symmetry. This simplifies the the form of the fermion PSG as explained below. For
systems with weak SOC the physical symmetry group is G = X × SO(3)spin. When we take a
central extension by the fermion parity group to obtain the fermion PSG, both in the normal
and SC state PSGs, the SO(3)spin becomes an SU(2)spin. The spatial part however undergoes
different central extensions: X 0

f in the normal state PSG and X̃ f in the SC state PSG. Thus,

the fermion PSG preserving the kinetic energy is (X 0
f × SU(2))/Z2 and that preserving the

BdG is (X̃ f × SU(2))/Z2 (taking a quotent by Z2 takes care of the “double-counting” of ZF
2 ).

Thus, the difference between the normal and SC state PSGs is completely captured by different
central extensions of X by ZF

2 . This holds true for systems with strong SOC where spin rotation
symmetry is altogether absent and with G = X , the fermion PSG is synonymous with the central
extension of X by ZF

2 .
When spin rotation is spontaneously broken in the SC state, the fermion PSG no longer

admits such a simple description in terms of central extensions of the spatial part. When the
physical symmetry group in the SC state is G = X × S where S is a subgroup of the normal
state spin rotation group, as we show in section 5.1, the fermion PSG could be a generic
group extension of X by the fermion spin rotation symmetry group S f . S f in turn is a central
extension of S by the fermion parity group and could in general be non-Abelian.

In superfluid 3He, condensation into the spin triplet channel spontaneously breaks the
continuous spin rotation symmetry present in the normal state. We discuss it in section 5.2 in
the light of this general framework.

5.1 Group extension and pairing symmetry in a generic superconductor

Let the normal state spin rotational symmetry group S0 ⊆ SO(3)spin be spontaneously broken
down to S ⊆ S0 in the SC state. With the charge U(1) symmetry in the normal state completely
broken, the SC state physical (bosonic) symmetry group G takes the form G = X ×S, where X
denotes the spatial symmetry group preserved by the SC state. We now describe the structure
of the fermion symmetry group G f in such cases. Some of the relevant mathematical details
can be found in Appendix A.
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First of all, the fermion spin rotation (or internal) symmetry group in the SC-state, S f
is a subgroup of G f and given by a central extension of the physical spin rotation symmetry
group S:

1 → ZF
2 → S f → S → 1 . (47)

S f has the form S f =
¦

(±1)F̂ ŝ′ | s ∈ S
©

where under a spin rotation ŝ′, the fermion operator
transforms as

ŝ′ ĉkα ŝ′−1 =
�

Ũ s
�†
αβ

ĉkβ , (48a)

Ũ s = e−iφs U s
0 . (48b)

The transformation is a combination of an SU(2) spin rotation U s
0 that preserves the kinetic

energy and a compensating phase rotation e−iφs required to make ŝ′ a symmetry of the BdG
hamiltonian. Being an internal (on-site) symmetry, ŝ′ leaves the momentum label unchanged
on both sides of (48a). For a given S, the possible choices for S f is captured by H(2)(S,Z2),
the second cohomology group formed by inequivalent classes of cocycles [ω̃]. As already
noted in previous sections, the cocycle ω̃ taking values in {±1} also characterize the projective
representation of S formed by

�

Ũ s | s ∈ S
	

.
To build G f , next we need to consider the group of spatial symmetries, X . For g ∈ X , ĝ0

preserves the kinetic energy and transforms the fermion operator as

ĝ0 ĉkα ĝ−1
0 =

�

U g
0 (k)

�†
αβ

ĉgkβ . (49)

To make this a symmetry of the pairing term, not only do we need to dress it with a compen-
sating phase e−iφg but also with a normal state spin rotation U s0(g)

0 (where s0(g) ∈ S0). Since
the kinetic energy is invariant under normal state spin rotations and U(1) phase rotations, the
resulting transformation ĝ ′ preserves the BdG hamiltonian. Its action on the fermion operator
is given by

ĝ ′ ĉkα ĝ ′−1 =
�

Ũ g(k)
�†
αβ

ĉgkβ , (50a)

Ũ g(k) = e−iφg U s0(g)
0 U g

0 (k) . (50b)

Although the structure of G f is in general much more complicated than simply a direct
(or even a semi-direct) product of spatial and spin rotation symmetry groups, it is possible
to obtain a generic characterization as discussed below. To begin with, let us compare what
one obtains by the successive application of ĥ′ and ĝ ′ on ĉkα and that by applying cgh

′
on the

same. Using (50a) we see that in both these cases we get a fermion operator on the right
hand side with the same momentum label ghk. With both ĝ ′ĥ′ and cgh

′
being symmetries of

the BdG hamiltonian, this implies that these are in fact the same up to an internal symmetry
transformation (η)F̂ ŝ′(g, h). In other words,

ĝ ′ ĥ′ = (η)F̂ ŝ′(g, h)cgh
′
. (51)

Moreover, for any ŝ′ ∈ S f , the transformation ĝ ′ ŝ′ ĝ ′−1 keeps the momentum label of the
fermion operator unchanged and hence must belong to S f . Then again, any element of G f

can be written as a product of a ĝ ′ for some g ∈ X and an (η)F̂ ŝ′ ∈ S f such that G f has the

form G f =
¦

(±1)F̂ ŝ′ ĝ ′ | s ∈ S, g ∈ X
©

. We thus conclude that S f is a normal subgroup of G f

and G f /S f = X . Equivalently S f , G f and X satisfy the short exact sequence

1 → S f → G f → X → 1 . (52)
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It is hard to find all such extensions in the most general case. However, if S f is abelian then all

such extensions are captured by the second cohomology group H(2)[ρ](X , S f ). It is to be noted

that the matrices {Ũ s · Ũ g |s ∈ S, g ∈ X } form a projective representation of G = S × X with
coefficients in

�

±Ũ s | s ∈ S
	

.
Finally, we discuss the relation between the fermion PSG G f and the pairing symmetry. In

general, the pairing wavefunctions ∆α,β in BdG Hamiltonian (7) form a linear representation
Rpair of the bosonic symmetry group G = S×X , where S stands for the global (spin rotational)
symmetry group and X stands for the crystalline symmetry group. Meanwhile, in the repre-
sentation {Ũ s · Ũ g |s ∈ S, g ∈ X } introduced above, we can identify a projective representation
of group G = S × X :

RΦ(s, g) = e− i (φs+φg )U s0(g)
0 , ∀ s ∈ S , g ∈ X . (53)

It is evident that the projective representation RΦ is not 1D in general. Also note that while
for the global internal symmetry group S, the transformations that preserve the kinetic energy,
preserve the pairing term up to a phase (just as in (14)), that may not be the case for the
crystalline group X . Hence Rpair is in general a multi-dimensional linear representation of G.
Rpair and RΦ are related by the following relation:

RΦ ⊗RΦ ⊗Rpair = 1⊕ · · · , (54)

where 1 denotes the trivial one-dimensional (1d) representation of group G. This is be-
cause the pairing term (9) must remain invariant under the PSG symmetry transformation
{Ũ s · Ũ g |s ∈ S, g ∈ X }. Notice that in the special case of RΦ being a 1d irrep, applicable to the
situation discussed in Section 3, the general relation (54) reduces to Eq. (22). In order for
Rpair to be a multi-dimensional irrep., the tensor product RΦ ⊗RΦ of two projective repre-
sentations in Eq. (54) must be a multi-dimensional irrep. of group G. Therefore, a necessary
condition for the pairing order parameter to form a multi-dimensional irrep. of symmetry
group G (i.e. for Rpair to be multi-dimensional) is that RΦ is a multi-dimensional projective
representation of group G. As we will show below, one such example is the superfluid B phase
of Helium 3.

5.2 Examples: Superfluid A and B phases in Helium-3

The most famous example of triplet superconductivity (or superfluidity) is perhaps Helium-3
[5]. The normal state preserves continuous spatial rotations and inversion symmetry:

X0 = SO(3)orbital ×ZI
2 ≃ O(3) , (55)

along with full spin rotation symmetry, S0 = SO(3)spin. Condensation takes place in a spin
triplet p-wave state breaking the full spin rotation symmetry down to a proper subgroup. In
the basis, Ψk ≡ (ck,↑, ck,↓, c†

−k,↑, c†
−k,↓)

T the BdG Hamiltonian takes the form

ĤBdG =
∑

k

Ψ̂†
k

�

( k2

2m −µ)1 ∆(k)
∆†(k) (µ− k2

2m)1

�

Ψ̂k , (56a)

∆(k) = d(k) · σ⃗(iσy) . (56b)

To obey Fermi statistics, the three component complex vector d(k)must satisfy d(k) = −d(−k).
In particular for p-wave 3He, the components of d(k) are linear in k. The various phases,
characterized by different broken symmetries, are distinguished by the form of the d(k) vector.
We apply the general framework described above to the two phases: (1) B phase, also known
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as the Balian-Werthamer (BW) phase [42], (2) A phase, also known as Anderson-Brinkman-
Morel (ABM) phase [43, 44], discussing the residual symmetry group in the SC state and the
SC state fermion PSG in each case.

The transformations that preserve the kinetic energy act on the fermion operators as

Spin rot. Ŝ0(θ⃗ ) ĉk s Ŝ0(θ⃗ )
−1 =

h

US(θ⃗ )
0

i†

s s′
ĉk s′ , US(θ⃗ )

0 = eiθ⃗ ·σ⃗/2 , (57a)

Space rot. R̂0(θ⃗ )ĉksR̂0(θ⃗ )
−1 =

h

UR(θ⃗ )
0

i†

s s′
ĉR(θ⃗ )k s′ , UR(θ⃗ )

0 = 1 , (57b)

Inversion Î0 ĉk s Î−1
0 =

�

UI
0

�†
s s′ ĉ−k s′ , UI

0 = 1 . (57c)

With
�

R̂0(πn̂)
�2
= Î2

0 = 1 and
�

Ŝ0(πn̂)
�2
= (−1)F̂ , the normal state fermion PSG is of the

form X0 × SU(2).

5.2.1 Superfluid B phase of Helium-3

In the B phase, d(k) =∆0(kx x̂+ky ŷ+kz ẑ) [22]. The spin rotation group is broken down from
S0 = SO(3)spin to its trivial subgroup S = {1} in the SC state. Using (47), the fermion onsite
symmetry group is simply the fermion parity group S f = ZF

2 . The system remains isotropic
in the SC state and X = SO(3)orb.+spin × ZI

2 ≃ O(3). As suggested by the label, the normal
state spatial rotation in (57b) has to be modified by including a normal state spin rotation
and since d(k) is inversion odd, the normal state inversion in (57c) has to be modified by a
compensating phase rotation by i. The transformations that preserve (56a) are

Space rot. R̂′(θ⃗ )ĉksR̂′(θ⃗ )−1 =
�

ŨR(θ⃗ )
�†

s s′
ĉR(θ⃗ )k s′ , ŨR(θ⃗ ) = eiθ⃗ ·σ⃗/2 ·1 , (58a)

Inversion Î ′ ĉk s Î ′−1 =
�

ŨI�†
s s′ ĉ−k s′ , ŨI = i1 . (58b)

With S f = ZF
2 , the full fermion symmetry group G f , which by (52) is a group exten-

sion of X by S f , reduces to a central extension of X by ZF
2 . Eqns. (58a) and (58b) give

R̂′(πn̂)2 = Î ′2 = (−1)F̂ , showing that G f involves non-trivial central extensions of both
SO(3)orb.+spin and ZI

2 and is given by G f = (SU(2)×Z4)/Z2.
Conversely, one can learn about the pair wavefunction from the SC state PSG in the su-

perfluid B phase. From (58a), we see that RΦ(R(θ⃗ )) = US(θ⃗ )
0 = eiθ⃗ ·σ/2 which is a j = 1/2

projective representation of G(≃ SO(3)). According to relation (54) and the angular momen-
tum addition rules, Rpair is either a j = 0 or j = 1 linear irrep of G(≃ SO(3)). However,
because the projective representation RΦ(R(θ⃗ )) coincides with the normal-state spin rotation
in (57a), the j = 0 irrep will preserve spin rotation and hence does not apply to the superfluid
B phase. As a result, the pairing term must transform like a j = 1 representation under (57b).
This is consistent with d(k)∝ k in this case.

5.2.2 Superfluid A phase of Helium-3

In the A-phase, without loss of generality, d(k) = ∆0(kx + iky)ẑ [22]. The spin rotational
symmetry is broken down from S0 = SO(3)spin to S = U(1)z ⋊ Zx

2 ≃ O(2), which is the
subgroup generated by continuous spin rotations around the ẑ axis, S(θ ẑ) and π spin ro-
tations about the x-axis. All possible fermion onsite symmetry groups S f are classified by
H2(S,ZF

2 ) = H2(O(2),Z2) = Z3
2. Since under π spin rotation about x-axis dz(k) → −dz(k),

the corresponding normal state transformation has to be modified by a phase rotation of i.
No such compensating phase is thus required for spin rotation about z-axis. The SC state
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spin rotations are implemented as

Spin rot. Ŝ ′(θ ẑ) ĉk s Ŝ ′(θ ẑ)−1 =
�

ŨS(θ ẑ)
�†

s s′ ĉk s′ , ŨS(θ ẑ) = eiθσz/2 , (59a)

Spin rot. Ŝ ′(πx̂) ĉk s Ŝ ′(πx̂)−1 =
�

ŨS(πx̂)
�†

s s′ ĉk s′ , ŨS(πx̂) = σx . (59b)

The central extension is characterized by Ŝ ′(πx̂)2 = 1 and Ŝ ′(πẑ)2 = Ŝ ′(πŷ)2 = (−1)F̂ and cor-
respondingly S f ≃

�

±σn
x eiθσz/2|0 ≤ θ < 2π , n= 0,1

	

=
�

σn
x eiξσz |0 ≤ ξ < 2π , n= 0,1

	

≃O(2).
The spatial O(3) symmetry is broken down to a subgroup of X = U(1)z × Z I

2, generated
by continuous spatial rotations about z-axis, R(θ ẑ) and inversion I. In this case, the normal
state transformations need to be modified only by compensating phase rotations. The SC state
transformations are given by

Space rot. R̂′(θ ẑ) ĉks R̂′(θ ẑ)−1 =
�

ŨR(θ ẑ)
�†

s s′ ĉR(θ ẑ)k s′ , ŨR(θ ẑ) = e− iθ/2 ·1 , (60a)

Inversion Î ′ ĉk s Î ′−1 =
�

ŨI�†
s s′ ĉ−k s′ , ŨI = i1 . (60b)

In this case the fermion symmetry group G f ≃ (O(2)×U(1)×Z4)/Z2 is a nontrivial extension

of X by S f satisfying
�

R̂′(πẑ)
�2
= Î ′2 = (−1)F̂ .

6 Conclusion

Traditionally, the broken and unbroken symmetries of a superconductor (SC) is described by
the Ginzburg-Landau theory, which characterizes the symmetry properties of all bosonic ex-
citations therein, such as Cooper pairs. In this paper we investigate the same problem of
broken and unbroken symmetries in a SC state from a viewpoint of fermionic excitations.
We showed that the projective symmetry group (PSG) of fermions in a superconductor is the
proper language to capture symmetry-related properties of fermionic excitations in a SC, and
systematically studied the relationship between the pairing symmetry and the fermion PSGs in
a superconductor. We provided a general framework in Section 5 to characterize the fermion
symmetry group after the Cooper pair formation with the concept of PSG, which is a group
extension of the crystalline space group X by the fermion global symmetry group S f in the
superconducting phase. Examples of fermion global symmetry groups include the fermion
parity group Z F

2 in a generic SC without spontaneous breaking of spin rotational symmetries,
and O(2) as in the case of superfluid A phase of Helium-3. In the case of the fermion global
symmetry group S f being an Abelian group, the group extension problem can be classified by
the second group cohomology, which is both conceptually clear and practically easy to com-
pute.

When the SC and normal state share the same fermion global symmetries, i.e. in the
absence of spontaneously broken spin rotational symmetries, the fermion PSG of the SC state is
particularly simple: it is a central extension of the crystalline symmetry group X by the fermion
parity group Z F

2 . In this case, we can classify all fermion PSGs using elements of the 2nd
cohomology group H2(X , Z F

2 ). Using the connection between pairing symmetry and fermion
PSG discussed in section 2, we can systematically obtain all the possible pairing symmetries
compatible with the PSGs as delineated in Sec. 3. A distinction was made between the case
of SCs with and without spin-orbital couplings (SOCs), where in the presence of a strong
SOC, crystalline symmetries of fermions in the normal state are described by a non-trivial 2-
cocycle ω0 ∈H2(X , Z F

2 ), and the correspondence between PSG and pairing symmetry should
be shifted accordingly. Within this general framework, we calculated all the possible PSGs
for all 3-dimensional point group symmetries both with and without SOCs, and establish the
correspondence between PSGs and pairing symmetries of the SCs. As a demonstration of
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the framework, we studied in detail the PSGs and pairing symmetries of several physically
relevant systems in section 4, and hope our work would shed new lights on understandings of
superconductivity in these systems. Considering the crystalline symmetry group X , although
we have restricted our attention to point groups in this work, the case of magnetic point groups
and space groups can be naturally incorporated in our general framework.

It is useful to compare the fermion PSGs in this work to PSGs initially introduced in the
context of quantum spin liquids (QSLs) [21,23]. In QSLs, due to the presence of fractionalized
excitations, like spinons, and emergent gauge fields, each element of the PSG is a combination
of physical symmetry operation, such as a crystal symmetry g ∈ X , and local gauge rotations.
In contrast, in a superconductor each element of the fermion PSG is a combination of an
unbroken crystal symmetry operation g ∈ X and a spontaneously-broken global symmetry
operation such as a U(1) charge rotation. We emphasize that our analysis does not involve the
effects of dynamical local gauge fields, which have been proposed to lead to a description of
superconductors as symmetry protected topological states [45] or states with Z2 topological
ordered states [46]. We thus treat charged superconductors and neutral paired superfluids on
the same footing as systems with a broken global U(1) possibly in addition to other broken
symmetries.

PSGs have important implications on physical properties of a superconductor. As the PSG
G f is the symmetry group of fermions in a SC, it dictates the symmetry and topological proper-
ties of all the fermionic excitations of the system and its validity extends beyond the mean-field
BdG equations. Therefore, PSG can be used to classify topological superconductors in both
non-interacting (i.e., admitting a mean-field description) and interacting cases. As an illustra-
tion, we discussed systems with two different kinds of symmetry groups where G f determines
classifications of non-interacting topological superconductors. Moreover, as PSG establishes
a link between pairing symmetry and topological properties of a system, we can utilize topo-
logical properties of the electronic excitations as a diagnosis for the pairing symmetry of a
superconductor. We leave these interesting ideas for future works.
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A A short introduction to projective representation and 2-cocycle

In this appendix we want to elucidate the connection between the projective representation of
the crystalline symmetry group as described by the mathematical object called 2-cocycle and
the fermion projective symmetry group G f .

The concept of PSG was first introduced in the study of quantum spin liquids [21]. In the
context of quantum spin liquids, electrons can be thought of as being composed of chargons
and spinons which are glued together by an SU(2) gauge field. Due to the emergent gauge
structures, symmetries that are represented linearly on the physical degrees of freedom are
now represented only projectively on the spinons. More specifically, spin operators at site i
can be written as fermionic spinons: Si =

1
2 f †

i,ασ⃗α,β fi,β . A spin Hamiltonian can be described
by a mean-field theory of spinons plus gauge fluctuations. Consider the following mean-field
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Hamiltonian:
H =

∑

i j

[ψ†
i ui jψ j + h.c.] +

∑

i

al
0ψ

†
iτ

lψi , (A.1)

where ui j ’s are 2 × 2 matrices encoding pairing and hoppings of fermionic spinons,
ψi = ( f↑, f †

↓ )
T are Nambu spinors.

The Hamiltonian has a local SU(2) gauge redundancy: a site-dependent SU(2) transfor-
mation ψi → Wiψi , ui j → Wiui jW

†
j with Wi ∈ SU(2) which leaves both physical observables

and the Hamiltonian invariant. Due to this gauge redundancy, the symmetry of the spin liquids
are described by the projective symmetry group, which is defined as the collection of all com-
binations of symmetry elements and gauge transformations that leave the mean-field ansatz
{ui j} invariant:

GU U({ui j}) = {ui j} , (A.2)

U({ui j} ≡ {ũi j = uU−1(i),U−1( j)} , (A.3)

GU(ui j)≡ {ũi j = GU(i)ui jG
†
U( j)} , (A.4)

GU(i) ∈ SU(2) , (A.5)

where U is an element of the symmetry group SG of the microscopic system and GU is the
SU(2) gauge transformation accompanying U that leaves the mean-field ansatz invariant.

To encode the emergent gauge fields at low energy for spin liquid states, we introduce
the important concept of invariant gauge group (IGG) which are pure gauge group elements
that leave the mean-field ansatz invariant: Wiui jW

†
j = ui j . It is clear that IGG corresponds

to elements GU U in PSG where U is the identity. With the concept of IGG it is now easy to
describe the structure of PSG. In fact, IGG is a normal subgroup of PSG, and with the group
homomorphism ρ(GU U) = U between PSG and SG, we have the following exact sequence:

1 → IGG
ι
−→ PSG

ρ
−→ SG → 1 , (A.6)

where ι is the embedding mapping, and the exactness is ensured by the fact thatρ(w)≡ 1 ∈ SG
for w ∈ IGG. The structure of the PSG is now quite clear: it is the group extension of the SG
by the IGG, or alternatively, SG=PSG/IGG.

Equipped with the knowledge of PSG, it is also easy to see that the problem of unbroken
symmetries of the superconductor naturally fits into the general framework of PSG if we notice
that the BdG Hamiltonian takes the same form as the spin liquid mean-field Hamiltonian. More
precisely, as discussed in the main text, fermions in the superconductor has the symmetry
group G f , which is an extension of the space group X by the fermion global symmetry group
S f described by the short exact sequence:

1 → S f → G f → X → 1 . (A.7)

The resemblance to Eq. A.6 is immediately seen if we identify the unbroken global symmetry
group S f as IGG and the fermion symmetry group G f as PSG. However, there’s an important
difference we need to keep in mind: in our study of superconductor, the global symmetry
group S f should not be regarded as the gauge group corresponding to a fluctuating gauge
field, as was in the context of spin liquids.

In general S f can be non-Abelian, and we refer to Ref. [21] for a general computation
scheme to solve the extension problem by obtaining all the inequivalent projective symmetry
groups G f . Below let’s discuss the special case of S f being Abelian, which covers most of the
practical situations and is mathematically much simpler to deal with. And we will comment
briefly on the case of S f being non-Abelian in the end.
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In the case of S f being Abelian, the group extension of X by S f can be described as an
element in the second cohomology group H2

[ρ](X , S f ) with group actions [ρ] : X → Aut(S f )
(note that when the group action is trivial, the group extension is simply a central extension).
To see this more clearly, let’s label group elements in G f as (s, g) with s ∈ S f , g ∈ X . Now,
since S f is in the center of G f , we can represent the group multiplication rule in the following
way:

(sg , g)× (sh, h) = (s(g, h)sgsh, gh) , (A.8)

where s(g, h) is a function X × X → S. The above procedure has an ambiguity since we can
alternatively define g ′ = γg g ∈ G f (γg ∈ S f ) as our canonical choice of g. This then modifies
s(g, h) as:

s(g, h)→ s(g, h) · γg · γ
g
h · γ−1

gh , (A.9)

where the superscript g indicates group actions g on elements in S f as described by [ρ].
The s(g, h)’s satisfy the associativity condition if we apply three group elements in G f in

two equivalent ways, which yields

s(g1, g2)s(g1 g2, g3) = s(g1, g2 g3)s
g1(g2, g3) . (A.10)

The coboundary condition A.9 and the cocycle condition A.10 then define an element in
H2(X , S f ). Therefore we have found out that in the case of central extension, G f is uniquely
determined by the 2-cocycle s(g, h), which is further classified by the second cohomology group
H2(X , S f ).

Before proceeding, let me emphasize an important point: fermions fulfill a 1d representa-
tion of S f , which we denote as ρS : S f → U(1). Note that ρS is determined by the microscopic
electrons and can be viewed as a group homomorphism from S f to Image(ρS).

Because elements in G f act on fermions in a linear way, let’s consider a linear represen-
tation Û of the group G f . Since S f lies at the center of the group, Û((s, 1)) should be of the
form ρS(s)× 1 according to Schur’s lemma and the fact that the symmetry action of s ∈ S on
fermions is given by ρS .

If we identify U(g) as Û((1, g)), U(g) would fulfill a projective representation of X :

U(g)U(h) = Û((1, g))Û((1, h)) = Û((s(g, h), gh)) = Û((s(g, h), 1))Û((1, gh)) =ω(g, h)U(gh) ,
(A.11)

where ω(g, h) ≡ ρS(s(g, h)) is a function X × X → Image(ρS). The ω satisfies the following
associativity condition if we act three consecutive symmetry operations in two equivalent ways:
g1 g2 g3 = (g1 g2)g3 = g1(g2 g3), which translates to

ω(g1, g2)ω(g1 g2, g3) =ω(g1, g2 g3)ω
g1(g2, g3) , (A.12)

where the superscript g on ω indicates group actions on the U(1) phase induced by the group
action [ρ] on elements in S f .

We can also multiply symmetry actions U(g) by some U(1) phase γg ∈ Image(ρS), which
then modifies ω in the following way:

ω(g, h)→ω(g, h)
γgγ

g
h

γgh
. (A.13)

The associativity condition (A.12) and the ambiguity (A.13) thus define a 2-cocycle in
the second cohomology group H2(X , Image(ρS)). And the equation Eq.(A.11) establishes an
explicit homomorphism between the projective representation of X (an element in the coho-
mology group H2(X , Image(ρS))) and the fermion projective symmetry group G f (an element
in H2(X , S)).
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In summary, a linear representation of the fermion projective symmetry group G f can
alternatively be viewed as a projective representation of the group X with cocycle ω(g, h)
which is an element in the cohomology group H2(X , Image(ρS)), as elucidated by Eq.(A.11).

Several remarks are in order:

1. When S f is Abelian and ρS is injective, the two cohomology groups H2(X , Image(ρS))
and H2(X , S f ) are isomorphic to each other, therefore we have sometimes used these
terms interchangeably in the main text.

2. When S f is non-Abelian, G f can no longer be described by an element in the second
cohomology group. If we restrict our attention to the case where the representation ρS
of S f on fermions are one dimensional, then the correspondence Eq.(A.11) still holds,
enabling us to carry out calculations within this general framework.

3. When S f is non-Abelian, there are cases where the representation of S f on fermions
are at least 2-dimensional, such as spin-1/2 fermions in the superfluid A phase with
S f = O(2). Such cases are beyond the scope of cohomological description, and we need
to solve the projective symmetry groups up to gauge equivalence on a case-by-case basis
following the general procedures as described in Ref. [21].

B How PSG constrains the pairing symmetry for all crystalline
point groups

Since G f is the extension of G by Z F
2 , we can view 1d projective representations RΦ(g) of G

as regular representations R̄Φ( ĝ ′) for ĝ ′ ∈ G f with R̄Φ(d) = −1 ( d ≡ (−1)F̂ ) when restricted
to the subgroup X = G f /Z F

2 . This is confirmed by the following relation:

R̄Φ((ηg , ĝ ′))R̄Φ((ηh, ĥ′)) = R̄Φ((ηgηhω̃(g, h), ĝ ′ĥ′)) =ω(g, h)R̄Φ((ηgηh, ĝ ′ĥ′)) , (B.1)

where we have used the fact that Z F
2 is the center of G f and ηg ,ηh = ±1.

Our strategy then is to first obtain the group extension G f ∈H2(X , Z F
2 ) and then compute

the 1d irreducible representations R̄Φ(g) of G f with Z F
2 = −1, from which we can readily

obtain Rpair . We used GAP computer algebra program [24] in all these calculations, which is
ideally suited for the task. The results are displayed in Table 7.

C GAP program for PSG calculation

Groups, Algorithms and Programming (GAP) is a software system designed for algebraic com-
putations. In this section, we provide further details on how GAP is applied to the theories
discussed in Sections 2, 3.

To calculate the group cohomology of point groups, we use the HAP and Cryst pack-
ages in GAP. Starting from a point group G, we calculate its second cohomology with coeffi-
cients in Z2 using the TwoCohomologyGeneric function, and we determine the representa-
tions of G using the Irr function. For each cohomology class, we obtain the unique (up to
coboundary equivalence) group extension X̃ f of G via the FpGroupCocycle function. From
the TwoCohomologyGeneric function and the FpGroupCocycle function we can easily con-
struct the quotient map X̃ f → G. Next, we calculate the representations and characters of X̃ f .
For each one-dimensional irrep of X̃ f , we simply square it and use the quotient map X̃ f → G
to obtain the corresponding irrep of G. We then look up the group representation tables in
Ref. [47] to find the corresponding Rpair as listed in the last column of Table. 7. The pseu-
docode is presented in Algorithm 1.
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One complication in the algorithm is to obtain a complete and linearly-independent list
of gauge-invariant cocycles to label the cohomology classes H2(G,Z2). This is done manually
by first listing all the gauge-invariant cocycles of the form ζg ≡ ω(g, g) for group element g

satisfying g2 = 1, and ηg,h ≡ ω(g,h)
ω(h,g) for group elements g, h satisfying gh= hg. We have tested

that this list completely characterize all the cohomology classes. We then find the linearly-
independent ones among these gauge-invariant cocycles to label all the cohomology classes as
shown in column 3 of Table. 7.

Algorithm 1 Pseudocode for calculating PSGs and corresponding pairing symmetries
Input: Point group G
Output: the (spinless) PSG ωΦ
Output: the corresponding pairing symmetry Rpair

1: Coh = H2(G,Z2) //Obtain all information on the second cohomology
2: Char = Characters of irreps of G
3: for ωΦ ∈ Coh do
4: X̃ f = The extended group of G corresponding to ωΦ
5: CharExt = Characters of irreps of X̃ f
6: Identify the group elements of X̃ f within conjugacy classes of G
7: for RΦ ∈ CharExt do
8: if RΦ is a 1D irrep then
9: Rpair = R2

Φ

10: Identify Rpair ∈ Char
11: end if
12: end for
13: end for
14: Return All matching pairs (ωΦ ∈ Coh, Rpair ∈ Char)
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Table 7: Correspondence between the fermion PSG and the representation of the
pairing order parameter for all the crystalline point groups. We list gauge-invariant
cocycles to label different projective symmetry groups G f for superconductors both
without and with spin-orbital couplings. We follow the convention in Ref. [47] to
label irreducible representations Rpair(g) of the pairing order parameter. Some G f
does not admit a 1d projective representation and hence the corresponding Rpair
is marked as N/A. For gauge invariant cocycles, we use the following short-hand
notations: ζg ≡ω(g, g), and ηg,h ≡ ω(g,h)

ω(h,g) .

X H2(X , Z F
2 ) Gauge-invariant No SOC (spinless) w/ SOC (spinful) Rpair(g)

2-cocycles
C1 Z1 − − − A

Ci Z2 ζi
1 1 Ag
−1 −1 Au

C2 Z2 ζC2

1 −1 A
−1 1 B

Cs Z2 ζσh

1 −1 A′

−1 1 A′′

C2h Z3
2 (ζC2

,ζi,ζσh
)

(1, 1, 1) (−1, 1,−1) Ag
(1,−1,−1) (−1,−1, 1) Au
(−1, 1,−1) (1, 1, 1) Bg
(−1,−1, 1) (1,−1,−1) Bu
other cases other cases N/A

D2 Z3
2

(ζC2x
,ζC2y

,ζC2z
)

(1, 1, 1) (−1,−1,−1) A
(−1,−1, 1) (1, 1,−1) B1
(−1, 1,−1) (1,−1, 1) B2
(1,−1,−1) (−1, 1, 1) B3
other cases other cases N/A

C2v Z3
2

(ζC2
,ζσv

,ζσ′
v
)

(1, 1, 1) (−1,−1,−1) A1
(1,−1,−1) (−1, 1, 1) A2
(−1, 1,−1) (1,−1, 1) B1
(−1,−1, 1) (1, 1,−1) B2
other cases other cases N/A

D2h Z6
2

(ζC2x
,ζC2y

,ζi,

(1, 1, 1, 1, 1, 1) (−1,−1, 1, 1,1,−1) Ag

ηC2x ,i,ηC2y ,i

(1,−1, 1, 1, 1, 1) (−1, 1, 1,1, 1,−1) B3g

ηC2x ,C2y
)

(−1, 1, 1, 1, 1, 1) (1,−1, 1, 1, 1,−1) B2g
(−1,−1, 1, 1, 1, 1) (1, 1, 1, 1, 1,−1) B1g
(1, 1,−1, 1, 1,1) (−1,−1,−1, 1, 1,−1) Au
(1,−1,−1, 1, 1, 1) (−1, 1,−1, 1, 1,−1) B3u
(−1, 1,−1, 1, 1, 1) (1,−1,−1, 1, 1,−1) B2u
(−1,−1,−1, 1, 1, 1) (1, 1,−1, 1, 1,−1) B1u

other cases other cases N/A

C4 Z2 ζC2

1 −1 A, B
−1 1 E

S4 Z2 ζC2

1 −1 A, B
−1 1 E
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Table 7 Continued.

X H2(X , Z F
2 ) Gauge-invariant No SOC With SOC Rpair(g)

cocycles

C4h Z3
2 (ζC2

,ζi,ηC4,i)

(1, 1, 1) (−1, 1, 1) Ag , Bg
(−1,−1, 1) (1,−1, 1) Eu
(1,−1, 1) (−1,−1, 1) Au, Bu
(−1, 1, 1) (1, 1, 1) Eg

other cases other cases N/A

D4 Z3
2

(ζC2
,ζC ′

2
,ζC ′′

2
)

(1, 1, 1) (−1,−1,−1) A1
(1,−1,−1) (−1, 1, 1) A2
(1, 1,−1) (−1,−1, 1) B1
(1,−1, 1) (−1, 1,−1) B2

other cases other cases N/A

C4v Z3
2 (ζC2

,ζσv
,ζσd

)

(1, 1, 1) (−1,−1,−1) A1
(1, 1,−1) (−1,−1, 1) B1
(1,−1, 1) (−1, 1,−1) B2
(1,−1,−1) (−1, 1, 1) A2
other cases other cases N/A

D2d Z3
2

(ζC2
,ζC ′

2
,ζσd

)

(1, 1, 1) (−1,−1,−1) A1
(1, 1,−1) (−1,−1, 1) B1
(1,−1, 1) (−1, 1,−1) B2
(1,−1,−1) (−1, 1, 1) A2
other cases other cases N/A

D4h Z6
2

(ζC ′
2
,ζC ′′

2
,ζi,

(1, 1, 1, 1, 1, 1) (−1,−1, 1,−1, 1, 1) A1g

ζC2
,ηC ′

2,i,ηC ′′
2 ,i)

(1, 1,−1, 1, 1,1) (−1,−1,−1,−1, 1, 1) A1u
(1,−1, 1, 1, 1, 1) (−1, 1, 1,−1, 1, 1) B1g
(1,−1,−1, 1, 1, 1) (−1, 1,−1,−1, 1, 1) B1u
(−1,−1, 1,−1, 1, 1) (1, 1, 1, 1, 1, 1) A2g
(−1,−1,−1, 1, 1, 1) (1, 1,−1,−1, 1, 1) A2u
(−1, 1, 1, 1, 1, 1) (1,−1, 1,−1, 1, 1) B2g
(−1, 1,−1, 1, 1, 1) (1,−1,−1,−1, 1, 1) B2u

other cases other cases N/A
C3 Z1 − − − A1, E

C3i Z2 ζi
+1 +1 Ag , Eg
−1 −1 Au, Eu

D3 Z2 ζC2

+1 −1 A1
−1 +1 A2

C3v Z2 ζσv

+1 −1 A1
−1 +1 A2

D3d Z3
2

(ζC ′
2
,ζi,ηC ′

2,i)

(1, 1, 1) (−1, 1, 1) A1g
(1,−1, 1) (−1,−1, 1) A1u
(−1, 1, 1) (1, 1, 1) A2g
(−1,−1, 1) (1,−1, 1) A2u
other cases other cases N/A

C6 Z2 ζC2

+1 −1 A, E1
−1 +1 B, E2

C3h Z2 ζσh

+1 −1 A′, E′

−1 1 A′′, E′′
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Table 7 Continued.

X H2(X , Z F
2 ) Gauge-invariant No SOC With SOC Rpair(g)

cocycles

C6h Z3
2 (ζC2

,ζi,ηC2,i)

(1, 1, 1) (−1, 1, 1) Ag , E1g
(1,−1, 1) (−1,−1, 1) Au, E1u
(−1, 1, 1) (1, 1, 1) Bg , E2g
(−1,−1, 1) (1,−1, 1) Bu, E2u
other cases other cases N/A

D6 Z3
2

(ζC2
,ζC ′

2
,ηC2,C ′

2
)

(1, 1, 1) (−1,−1,−1) A1
(1,−1, 1) (−1, 1,−1) A2
(−1, 1, 1) (1,−1,−1) B2
(−1,−1, 1) (1, 1,−1) B1
other cases other cases N/A

C6v Z3
2 (ζC2

,ζσv
,ηC2,σv

)

(1, 1, 1) (−1,−1,−1) A1
(1,−1, 1) (−1, 1,−1) A2
(−1, 1, 1) (1,−1,−1) B2
(−1,−1, 1) (1, 1,−1) B1
other cases other cases N/A

D3h Z3
2 (ζσv

,ζσh
,ησh,σv

)

(1, 1, 1) (−1,−1,−1) A′
1

(1,−1, 1) (−1, 1,−1) A′′
2

(−1, 1, 1) (1,−1,−1) A′
2

(−1,−1, 1) (1, 1,−1) A′′
1

other cases other cases N/A

D6h Z6
2

(ζC2
,ζC ′

2
,ζi,

(1, 1, 1, 1, 1, 1) (−1,−1, 1,−1, 1, 1) A1g

ηC2,C ′
2
,ηC2,i,

(1, 1,−1, 1, 1,1) (−1,−1,−1,−1, 1, 1) A1u

ηC ′
2,i)

(1,−1, 1, 1, 1, 1) (−1, 1, 1,−1, 1, 1) A2g
(1,−1,−1, 1, 1, 1) (−1, 1,−1,−1, 1, 1) A2u
(−1, 1, 1, 1, 1, 1) (1,−1, 1,−1, 1, 1) B2g
(−1, 1,−1, 1, 1, 1) (1,−1,−1,−1, 1, 1) B2u
(−1,−1, 1, 1, 1, 1) (1, 1, 1,−1, 1, 1) B1g
(−1,−1,−1, 1, 1, 1) (1, 1,−1,−1, 1, 1) B1u

other cases other cases N/A

T Z2 ζC2

1 −1 A, E
−1 1 N/A

Th Z2
2 (ζC2

,ζi)
(1, 1) (−1, 1) Ag , Eg
(1,−1) (−1,−1) Au, Eu

other cases other cases N/A

O Z2
2

(ζC2
,ζC ′

2
)

(1, 1) (−1,−1) A1
(1,−1) (−1, 1) A2

other cases other cases N/A

Td Z2
2 (ζC2

,ζσd
)

(1, 1) (−1,−1) A1
(1,−1) (−1, 1) A2

other cases other cases N/A

Oh Z4
2

(ζC2
,ζC ′

2
,

(1, 1, 1, 1) (−1,−1, 1, 1) A1g

ζi,ηi,C ′
2
)

(1, 1,−1, 1) (−1,−1,−1, 1) A1u
(1,−1, 1, 1) (−1, 1, 1,1) A2g
(1,−1,−1, 1) (−1, 1,−1, 1) A2u
other cases other cases N/A
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